
memory of up to 2 Mb). Extensive utilization of modern mi-
croprocessor technology has ensured that the central por-
tion of the SM-1420 assemblies is smaller by a factor of three
as compared with the SM-4.
The SCS machines are now being used in economics, educa-
tion, commerce, medicine, transport, and communication
systems, i.e., in practically all branches of the national econ-
omy. It has therefore become necessary to increase sharply
the rate of production of the SCS machines. This has necessi-
tated a substantial increase in the reliability of the SCS as-
semblies, a simplification of servicing procedures, and the
development of new turnkey systems with all the necessary
software. This program is to be implemented by the third-
generation SCS (1984-1987). One of the basic requirements
that the third-generation machines will have to satisfy is
compatibility with the second-generation machines insofar
as software and interfaces are concerned. In addition to the
further development of the existing SM-4 and SM-1800 ma-
chines, the third-generation SCS will include 32-bit mega-
and minicomputers, further integration of the SCS and the
ES computers, and the development of a new class of micros,
namely, the personal computer (PC). The PC is a machine
designed for individual use and, despite its low cost and tab-

letop location, it will compete with the current SM-4 system.
The modern user of computers relies on the operating

system, (OS), and the properties of this system may well be
more important for him than particular equipment charac-
teristics. In view of the wide range of applications of the SCS,
several operating systems have been developed for each ar-
chitectural line (OS RV, RAFOS, DOS KP, and DIAMS for
the SM-4, and OS 1800 and MOS RV for the SM 1800).

The SCS operating systems provide for a wide range of
programming languages (FORTRAN, BASIC, COBOL,
and PASCAL), as well as facilities for the preparation and
editing of string data, graphics programming, and network-
ing.

In addition to the operating systems, the SCS software
that is now available includes software packages such as da-
tabase management, numerical analysis, analysis of experi-
mental data, and so on.

In addition to functional possibilities of existing soft-
ware, it is planned that the third-generation SCS will have
mobile (suitable for machines of different kinds) software. In
particular, the INMOS operating system, suitable for all
types of SCS machine, will be developed.

A. A. Migdal. Lattice models in quantum chromodyna-
mics and results of computer calculations. Until quite recent-
ly, the theoretical physics of elementary particles was res-
ticted to a very modest range of equipment. While
experimental physics demanded enormous accelerators, and
applied physics ultrapowerful computers, theoretical phys-
ics has had to make do with pen and paper. The reason for
this was that the ruling theory at the time was quantum elec-
trodynamics (QED) which was amenable to a remarkably
simple and effective theoretical procedure, namely, pertur-
bation theory. The same applies to the theory of electro-
weak interactions that has recently unified the theory of
weak and electromagnetic forces.

At the same time, the strongest known forces in na-
ture—the strong interactions—have for a long time re-
mained a puzzle. On the other hand, once quantum chromo-
dynamics (QCD) was formulated for the description of
strong interactions, it turned out that perturbation theory
had a very restricted range of applicability to QCD. In parti-
cular, perturbation theory is valid for the description of vir-
tual processes at ultra-short distances. For example, a vir-
tual photon may be produced in a collision between a fast
electron and positron, which, in turn, creates a quark-anti-
quark pair. Perturbation theory is valid so long as the two
members of the pair do not depart from one another to a
distance of the order of rc = 10~ " cm, i.e., the interaction
between the quarks can be described as being the result of
gluon exchange. This gives Coulomb forces, as in QED, but
with a logarithmically growing constant instead of e2:

Slit W= in(rc/r) ' ' '

where C is a universal numerical constant. Perturbation the-
ory ceases to be valid when r % rc. We expect that, in this

region, the forces continue to grow, reaching a constant val-
ue for /•-* oo, so that the potential V (r) increases linearly. We
think that this surprising phenomenon is due to strong and
highly fluctuating gluon fields. Such fields are very different
from the usual set of quanta and require new methods of
description.

This problem arose some ten years ago and although
only moderate progress has been achieved during the last ten
years, we are at least on firm ground now. Although meth-
ods comparable in simplicity and efficacy with the Feynman
perturbation theory have not been discovered, numerical
methods are now available that are capable of a precision of
the order of 10-20%. The precision can be improved by us-
ing specialized computers and by combining analytical with
numerical methods.

Before we describe these methods, it will be useful to say
a few words about why we consider the problem to be impor-
tant and why we are not satisfied with a precision of only
20%. The point is that, according to modern ideas, all forces
of nature are based on non-Abelian gauge fields, as is QCD.
Large-scale fluctuations develop in these fields above a cer-
tain scale. We expect that a hierarchy of such scales will be
encountered at ultrashort distances in the interior of quarks.
It follows that QCD methods of solution will also be valid in
future unified theories. This means that we shall have to
have reliable and precise methods in order to be able to sepa-
rate weaker interactions from the background of stronger
ones. As we move into the interior of quarks, physical experi-
ments will become more and more difficult, and numerical
experiments will necessarily become more valuable. They
will yield more accurate predictions at low energies, at
which experiments can also be made more precise. By verify-
ing these predictions, it will be possible to choose between

455 Sov. Phys. Usp. 27 (6), June 1984 Meetings and Conferences 455



different hypotheses on the interaction at ultrashort dis-
tances.

This question has a further aspect. Quantitative QCD
solutions present us with an exceedingly difficult problem—
a kind of Everest for theoretical physics. It demands com-
bined efforts by representatives of different areas of science,
i.e., theoretical physics, computational mathematics, and
cybernetics. Usually, all adjacent areas gain as a result of the
solution of a problem. In our case, it may be expected that
the problem will stimulate advances in computer science.

The first specialized computers for QCD have already
been developed in the USA. They take the form of a network
of computers working in parallel, and their memory and
speed are better by an order of magnitude than Cray-1. They
are also much simpler and cheaper. This has been achieved
as a result of narrow specialization, but the authors of these
projects consider that they will be useful not only in QCD,
but also in a broad range of theoretical problems in physics
and technology. One way or another, this range of investiga-
tions is attracting considerable attention in the West.

Let us now proceed to a description of numerical meth-
ods for QCD. So far, there are three such methods, namely,
the strong-coupling expansion, the recursion relations, and
the Monte Carlo method. They all make use of the technical
device of four-dimensional Euclidean space and approxi-
mate it by a hypercubic lattice.

Euclidean space arises as follows. Instead of the S-ma-
trix (S — exp( — iHt)), commonly used in quantum mechan-
ics, one considers the temperature density matrix
p = exp( — H/T) that corresponds to the analytic continu-
ation from real to imaginary time. The advantage of the den-
sity matrix is that sums over intermediate states converge
absolutely. By taking the limit as T—*0, we can extract from
the density matrix information of the spectrum of low-lying
excitations and, by introducing the corresponding external
fields, we obtain information on other low-energy param-
eters, e.g., magnetic moments, beta-decay constants, and so
on.

We can return to theS-matrix by analytic continuation
to imaginary T but, at the present level of precision of nu-
merical experiments, it is premature to consider this. The
most convenient quantity for numerical calculation is the
trace of the density matrix for which the famous Feynman-
Katz formula

T-l

Z = trp = exp Al-L}=A(oy, (2)

was developed more than forty years ago, where J^E is the
Euclidean Lagrangian, in which the sign of the kinetic ener-
gy is reversed after the substitution t = — ix4: if
^ = E2 - H2, then J?E = - E2 - H2. For the moment,
we do not consider quarks and investigate field fluctuations.
These fluctuations are expressed in that the vector potential
Ap can assume any value with probability proportional to
the exponential in (2). Since this exponential is bounded and
decreases for high field strengths, the integral differs from
the Feynman integral in Minkowski space by the fact that it
can be given a rigorous mathematical meaning.

This demands a procedure for approximating the func-
tional integral by a multidimensional integral in a way simi-
lar to that by which an ordinary integral is approximated by
a Riemann sum. As was first recognized by Wilson, this ap-
proximation must conserve gauge invariance if the pheno-
menon of quark confinement is to be retained. On the lattice,
gauge invariance is formulated as follows. The vector poten-
tial is associated with the midpoint of the edge (xy) and the
transfer matrix uxy = exp[ig(yfl — x^^x +y}/2}] is in-
troduced. In QCD, the vector potential is a 3 X 3 Hermitian
matrix and the transfer matrix is a unitary one. Gauge trans-
formations multiply the transfer matrix from the left by
s~l(x) and from the right by sly). It is readily verified that,
when x—*y, these generalized gauge transformations become
identical with the usual transformations: A^(x)—+s~l(x-

The lattice analog of field strength is the transfer matrix
over the elementary closed contour drawn around the
boundary of the lattice uD~ iixy uyz ua utx. The lattice ana-
log of action, i.e., the integral of the Lagrange function over
space, is the following sum over all the boundaries of the
lattice:

It is readily verified that the new definition becomes identi-
cal with the old one in the limit of zero lattice spacing. All
that remains is to determine the measure of integration over
the transfer matrices which now appear as the dynamic var-
iables. The requirement of gauge invariance means that this
measure must coincide with the so-called Haar invariant
measure, which is well known to mathematicians.

Lattice gauge theories were first examined by Wegner
in 1971 in statistical mechanics. They were rediscovered by
Wilson in 1974, who generalized them to the Yang-Mills
theory and applied them to the confinement problem. Wil-
son's outstanding paper determined the development of the
theory for many years. An important quantity introduced by
Wilson was the potential between heavy quarks

where
W(R, £) =

(4)

(5)

is the trace of the transfer matix over a rectangular contour,
averaged over fluctuations, where one side L of the contour
tends to infinity. Confinement corresponds to an increase in
this potential with distance R.

Wilson used an expansion in l/g% to show that W de-
creases as exp(-area within the contour) for sufficiently large
g2,. The potential thus increases as aR, where a is the coeffi-
cient in front of the area in the exponential in W.. In other
words, this coefficient can be interpreted as the force
between distant heavy quarks.

The I/go expansion was subsequently investigated in
greater detail by Balian, Drouffe and Itzykson and by Kogut
and Susskind in 1974. It was found that it had limited con-
vergence, and a phase transition liberating the quarks could
be expected for sufficiently smal
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On the other hand, in the real world, we are interested
precisely in small go = g2(a) = C/\n(rc/a) because go has
the meaning of the effective charge at the lattice separation.
Thus, the central question of the theory was the behavior of
the force <7(go) with decreasing seed charge gfc. If a remains
constant for small go. the quarks are confined, and if a = 0
beginning with certain go <goc> the quarks become liberat-
ed.

To solve this problem, the present author developed in
1975 an approximate functional integration procedure that
did not make use of an expansion into a series in either I/go
or g2,. The basic idea of this method can be described as
follows. Consider a closed volume in 4-space, for example, a
4-cube, and integrate over all fields, i.e., over all transfer
matrices within this volume. This results in the so-called z-
functional which depends on the fields on the boundary of
the volume. If we now take two neighboring volumes and
integrate the product of the Z-functionals for both volumes
over the partition between them, the result is the Z-func-
tional for the combined volume.

This gives a nonlinear functional equation for the Z-
functionals—the so-called recursion relation. In this form,
the equation is exact but, because of the infinite number of
degrees of freedom, it cannot be treated by numerical meth-
ods. A procedure was then developed for isolating the princi-
pal degrees of freedom which, in the gauge theory, corre-
spond to transfer matrices over "typical" contours on the
boundary of the volume. This results in a closed equation of
sufficiently simple structure that can be solved numerically.
For small spatial scales, this reproduces existing results of
perturbation theory, including the logarithmic law for the
effective charge. For distances r^rc, new and disturbing
results are obtained.

It is found that the forces between the quarks do, in fact,
reach a constant limit, and this transition from Coulomb
forces to constants occurs very rapidly in a narrow interval
of distances. The force a is an exponential function of g0~

 2:

( 'C \ / a2 \
~ 7s~ ) = a"a exp ( ' " ~ ) = (6)

and remains finite at a = 0, i.e, in local theory. A phase tran-
sition releasing the quarks does not, therefore, occur. The
nonanalyticity noted in the expansions if g0~

 2 is due to the
rapid transition from Coulomb forces to constants, and not
to the liberation of quarks. This was the first theoretical indi-
cation of quark confinement in the local theory, and the first
calculation outside the framework of perturbation theory.

However, the recursion relation was not exact but ap-
proximate. Its precision was of the order of 30%. To im-
prove it, Kadanoff, Martinelli, Parisi and others have con-
structed a special perturbation theory for which this relation
is the zero-order approximation. Additional degrees of free-
dom are turned on gradually, so that the number of degrees
of freedom remains finite in each order. From the technical
point of view, this perturbation theory is not simple and, so
far, the first two orders have been obtained only for two-
dimensional models, but it has been verified that the preci-
sion improves.

Quite recently, Tomboulis has proved an inequality ac-
cording to which the recursion relation gives the lower
bound for the force alg2,). The recursion relation thus pro-
vides us with the possibility of proving quark confinement.

However, direct evaluation of the integral by the Monte
Carlo method* has turned out to be simpler for practical
QCD calculations. The basis for the application of the
Monte Carlo method is the crossover phenomenon found in
the recursion relation. In particular, since the force between
the quarks reaches a constant limit very rapidly, and without
an intermediate law, the infinite-volume limit is reached on a
lattice that is only a few times larger than rc. The lattice
constant a can then be only a few times smaller than rc, and
the effective constant on the lattice is small enough for the
local limit to appear.

Such ideas seemed at first to lie in the realm of science
fiction. In fact, the 1976 paper in which the Monte Carlo
method for lattice gauge theories was developed and pro-
posed as a means of calculating the hadron mass spectrum
was rejected by the editorial board of JETP on the grounds
that the calculations should have been made first. This could
not be done at the time, and the paper was not published.

However.the idea has survived. It was born again in
1979, when Creutz in the USA carried out the first success-
ful calculation of cr(g^). This confirmed the qualitative cross-
over picture, and his data are satisfactorily described by the
exponential law. The calculations were performed on a lat-
tice consisting of 104 points for the SU(2) group.

An explosion of activity began at that point. Several
hundred papers have now been published, and new groups of
researchers continue to appear. This is so because the Monte
Carlo method can be simply programed: the problem is
transferred from the human to the electronic brain. The dif-
ficulty is the slow convergence: the statistical error decreases
only as the square root of the time. There is also a systematic
error due to the finite size of the lattice. Since the size of the
required memory increases as the fourth power of the size of
the lattice, this is the weakest point of the situation.

As long as quarks are not included the demands placed
on the computer are not too excessive. One can work with
lattices of 84 or every 44 and obtain reasonable results. This
can be achieved with relatively small machines, such as
VAX-11/780 and our ES-10-60. Practically all the low-ener-
gy quantities have been calculated, including the mass spec-
trum of glueballs, the critical temperature of vacuum at
which quarks are liberated, and the energy density and topo-
logical charge of vacuum. In all cases, reasonable results that
agree between the different groups to within 10-20% have
been obtained.

Real difficulties emerge with the appearance of quarks.
It has not been possible to devise a Monte Carlo algorithm
for Fermi fields, so that one has to start with computations of
the Green's function for quarks in lattice gauge fields, and
then average over the field configurations. Most of the ma-
chine time is then expended in inverting the enormous matri-
ces corresponding to the Green's functions. Moreover, when
quarks are present, the lattice must be much greater in order
not to "feel" the presence of the boundary.

Thus, although the work of Parisi et al. has resulted in
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reasonable values for the hadron mass spectrum, these re-
sults cannot be regarded as final because of the finite-lattice
effects. It would appear that the 103X20 lattice used in one
of the latest calculations by the Italian group is still too
small. We note that this calculation took about 30 hours of
Cray-1 at the French Ministry of Electricity.

It is thus clear that the Monte Carlo method in QCD
with quarks has reached the limit of the possibilities of mod-
ern computers and does not as yet yield reliable numbers for
the mass spectrum. This could be reached with a computer
performing 10 billion operations per second and a storage of
a few million 8-byte words. A supercomputer of this kind is
planned for 1987 by CDC, according to its Vice-President
Schmidt.

The alternative is to develop specialized machines in
which several hundred computers work in parallel, each be-
ing responsible for its own portion of the lattice. The ma-
chine that has just been built by Christ et al. at Columbia
University utilizes, under the control of a VAX-11/780 host
computer, a two-dimensional lattice consisting of 256 nodes
(memory + processor). Each node is responsible for its own
plane of a 4-dimensional lattice. It has a memory of 128 kb
and costs in the neighborhood of two or three thousand dol-
lars. The machine can perform 4 billion operations per sec-

ond. It is designed for calculations of the hadron spectrum
on lattices of 164-324.

In our own country, lattice gauge theories are being
studied by about 20 people. We are urgently in need of ma-
chine time, which we have to find in roundabout ways. Un-
fortunately, despite the fact that the idea of these calcula-
tions was put forward by us 3 years before the Americans,
various technical difficulties have prevented us from exploit-
ing this advantage.

To eliminate the lag, the QCD theoreticians should
have access to at least one modern fast computer. What is
required is collaboration between theoreticians and engi-
neers, so that specialized computers, such as the Christ
mesh, can be developed. Finally, a search should be made for
a more efficient numerical method that would be an advance
on the Monte Carlo procedure and would combine numeri-
cal methods with analytical techniques. There is much hope
for methods using the equations of motion for the traces of
transfer matrices. It may well be that this will be the way
forward in developing a successful quantitative theory em-
ploying numerical methods only at some of the stages.

Yu. M. Makeenko, Usp. Fiz. Nauk 143, 161 (1984) [Sov. Phys. Usp. 27,
No. 6(1984)].

E. G. Maksimov. Use of computers in the physics of the
condensed state. Recent years have been characterized by the
increasing penetration of computer science into all branches
of human activity. Neither physics as a whole nor the phys-
ics of the condensed state have lagged behind in this general
computerization process. The particular feature of the cur-
rent state of computerization in the physics of the condensed
state is the transformation of the computer into an equal
participant, both in experimental and theoretical research.
A new trend in physics has been created or, more precisely, a
new branch of physics, i.e., computational physics, with its
own methods and techniques for studying nature. In general,
these are different from the traditional methods of experi-
mental and theoretical physics. Unfortunately, we are well
behind the West in developing this branch of physics. There
are at least two reasons for this. The first is objective and is
due to the fact that we are lagging behind the West in com-
puter science generally. There is, however, another, subjec-
tive, reason, namely, some members of our scientific com-
munity have underestimated the importance and
possibilities of computational physics.

In a brief, thirty-minute report, we cannot, of course,
examine all aspects of the computational physics of the con-
densed state. We can merely briefly recall the rapid develop-
ment of molecular dynamics and the Monte Carlo tech-
nique, which has led to considerable advances in our
understanding of the physics of the liquid state, in calcula-
tions of the properties of highly nonideal classical and quan-
tum plasmas, and in calculations of the critical indices in
phase transitions. We shall use the example of a relatively
narrow problem in the physics of the condensed state, name-
ly, the calculation of the electronic properties of crystals, to

demonstrate the development and advances in both theoreti-
cal approaches to this question and our computational possi-
bilities.

The single-particle description of the electron system in
a crystal has for long been one of the popular models used in
solid-state physics. Powerful and effective methods have
now been available for a relatively long time1 for the solution
of the Schroedinger equation describing an electron in a peri-
odic field V(r):

(1)

Calculations of the electron band structure within the frame-
work of this equation have been performed for a large num-
ber of metals, semiconductors, and dielectrics. These calcu-
lations reached the peak of their development in the sixties
and seventies in connection with the idea of the pseudopo-
tential.2 However, all these calculations suffered from one
important defect: there was no rigorous justification for the
corresponding single-particle description of a system of
strongly interacting electrons. This meant that there was
also no rigorous procedure for calculating the parameters of
the potential (or pseudopotential) from "first principles."
The parameters of the empirical potential were usually cho-
sen by comparing calculations with experimental data for
some particular phenomenon. Once this was done, calcula-
tions were performed on other effects as well. The results
obtained in this way were in surprisingly good agreement
with a whole range of physical properties of crystals.

The density functional method (DFM), developed in re-
cent years since the early paper of Kohn and Hohenberg,3

has provided a rigorous theoretical basis for both the use of
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