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In recent years the Feynman formulation of quantum theory with the use of functional integrals
became the basis of numerical methods, mainly in the theory of gauge fields. This approach is
discussed in detail in the present study using examples of quantum mechanical problems. In the
case of several degrees of freedom D this approach is substantially simpler and more powerful
than the traditional approaches based on the Schrodinger equation: an average computer can
handle problems with D~ 10. Possible applications are briefly discussed.
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1. INTRODUCTION

The traditional formulation of quantum mechanics, to
which specialists in atomic, molecular, nuclear physics, and
related areas have become accustomed, is based on the con-
cept of a wave function, satisfying the Schrodinger equation.
However, the application of this approach in the case of sev-
eral degrees of freedom, where separation of variables is not
possible, encounters many difficulties. Therefore in practice
it is necessary to resort to various simplifying approxima-
tions, which are difficult to justify or verify.

The use of a Schrodinger wave function in quantum
field theory, where the number of degrees of freedom is infi-
nite, is obviously impractical, so from the very beginning one
is forced to search for other methods.

An alternative formulation of quantum theory, using
functional integrals, was suggested by Feynman.1 With its
help he first derived the celebrated rules of diagram tech-
niques, which found wide application far outside the scope of
quantum electrodynamics. The use of this approach in quan-
tum field theory is a matter of routine at the present time.

Unfortunately, only functional integrals of Gaussian
type can be calculated analytically, which strongly restricts
the usefulness of the method.

In recent years a qualitative trend has occurred in this
area—integrals over quantum fields have been investigated
numerically by computer. The basic direction of developing
this approach has become the study of contemporary strong
interaction theory, quantum chromodynamics, particularly
the calculation of the pion and proton masses, etc., from first
principles. Though a fair amount of work has been done, the
computational power and the skill of the theoreticians pres-
ently available for a direct solution of this problem are still
inadequate.

The purpose of the present note is not a review of these
studies, but an attempt to draw attention of the large com-

munity of theoreticians to the methodological aspect of the
problem, as there is no doubt in my mind that the power and
simplicity of this approach guarantee a large number of ap-
plications in many areas of quantum physics. Naturally, to
achieve this purpose it is advisable to discuss the basics of the
method, using very simple examples.

Concluding the introduction, we would like to note the
psychological and organizational trends toward active ap-
plication of numerical methods in elementary particle the-
ory. It can be concluded with confidence that similar devel-
opments will also take place in other areas.

Today it is not necessary to convince anyone of the ad-
vantages of using computers; almost every physicist uses
them on a daily basis. However, in most cases these numeri-
cal calculations play an auxiliary role (for example, numeri-
cal estimation of integrals, etc.), and no specific knowledge is
required for them (for example, a simple Monte-Carlo meth-
od is used, based on random "tossing" of the argument).

However, to solve quite complicated problems deeper
knowledge is required of computational algorithms, which
may qualitatively change the whole approach to the prob-
lem. A good example is the subject of the present study.
Mathematically the subject is estimation of integrals (more
accurately, modeling of the integrand functions) with a very
large number of variables (102-106), which is quite impracti-
cal when using ordinary methods of integration. An ade-
quate algorithm was suggested 30 years ago,3 as it turned out
by physicists. Nevertheless, its wide use in the context men-
tioned is only starting.

Theoretical physicists did not confine themselves to be-
coming proficient in the use of appropriate algorithms. They
took an active part in the process of developing these algor-
ithms, in the same way that theoretical physics of the last
century was instrumental in developing methods of solution
of differential equations of "mathematical physics." Certain
organizational approaches were developed, such as hiving
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off a separate section of the journal "Nuclear Physics" under
the name "Field theory and statistical systems" almost com-
pletely devoted to numerical methods.

2. QUANTUM MECHANICS AND STATISTICAL PHYSICS

Theoretical physicists naturally solve very different
problems under the title of the present section. In the former
case one calculates the probability amplitude of a certain
dynamic process evolving in time. In the latter case—a stan-
dard problem is the calculation of the probability of realiza-
tion of some configuration of a system in a steady (equilibri-
um) state. There exists, however, some connection between
these problems, although quite a formal one, but also quite
fruitful, on which we plan to dwell.

As a simple quantum-mechanical process we choose
particle propagation from point x, to point xf during a time
t0. The probability amplitude is written as follows:

G(xt, xt, g =

-- 5 (1)

The first statement uses the traditional state vectors and the
Hamiltonian operator H, and the second—the Feynman
path integral and the action 51 [x].

If the potential V(x) is time-independent, a transition is
possible to imaginary (or, as is also called, Euclidean) time
T0 = — /r0, so that oscillating functions in (1) are replaced
by exponentially decaying ones. Here an analogy occurs
with the Boltzmann factor exp( — H /T), where the role of
temperature is displayed by •K/r0.

The development of this analogy is aided by the con-
struction of a statistical analog system, for which the Euclid-
ean time T0 is conveniently discretized. We divide its range of
variation (0, r0) into N + 1 segments of length a = TQ/
(H + 1), and we characterize the trajectory by the set of N
points1) xk = X(T = ak), k = 1, . .. N. By the definition of
the path integral, it equals the limit as N—>- oo, a—>• 0 of the
W-fold integral over xk. However, we do not yet let N tend to
infinity, and attempt to use the language of statistical me-
chanics for finite N.

In our example the analog system is the one-dimension-
al lattice with step a, at whose sites are given "spins" xk,
k = 0,1,... ,N + 1, taking on arbitrary real values. Replac-
ing time derivatives by finite differences, we obtain the Ha-
miltonian ("Euclidean action") in the form

(2)

Naturally, the derivative can also be approximated more ac-
curately, in which case a different system is obtained, in
which not only neighboring "spins" interact with each oth-
er.

In several cases, for example, in gauge field theory, the
construction of an analog system4 is not a simple matter,
since it is desirable to retain the exact symmetry of the prob-
lem even at finite N. The choice of a "lattice action", similar

to (2), is also a quite important and highly nontrivial prob-
lem.

In order to become somewhat more accustomed to the
statistical language, and to understand how to use properly
the propagator (1) at imaginary times, we discuss several
very simple problems.

For a "spin" lattice the existence of a finite correlation
length rcor is natural, as well as the tendency at TO>TCOI. of
the distribution over x (in particular, the mean energy den-
sity per unit length) to some equilibrium value. What corre-
sponds to these quantities in a quantum problem?

We recall in this case the standard expansion of the pro-
pagator (1) in terms of steady-state eigenfunctions

G (xt, xtl TO) = » (x,) «p - (3)

As TO— »• oo the ground state, obviously, "survives," so that
its characteristics are described by the long "lattice." In par-
ticular, the energy density is nothing other than E0, the
ground state energy. The correlation length characterizes
the distance up to excited levels (the so-called spectral
"gap"). In particular, if for some operator A (x) (with
(0\A |0) =0) one measures the correlation function, then in
virtue of

(A (T) A (0)> -— * | <1 1 A | 0> I'exp [(£„-£,) ~ (4)

its decay with r makes it possible to infer both the value of
the "gap" and the matrix elements of the given operator. It is
in just this manner that masses and other characteristics of
hadrons are calculated in the method of sum rules5 and lat-
tice calculations in QCD.

Finally, we apply periodic boundary conditions
x{ = xf = x, and integrate (3) over x:

(5)

"We note that xa = xi,xfi+l = x, are fixed.

We have literally obtained the partition function at a tem-
perature T = ///TO. Thus, a lattice of finite lengths provides
information on the behavior of a quantum system at a finite
temperature! It is in just this manner that the behavior of
matter at high temperatures T = 200 MeV is investigated, at
which a transition occurs to the quark-gluon plasma state,
and hadrons "melt."

We include a few words concerning the limit N—+ oo,
a—>• oo, corresponding to the transition from a lattice to the
continuous case. Naturally,the correlation length rcor, hav-
ing a literal physical meaning, must tend to some limiting
value.

In terms of the lattice model this behavior implies that
rcor becomes arbitrarily large in comparison with the lattice
step a. The appearance of such long-wave fluctuations in
statistical systems is possible only near phase transition
points, recalling the classical effect of critical opalescence.
Moreover, it is precisely at phase transition points that dy-
namic universality occurs, independence of the system be-
havior from the specific structure of matter on the atomic
scale.

In the context being discussed of quantum path inte-
grals universality has a very simple meaning—the answer
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must not depnd on the specific shape of the trajectory ap-
proximation and on the action over a small size step in time
a.

3. STATISTICAL SYSTEMS ON A COMPUTER

Thus, having formulated the lattice analog of the sys-
tem, we turn now to its numerical analysis. An obvious prob-
lem is generated at the first step: what order of N (number of
"spin" variables) would be realistically needed?

We assume that we are interested in the ground state. In
this case it is required that

TO >Tcor. (6)

On the other hand, it is obvious that only for a sufficiently
small step

can one expect a realistic description of the system. Assum-
ing that each inequality holds within an order of magnitude,
we obtain a minimum admissible N~ 1 02. It is easily verified
that the usual Monte-Carlo method, random tossing, is prac-
tically useless in computing integrals of this multiplicity.
The point selection must not be random!

Proceeding to the description of more effective statisti-
cal algorithms, we must start from the fact that instead of the
calculation itself of the integral

\ W(x)dx (8)

we generate an ensemble of points (x\ with weight W(x}.
With its help it is not difficult to calculate mean values of the
form

lf(x)W(x)te

\W(x)Ax
(9)

as simple arithmetical means over the ensemble. Usually
W(x] is much more complicated than/(x), which is what jus-
tifies this procedure.

In the case of a single variable x one usually uses the
Neuman method. On part of the x, y plane (corresponding to
the region of variation of x and W(x}) we choose a point with
uniform weight. If y < W(x] (i.e., the point is located under
the curve), we choose it in the ensemble (x), while in the
opposite case — we reject it. Repeating this procedure many
times over, we obtain a set of points with the given weight.

In the multidimensional case the effectiveness of this
method is low, as the parameter region consists of a negligi-
ble fraction of the whole volume. The decisive modification
of the method is the replacement of random selection of the
points x by a random shift in its preceding value. In particu-
lar, the Monte-Carlo method3 consists of successive applica-
tion of the procedure described above to each coordinate xk

in turn. The magnitude of the shift is determined from the
condition that the change in W(x] is of order unity.

The small-step variant has been much discussed lately;
in it the process of random motion of points (in some "ma-
chine" time) is described by the Langevin equation:

t-i'), (10)

where Tjk (?) is a Gaussian random force with a delta-function
correlator. Although a small step leads to an increase in cal-
culation time, better correlation functions are obtained; con-
sult Ref. 6 on this point.

Finally, sometimes one uses the "thermal bath" meth-
od, in which the xk value is sought for fixed remaining varia-
bles x,, i=£k, directly "inverting" the weight W(x).

We add that successive use in turn of all variables is
called a system iteration (or "scrambling"), while its succes-
sive multiple repetition leads to relaxation of the initial con-
figuration to some equilibrium ensemble, signaled by the ap-
proach of mean values to their limiting values.

Errors may arise due to insufficient relaxation, insuffi-
cient statistics of configurations chosen for the ensemble,
and, finally, specific effects of system discretization. Clearly,
an optimally organized calculation holds all these errors to a
single, preassigned level.

As seen from the discussion above, these methods are
simple in essence. Their realization in the form of a numeri-
cal program is accessible to all. The fact that they started to
be used in quantum mechanics only now is a clear conse-
quence of inertia in thinking and lack of training.

4. EXAMPLES

As already mentioned, the basic applications of the
method are related to four-dimensional lattice models of
gauge theories, first developed by M. Creutz.7 At the present
time the "attack of QCD" with the use of the most powerful
computers in the world had led to studies of statistical sys-
tems with a number of degrees of freedom reaching 105-106

(i.e., of quantum systems with ~ 104 degrees of freedom!). Of
course, this in itself is a big success for the theory. However,
after extracting the fourth-order root we obtain lattices of
0(10) steps along each axis, which, as has already been men-
tioned, is insufficient. For further progress in this problem
we need new machines or new ideas.

Fortunately, physics includes a large number of much
simpler problems, anticipating a solution. To these belong,
for example, problems of quantum mechanics with several
degrees of freedom, which we now propose to discuss. As we
see, they require neither supercomputers, nor complicated
programs.

Calculations of this kind in quantum mechanical prob-
lems are only getting started. The first was the study of M.
Creutz and B. Freedman8 of Brookhaven (USA), devoted to
linear and nonlinear one-dimensional oscillators. A number
of examples of increasing complexity is discussed in a study
of O. V. Zhirov and the present author,9 to which I shall
primarily refer in the following.

One must also mention the first studies, no longer of
merely an illustrative, but also of an applied nature. B. Bunk
and U. Wolffe11 investigated a one-dimensional rotor in an
external (gravitational) field, with a detailed study of tunnel
"rotation." In our own study10 we calculated the Green's
functions of a nonrelativistic quark and antiquark, propa-
gating in complex vacuum fields. For obvious reasons we do
not dwell on these studies.
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We start with one of the simplest and extremely instruc-
tive problems of quantum mechanics, a nonlinear oscillator
with two wells. After transforming to imaginary time the
action is

(11)

It was mentioned in Section 3 that the ground state en-
ergy of the system can be calculated by using a sufficiently
long "spin crystal." However, in attempting direct averag-
ing of the Hamiltonian we encounter a divergence as a—> 0 of
the mean kinetic energy, estimated by means of

^2) = ((*fc+.-^)2)^_S_j |12)

A different (finite) equation was suggested in Ref. 8, but it is
much simpler to use the virial theorem

Figures 1 and 2 show the ground state energy and the
probability of finding the particle at point x, calculated over
the trajectory ensemble [xk }; the latter is compared with
|^0(x)|2. To obtain these results we needed N~ 100 and sev-
eral hundred iterations, which took about a minute on the
quite average ES-1040 computer.

One of the most important methodological problems is
the systematic error related to the introduction of a finite
step in time a and the specific nature of the lattice action. As
noted in Ref. 9, for sufficiently large a and "naive" action
this error is basically due to the specific "jump" across the
potential barrier in one step. Replacing in the action
^•k V(xk] by SVdr along a broken path, we eliminate this
effect, and sharply enhance the accuracy of the calculation.
Similar "lattice instantons" are also well-known in more
complicated problems, in which the choice of optimal action
is of primary importance.

Naturally, these calculations are important mostly in
the methodological sense: in the one-dimensional case it is
simpler to solve the Schrodingr equation directly. However,
in the presence of D variables the difference methods require
a grid with k° nodes, where K ~ 10-100. Clearly, the possi-
bilities of this approach are severely restricted.

The statistical methods of path integration in the case of
D degrees of freedom simply increase the number of "ran-
domly sampled" variables, so that the bulk of calculations
increases with D only linearly (not taking into account, it
must be said, the increased complexity in the action).

" ' x-%f°

FIG. 1. The ground state energy of a two-well oscillator as a function of
the parameter/, Eq. (11): 1) from Ref. 8, 2) from Ref. 9.
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FIG. 2. The distribution with respect to x for the oscillator ( I I ) with
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Figure 3 shows estimates of the ground state energy of
simple one- and two-electron atoms, obtained in Ref. 9. Sim-
plification of the problem, i.e., separation of angular varia-
bles, was not carried out, so that trajectories were calculated,
respectively, in three- and six-dimensional spaces. Natural-
ly, as in all numerical methods, it is desirable to "smooth
out" the singularity of the Coulomb potential at small dis-
tances. Another problem arising in this case is "ionization"
of the atom for a sufficiently long statistical set. The point is
that, as noted in Section 3, a finite r0 implies a nonvanishing
temperature T = fi/r0. This feature of the Coulomb poten-
tial, level crowding toward zero, facilitates ionization. The
simplest way of preventing this is to forbid the electrons to
get out to distances larger than some R, i.e., explicitly to cut
off the "tails" of the wave functions.

An attempt was also undertaken in Ref. 9 to make the
first calculations of properties of light nuclei, up to He4 in-
clusively. As these calculations (up to 12 degrees of freedom)
showed, an important feature of thse nuclear systems is their
"friability," the binding energy per particle and the separa-
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FIG. 3. The ground state energy of one- and two-electron atoms as a
function of the number of iterations.
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tions between levels are of the order of several MeV, which is
much less than the characteristic parameters of the poten-
tial. This implies that the requirements on T = fi/T0 are par-
ticularly strong, otherwise "evaporation" of nucleons in the
course of the computation process is observed. The quantity
N must be of the order of several hundred, and the total
number of "spin" variables per lattice reaches 104 (which is
by only one to two orders of magnitude less than in QCD
computations!), and requires computer time of the order of
hours on ES-1040. However, a definite ensemble relaxation
is observed for very different potentials, with a rigid "core"
or without it.

Finally, in several cases one needs the propagation am-
plitude in absolute normalization. The simplest method is to
average a factor related to the potential, normalizing by the
well-known free particle propagator

G (xt, a;,, T0) = G0 (xt, *,, TO) (14)

This method can also be applied to cases in which the parti-
cle has internal degrees of freedom, spin or color, so that the
potential Vis a matrix.21 Recently progress was achieved10 in
the quite difficult problem of sum rules for heavy quarkonia,
in which a qq-pair propagates in complicated color vacuum
fields, with a Coulomb interaction between the members of
the pair.

It is clear, however, that averaging the factor, strongly
differing from unity, is a difficult matter, requiring more
statistics for suppression of statistical noise. This difficulty
can be avoided by adiabatic inclusion of the interaction, as
suggested in Ref. 9. We introduce a parameter J", varing from
Oto l :

(15)

The mean value of the integrated potential is the derivative
of the partition function with respect to J"; integrating this
relation, we have

i
G=G 0 exp[- jd i ( jdTF(z))J , (16)

where the subscript J" at the brackets denotes averaging with
the action (15). Replacing the averaging of the exponent by
the averaging of its index makes it possible to use this meth-
od even when the difference between G and G0 is substantial;
see, for example, Fig. 4.

5. CONCLUSION

The examples provided show convincingly the big po-
tential and universality of the method for solving multidi-
mensional quantum problems, particularly ones not allow-
ing direct solution of the Schrodinger equation. Talking
about its potential applications is quite difficult, but several
general considerations can be brought forward.

An obvious application area is physics of systems of
several particles, few-nucleon systems of nuclear physics,
2)We recall that the statistical methods of ensemble generation cannot be

applied to nonpostive weight functions.

FIG. 4. The Green's function for a linear oscillator, obtained by Eq. (16)
(marks), compared with the exact value (lower curve). For comparison we
show the behavior of G0 (upper curve).9

molecules, etc. In this connection it is particularly important
to stress the possibility of studying molecules at a finite tem-
perature—traditionally this requires unjustifiably long cal-
culations of energy spectra and explicit evaluations of the
partition function. The thermal "ionization" of atoms ob-
served in the calculations described above, as well as nuclear
disintegration, are, obviously, interesting applications.

Obviously, one can talk not only about such "monomo-
lecular" reactions, but also about the probability of binary
collisions of molecules with definite chemical reactions; one
must start with some atomic trajectory leading from some
given initial state to a given final state, and the computer
chooses the optimal trajectory. In other words we are refer-
ring to the penetration probability through some complicat-
ed multidimensional barrier (in the coordinate space of all
atoms).

We now make some remarks on what the given method
cannot do. A fundamental feature of the statistical methods
of ensemble generation is the probabilistic interpretation of
weight functions, which cannot undergo a change of sign.
Precisely therefore they cannot be used in ordinary (non-
Euclidean) time, and nonstationary problems with explicit
time dependence cannot be studied either. For the same rea-
son we obtain information mostly about the ground state and
the low-lying excited states, but not on all energy levels.
Further, the presence of identical particles requires symme-
trization or antisymmetrization methods. The latter (fer-
mion) case gives nonpositive weights, so that working with
them is also impossible. It is precisely the necessity of includ-
ing the Pauli principle that restricted our calculations of
atoms and nuclei.

Finally, the last comment, which is practically quite
important. In the present study we have been dealing not
with some exotic computational method, requiring a super-
computer and demonstrating the achievements of contem-
porary technology. As stressed earlier in the text, the com-
putational tools used in the cases surveyed are practically
accessible to most physicists. Neither are special program-
ming systems required—what was discussed above is entire-
ly sufficient for the writing by an individual of a workable
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model program, and the knowledge of detail comes with
some experience. In brief, the topic that has been discussed is
one of the computational methods required in daily work of
a theoretical physicist.

The author is grateful to O. V. Zhirov for collaborating
in the calculations discussed above.
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