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Applications of the Monte Carlo method in lattice gauge theories, including applications in
quantum chromodynamics, are reviewed. The lattice formulation of gauge theories, the corre-
sponding concepts, and the corresponding methods are introduced. The Monte Carlo method as
it is applied to lattice gauge theories is described. Some specific calculations by the Monte Carlo
method and their results are examined. The phase structure of lattice gauge theories with Abelian
groups ZN and U( 1) (a lattice formulation of a compact electrodynamics) is discussed. The non-
Abelian groups SU(2), SU(3) (a lattice formulation of quantum chromodynamics), and others are
also discussed. The procedure for calculating quantities referring to the continuum limit by the
Monte Carlo method is discussed for quantum chromodynamics. A detailed analysis is made of
results calculated for the continuum theory: string tensions and interaction potentials, which
show that quarks are confined; glueball mass spectra; and the temperature of the transition from
the phase of hadronic matter to the phase of a quark-gluon plasma. Masses calculated for hadrons
consisting of quarks are briefly discussed.
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INTRODUCTION The most important property of QCD, which was pointed
out by Gross, Wilczek, and Politzer,3 is the property of

Quantum chromodynamics (QCD), proposed in its asymptotic freedom (the effective interaction constant is
modern form just over a decade ago by Gell-Mann, Fritzsch, small at short range). Because of this property, perturbation
and Weinberg,' has now become the generally accepted the- theory can be used for calculations for processes determined
ory of the strong interaction. In QCD the interaction by short distances in QCD.
between quarks is associated with their color and is imple- With increasing distance the effective interaction con-
men ted by an octet of gluon fields (see Ref. 2, for example). slant increases, however, so that quantities determined by
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distances over which the interaction actually becomes
strong cannot be caculated by perturbation theory. Among
these quantities are most of the quantities which arise in the
theory of the strong interaction, e.g., those which pertain to
low-energy hadron physics (hadron masses, decay widths,
interaction cross sections, etc.). In order to calculate these
quantities it is necessary in principle to consider not only a
perturbation-theory series in a coupling constant (perturba-
tive QCD) but also—and more importantly!—the nonper-
turbative contributions, which do not arise in any order of
perturbation theory.

It nevertheless turns out that in QCD there is a certain
interval of intermediate distances over which these nonper-
turbative contributions can be described in a simple way by
altering the structure of the QCD vacuum: by incorporating
gluon and quark condensates in the vacuum. These conden-
sates are determined in succession through an operator ex-
pansion (an expansion in powers of the product of the dis-
tance R and the scale dimension of the strong interaction,
A QCD). This expansion makes it possible to calculate the
contributions of these condensates to physical quantities. In-
corporating gluon and quark condensates improves the
QCD description of several physical processes, making it
possible in particular to derive reliably, by a sum-rule meth-
od, the masses and widths of the mesons of the J /if> family4

and also the masses of the lower mesons5 and baryons6 which
are made up of light quarks.

In QCD there are also many phenomena which are gov-
erned by large distances, RA QCD > 1, where the operator ex-
pansion (not to mention perturbation theory) cannot be used.
Among these phenomena are quark confinement and the ap-
pearance in QCD of the string, bag, Regge-trajectory, and
other models. These phenomena do not arise in any finite
order of a perturbation theory in the coupling constant; they
are due entirely to nonperturbative effects. One more exam-
ple of phenomena of this type is the appearance of quark and
gluon condensates. Consequently, although it is expected
that these phenomena have a place in the theory of the strong
interaction, nonperturbative methods must be used to derive
them from the QCD Lagrangian.

In this review we will examine a relatively new nonper-
turbative method, which is based on a numerical integration
by the Monte Carlo method of QCD regularized in a special
way by means of a lattice. The Monte Carlo method has the
advantage over other nonperturbative methods which have
been developing in parallel (for example, the method of re-
ducing QCD to the theory of a relativistic string7) that the
calculations can more frequently be carried out completely,
and their results can be compared with experiment. Let us
list the basic steps which must be taken in Monte Carlo cal-
culations in QCD.

We use a formulation of QCD involving a functional
integral. For this formulation an average over quantum fluc-
tuations of the fields at each point in space-time is represent-
ed as an explicit integral (see Ref. 8, for example). From this
point on the idea is, roughly speaking, to evaluate these inte-
grals numerically using the Monte Carlo method.

A transformation is made to Euclidean space; i.e., the
time t is replaced by a fourth coordinate x4 in accordance

with x4 = it. This procedure is used frequently in perturba-
tion theory to simplify the calculations. This procedure is
also standard in the nonperturbative formulation of the the-
ory; it leads to a convergence of the functional integral at
each point in Euclidean space. If some quantity,-say a
Green's function, is calculated in the Euclidean theory, then
its value in a theory defined in Minkowski space is obtained
by using the analytic continuation t = — ix4 (see Ref. 9, for
example). This approach can of course be used to find only
quantities in the space-like part of Minkowski space; it can-
not be used, for example, to find a form factor in the time-like
region. We are still able to calculate the interaction potential
between static quarks, the hadron mass spectrum, and some
other quantities which we will be discussing below.

The continuous Euclidean space is replaced by a dis-
crete set of points: a lattice. The introduction of a lattice
makes the functional integral a correctly defined quantity
and allows us to calculate this integral by the methods of
statistical physics. Although, by virtue of its construction, a
theory formulated on a lattice is not invariant under the ro-
tation group or the displacement group (all that remains are
discrete symmetries under rotations through angles which
are multiples of w/2 and under displacements by a multiple
of the lattice spacing), these symmetries are present in the
final results if the scale dimension for changes in the fields is
much greater than the lattice spacing. For this purpose, the
coupling constant in the lattice theory is chosen near the
point of a second-order phase transition (at a second-order
phase transition, the correlation length becomes infinite). It
is this situation with which we deal in Monte Carlo calcula-
tions in QCD, so that it is possible to obtain results on the
continuum limit from calculations on a lattice.

More specifically, the following procedure is used. The
introduction of a lattice ensures an appropriate ultraviolet
regularization of the quantum theory. If the spatial dimen-
sion of the lattice is bounded (this would mean an infrared
regularization), then the system on the whole has a finite
number of degrees of freedom, so that all the results calculat-
ed for dimensional quantities which are expressed in units of
the lattice spacing are finite. If these quantities are to refer to
the continuum limit, they must depend on the coupling con-
stant in a certain way prescribed by the renormalizability of
QCD (see the equations in Subsection 4a). Another impor-
tant point is that the quantities which are calculated should
not depend on the spatial dimension of the lattice or on the
choice of boundary conditions which are imposed on the
field at the boundary. Luckily, it turns out that the scale
dimension for changes in the fields at which the lattice struc-
ture is not sensed is only a few times the lattice spacing, so
that even on a lattice no larger than 84 the Monte Carlo
method can reliably provide results referring to the contin-
uum limit (the multiplicity of the integral which is evaluated
in this case is =; 106). The lattice must therefore be perceived
as simply a regularization method which makes it possible to
obtain results for the continuum theory.

As we have already mentioned, the most interesting of
the results obtained by this method are those which stem
from nonperturbative effects and which cannot be derived
by perturbation theory. Monte Carlo calculations have
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shown that the Coulomb interaction potential between static
quarks gives way with increasing distance to a linearly in-
creasing potential, which results in the confinement of
quarks. The value calculated for the parameter A QCD in this
case agrees with the phenomenological value. Furthermore,
the Monte Carlo method has been used to calculate the mass
spectrum of colorless gluon formations—glueballs—and ha-
drons made up of quarks. The values of the gluon and quark
condensates and other quantities which arise in QCD have
also been calculated. A separate group of studies has been
devoted to calculations in QCD at a finite temperature. Here
the Monte Carlo method has been used to calculate that tem-
perature (Tc) at which a phase transition occurs from a phase
of hadronic matter to a phase of a quark-gluon plasma, in
which quarks are not confined. The Monte Carlo method
has also been used to calculate the temperature at which the
quark condensate is destroyed and a variety of characteris-
tics of the quark-gluon plasma.

For comparison with experiment we need to know the
accuracy of the Monte Carlo calculations. The error of these
calculations consists of the statistical error, which decreases
with increasing computation time, as in all Monte Carlo cal-
culations, and various systematic errors which stem from
the particular approximations which are used, including the
usual approximation of ignoring the contribution of virtual
quarks to physical quantities. For calculations of hadron
masses by this method, for example, the total error is esti-
mated to be about +150 MeV. The agreement with experi-
ment is within this error, although this error is quite large.
At any rate, these values are obtained directly from the first
principles of QCD without any appeal to additional hypoth-
eses, and their agreement with experiment may be regarded
as a test of QCD at low energies. Certain other results of
Monte Carlo calculations, such as glueball masses and the
value of Tc, are predictions for the future.

We will examine in detail how the Monte Carlo method
is used to study lattice gauge theories, including QCD with-
out quarks. The two goals of this review are to introduce the
reader to the concepts and methods presently used in re-
search on the dynamics of gauge theories and to review the
basic results which have emerged from the vast number of
published studies in this field. As the title of this review im-
plies, we will be discussing in greatest detail the Monte Carlo
method and the results which have been obtained by this
method. We will reproduce several figures from the original
papers with results calculated by the Monte Carlo method.

In Section 1 we list the basic concepts of lattice gauge
theories. We discuss the lattice formulation of gauge theor-
ies, the quantization of lattice gauge theories by the func-
tional-integral method, the Wilson quark-confinement crite-
rion, and the appearance of an area law in the
strong-coupling limit. We examine the question of which
renormalization factors must be separated from the quanti-
ties of interest when we take the continuum limit.

Section 2 describes the Monte Carlo method as it is ap-
plied to lattice qauge theories. We discuss some specific al-
gorithms which have been used for calculations: the heat
bath method and the Metropolis method.

Section 3 uses the simple example of calculating the spe-

cific energy for a detailed look at the procedure for using the
Monte Carlo method in research in lattice gauge theories.
We examine the problem of choosing an initial state and the
relaxation to equilibrium. We discuss quantities which are
calculated in order to answer the question of whether a given
gauge system undergoes a phase transition, and if so, of what
order. We look at some results obtained by this method for
lattice theories with the Abelian gauge groups ZN and U(l)
and also with the non-Abelian gauge groups SU(./V) and
U(N), among others. We discuss the nature of the physical
phenomena which occur at the points of phase transitions.

Section 4 reviews the results derived by the Monte
Carlo method in continuum QCD (without quarks). We see
how the continuum limit is taken in QCD calculations by the
Monte Carlo method. We look at results calculated on the
string tension, glueball masses, and the temperature Tc. We
discuss the extent to which these results are independent of
the particular choice of action in the lattice gauge theory.

This review is restricted to Monte Carlo calculations in
QCD without quarks. To include also the results obtained
for QCD with quarks would have substantially increased the
length of this review. Furthermore, at this stage the work on
QCD with quarks is comparatively incomplete. References
to this other work are given in the Conclusion.

1. LATTICE GAUGE THEORIES

Lattice gauge theories in their modern form were pro-
posed in 1974 by Wilson10 and independently by Polyakov
(his work was published in Ref. 11). Wegner's study12 of an
Ising gauge model is also cited frequently in this connection.
A Hamiltonian formulation was developed by Kogut and
Susskind.13 In addition, the papers by Balian, DroufFe, and
Itzykson14 and Migdal15 have had considerable influence on
the subsequent development of lattice gauge theories.

Lattice gauge theories constitute a nonperturbative reg-
ularization of a gauge theory. The lattice formulation also
has several other advantages. The problem of a nonperturba-
tive quantization of the gauge theories can be solved in a
simple and elegant way on a lattice. The lattice formulation
allows a strong-coupling expansion, in each order of which
quarks are confined. Finally, a lattice gauge theory can be
studied by the Monte Carlo method at arbitrary values of the
coupling constants.

a) Lattices, links, plaquettes, and all that

The first step in constructing a lattice gauge theory is to
approximate the continuous space by a discrete set of points:
a lattice. In the Euclidean formulation, the lattice is intro-
duced along all four coordinates. In the Hamiltonian ap-
proach, the time is left continuous. Here we will discuss only
the Euclidean formulation, for which the Monte Carlo
method is used.

A "lattice" is defined as a set of spatial points with the
coordinates

= an,.

where the components of the vector

(1.1)

(1.2)
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FIG. 1. Two-dimensional lattice.

are the natural numbers. Points (1.1) are called "lattice
sites." The dimensional constant a, equal to the distance
between neighboring sites, is called the "lattice spacing."
Dimensional quantities will usually be expressed in units of
a, so that we would have a = 1. Figure 1 shows a two-dimen-
sional lattice. A four-dimensional lattice for which the dis-
tances between sites are identical in all directions (as for the
lattice shown here) is called a "hypercubic lattice."

The next concept is the "link" of a lattice. A link is a line
which connects two neighboring sites. A link is denoted by
the letter "/" (or "b ") and is characterized by the coordinate
(x) of its starting point and its spatial direction// = 1,..., 4
(^ = 1 represents the x axis;. ..; and/* = 4 represents the /
axis):

I = {x, fi}. (1.3)

A link /joins sites with coordinates x and x + aft, where fi is
a unit vector along the/i direction, as shown in Fig. 2. For a
hypercubic lattice, the lengths of all links are equal to a.

The elementary square enclosed by four links is a "pla-
quette." A plaquette p is specified by the coordinate (x) of a
site on which a square is constructed along the/z, v direction
(Fig. 3):

P = {x; u, v}. (1.4)

The set of four links which form the boundary of a plaquette
p is denoted by dp (or, less frequently, p).

If the spatial dimension of the lattice is not bounded,
then the number of dynamic degrees of freedom is infinite
(but denumerable). Monte Carlo calculations can in practice
be carried out with a large but finite number of degrees of
freedom. To limit the number of degrees of freedom, one
deals with a lattice which has finite dimensions in all direc-
tions: Lx xLyxLzxL, (Fig. 1). "Periodic boundary condi-
tions" are imposed; i.e., pairs of sites which lie on parallel
bounding hyperplanes are identified with each other [the
sites with coordinates (0, ny,nz,nt] and (Lx,ny,nz,n,), for
example, are identified with each other].

For a symmetric lattice (Lx = Ly = Lz = L, = L } with
periodic boundary conditions, the numbers of independent

FIG. 2. A link of a lattice.
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FIG. 3. A plaquette of a lattice.

sites, links, and plaquettes are, respectively,

NS = L«, Nt = dLd, Np =
 d(d~i} Ld,

where d = 4 is the dimensionality of the space.

(1.5)

b) Gauge fields on a lattice

In the continuum theory the gluon field is described by
the vector potential1'2 A ° (x). It is convenient to multiply this
potential by the generator (f} of a fundamental representa-
tion of the gauge group and to work with the Hermitian
matrix

which is an element of the algebra of the gauge group. The
nonAbelian field then becomes

(x) = (x) — , (x) — An (x), Av (x)],

(1.7)

where g0 is the charge of the gluon field.
On a lattice the gluon field is described by matrices Ux^

which are assigned to the links of the lattice. The Ux^ are
elements of the gauge group itself. The matrix UX<IL can be
represented as an exponential function of the/zth component
of the vector potential. For this purpose we note that the
quantity on the right side of the relation

(1.8)

is, to an accuracy O (a2), an element of the gauge group. In
other words, under a local gauge transformation

A» (x) -+ Q-« (x) A»(x)Q (x) + -L Q-i (x) d^Q (x) (1.9)
80

it transforms homogeneously within the specified error:

Ux. u ->• Qx'Ux, v.Qs+^' (1>10)

For a proof, we need to replace the derivative in (1.9) by a
finite difference. The matrix flx is equal to the value of the
matrix fl (x) at the lattice sites.

It is now clear how we are to establish the exact relation-
ship between the matrices Uxft and A^ (x). We partition the
link between the points x and jc + ajl into infinitesimally
small parts, for which Eq. ( 1 .8) is valid, and we define Ux ̂  as
an ordered matrix product (here the matrices are ordered
from left to right, in the order in which the link goes from the
point x to the point x + ajl}:

J=L

(1.11)

Since each cofactor transforms homogeneously under a
gauge transformation, the matrices fl cancel out at the inte-
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FIG. 4. A contour in the form of an oriented boundary of a
plaquette.

rior points of a link, and the matrix UXift denned by (1.11)
transforms exactly in accordance with Eq. (1.11) under a
gauge transformation [but now this is true in any order in a,
not simply O (a2), as before]. The quantity on the right side of
(1.11) is an "ordered phase factor." For it there is a special
notation:

(1.12)

This is the final expression which relates the lattice matrix
Ux_M to the potential A^ (x} in the continuum theory.

It can be seen from (1.12) that the concept of the orienta-
tion of a given link arises in a lattice gauge theory. The orien-
tation of a link is the direction in which the matrices in the
contour integral are ordered. Above we characterized a link
{x, p } by the coordinate (x) of its starting point and the (posi-
tive) direction//. We now assume a link has a negative direc-
tion, — [A, if its direction is opposite the direction of the/zth
axis. Consequently, both the link {x, //) and the link
{x + 'ft, — /J, j connect the points x and x + /z, but in the for-
mer case the orientation of the link is positive (it is the same
as the direction of the coordinate axis), while in the latter
case it is negative. The matrices U which are assigned to links
with positive and negative orientations are related in case of
unitary matrices by

U * _ =£/J, n- (1.13)

The phase-factor definition in (1.12) can be generalized
without any difficulty to an arbitrary contour. In the con-
struction of a lattice gauge theory, the most important role is
played by the simplest closed contour: the boundary of a
plaquette, as shown in Fig. 4. Here the arrows show the or-
der in which the matrices UXifi are multiplied. This contour
corresponds to the ordered product

Ur.~Ux.J7 . U+ . J7J'x, V (1.14)

In constructing it we made use of property (1.13). It follows
from (1.10) that under a gauge transformation Up trans-
forms in accordance with

Up -+ &-x
lUpQx. (1.15)

Consequently, the trace of the matrix Up is gauge-invariant.
This property is exploited in constructing an action for a
lattice gauge theory.

An expression for a phase factor corresponding to an
arbitrary contour can be derived by analogy with (1.14). Let
us assume that the contour C is specified by its initial point x
and by the directions (some of which may be negative) of the
adjoining links:

C = {x, (il5 ..., jin}. (1.16)

The matrix Uc is constructed in accordance with the rules
above:

- +V-n-r
(1.17)

For the links with a negative direction it is convenient to
make use of property (1.13) again. The only gauge-invariant
trace of contour products is that for closed contours, with
£, + . . . + £„ =0. Expressions of this type are used in cal-
culating physical quantities.

c) Lattice action. "Naive" local limit

The action of any lattice theory can be derived from the
action of the continuum theory by replacing the derivatives
[which appear in the field (1.7), for example] by finite differ-
ences and replacing the integrals by sums over the lattice
sites. For a gauge theory, however, this quantization proce-
dure is correct only in the free case; for a gauge theory with
an interaction, this procedure would violate the local gauge
invariance. Consequently, in constructing the action of a lat-
tice gauge theory one uses the formulation of the preceding
subsection, for which the gauge fields are assigned to links of
the lattice rather than to sites.

The Wilson action of a \J(N ) lattice gauge theory is con-
structed through the use of a simple gauge-invariant quanti-
ty trUp :

(1.18)

The summation is over all the elementary plaquettes of the
lattice (i.e., over all x, /z, and v), regardless of their orienta-
tions. Since trf/p converts into its complex conjugate upon a
reversal of the orientation of a plaquette, by virtue of proper-

trUT reorientation
(1.19)

we can also rewrite action (1.18) in the equivalent form

= T S

where the sum is also over the two possible orientations of a
given plaquette.

In the limit a— »0 the lattice action (1.18) becomes the
action of a \J(N ) continuum gauge theory. To see this, we
note that in the limit a— »0 we have

Up = exp + 0 (a3)], (1.21)

where F^v is defined by (1.7). In an Abelian theory, expan-
sion (1.21) is easily found from the Stokes theorem. The com-
mutator of Ap (x) and Av (x) which arises in the non-Abelian
case complements the Abelian field to a non-Abelian field, as
is ensured by the gauge invariance.

The transition to the continuum limit is accomplished
by means of

(1.22)

Expanding the exponential function in (1.21) in a series we
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find fj = ei<pnor/2 = cos ?+ jng sin _ _ . (1.28)
(1.23)

That the action is a scalar can be seen after summing over/j
and v.

The lattice action (1.18) converts into the action of the
continuum theory in the limit a—>0 (at a fixed g0). This limit
is known as the "naive" local limit in quantum field theory.
By analogy with the action, other quantities used in the lat-
tice gauge theory, Uc, for example, convert in the naive local
limit into the corresponding quantities for the continuum
theory.

d) Quantization of gauge fields on a lattice

In the continuum theory a gauge field can be quantized
through the use of functional integrals
-f-OO +OO

J • • • j mill d4J(*)«P [ —f 1 d«*tr Fjlv (*)] ;
— oo — oo x li a

(1.24)
here the number of independent integrations (the number of
degrees of freedom) is

NaddG, (1.25)

where Ns is the number of points in the space, d is the dimen-
sionality of the space, and da is the dimensionality of the
gauge group [d 0 = Nl — 1 for the SU(JVC) group]. For
each of these integrals to converge, it is necessary to work in
a Euclidean space, in which the action appears in the argu-
ment of the exponential function with a minus sign. In order
to assign a mathematical meaning to functional integral
(1.24) we must also restrict the discussion to a denumerable
set of spatial points; e.g., we could use the lattice approxima-
tion.16

In a lattice gauge theory using the matrices UXJ1 as dy-
namic variables, the funtional integral (1.24) is replaced by a
functional integral of the type

z (P)=5 (1.26)

As the action we can take any gauge-invariant expression
which converts in the limit a—»0 into the action of the contin-
uum theory. The simplest action is the Wilson action (1.18),
and this is the one most commonly used. A subtler question
is how the measure of the integration changes when we adopt
the lattice approximation. In expression (1.26) the integra-
tion is over an invariant "group measure" or "terHaar mea-
sure." Invariance of the group measure under multiplication
form the left or right by an arbitrary element of the group

AU = d(Q£7) = d(UQ) (1.27)

guarantees gauge invariance of the functional integral (1.26).
To examine an explicit expression for the group mea-

sure we consider the case of the SU(2) gauge group. Any
arbitrary element of the SU(2) group can be parametrized by
means of the unit three-vector n (n2 = 1) and the angle

here the a are the Pauli matrices. The geometric meaning of
this parametrization is extremely simple: An element (1.28)
corresponds to a rotation through an angle <p around the n
axis.

For practical calculations it is convenient to form the
unit four-vector

4

a|i=(nsin-|-, cos-|-), o^=2«/ l= l , (1-29)
n=i

which puts expansion (1.28) of the matrix Um the basis of the
four matrices crM = (ioj) in the simple form

# = <W a(l=-itra|iC/. (1.30)

An integration over the terHaar measure for the SU(2) group
can be represented as an integration over an element of solid
angle in the four-dimensional space by one of the two equiva-
lent methods

(l.Sla)

Expression (l.Sla) is found from (1.31b) by taking the inte-
gral of the 5-function over | a . The condition a2 = 1 which
arises in the course of this integration is equivalent to the
conditions that the matrix J/must be unitary and unimodu-
lar, since for representation (1.30) we have UU + = a2/ and

As always, the quantity Z \p } defined by the functional
integral (1.26) characterizes vacuum effects in the quantum
theory. To calculate physical quantities we must average
gauge-invariant functionals Q [U] over the field U:

/]. (1.32)

In the naive local limit this expectation value becomes the
corresponding expectation value of the continuum theory if
the constant /3 is related to the charge g2, by

a relation which follows from (1.23).
On a lattice of finite size the integrals over the group in

(1.32) are bounded, since the integration is carried out over a
compact group manifold, and no infinity arises from the vol-
ume of the gauge group. Expression (1.32) is thus a construc-
tive method for calculating expectation values of gauge-in-
variant quantities, although the gauge is not fixed. The
gauge can be fixed in the standard way, by the Faddeev-
Popov method.17'8 This procedure involves extracting a (fin-
ite) common factor, equal to the volume of the gauge group,
from the numerator and denominator in (1.32). A functional
integral with a fixed gauge is convenient for calculations in a
lattice perturbation theory. A Lorentz gauge cannot be fixed
outside a perturbation theory, however, because of Gribov's
ambiguities.18 In contrast, the functional integral (1.32) with
an unfixed gauge is a correct nonperturbative quantization
method.
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The compactness is achieved at the expense of the peri-
odicity in the vector potential [for the U(l) group, for exam-
ple, values of the vector potential A^ and A^ + (2ir/ag0) be-
come identified with each other]; this periodicity does not
occur in an ordinary gauge theory since discontinuities of
the vector potential in a continuum theory correspond to an
infinite action. The lattice analog of these discontinuities
would be fluctuations of the vector potential A^ ~ I/a, for
which the lattice action (1.18) is, however, finite, so that the
integration also goes over configurations of this type. The
lattice gauge theories are thus not simply a regularization
but also a nontrivial, nonperturbative addition to the defini-
tion of the perturbation-theory series. Monte Carlo calcula-
tions show that fluctuations A^~\/a actually become un-
important when we take the local limit in the case of a
four-dimensional non-Abelian theory, in which we are inter-
ested here. The actual local limit is thus very similar to the
naive limit.

e) Strong-coupling expansion

There are several ways to calculate the functional inte-
gral (1.32) approximately. In the very first paper by Wilson10

an expansion was carried out in the parameter 13, which is
related to the charge gl by (1.3 3). The limit of small values of
13 (or large values of g0) is called the "strong-coupling limit,"
and the evaluation of the integral (1.32) as an expansion in/7
is called a "strong-coupling expansion" or "high-tempera-
ture expansion." The latter term stems from the analogy
between the functional integral (1.26) and the partition func-
tion of some (four-dimensional) system. The constant /? is
thus an analog of the reciprocal temperature, and the expan-
son in /? is an analog of a high-temperature expansion in
statistical physics.

The basic quantity with which we must work in lattice
calculations is the "loop average" of the phase factor (1.17):

W (C)=(jrtrUcy.. (1.34)

Here the average is taken in accordance with (1.32).
To calculate W(C) in the strong-coupling limit, we ex-

pand the exponential function in a series in P, reducing the
problem to one of evaluating the group integrals

... Ulnufkl ... U^m, (1-35)'n 'l 'm ' ( '

where the measure is normalized by the condition J"d U = 1.
We know from general considerations that the integral (1.35)
is nonzero only if n = m(modN), i.e., only if « = m + kN,
where k is any integer. For the simplest case m = n = 1 the
answer can be found easily by making use of the unitarity of
the matrices U and the orthogonality relation

(1.36)

These relations are sufficient for evaluating loop averages in
the first approximation in /3.

Let us examine the simple case of a loop which is the
boundary of a plaquette: C = dp (Fig. 4). In the f) order it is
sufficient to retain only the first two terms in the expansion
of the exponential function:

FIG. 5. Boundaries of the plaquettes/> and/;', which are oppositely orient-
ed.

W (dp) =

p'

(1.37)

A group integration is then carried out in accordance with

8'''6^- (1-38)

which follows from the rules given above. The symbol 8n ,
means that the (oriented) link / ' must coincide with the link /
if the result of the integration is to be nonzero. According to
this rule, the denominator in (1.37) is equal to one (each link
is encountered no more than once), while in the numerator
the only nonvanishing contribution is that from plaquette/>',
which coincides with plaquette p but has the opposite orien-
tation [see Fig. 5 and Eq. (1.19)]. Multiplication of the Kron-
ecker deltas finally gives us

- r for the SU(JV) group with JV>3, (1.39a)

W (dp) = -|- for the SU(2) group. ( 1 . 39b)

The reason for the absence of the additional factor of 1/2 in
the case of the SU(2) group is that in this case trUp is real,
and the orientation of the plaquettes can be ignored.

Relation (1.38) can also be used to evaluate the first non-
vanishing order of the strong-coupling expansion for the
loop average in the case of more complex loops. According
to (1.38), the only nonvanishing integral is that of a term in
the expansion of the exponential function in/? for which the
plaquettes completely cover a surface bounded by the given
loop C (Fig. 6). In this case each link in the group integral is
encountered twice (or never), once in the positive direction
and once in the negative direction, and all the group integrals
are nonzero. The first nonvanishing order corresponds to the
coverage of a "minimal surface," whose area takes on the
smallest possible value. For the loop average (of a simple
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FIG. 6. Filling of a loop with elementary plaquettes.
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loop without self-intersections) we thus find, in first order in
A

W(C)=[W(dp)]Am*{C}, (1.40)

where ;4min (C) denotes the area (in units of a2) of the minimal
surface bounded by loop C, and W(dp) is given by (1.39).

f) Area law

The exponential nature of the dependence of the loop
average on the area is called the "area law." It is customary
to assume that if an area law holds for large-area loops in
pure gluon dynamics then quarks are confined (i.e., there are
no physical |in>or|out> states). This assertion is the es-
sence of Wilson's "confinement criterion." The argument is
that in the case the physical amplitudes, e.g., the polariza-
tion operator, have no physical quark singularity.10

Another, possibly oversimplified justification for the
Wilson criterion is based on the relationship between the
loop average and the potential energy of the interaction
between static quarks. To find this relationship we consider
a loop consisting of a rectangle of dimensions R XT lying in
the x, t plane (Fig. 7). We fix the gauge by means of the
condition A4(x,..., t ) = 0. We then have

W(R, T) = < t rY(0) 1 F + (7 ' )> ,

where
R

Y (0) =P exp ^ At(x, .. ., 0) dx,
o
R

\At(x, ..., T) dx.
o

(1.41)

(1.42)

Substituting into (1.41) a sum over intermediate states,

<tr (Y (0) Y+ (T)) = % <YU (0) |n> <R| Y£ (J-)> (1.43)
n

and noting that

(1.44)

where the operator H performs a discrete displacement
along the "time" axis (the "Hamiltonian" of the system), we
finally find

W(R, r) = (1.45)

where En is the energy of the \n > state of the system.
We now consider the limit 7>/J. In the limit T—>oo we

are left in the sum over states with only the ground state,
with the lowest energy and we find

W(R, T) > e-Eo(fl>r. (1.46)
-*

OfO)

(0,0)

FIG. 7. Rectangular loop of dimensions R X T.
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Accordingly, E0(R) is by definition the change in the energy
of the ground state of the lattice system upon the incorpora-
tion of static quarks, i.e., the energy of their interaction (in-
cluding self-effects). The fact that E0(R ) is calculated with
the help of a Euclidean functional integral is unimportant in
the limit T—*•<». Expression (1.45) could be continued ana-
lytically into the Minkowski space without any difficulty by
using the replacement T—> — iT; it then follows immediately
that E0(R ) is a physical energy. As always, the advantage of
working in a Euclidean space is that the sum (1.45) converges
foralir>0.

By definition, E0(R ) includes a term which stems from
the renormalization of the mass of a heavy quark due to the
interaction with the gauge field and which is thus indepen-
dent of R. In the limit a—»0, in first order in g2,, this quantity
has the same form as in quantum electrodynamics:

-ass— 4no 2Ne
(1.47)

The potential energy of the interaction between the static
quarks is defined as the difference

E (R) = E0 (R) - A£mass. (1.48)

If AEm3SS did not become infinite in the continuum limit
(a—»0), the term resulting from the mass renormalization
would not have to be subtracted, since it simply changes the
reference level for the potential energy.

If the area law

W(C) OC exp[-/L4mln(C)]
large C

(1.49)

holds for the loop average, as it does in the strong-coupling
expansion, then £ is a linear function of the distance:

E ( R ) = K R. (1.50)

The coefficient K in these equations is called the "string ten-
sion" because the gluon field between quarks must contract
to a tube or string if a linearly increasing potential is to pre-
vail. This string is stretched by the wake left by the quarks,
and it prevents them from moving apart to any macroscopic
distance.

In contrast, for the Coulomb potential

= const- (1.51)

the field around a quark would be spherically symmetric,
and the loop average would have the behavior

W (C) *• e-const perimeter (c>. (1.52)
large C

This behavior of the loop average is called the "perimeter
law." In each order of perturbation theory, it is the perimeter
law (1.52), and not the area law (1.49), that holds for the loop
average. This simplified interpretation of Wilson's quark
confinement criterion can then be stated as follows: The area
law corresponds to a potential which increases linearly with
the distance and which results in quark confinement, while
the perimeter law corresponds to a potential which is incapa-
ble of confining quarks.
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g) The ratio x(l,J)

It is difficult to extract information on the nature of the
interaction between static quarks in the continuum limit
from lattice loop averages because it is necessary to single
out an (infinite) factor associated with the renormalization of
the quark mass. This factor is an exponential function of the
perimeter. Creutz19 has suggested an elegant method for cir-
cumventing this difficulty.

We consider the quantity
- W(I,J)W(I-i, /-i)

X (',

where W(I,J) is the loop average of a rectangle of dimensions
/ XJ. Since the perimeter is

(/ x /) = 27 + 2/, (1.54)

the factor proportional to the exponential function of the
perimeter in W(I, J ) cancels out in ratio (1.53) and does not
prevent us from taking the continuum limit.

To bring out the physical meaning of % we again consid-
er a loop in the form of a rectangle stretched out along the
"time" axis (Fig. 7). Substitution of the asymptotic behavior
(1.46) into definition (1.53) gives us

T-+OO

The contribution to E0(R ) from the renormalization of the
quark mass cancels out on the right side of Eq. (1.55) (for
arbitrary R and T, as we have already seen), and in the con-
tinuum limit, a->0, the difference converts into a derivative
of the potential:

. dg(fl)
dfl (1.56)

In other words, the difference is proportional to the force
which the quark and antiquark exert on each other.

The quantity^ (/, J) has one more useful property. In the
limit a—»0 in addition to the linear divergence associated
with the renormalization of the quark mass, we have \nW(I,
J ) , a logarithmic divergence, which stems from the brems-
strahlung of a charged particle upon a change in the direc-
tion of its velocity. For a rectangular loop with four corners
this divergence can be calculated from the general expres-
sion first derived in Ref. 20; the result is

[AlnW-']brem = - In
perimeter

(1.57)

The bremsstrahlung divergence also cancels out in %(I, J )
[since the numbers of corners for the loops in the numerator
and denominator of the ratio on the right side of (1.53) are
identical], and this divergence does not prevent us from tak-
ing the continuum limit.

Furthermore, it follows from general theorems regard-
ing the renormalizability of loop averages, proved in Ref. 20,
that all the divergences in^ vanish after we make the transi-
tion from the "seed" charge gfc to the renormalized charge
A.

Along with these properties,^ has yet another property
which makes it convenient for calculating the string tension
in the continuum limit. At large values of/ and J the substi-
tution of the area law (1.49) into definition (1.53) gives us

large 1, J (1.58)

which is independent of the dimensions of the contour. In
practice, in Monte Carlo calculations it is the absence of a
dependence of this type which tells us when the area law has
set in. The results of specific calculations of% by the Monte
Carlo method will be discussed in Section 4.

2. THE MONTE CARLO METHOD

The Monte Carlo method is the best-developed numeri-
cal method presently used in lattice theories. It is used wide-
ly in various problems in statistical physics. The idea of us-
ing the Monte Carlo method to study lattice gauge theories
can be credited to Wilson.21 Jacobs, Creutz, and Rebbi22-23

worked out a Monte Carlo calculation method for lattice
gauge theories.

a) A Monte Carlo algorithm as a Markov process

The Monte Carlo method is used to calculate the func-
tional integrals of Subsection Id for arbitrary values of the
coupling constant. Here we would like to avoid integrating
over the matrices U, at each link / in succession; it is more
convenient to replace the multiple integral by a sum over the
states of the system and to calculate this sum immediately by
the Monte Carlo method.

Let us assume that all the links of a lattice of finite size
are numbered. Then some state of the system, which we de-
note by C, can be characterized by the value of the matrix Ul

at the first link, by the value of U2 at the second, etc.:

C={Uit U2, ...,UNl}. (2.1)

For simplicity we also assume that the matrices U take on a
discrete set of values. It is clear that a sequential summation
(or integration) over C/can be written as a sum over all states
of the system,

2 =
UK.

(2.2)

since a repeated integral is equal to a multidimensional inte-
gral for a converging integral of finite multiplicity.

The average (1.32) can then be calculated from

.-&S(C)

«?>=• ,-PS(C)
(2.3)

where Q(C) a n d S ( C } are the value of Q (the quantity being
averaged) and of the action S in the given state C.

If the total number of states of the system is large (as it is
in the case in which we are interested), then we cannot con-
sider each of them, and we use the standard Monte Carlo
method to evaluate the sum (2.3).

For this purpose, a sequence of states of the system

A = (C0, Clt ..., (2.4)

is generated in a random manner. If a state Cn appears in
sequence (2.4) with a probability P(Cn), then the sum (2.3)
can be approximated by
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(2.5)

n=l

Clearly, if P does not tend toward zero in a calculation using
(2.5) we would not want all the states in the sequence (2.4) to
be equiprobable, since in this case the majority of the config-
urations would be exponentially suppressed by a Boltzmann
factor. It is better to generate the states Cn with a Boltzmann
probability

w?«>, (2.6)

in order to cancel out this factor. Expression (2.5) then takes
the form of an arithmetic mean:

(2.7)

A sequence of states generated with a probability (2.6) is
called an "equilibrium sequence of states." The analogy with
statistical physics is obvious.

Actually, it is not all that simple to construct an algo-
rithm which generates an equilibrium ensemble of states
since the value of the Boltzmann probability is not known at
the outset. Here we establish a Markov process, by means of
which each new state in sequence (2.4) is constructed from
the preceding state. We recall that a "Markov process" is a
random process which is completely determined by the
probability W(C—>C'} for a transition from state C to state
C'. This probability does not depend on the history of the
system. The transition probability W(C—>C') is chosen in
such a way that Boltzmann distribution (2.6) arises in the
limit. Here it is sufficient that the transition probability
W(C—>C') satisfy the principle of detailed balance:

C') = e-PS(C')^ (C'- _> C). (2.8)

Condition (2.8) is a sufficient condition to ensure, first, that
an equilibrium sequence of states will be changed into an-
other equilibrium sequence and, second, that a nonequilibri-
um sequence will approach an equilibrium sequence as we
move through the Markov chain.

The various specific algorithms used for Monte Carlo
calculations differ in the choice of transition probability
W(C-+C'), but property (2.8) holds in all cases. The rate of
the convergence to equilibrium differs from one algorithm to
another. Some specific algorithms are discussed in the two
following subsections.

b) The heat bath method

The functional integral (1.26) which is calculated in the
Monte Carlo method looks like the partition function of
some (four-dimensional) system with a temperature 1//7.
This analogy is the basis for an intuitively clear Monte Carlo
algorithm in which a new state Cn+l in sequence (2.4) is
constructed from the preceding state Cn. This algorithm is
the subject of the present subsection.

Each state C is characterized by the values of the matri-
ces on all the links of the lattice [see (2.1)], and the current

values of these matrices are stored in the computer memory.
The initial state

is constructed "manually." For example, it might be as-
sumed for definiteness that the system is completely ordered
in its initial state, i.e., that the matrices U(0) are unit matrices
on all the links. If the temperature !//# is not too low, this
ordered state of the system is a long way from the states
typical of the given temperature. It is clear from the analogy
with a partition function that the system can be brought to
an equilibrium state by applying a reservoir heated to a tem-
perature I//? to each link of the lattice in succession. A
Monte Carlo algorithm which simulates this physical pro-
cess is the "heat bath method."24

Let us examine in more detail how the computer "ap-
plies the reservoir" to the links. We assume that some initial
state (2.9) is given. We construct a new state in the following
way: On the first link we replace the old matrix f/f by the
new one C/'/1, which is chosen at random from the entire
gauge group with the probability proportional to a Boltz-
mann factor,

The action is calculated for the new configuration

in which the new value C/',1' corresponds to the first link,
while the old values correspond to the other links. Once the
new value of the matrix U1 has been chosen, it is stored in
that cell of the computer memory which previously held the
old value, U(°\ which is "forgotten." We have thus "applied
the reservoir" to the first link of the lattice, and as a result the
system has gone from state (2.9) to state (2.11).

The same procedure is then applied in succession to the
second, third, and all other links of the lattice. In each step
the probability with which the new element is chosen is pro-
portional to a Boltzmann factor:

WM (US? = const . (2. 12)

where the action is calculated for the configuration in which
the values of the matrices Uon all the links except that cur-
rently under consideration are fixed at their current values;
only UM changes. The application of this procedure to all
the links of the lattice constitutes one Monte Carlo "sweep"
or "iteration." The transition probability W(C-+C'} is thus
given by

W (€->-€')•
M=l

(2.13)

where the product is over all the links of the lattice.
The old value of the matrix U on a given link, we might

note, is not directly involved in the procedure for generating
a new element. Nevertheless, since the old element was, gen-
erally speaking, correlated with the values of the matrix U on
the neighboring links, it does have an indirect effect on the
choice of the new element. The probability (2.12) is directly
determined by the values of the matrices U on those neigh-
boring links which, along with the link presently under con-
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sideration, form the boundary of some plaquette. The num-
ber of such neighboring links for action (1.18) is 18; these
links, along with the link under consideration, form
2(d — 1) = 6 plaquettes which border the given link. In the
heat bath method, therefore, it is actually sufficient to con-
sider only these six plaquettes in each Monte Carlo step.

Because of the correlation which we just mentioned, a
single sweep will generally not be enough to bring the system
to a equilibrium state. It is necessary to sweep through the
entire lattice many times in order to "make the system forget
its initial state." The analogy between the heat bath method
and the physical process suggests that a thermal equilibrium
will ultimately be reached and it will be reached in the small-
est number of sweeps (the comparison is being made with
other methods). However, the heat bath method proposed in
Refs. 22 and 23 for studying lattice gauge theories turned out
to be effective only for the simplest gauge groups [U(l),
SU(2), SU(3), and discrete subgroups]. For more complex
groups the generation of new elements by the heat bath
method requires an unacceptable amount of computer time,
and we instead use the method discussed in the following
subsection.

c) The Metropolis method

The Metropolis method,25 a standard method in statis-
tical physics, is used along with the heat bath method for
integrations over gauge fields. Although this method re-
quires more sweeps to bring the system to equilibrium, the
calculations at each step are simpler and faster. For gauge
groups more complicated than the SU(2) group it is thus
frequently possible to save computer time by using the Me-
tropolis method.

As in the heat bath method, the value of only the matrix
on one link is changed in each Monte Carlo step in the Me-
tropolis method, so that the probability for a transition from
one configuration to another is determined by the product of
the transition probabilities at the various links, (2.13). In
contrast with the heat bath method, however, the transition
probability for the Metropolis method, WM(UM—>U'M), de-
pends explicitly on both the new value U 'M and the old value
UM. In the simplest version of the method the new value U'M
is chosen at random from all the group elements, with a uni-
form probability (for discrete groups one always chooses
U'M^ UM). The change in the action upon the replacement
of UM by U'M is then calculated:

&S=S(U'M)-S(UM). (2-14)

If the action decreases, i.e., ifAS<Q, upon the replacement
of UM by U'M, then this new value U'M is chosen as the value
of the matrix U on the given link M, and we can proceed to
the next step.

The principle of detailed balance, (2.8), determines the
remainder of the algorithm. If the action does not decrease
when UM is replaced by U'M [i.e., if the value calculated
from (2.14) satisfies AS^O], then a random-number gener-
ator is consulted for a random number r with a uniform dis-
tribution between 0 and 1. The value of r is then compared
with exp( - PAS); if

r, (2.15)
then UM is replaced by the new value U'M. If condition (2.15)
does not hold, then the matrix Uon the given link is left at its
old value UM, and we move on to the next step.

Since for AS<0 we have exp( —/3AS)> 1, condition
(2.15) always holds forAS<0. Consequently, the two parts
of the algorithm can conveniently be combined into the sin-
gle condition that if inequality (2.15) holds then the new val-
ue U'M is assigned, while if this inequality does not hold then
the old value UM is retained.

We might also note that in calculations by the Metropo-
lis method it is necessary to calculate only the change in the
action upon the replacement of UM by U 'M on a single link in
each step. As we discussed in the preceding subsection, this
quantity is determined by only the values of the matrices U
on the links which form the boundaries of the six plaquettes
which border the particular link under consideration.

The next Monte Carlo step may consist of the applica-
tion of the Metropolis method to both another link and the
same link. It is frequently beneficial to repeat the Metropolis
algorithm several times [10-20 times for the SU(2) group] on
the same link before moving on to the next link, since this
repetition requires very little computer time in comparison
with the search for the neighboring link and the various
operations on it. Clearly, if the algorithm is repeated a very
large number of times on a given link before the neighboring
link is considered then the given link will reach a state of
thermodynamic equilibrium with its neighbors. In the case
of a very large number of repetitions, therefore, the Metro-
polis method simulates the heat bath method. In practice,
the optimum number of repetitions is determined for each
gauge group empirically on the basis of the expenditure of
computer time.

Another important saving of computer time is possible
if (in the Metropolis method) the proposed new element U'M
is chosen not at random from the entire group in each step
but by the following rule: We first construct in a random
fashion a table of several group elements, Qlt. . ., QK; this
table also includes the reciprocal of each element. We now
construct the proposed new element U'M on each step as the
product of the old element UM and an element Qt chosen in
an arbitrary way from the table:

U'M=QtUM. (2.16)

How well the table is constructed goes a long way toward
determining how successfully it can be used. In the construc-
tion of the table it is better to generate the elements Q near a
unit element, rather than distributed uniformly over the en-
tire group. The weight factor is made dependent on /? to
hasten the convergence.

The Metropolis method with a table is particularly con-
venient for discrete gauge groups. An important saving in
computer time is achieved in this case by using a multiplica-
tion table of the elements of the group; this table is specified
before the calculations are begun, along with a table of val-
ues of characters. The operations of multiplying group ele-
ments and calculating traces then become simply logic oper-
ations.
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This approach can also be taken for a continuum group,
by approximating it by a discrete subgroup. It turns out that
the SU(2) group can be approximated extremely well over
the range of (3 of interest by a 120-element Y icosahedral
subgroup.26"28 Unfortunately, a satisfactory discrete ap-
proximation of the SU(3) group requires examining sub-
groups with very large numbers of elements, for which the
multiplication table exceeds the capacity of the computer
memory. Consequently, this method cannot be used for the
SU(3) group,29'30 and we are forced to work exclusively with
the continuum group itself (but see Ref. 31).

In the Metropolis method, for which the transition
probability WM(UM^*U'M) depends explicitly on the old
value UM, successive states of the ensemble, (2.4), are gener-
ally correlated. Since the calculation of Q (Cn } for each con-
figuration Cn upon the averaging in (2.7) generally requires
far more computer time than a single sweep, we would like to
select independent configurations for the averaging. Here it
is sufficient to make an appropriate number of "dummy"
runs through the lattice between calculations of Q (Cn ). The
correlation length may be reduced by replacing the regular,
prespecified order for circuiting the lattice by a random or-
der, with the link M being chosen at random in each step. A
random circuit of the lattice is also used in the heat-bath
calculations to reduce the statistical error, for example, in
the calculation of glueball masses which is discussed in Sec-
tion 4 below.

To conclude this section we refer the reader to Refs 32-
36 for detailed descriptions of the programs used for Monte
Carlo calculations in lattice gauge theories.

3. THE "WHAT" AND "HOW" OF MONTE CARLO
CALCULATIONS

Before the Monte Carlo method was adopted for non-
perturbative calculations of physical quantities in QCD, it
had been developed in simpler calculations. Although the
quantities which were calculated and the resulting numbers
have no direct bearing on the continuum limit (and thus are
frequently called "lattice artifacts"), the results were impor-
tant in two ways: First, they were compared with the results
obtained by other methods (where available), and the reli-
ability of the Monte Carlo method was thereby demonstrat-
ed. Second, the lattice artifacts have some qualitative impli-
cations for the continuum limit.

The Monte Carlo method was initially used by Jacobs,
Creutz, and Rebbi22'23 to study Abelian lattice gauge theor-
ies. The first Monte Carlo calculations for the non-Abelian
gauge groups SU(2) and SU(3) were carried out by
Creutz37'38-19 and Wilson.39 The phase structure of lattice
group theories with other non-Abelian groups has been stud-
ied in Refs. 40-47.

a) Specific energy: the gauge groups SU(2) and SU(3)

The simplest quantity calculated by the Monte Carlo
method is the specific energy

(3.1)

where the average is understood in the sense of the func-

tional integral (1.32). The term "specific energy" stems from
the analogy with the statistical system, which we discussed
earlier. Since the quantity in (3.1) is identical for all pla-
quettes in the absence of an external field, E is the same as the
average value of the action per plaquette:

E» J- / CTv l"\ *}\
•&=-»;—(<->/> (•'••')

"P

where the number of plaquettes is determined by (1.5). Rela-
tion (3.2) may be rewritten as the familiar relationship
between the specific energy and the partition function (1.26):

(3.3)

Equation (3.2) is used to calculate the specific energy by
the Monte Carlo method. The equilibrium ensemble of states
(2.4) is generated by one of the algorithms discussed in Sec-
tion 2. For each state one calculates

which has the meaning of the energy density in the given
state. An average is then calculated from general expression
(2.7).

The first problem which must be solved is to choose the
initial state. A good choice is a state close to some typical
state for the given temperature. Clearly, in the limit /3—>• oo
(or, for the temperature,/? ~ '-*0), the matrices UXifl are "fro-
zen" near some value, so that we have

ITt /Q\ ^ f\ / O C\

At large values of /? one accordingly chooses an "ordered"
initial state (Ux^ = 1 on all links of the lattice). In the oppo-
site limit /3—*0 (or, for the temperature P ~'—> oo), the matri-
ces UXjft fluctuate over the entire group, so that we have

-* 1 (3.6)

[compare with the explicit expression (1.39) for
W(dp] = 1 — E}. At small values ofp one accordingly selects
a "random" initial state (the UXift on each link are chosen at
random, from a uniform distribution over the group).

Completely ordered and completely random states can
be used as initial states for intermediate values of P. In this
case, however, several sweeps will be required to bring the
system to thermodynamic equilibrium. Figure 8, taken from
the original paper by Creutz,38 shows results calculated for
En for the SU(2) gauge group as a function of n—the number
of sweeps. These calculations were carried out for lattices of
various dimensions with 0 = 2.3 by the heat bath method.
The upper values correspond to a random initial state, and
the lower values to an ordered initial state. We see from Fig.
8 that both a superheated system (a random start) and a su-
percooled system (an ordered start) reach thermodynamic
equilibrium in only 20-30 sweeps, so that the values of En

stabilize near certain values around which thermal fluctu-
ations subsequently occur. These fluctuations are significant
for a lattice of size 44 and essentially indistinguishable for a
lattice of size 104. The reason is that in the calculations from
(3.4) a spatial average is taken for each configuration, so that
the fluctuations are greatly reduced.

The specific energy can be calculated more accurately
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FIG. 8. £„ as a function of the number of sweeps according to calculations
from expression (3.4) for a lattice theory with the SU(2) gauge group with
ft = 2.3 on lattices of various sizes. 1—Random initial state (Subsection
3a); 2—ordered initial state (this figure is taken from the paper38 by
Creutz).

by averaging En over several configurations. Clearly, we
would like to exclude from the average those configurations
for which equilibrium has not yet been reached. Correspond-
ingly, the first few configurations, say 20 in Fig. 8, are dis-
carded, and the average is carried over the remaining ten.
Actually, there are limitless possibilities for improving this
average value, since a CDC-7600 computer can perform,
say, 20 000 sweeps in an extremely short time.

The number of sweeps is frequently identified with the
time for the analogous statistical system, so that an average
over configurations is none other than an average over time
in statistical physics. Accordingly, in our case the number 20
is, in arbitrary units, the length of time over which the super-
heated or supercooled system must interact with the reser-
voir in order to reach equilibrium at the given temperature.
Since the number of sweeps is proportional to the actual
computer time, the statistical errors fall off as the square

x-?

0-4

FIG. 9. The specific energy £ as a function of the coupling constant fl in
the SU(2) theory according to expression (3.1). I, 2—Lower order of the
strong-coupling and weak-coupling expansions, respectively, described
by E = \ - 0 /4 and E = 30 /4 [see (1.39b) and (3.13)]; 3— heating; 4—
cooling (Subsection 3a) (this figure is from the paper37 by Creutz).

10 12/3

FIG. 10. The same as in Fig. 9, but for the SU(3) gauge theory (this figure is
from the paper48 by Creutz and Moriarty).

root of the computer time in Monte Carlo calculations.
The first step in a Monte Carlo study of lattice gauge

theories is to calculate the specific energy as a function of/3.
The energy E ( 0 ) is calculated for a finite number of values of
/3. It turns out to be a poor choice to start with an ordered or
random configuration each time. It is better to heat (or cool)
the system in small steps along /?, using as an initial state in
each step a configuration from the equilibrium ensemble in
the preceding step. Since the temperature change is small,
equilibrium is reached rapidly.

Figure 9 shows the results of some corresponding calcu-
lations o f E ( P ) (also called the "thermal cycle"), from the
first paper by Creutz37 on a 54 lattice. The crosses corre-
spond to a heating of the system and the circles to a cooling.
Several "dummy" sweeps were carried out at each point, and
then an average is taken over an equilibrium ensemble of six
configurations. The total number of sweeps at each point
was about 20 during heating and an equal number during
cooling. The heating process was begun with an ordered con-
figuration, and the cooling with a random configuration.

From Fig. 9 we see that E (13} is a smooth function, so
that no phase transition occurs with increasing/3 in the SU(2)
lattice gauge theory. The function E ( / ? ) for the SU(3) gauge
group, shown in Fig. 10, is similar in form.48

b) The case of a phase transition: the gauge groups Z«

The SU(2) and SU(3) gauge groups examined in the pre-
ceding subsection are special cases in the sense that for them
E (P) is a smooth function, and no phase transition occurs as
/? is varied. The Monte Carlo method has also proved useful
for studying systems which do exhibit a phase transition, in
particular, lattice gauge theories with Abelian groups. The
simplest Abelian group is the ZN group, whose elements are
the N-th order roots of — 1 [Ux^ = exp(2mn/N),
n = 0,. . . , N — 1], and group multiplication is defined as the
ordinary multiplication of complex numbers. Since the ele-
ments of ZN are numbers, rather than matrices, we can omit
the trace sign from all the equations and set Nc = 1 (Nc is
always equal to the trace of the unit element). Definition
(3.1), for example, becomes

E = <(! - £/p)>. (3.7)

An integration over the invariant measure for the ZN group
reduces to a summation over N group elements:

J_

N (3.8)
.2nm/JV
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FIG. 11. The same as in Fig. 9, but for the Z2 gauge group. In the hystere-
sis region the lower points correspond to heating and the upper points to
cooling (Subsection 3b) (this figure is from the paper23 by Jacobs, Creutz,
and Rebbi).

The Monte Carlo method is used to find the point of the
phase transition and to determine its nature (first- or second-
order). Although this might seem strange since no phase
transition occurs for a system with a finite number of degrees
of freedom (such as a ZN theory on a lattice of finite size), the
number of degrees of freedom for the lattices of interest is so
large (but finite) that the behavior of the system is indistin-
guishable from a phase transition (especially for a first-order
transition, where the specific energy has a discontinuity).

To find the point of the phase transition we first con-
struct a thermal cycle as described in Subsection 3a. Since
the system must draw much heat from the reservoir at the
point of a first-order phase transition, the duration of the
interaction with the reservoir must be long if equilibrium is
to be reached. In other words, if fewer sweeps than are neces-
sary to reach equilibrium are carried out near the phase tran-
sition, the system will remain supercooled as it is being heat-
ed (or superheated as it is being cooled), and the thermal
cycle will exhibit a characteristic hysteresis. Figure 11, from
Ref. 23, shows a thermal cycle for the Z2 gauge group. A
hysteresis is observed near the point/? = 0.45. If the number
of sweeps is increased, the hysteresis vanishes, and we are left
with simply an abrupt change (more abrupt, the greater the
size of the lattice) in the behavior of E (P) near the phase
transition. Figure 12 shows the results of these calculations49

for the Z2 gauge group.

0,2 0,1 0,5 /}

FIG. 12. The same as in Fig. 11, but with more sweeps.49

By itself a hysteresis does not mean that a first-order
phase transition occurs in this region. A hysteresis is ob-
served whenever the period required to reach equilibrium
increases at some /?, and the number of sweeps is smaller
than this period. Therefore, a hysteresis (although not as
pronounced) can be observed near a second-order phase
transition, where the period required to reach equilibrium
also increases. Furthermore, even for the SU(2) gauge group,
which exhibits no phase transition at all, the period required
to reach equilibrium increases slightly near the point
& = 2.2, and a hysteresis is observed if the number of sweeps
is too small (5-10).

There is a way to determine the order of a phase transi-
tion at a hysteresis point (if a transition occurs at all). We
hold P equal to the position of the center of the hysteresis
loop and construct for this value of /3 a curve similar to that
in Fig. 8, carrying out far more sweeps than are necessary to
reach equilibrium. If, at the given value of P, a first-order
phase transition occurs, then we go into two phases, which
differ in specific energy, depending on the initial state. For a
second-order phase transition, the specific energies of the
two phases are instead identical.

Figure 13, a and b, also shows some results23 for the Z2

gauge group (a first-order phase transition) and the Z6 gauge
group (second-order). The values of En were calculated after
each ten sweeps. From Fig. 13a we see that the system rapid-
ly goes into one of two phases and then remains stable over
many sweeps. Actually, one of these phases is metastable at

0,6

0,"

0,Z

0,6

0,*

0,2

..
^

500 1000 1500

FIG. 13. En as a function of the number of sweeps according to calcula-
tions from expression (3.4) for the value of the coupling constant near the
center of the hysteresis loop, a — The Z2 gauge group (first-order phase
transition); b — the Z6 gauge group (second-order phase transition). The
upper (lower) points correspond to a random (ordered) initial state (Sub-
section 3a) (this figure is taken from the paper23 by Jacobs, Creutz and
Rebbi).
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FIG. 14. The same as in Fig. 13, but for a mixed initial state
and various values of the coupling constant from near the
center of the hysteresis loop23 (Subsection 3b).
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the given value of /? (since we cannot reach the transition
point exactly), and the system ultimately leaves this phase
and goes into a stable phase. The transition occurs over an
extremely small number of sweeps (in comparison with the
"lifetime" of the metastable phase) and usually serves as one
more piece of evidence for a first-order phase transition. In
contrast, in Fig. 13b we see a convergence (rather slow) to the
same value of the specific energy.

In working from the position of the center of the hyster-
esis loop we can find only an approximation of that value of fi
(which we denote by /#c) at which the transition occurs. The
value of Pc can be found more accurately by the following
approach.23 As the initial state we use a "mixed" state for
which the UXifL on half of the links of the lattice are chosen
equal to the unit element, while those on the other half are
chosen at random. The evolution of this state over time (with
increasing number of sweeps) is studied for several closely
spaced values of/? from near the center of the hysteresis loop.
Figure 14, a and b, shows some corresponding results23 for
the Z2 and Z6 gauge groups. Figure 14a is typical of a first-
order phase transition, with the system rapidly entering a
state for which the stable phase fills the entire lattice. If /? is
very close to /?c, however, the relaxation period increases
dramatically, and two phases coexist over a large number of
sweeps, so that the values of En remain approximately equal
to the initial value. This property is exploited for an accurate
determination of f3c. For a second-order transition, in con-
trast, the relaxation period depends only weakly on fi (Fig.
14b).

c) Phase structure of Abelian gauge groups. Compact
electrodynamics

The procedure of Jacobs, Creutz, and Rebbi23 described
above has been used for Monte Carlo studies of Abelian lat-
tice gauge theories with the ZN groups and the group U( 1)
("compact electrodynamics"), which is the limit of the ZN

group as N—+ oo. Figure 15, from 23, shows the coupling
constants at which phase transitions occur. For the Z2, Z3,
and Z4 gauge groups with 0 > 0 only a single phase transi-

tion, of first order, occurs. For the ZN groups with N>5
there are instead two second-order phase transitions. The
transition points separate three phases with the following
properties: I) a confinement phase; II) an intermediate
phase; III) a Higgs phase.

The area law (1.49) holds for the loop averages in the
confinement phase, while the perimeter law (1.52) holds in
the intermediate and Higgs phases. In order to distinguish
the intermediate phase from the Higgs phase we need a finer
criterion than a simple calculation of the loop average. Phy-
sically, the difference between these two phases is that in the
intermediate phase there are massless excitations—pho-
tons—which lead to long-range forces of the Coulomb type.
In the Higgs phase the photon is massive, and there are only
Yukawa forces, which fall off rapidly with distance. The rea-
son for the existence of a Higgs phase for the discrete groups

FIG. 15. Positions of the phase-transition points for lattice theories with
Abelian gauge groups. I—Confinement phase; II—intermediate (Cou-
lomb) phase; III—Higgs phase (Subsection 3c). The solid curve is plotted
from Eqs. (3.9) and (3.10) (this figure is from the paper23 by Jacobs, Creutz,
and Rebbi).
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Zjy is that the excitation spectrum is separated from the
ground state by an "energy gap"

(3.9)AS-1 — cos-^-.

Monte Carlo calculations have yielded23

a, 0,78 (3.10)

for the phase transition between the Coulomb and Higgs
phase; i.e., the critical "temperature" is proportional to the
size of the energy gap.

According to Eqs. (3.9) and (3.10) we have/?^~./v~2 in
the limit N-+ oo, so that in the U( 1) limit we are left with only
two phases: the confinement and intermediate phases. A
study of the phase transition which separates these two
phases by the method outlined above does not tell us whether
it is actually a second-order (and not higher-order) phase
transition which occurs. This point can be resolved by study-
ing the "specific heat,"

(3.11)

which is equal to the derivative of the specific energy with
respect to the temperature 1/0. The specific heat becomes
infinite at the point of a second-order phase transition.

Calculations of the specific heat for the U(l) lattice
gauge theory carried out by Lautrup and Nauenberg50 (see
also Refs. 51 and 52) indicate a second-order phase transi-
tion. Since a phase transition cannot occur on a lattice of
finite size, so that the specific heat cannot become infinite,
the calculations were carried out on lattices of sizes 44, 54,
and 64, and then the results were extrapolated to an infinite
lattice. The extrapolation yielded the following value50 for
A,:

pc =1.005. (3.12)

The existence of a second-order phase transition in
compact lattice electrodynamics (more precisely, photodyn-
amics, since the polarization of the vacuum by electrons is
ignored) is important for taking the continuum limit. If the
constant 0 is chosen near 0C then the correlation length will
be large (infiite at a second-order phase transition), and the
continuum limit will be reached. If 0 </3c, we find a theory
with confined electrons, while at0>0c there is no electron
confinement. Fortunately, the charge of the electron in our
world is small, so that the situation which prevails is0>0c,
with unconfined electrons.

In the U(l) lattice gauge theory the confinement at
small values of 0 occurs for the same reason as in the non-
Abelian case: because of the property of compactness of the
gauge group, which leads to orthogonality relation (1.36). As
discussed in Subsection Id the compactness in the limit a->0
stems from the circumstance that the discontinuities of the
vector potential of magnitude zz2ir/a are not accompanied
by changes in the action. In the U( 1) lattice gauge theory this
property prevails only at0<0c;a.t0>0c the compactness is
disrupted, and we are dealing with an ordinary noncompact
electrodynamics.

To conclude this subsection we note that the phase

structure of Abelian lattice gauge theories was predicted in
Refs. 14, 53, and 54 for the ZN gauge groups and in Refs. 55
for the U(l) gauge group before they were studied by the
Monte Carlo method. However, the Monte Carlo calcula-
tions have established that three phases appear, beginning at
N = 5, and—the most important—they have established the
order of these transitions.

d) Lattice artifacts. The gauge groups SU(/V) and U(/V)

As mentioned in Subsection 3a, E ( 0 ) is a smooth func-
tion for the SU(2) gauge group (Fig. 9). At 0 < 2 the Monte
Carlo data are described by the strong-coupling expansion
[the straight line in Fig. 9 is drawn from Eq. (1.39b) for
1 — E ]. At large values of/7, the function E ( 0 ) can be found
as a series in 1/0 (the "weak-coupling expansion"), through
a calculation of functional integrals by the method of steep-
est descent. The first approximation of E (0) is

where n is the number of generators of the gauge group
[n = N2 - 1 for the SU(JV) group, and n = N2 for the V(N)
group], and d = 4 is the dimensionality of the space. Figure 9
also shows a line drawn from Eq. (3.13); it describes the
Monte Carlo data at/3> 3.

By taking into account the next few terms in the strong-
and weak-coupling expansions we can describe the Monte
Carlo data on E(0) everywhere except near the point
0 = 2.2, where we see (Fig. 9) the sharpest change in the
behavior of the function E(0). This vicinity is the "crossover
region" between the regions of strong and weak coupling.
The reader is referred to Refs. 56 regarding the possibility of
describing the function E (0) in the crossover region.

To determine whether a second-order phase transition
occurs at the point0 = 2.2, Lautrup and Nauenberg57 calcu-
lated the specific heat (3.11) by the Monte Carlo method for
lattices of sizes 44, 54, and 64. These calculations revealed
that the specific heat has a clearly defined peak at0 = 2.2,
whose height [in contrast with that in the U(l) lattice gauge
theory] does not increase substantially as the size of the lat-
tice is increased. An extrapolation to an infinite lattice car-
ried out in Ref. 58 on the basis of the scaling laws on a lattice
of finite size revealed that the specific heat remains finite in
the limit of an infinite lattice. Consequently, a second-order
phase transition does not occur at0~2.2 in the SU(2) lattice
gauge theory; there is simply a peak in this specific heat.

Analogously, in the case of the SU(3) gauge group there
is a crossover region between regions of strong and weak
coupling, and there is a peak in the specific heat at 0^5.5
(Ref. 48).

For the SU(JV) gauge groups with JV>4, however, the
regions in which the strong- and weak-coupling expansions
are valid are separated by a first-order phase transition. This
fact was established by the Monte Carlo method in Refs. 40
and 41 for N=4, 5, and 6. A similar phase transition has
been found42 for the U(JV) gauge groups with N = 2-6. The
values found for the constant 0C at which these phase transi-
tions occur are listed in Table I along with the values of 0C

correpsonding to the peak in the specific heat for the SU(2)
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TABLE I. Positions of the phase transitions (the peaks in the specific heat) for lattice theories with
the SU(JV) (Refs. 37, 40, 41, 48, and 57) and U(N) (Ref. 42) gauge groups.

SU(JV)
U(lf)

N

Pc/A"3

Pc/A"

2

0,56
0,83±0,01

3

0,61
0,784±0,001

4

0,64
0,76±0,04

5

0,66
0,75±0,04

6

0,67+0,03
0,76±0,07

and SU(3) gauge groups. We see that the quantity PC/N2

depends only weakly on N, so that the limit of large N [which
is identical for the SU(/V~) and U(N) gauge groups] is reached
quite soon. The Monte Carlo method has been used to calcu-
late /3C/N2 in the limit N-^-ao by making use of the equiv-
alence of a gauge theory on an infinite lattice to the Eguchi-
Kawai model59 on a I4 lattice. The resulting value,50'61

- =0.66±0.02 as N -*• oo (3.14)

agrees with the data shown in Table I.
The occurrence of a first-order phase transition at large

Nin lattice gauge theories with V(N ) groups [and thus SU(N )
groups] was predicted by Green and Samuel.62 The value in
(3.14) agrees with the value found by Green and Samuel by
analytic calculations. We might add that the values found
for /3C in the SU(JV ) and \J(N ) lattice gauge theories are in
excellent agreement with the results calculated by the mean-
field method.63-64

e) Mixed action. Nature of the peak in the specific heat

The action ( 1 . 1 8) is the simplest action of a lattice gauge
theory which is compatible with the requirement of local
gauge invariance and which also has the correct naive local
limit. From the mathematical standpoint, the quantity trUp

is the character in the fundamental representation of a gauge
group. The next step up the complexity scale is the character
in the associated representation which is related to ttUp by

XA (Up) = | tr Up |2 - 1. (3.15)

The simplest modification of the Wilson action (1.18) con-
tains a sum of two terms40'65:

(3.16)F Itr #„

This action has a second-order gauge invariance and also has
the correct naive local limit. The charge g0 is related to/? and
A. by

e =00

2JV

P + 2PA
(3.17)

[cf. (1.33) for the Wilson action].
The action (3.16) has been named the "mixed action." A

study of a lattice gauge theory with the action (3.16) has
revealed some extremely useful information about the types
of fluctuations of the dynamic variable VX<IL which exist at a
given value of /?. This study has also revealed the nature of

the peak in the specific heat of SU(2) and SU(3) lattice gauge
theories with a Wilson action. Furthermore, the physical
results should not depend on the choice of lattice action, so
that by using the action (3.16) one can determine which of
the results which have been obtained are unrelated to the
lattice regularization and are pertinent to the continuum
theory.

In the limit f}A—*0 the action (3.16) converts into the
action (1.18). In the limit f}A —>oo, only discrete fluctuations
of the matrix UXifl, of the form

Ux^ = e^in^^NI, nxtll = 0, ...,N-i, (3.18)

survive. These are elements of the group ZN, the "center of
the SU(7V) gauge group." Fluctuations of this sort leave the
second term in action (3.16) invariant and thus are extremal
in the limit @A —*• oo. In the limit/?,,—>• oo we therefore find a
ZN lattice gauge theory (with a constant/?). In the opposite
limit /?—»0 we find a lattice gauge theory with the SU(7V )/ZN

group, since at/9 = 0 the action (3.16) is insensitive to trans-
formations of the matrix Ux^ to an element of the group
center.

The phase structure of lattice gauge theories with the
SUfAf) and ZN groups was studied above. An analogous
study of the phase structure of the SU(7V )/ZN lattice gauge
group by the Monte Carlo method was carried out in Refs.
43 and 44 for TV" = 2 and in Ref. 45 for N = 3-6 (see also Refs.
46, 30, and 47), where it was shown that a single first-order
phase transition occurs in these theories.

Let us take a more detailed look at the simple case
TV = 2. We know that the SU(2)/Z2 group coincides with the
SO(3) rotation group. Lattice gauge theories with the SU(2)
and SO(3) groups have identical weak-coupling decomposi-
tions and should therefore coincide at small values of g%.
However, the strong-coupling expansions, which are sensi-
tive to the global properties of the gauge group, are com-
pletely dissimilar. Monte Carlo calculations have shown43'44

that with increasing f}A in the SO(3) lattice gauge theory a
phase transition occurs, after which the theory is essentially
identical to the lattice gauge theory with the SU(2) group.
The nature of the fluctuations of the gauge field, which is
"frozen" at the transition point, is described below.

The phase diagram of the mixed SU(2)-SO(3) lattice
gauge theory determined by the action (3.16) was first de-
rived by Bhanot and Creutz.46 This diagram is shown in Fig.
16. The phase transition in the limit f}A —>•«> corresponds to
the Z2 theory, and that in the limit /?—»-0 corresponds to the
SO(3) theory. The lines of these phase transitions continue
through thefi,pA plane, meet at the point B, and then merge,
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FIG. 16. Phase diagram of a lattice gauge theory with a mixed SU(2|-
SO(3) action, (3.16). The Roman numerals label regions_ with different
values of the density of Z2 vortexes (E) and Z2 monopoles (M) according to
calculations jrom Eqs. (3.22) and (3.23). I—£~JI/~0.5; II—£-0.5,
M=;0; III—ExMsO. (This phase diagram was obtained by Bhanot and
Creutz.46)

forming line BC. This line ends at the point C, so that at
smaller values of/3A there is no phase transition. If we were
to continue the line BC downward, it would intersect the
PA =0 axis near the point f) = 2.2, where the SU(2) theory
has a crossover region. The peak in the specific heat in the
SU(2) lattice gauge theory is therefore generally attributed to
the proximity of the critical point on the phase plane of the
mixed SU(2)-SO(3) lattice gauge theory.

The phase diagram30 for JV = 3 is just like that in Fig.
16. All the phase transitions are of first order; the point C lies
above the f3A = 0 axis; and a continuation of the line BC
intersects the #4 = 0 axis in the crossover region. At ^V>4,
however, the point C lies below the f}A = 0 axis, so that the
line BC intersects the f)A = 0 axis in a region where a phase
transition occurs in the SUfA7') lattice gauge theory. For any
finite N the point C lies at a finite value47 of PA, so that there
are paths on the/9, /3A plane which connect the two phases of
the SUfA7) lattice gauge theory without intersecting phase-
transition lines. Consequently, the phase transition observed
in the Wilson SU(N) lattice gauge theory at 7V>4 is unrelated
to deconfinement: It is simply an artifact of the Wilson ac-
tion. The existence of a region of analyticity on the phase
plane of the mixed lattice gauge theory also implies that the
free energy is an analytic function of /? and 13A, but it is a
multivalued function near the phase-transition line.

The occurrence of a first-order phase transition in the
SUfAT )/ZN lattice gauge theory and the presence of a nontri-
vial phase structure of the mixed SU(Ar)-SU(Ar)/ZA, lattice
gauge theory were first predicted at large N in Ref. 65 on the
basis of a \/N expansion, which also led to the assertion66

that at Af>4 the phase-transition line ends at a point C at a
negative but finite value of f)A. Corresponding phase dia-
grams were also constructed.66-67 The relationship between
phase transitions and local minima of the action (3.16) was
discussed in Ref. 68. Finally, we note that the phase dia-
grams generated by the Monte Carlo method agree with re-
sults calculated by the mean-field method64 and by the more
general variational method.69

FIG. 17 A closed Z2 vortex on a three-dimensional lattice. Links with
UXfll z; — 1 and plaquettes with sign tiUp = — 1 are indicated.

f) Nature of the peak in the specific heat (continuation)

Those values of the coupling constants at which these
phase transitions occur (or at which the specific heat has a
peak) depend on the type of lattice action. The physical
phenomenon which occurs at a phase-transition point, on
the other hand, is universal and has important implications
for the continuum theory. In order to take the continuum
limit we need to let/9—> oo, as will be discussed in detail in the
following section. It turns out that at a phase-transition
point (or at a peak in the specific heat) certain types of fluctu-
ations of the gauge field, which were important at small val-
ues of /?, become "frozen."

To describe them we consider the simple case N = 2.
We assume Uxu ̂  — 1 on one of the links of the lattice and

s 1 on the others. We can then write

sign tr Up = —1 (3.19)

for the plaquettes which border the link with UXtfl x — 1. If
condition (3.19) holds for a given plaquette, then we say that
it is penetrated by a Z2 "vortex." The vortexes are conve-
niently examined on a three-dimensional lattice found by
taking the intersection of a four-dimensional lattice with a
t = const plane. Figure 17 illustrates the less trivial example
of a closed Z2 vortex (a sequence of plaquettes with a nega-
tive value of sign tr Up}. The heavy lines here show links on
which we have Ux^ s — 1; the plaquettes which form a
closed Z2 vortex are also shown. The Z2 vortexes may not
only be closed but may also terminate on configurations for
which we have

[J signtrf/p= — 1, (3.20)

where the product is over the six plaquettes which form the
boundary of a three-dimensional cube c. A configuration of
this sort, called a Z2 "monopole," is shown in Fig. 18.

To explain the terminology, we take the naive local lim-
it, a-+Q. We assume that on one of the links bounding a
plaquette p we have UXttt = — 1, while on the three other
links we have Ux^ — + 1. We can then write

\ H ds) = —

i.e., a magnetic flux -rr/g passes through this plaquette. These
Z2 vortexes are thus lattice analogs of a Dirac string. Analo-
gously, it can be stated that in a region of a space with the
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given by

(3.23)

FIG. 18. A Z2 monopole on a three-dimensional lattice. 1—Monopole
source; 2—Dirac string, both found in the limit a—>0.

property (3.20), from which magnetic flux emerges, there is a
monopole.

Here we need to proceed cautiously, since it is well
known that in the contiuum limit for the SU(2) gauge theory
there are no topologically stable monopole configurations,
by virtue of the condition ir,[SU(2)] = 0. However, an ele-
ment of the SU(2) group can be represented as the product of
elements of the SO(3) and Z2 groups. Since the elements of Z2

cancel out on the left side of definition (3.20) (each element
appears twice: once for each of the two adjoining plaquettes
from which the cube c is formed), we are left with only the
product of elements of the SO(3) group, for which we have
;r,[SO(3)] = Z2. Consequently, topologically stable mono-
poles exist in the continuum theory. Their magnetic charge
is conserved modulo 2: Z2 monopoles.

On a lattice the difference between the SU(2) and SO(3)
gauge groups is seen in the circumstance that in the SU(2)
theory a Z2 vortex carries energy, since the SU(2) action is
sensitive to the sign tr Up. In the SO(3) theory, in contrast,
the Z2 vortexes do not carry energy, and one says that the
vacuum of this theory is filled with a condensate of Z2 vor-
texes. A measure of the density of Z2 vortexes is the quantity

£=-|-<(l — signtrt7p)). (3.22)

The expression which is averaged here vanishes for a vortex-
free configuration and is equal to one if a vortex penetrates a
given plaquette. Analogously, the density of Z2 monopoles is

The quantities E and M were calculated by the Monte
Carlo method in Refs._70-74. It was shown that in region I in
Fig. 16 we have ExM^O.5 [in the limit j3,0A ->0, this cir-
cumstance can be seen from definitions (3.22) and (3.23),
since the sign of tr Uf takes on the values + 1 with identical
probabilities]. In other words, in vacuum there is a conden-
sate of both vortexes and monopoles. The monopole conden-
sate is disrupted along the line DC, and the vortex conden-
sate is disrupted along the line .4 C. In region III we thus have
EzzMzzQ, and the vacuum is free of both condensates. In
region II we have E^O.5 and MzzQ, so that in the SO(3)
theory, as we have already mentioned, the vortexes condense
at arbitrary/?,,, and the phase transition which is observed is
related to a disruption of the monopole condensate.

In the SU(2) theory the disruption of the condensates is
not of the nature of_a phase transition. Figure 19 shows
Monte Carlo data on£ (Ref. 75) andM (Ref. 72) as functions
of /? for the SU(2) lattice gauge theory. The decrease at
/?>2.2 is exponential, fastest in th£ crossover region. Fur-
thermore, at/?> 2.2 we have M^4E, so that the monopoles
are linked by vortexes of minimal length, for which the ener-
gy is minimal. The peak in the specific heat in the SU(2)
lattice gauge theory is thus related to the freezing of Z2 mon-
opoles with increasing /?.

If there is a monopole condensate in the vacuum, then
we see an effect which is a dual of the Meissner effect in a
superconductor: The electric field contracts into a tube. Ac-
cording to this scenario76'77 confinement occurs in the
strong-coupling region. The mechanism responsible for con-
finement in the weak-coupling region (and in the continuum
limit) has been studied74'78"81 by the Monte Carlo method.

4. NONPERTURBATIVE QCD CALCULATIONS BY THE
MONTE CARLO METHOD

The Monte Carlo method makes it possible to derive in
QCD quantities which do not depend on the details of the
lattice calculations and which are pertinent to the contin-

FIG. 19. Exponential decay of (a) the density of Z2 vortexes75

and (b) the density of Z2 monopoles72 in an SU(2) lattice gauge
theory.

* f
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uum theory. Here we mean (dimensional) quantities such as
string tensions and glueball masses, which vanish in any or-
der of a perturbation theory in the coupling constant and
which are due entirely to nonperturbative fluctuations.

The first nonperturbative calculation of this type was
the calculation by Creutz38-19 of the string tension in QCD
without quarks (gluodynamics). The number of "physical"
quantities which can be calculated in gluodynamics is by no
means large. In addition to the string tension, the Monte
Carlo method has been used to calculate the mass spectrum
of colorless gluon bound states — glueballs82'28-83'98 — and
that temperature99"106 at which a phase transition from a
confinement phase (which prevails at a zero temperature) to
a phase of a quark-gluon plasma occurs in the SU(2) and
SU(3) gauge theories.

a) Dimensional transmutation

In the preceding sections we have referred frequently to
the similarity of Monte Carlo calculations in lattice gauge
theories to statistical physics. The most important distinc-
tion from statistical physics is that for the gauge theories the
lattice is no more than an auxiliary approach used for the
ultraviolet cutoff. Actually, we are interested in the results
which are pertinent to the continuum limit. Let us examine
how this limit is taken in QCD calculations by the Monte
Carlo method.

The general recipe for taking the continuum limit of
gauge theories is to let the lattice spacing go to zero: a— >•(). In
the classical case, the coupling constant go is fixed (Subsec-
tion Ic), but in a quantum theory, of course, the property of
renormalizability has the consequence that the observables
will depend on the cutoff radius a unless g2, is assigned a
special a dependence. For QCD this dependence is pre-
scribed by the asymptotic-freedom formula

2 , ,
W b In oAgCD+ (bi/b) In In

The constants b and bt which appear here were calculated by
perturbation theory in Refs. 3 and 107, respectively:

(4.2)

here Nc = 3 is the number of colors for the SU(NC) color
group, and Nf is the number of types of quarks. The experi-
mental value of the constant A QCD is108 -200-400 MeV.

It follows from (4.1) that in order to take the continuum
limit we must simultaneously cause go and a to approach
zero in such a manner that their combination

AQCD =4 ( (4.3)

remains constant.
Expression (4.3) could be looked at in a slightly different

way. We started with the QCD Lagrangian, in which the
only parameters are the interaction constant g0 and the
quark masses1'2:

here F^v is given by (1.7), and the covariant derivative

V = vll(^-^o^n) (4.5)

acts on !?f, the field of the quark of type f with mass m{.
As expected, Lagrangian (4.4) describes not only pro-

cesses which are determined by short distances but also (for
example) quark confinement. The following nontrivial prob-
lem arises immediately: For the time being we ignore the
"heavy" quarks f = s,c,b,..., which have no effect on the
confinement of the light quarks f = u,d. The masses of the
light quarks are of the order of a few MeV (mu ^4.2 MeV,
md ~7.5 MeV). The constant g0 is dimensionless, and the
observed quark confinement radius is of the order of hun-
dreds of reciprocal MeV.

Expression (4.3) shows how this problem can be solved.
Since the quantum theory has a dimensional parameter from
the outset—the cutoff radius—we can also construct the (di-
mensional) quantity (4.3) from it and the coupling constant.
The quantity in (4.3) remains constant in the continuum lim-
it and provides a scale for measuring the dimensional quanti-
ties which arise in the theory. In other words, the observable
dimensional quantities are proportional to the correspond-
ing power of A QCD . For example, the quark confinement
radius is

Rc = const- y\QCD,

and the meson masses are

MI = C\AQCD,

(4.6)

(4.7)

where the (dimensionless) constants C, are universal (i.e.,
independent of go) numbers, which are determined exclu-
sively by the quantum numbers of the meson and by Nc and
N f . This phenomenon has been labeled "dimensional trans-
mutation."

This situation is a common property of QCD, prevail-
ing for any regularization, including a lattice regularization.
In lattice calculations the role of the cutoff radius is played
by the lattice constant a. Generally speaking, there is no
invariance under the rotation group. The rotational symme-
try is restored, as expected, when the scale dimension for
changes in the gauge fields on the lattice, the "correlation
length," is considerably larger than the lattice constant.

It is convenient to introduce the dimensionless ratio

&, = •
correlation length

(4.8)

i.e., to express the correlation length in lattice units. Accord-
ing to dimensional transmutation, the correlation length is
proportional to A QC'D , so that at small values of go the quan-
tity £c must depend on g2, in accordance with the general
expression

.
= const. (4.9)

=--i-tr (4.4)

We thus see that we have £c—»oo in the limit g^—*0, so that
the lattice structure is not manifested. At small values of g2,
the invariance under the rotation group should therefore be
restored, and the continuum limit should set in.

It is this property which is used to take the continuum
limit in Monte Carlo calculations in lattice gauge theories.
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In practice, in calculations of dimensional quantities (ex-
pressed in lattice units) one attempts to follow their exponen-
tial dependence on g2,. If, at some go, the quantity being
calculated comes to depend on go 'n accordance with an
expression like (4.9), we can confidently say that this quanti-
ty is pertinent to the continuum limit.

b) String tension

1) The first dimensional quantity for which nonpertur-
bative Monte Carlo calculations were carried out is the
string tension K, denned in Subsection If. In the original
paper by Creutz,38 K was calculated in an SU(2) gauge theory
without quarks. In the actual Monte Carlo calculations, the
loop average (1.34) was calculated for a square of side la. The
results calculated for a given value of go were described by

W (/, /) = exp (A — Bla — (4.10)

from which the value of K was extracted.
The results are shown in Fig. 20 as a plot of the dimen-

sionless quantity aiK as a function of I/go- The ordinate
scale is logarithmic. The circles are the results of the Monte
Carlo calculation ofa2K at the given value ofg2. We see from
Fig. 20 that at small values of 1/g2, (large go) the Monte Carlo
data conform to a curve (1) which corresponds to ten orders
of the strong-coupling expansion [corresponding calcula-
tions for the SU(3) group were carried out in Refs. 110].

The string tension K vanishes in all orders of a perturba-
tion theory in go. The nonvanishing value of A" at small val-
ues of go is therefore due entirely to nonperturbative effects,
and by virtue of dimensional transmutation it must depend
on go in accordance with

(4.11)

[Here we have used the value b = 22/3 for an SU(2) gauge

10

10'

0,2 S 0,50 1/g*

FIG. 20. String tensions calculated by the Monte Carlo method in the
SU(2) theory. Curve 1—Ten orders of the strong-coupling expansion109;
2—expression (4.12) (this figure is taken from the paper by Creutz58).

theory without quarks (Nc =2,Nf= 0).] In Fig. 20, this de-
pendence ofa2K on 1/gf, corresponds to a family of sloping
lines. They are essentially straight since in this range of go
theg2, dependence of the coefficient of the exponential func-
tion is not apparent. The only adjustable parameter is the
constant in (4. 1 1); a change in this constant corresponds to a
parallel translation of the line. The value of this constant is
chosen for the best fit of the Monte Carlo data at small values
of go-

Creutz38 derived a best fit of the Monte Carlo data for
a2K in the region gjj < 1.9 ( /? = 4/g2, < 2. 1), fixing the con-
stant in the following way:

^— (0.50±0.01)]}. (4.12)

This expression corresponds to the sloping line 2 in Fig. 20.
In a lattice gauge theory the string tension thus turned

out to be nonzero over the entire range of go considered. This
fact had been established earlier for large values of g2, on the
basis of the strong-coupling expansion (Subsection le). At g2,
< 1.9, however, where the strong-coupling expansion can-
not be used, we know that the string tension is again non-
zero, but now our knowledge is based only on Monte Carlo
calculations. Furthermore, since the nonanalytic depen-
dence of the tension K on g2, predicted by asymptotic free-
dom sets in at g2, < 1.9, there is reason to believe that the
continuum limit has set in here.

This can be seen directly, by verifying that rotational
symmetry is restored at go < 1.9. Lang and Rebbi111 used the
Monte Carlo method to construct equipotential surfaces for
the interaction between two static quarks at a given value of
g2, . This quantity is convenient for determining whether ro-
tational symmetry is restored, for the following reason.112

In the strong-coupling region ( go > 1) the force between
quarks increases linearly over distance (Subsection le). This
distance is by definition the length of the path which con-
nects two lattice sites and which is constructed from links of
the lattice. The interaction energy is thus given by

E(x,y,z}=K(\x\+\y\ + \ z \ ) , (4.13)

and the equipotential lines have the form shown in Fig. 2 1 .
At go > 1 we thus have only a cubic symmetry (rotations
through an angle which is a multiple of ir/2 around each

FIG. 21. Equipotential lines in the strong-coupling limit (see Subsection
4b).
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FIG. 22. Equipotential lines in the SU(2) theory according to
Monte Carlo calculations, a—Coupling constant 0 = 2; b—
P = 2.25 (this figure is taken from the paper111 by Lang and
Rebbi).

axis), not a symmetry under the complete rotation group (in
which case the equipotential lines would be circles).

Figure 22 shows the Monte Carlo data of Lang and
Rebbi111 for the equipotential lines. Figure 22a shows the
equipotential lines for g% = 2 (0 = 2), and Fig. 22b shows
them for g2, = 1.78 (/? = 2.25). From Fig. 22 we see that the
rotational symmetry is in fact restored1' when we go from g%
= 2 to g2, = 1.78, i.e., when we pass through the point gfo
= 1.9, at which the g% dependence of the string tension
starts to be described by expression (4.12). This circumstance
is yet another piece of evidence that the quantities derived by
the Monte Carlo method at g0 < 1.9 are pertinent to the con-
tinuum limit.

Remarkably, the continuum limit sets in when the cor-
relation length is only slightly greater than the lattice con-
stant (£. = 1.5-2.0 at g2, = 1.9). It is for this reason that
quantities pertinent to the continuum limit can be calculated
by the Monte Carlo method on a lattice of finite size (and not
too large). Although the number of links of the lattice in the
volume I" * is not great, we must not forget the group varia-
bles when we count the number of degrees of freedom. Fur-
thermore, as was shown in Ref. 59, for the gauge group
SU(JVC) at large Nc the spatial and group degrees of freedom
are so tangled up that quantities pertinent to the continuum
limit must be found on a lattice of size I4.

As one of the quantities characterizing the continuum
SU(2) gauge theory we show in Fig. 23 the potential of the
interaction between static quarks as a function of the dis-
tance according to Monte Carlo calculations.114 This poten-
tial was calculated from Eqs. (1.46) and (1.48), which couple
the potential to the loop average of W(R, T) for various val-
ues of g2, in the interval 1.3<go < 1-8 (3.1 >/?>2.2), where
the continuum limit has already set in. Both the potential
and the distance are expressed in physical units, i.e., in units
of JK, determined by (4.12). The various points in Fig. 23
correspond to different values of g2,. The fact that the results
calculated for various values of g2, agree shows that Eq. (4.9)
is applicable. The solid curve in Fig. 23 is a description of the
Monte Carlo data in the form of a Coulomb potential plus a
linearly increasing potential.

The results calculated for the string tension by the

Monte Carlo method show that quark confinement prevails
as well as asymptotic freedom in the continuum SU(2) gauge
theory. This conclusion was reached first by Creutz37'48 and
Wilson,39 and it was later confirmed by other investiga-
tors.19'27'28-115'116 Yet another numerical proof of this prop-
erty is based on a Monte Carlo calculation117 of the distance
dependence of the effective interaction constant [see Ref.
118 regarding the SU(3) group]. Before Monte Carlo calcula-
tions were carried out the primary argument in favor of con-
finement had come from the results derived by Migdal15 and
Kadanoff119 from recursion equations. Comparison with the
Monte Carlo data made it possible to assess the accuracy of
the approximate recursion method. 12°

2) Creutz used Eq. (4.10) to find the g2, dependence of
the string tension K shown in Fig. 20. The results found by
this approach depend on whether the value W (0, 0) = 1 is
incorporated, so that some of the values of go in Fig. 20
correspond to two different values of K. Creutz subsequently
suggested19 an elegant way for finding K; the same quantity
which is calculated by the Monte Carlo method is plotted
directly on the curve, and no further processing is necessary.
This quantity is the force % (I) (see Subsection Ig), the force

11 The mechanism which is responsible for the restoration of rotational
symmetry in the framework of the strong-coupling expansion is dis-
cussed in Refs. 112 and 113.

2,0 T/KR

FIG. 23. Potential of the interaction between static quarks as a function of
the distance in the continuum SU(2) theory. The solid curve is drawn using
the expression for a Coulomb potential plus a linearly increasing potential
(this figure is taken from the paper114 by Stack).
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\.nX(l)

FIG. 24. Expected functional dependence oty (/), given by (1.53), on g2, for
various values of/ (Subsection 4b).

which test static quarks separated by the distance I-a exert
on each other.

Before we look at the graphs with the actual results of
the Monte Carlo calculations of% (I), let us consider what we
should look for on the basis of the idealized sketch on Fig.
24. Figure 24 plots \KX (/) as a function of l/g0 for various
values of /, conveying this functional dependence qualita-
tively correctly. Let us examine the behavior of % as a func-
tion of / at some fixed I/go- In the strong-coupling region
(I/go < 1) the force % is independent of the distance/ (accord-
ing to Subsection Ig), so that^- has the same value for all /.
All the curves of % (I) as a function of 1/gJ in Fig. 24 thus
merge to form a common curve.

We now assume that I/go is fixed in the weak-coupling
region [i.e., g£ < 1.9 for the SU(2) group], where the confine-
ment radius Rc is smaller than the lattice constant a by a
factor of at least a few units. The vertical line in Fig. 24
corresponds to a fixed value of I/go. The points at which this
line intersects the curves of % (I) versus 1/gJ for the various
values of / give us the values of % (/) for the given value of
I/go. The largest value of% for a given value of go corre-
sponds to /= 1. As / is increased (under the constraint
/a <RC) the values of x (I) fall off in accordance with a Cou-
lomb law, and the intersection points move downward along
the vertical line. As / is increased further, however, and the
product la becomes greater than R0, the value of ̂ (/) be-
comes independent of the distance according to Eq. (1.58),
and the intersection points begin to move together. This
limiting value is the value of a2K which we are seeking.

This functional dependence of the force x on the dis-
tance at a fixed go thus has a simple physical interpretation:
As long as the distance between the quarks is smaller than
the confinement radius, the force acting between the quarks
can be described by the Coulomb law. As the distance in-
creases, the Coulomb potential gives way to a linearly in-
creasing potential, for which the force is independent of the
distance. The limiting value of the force is by definition the
string tension K.

This limiting value of% (I)»calculated for various values
of g0> gives us the dependence of a2K on g0. A plot of the
function a2K(g^) is thus an envelope of the family of curves
X (/;go )• This envelope is the heavy curve in Fig. 24. Every-
thing we said above regarding how a2K should depend on go

0,5 1,00

FIG. 25. Results of Monte Carlo calculations of x (-H in the SU(2) theory.
l—AL = O.Ol3jK;2—AL = 0.009 JK. Here A L is given by expression
(4.15), and K is the string tension (this figure is taken from the paper28 by
Bhanot and Rebbi).

remains valid when it is determined by the method described
in the present subsection. At small values of go the envelope
of the family of curves Iny(/,g0) should therefore be a
straight line with a given slope.

Curves showing the results of actual Monte Carlo cal-
culations of x (I) for various values of go for the lattice gauge
theories with the SU(2) and SU(3) groups agree qualitatively
with the curve in Fig. 24. These curves were first obtained by
Creutz,19 and those results were subsequently reproduced in
Refs. 28 and 115 for the SU(2) group and in Refs. 121, 48,
122, and 118 for the SU(3) group. To illustrate these results
we show in Fig. 25 some results obtained by Bhanot and
Rebbi,28 who approximated the SU(2) group by its icosahe-
dral subgroup Y (Subsection 2c), so that they could work on

x(r)

10 -z
2 2, SO 3,00 /3-tf/gf

FIG. 26. The same as in Fig. 25, but on a larger scale.2
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a lattice of size 164 [in this case the multiplicity of the inte-
gral evaluated by the Monte Carlo method in (1.25) is
x 8- 105]. The most interesting part of this figure is shown in
larger scale in Fig. 26 along with the statistical errors in the
calculated results. The sloping lines in Figs. 25 and 26 are
drawn from the expression

AL! = (0,011 ± 0,002)

where

, SU (2), (4.14)

specifies that value of the parameter A QCD which corre-
sponds to lattice regularization. These lines are the enve-
lopes of the family of curves in the weak-coupling region.

Corresponding calculations for the SU(3) gauge group
(the largest lattice used here was the 104 lattice used by Pie-
tarien121) yield results in agreement21 with the value48'118

AL = (6 ±1)-10-SV~K, SU (3),

where

(4.16)

(4-17)

the indicated error here includes both the statistical error of
the Monte Carlo data and the subjective error in fitting an
envelope to the family of curves % (/y*2, ).

c) Relationship between V/f and AOCD

As was discussed in Subsection 4a, the ratios of the di-
mensional physical quantities (of identical dimensionality)
which arise as the result of dimensional transmutation in
QCD are universal constants which can be calculated by the
Monte Carlo method. For example, we can calculate the ra-
tio of the QCD constant A QCU and the square root of the
string tension, t[K~. If we are interested in the absolute values
of dimensional quantities we must set one of them equal to its
experimental value, and then we can express the others in
terms of it.

In the Monte Carlo calculations in lattice gauge theor-
ies it is customary to take the string tension from experi-
ment. This is done in the following way. In the string model
the tension K is related to the slope of the Regge trajectory,
a', by

(4.18)

This relationship is found even for a classical string (see the

21 After the present review had been written, some papers154 were pub-
lished with calculations of the string tension for the SU(3) gauge group
on a large lattice. The ratio A L /-$K can accordingly be found from these
results by looking at the region of larger values of /}. The resulting value,
/1L = (10 ± 2)-10~3 JK~ is significantly larger than that in (4.16) and cor-
responds to Amom = 330 ± 70 MeV [cf. (4.23)]. As was shown in Ref.
155, the ratio A^jK is underestimated in the SU(3) theory with Wilson
action (1.18) near the crossover region for the same reason that expres-
sion (4.43) becomes incorrect near the end point of the phase diagram in
the SU(2)-SO(3) theory with the mixed action (3.16) (Subsection 4f). The
/E? dependence of the ratio A L /^K does not, however, have any signifi-
cant effect on the values of other dimensional quantities found by the
Monte Carlo method (e.g., glueball masses and deconfinement tempera-
tures).155

review of Marinov123). Substituting a' = IGeV 2, and
working from the slope of the/j — A2 — g trajectory, we find

/# = 400 MeV. (4.19)

A similar value,124

= 430 MeV (4.20)

is found from a description of mesons made up of heavy
quarks by a nonrelativistic potential model.

Substitution of these values of JK into expression
(4.16), obtained by the Monte Carlo method, yields

Au = 2-3 MeV. (4.21)

It might appear at first glance that this value of A L is too
small and badly at odds with the experimental data avail-
able, for example, on deep inelastic scattering, since for
A QCD ~ 2-3 MeV Bjorken scaling would continue up to mo-
menta of the order of several MeV. In fact, there is no contra-
diction, for the following reason.

The value of the QCD constant A QCD generally de-
pends on the regularization method and the gauge. One of
the traditional regularization procedures of the continuum
theory contains a subtraction at a symmetric point in mo-
mentum space. The value of the parameter A QCD corre-
sponding to this "momentum regularization" is denoted by
Amom. The quantity A L in (4.16), on the other hand, is that
value of A QCD which corresponds to a lattice regularization.
Hasenfratz and Hasenfratz125 established the relationship
bet ween Amom and/lL:

Aa==i, — R^i lA- ' IA. T)\mom — 00, fuif,, I*-")

here A j^1 corresponds to the Feynman gauge, and the val-
ue of the constant is written for the SU(3) group. In another
gauge or for another group, the 83.4 would be changed. The
reason for the dependence of A QCD on the regularization
method will be discussed in Subsection 4f below.

Substitution of (4.21) into (4.22) gives us
ia=l = 210 ±40 MeV, (4.23)

in agreement with the generally accepted phenomenological
value A ££, =200-350 MeV. The first calculation of Amom

was carried out by Creutz,19 and this was also the first calcu-
lation of a physical quantity by the Monte Carlo method.

It should be kept in mind, however, that these calcula-
tions ignored virtual quark loops. From the phenomenologi-
cal standpoint this approximation is valid within an error
equal to the ratio of the widths of hadron resonances to their
masses, i.e., ~ 10-20%. This approximation can be justified
theoretically in the approximation of a large number of col-
ors, Nc, in which the virtual quark loops become unimpor-
tant.126

d) Glueball masses

The Monte Carlo method is used to calculate the masses
of bound state—hadrons—in QCD. To explain the calcula-
tion method we adopt the example of glueballs: bound states
of gluons which exist even in pure gluodynamics, i.e., in
QCD without quarks.

The glueball masses are found by calculating the sum
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over the lattice sites in one "time" layer t syc4 of the coupled
correlation function of two operators O (x, t ) with the quan-
tum number of the given glueball:

A (*) - S ((0 (x, t) 0 (0, 0))> - (0 (0, 0)>«>. (4.24)
X

In the simplest version, O (x, t} is chosen in the form

0 (x, t) = tr £/p, (4.25)

where the plaquette/> is constructed at the point x, t. Substi-
tuting a sum over intermediate states into definition (4.24)
(by analogy with Subsection If), we find

The summation here is over all the glueball excitations with
masses Mn. The vacuum state (n = 0) has cancelled out,
since a coupled correlation function appears in definition
(4-24).

Since the lower state is predominant in the sum (4.26) at
large t, the mass of this state can be determined from the
argument of the exponential function describing the de-
crease mA(t) with increasing t. The mass of the lightest glue-
ball was calculated by a method of this type only in the early
papers,82'28 where this value was determined somewhat
crudely for the SU(2) gauge group. The reason for this cir-
cumstance is that the correlation function A (t) is small in
absolute value in the region dominated by the lower state,
and a great deal of computer time is required to extract the
signal from the statistical noise. Some subtler methods were
subsequently developed for calculating glueball masses.

The method most popular today is a variational method
proposed by Wilson (see also Ref. 127), which has not only
yielded reliable values of the mass of the lightest glueball in
the case of the SU(3) gauge group (with the quantum
numbers 0+ + ) but has also made it possible to calculate the
masses of glueballs with other quantum numbers. A calcula-
tion procedure using the variational method was initially
worked out85"88 for the SU(2) gauge group and was subse-
quently applied89-91'93-95 to the SU(3) group.

The basic idea of the variational method for calculating
glueball masses is to adopt as O (x, t ) the linear combination

0(x, t) = (4.27)

where the loops C, pass through the point x, t, and the/4, are
constants. For given value of the constants one calculates the
quantity

m(t) = ln A^a) , (4.28)

and then performs a minimization with respect to the,4,; i.e.,
the Aj are chosen to achieve the smallest possible value of
m(t) for the given choice of operators on the right side of
(4.27).

From expansion (4.26) we see that all the glueball states
make a positive contribution to A (t). The rate at which A (t)
falls off with increasing t [the quantity m(t)] is thus lowest for
that operator O (x, t ) which creates the lightest glueball at the
point x, t from vacuum. The variational method is an algo-
rithm for constructing this operator.

For an operator which creates the lightest glueball from
vacuum we are left with only a single term on the right side of
expansion (4.26), so that m(t) is identical for all t and equal to
the mass. We can thus use t = 1 to calculate the mass. The
quantity A (0) is related to the square of the wave function
and is also of interest.

In actual fact it is not possible on a lattice of finite size to
construct an operator which creates the lightest glueball ex-
actly since the number of operators considered in expansion
(4.27) is finite. Accordingly, there always remains some ad-
mixture of higher-lying states. To estimate the admixture we
minimize m(l), m(2), m(3), etc., separately and compare the
results. The calculations show that for lattices of this size
m (3) is only slightly smaller than m (1). At any rate, m (1) is an
upper limit on the mass of the lightest glueball.

We turn now to the results calculated for the glueball
masses. For the SU(2) gauge group an exponential depen-
dence of the mass of the lightest glueball on 1/g2, was reliably
established in Refs. 86, 92, and 95, where calculations were
carried out by a variational method, and also in Ref. 96,
where the result was determined from the change in the loop
averages upon a change in boundary conditions. The results
agree with the value

m (0+) = (200 ± 25)AL = (2,2 ± 0,3) V~K, SU (2), (4.29)

where we have used (4.14).
An exponential dependence of m(Q+ +) on/? = 6/g2, was

studied for the SU(3) gauge group in Refs. 89,94,98, and 95.
The results agree with the value94

m (0++) = (280 ± 30) AL, SU (3). (4.30)

Using (4.21) for A L, we have, in physical units,

m (0++) = 700-750 MeV. (4.31)

The variational method can be used to calculate the
mass spectrum of glueballs with various quantum numbers.
For this purpose the variational principle is applied to the
operators which are orthogonal to the operator constructed
previously for the state of quantum numbers 0+ +. The oper-
ators are classified in accordance with representations of the
cubic group, which transforms into the rotation group in the
continuum limit.

The exponential dependence of m(2+ + ) on£1 was stud-
ied in Refs. 92 and 95, where the following value was found:

m (2++) = (1620 ± 100) MeV. (4.32)

The mass spectrum of glueballs with other quantum
numbers was calculated in Refs. 90, 91, and 93-95. The re-
sults found in Ref. 95 are

m (Q-+) = (1420 ± ™) MeV,

m (0—) = (2880 ± 300) MeV,
m (l~+) = (1730 ± 220)MeV,
m (1+-) = (2980 ± 300) MeV.

(4.33)

These results are not as reliable as the values in (4.31) and
(4.32) for m(0+ + ) and m{2+ + ), since the exponential depen-
dence on P was not studied. We can at any rate take it to be an
established fact that m(0++) is anomalously small in pure
gluodynamics: smaller by a factor of at least two than the
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other masses (see Ref. 128 regarding calculations by means
of a strong-coupling expansion).

Although the results obtained clearly refer to the con-
tinuum limit, it is not known how these results would be
changed by the incorporation of quarks, since glueballs (the
0+ + glueballs, for example) may mix extensively with quark
states. From this standpoint we would be particularly inter-
ested in seeing calculations in pure gluodynamics of the
masses of "odd" glueballs, e.g., those with quantum
numbers 1~ + and 0~~, which do not mix with two-quark
states, so that their masses will presumably not change great-
ly when quarks are incorporated. The masses calculated for
the low-lying odd glueballs93'95 show that thel ~ + glueball is
relatively light [see Eq. (4.33)].

e) Deconfinement temperature

Although a linearly increasing potential arises between
static quarks with increasing distance in the SU(2) and SU(3)
gauge theories, this property cannot persist at arbitrarily
high temperatures. As Polyakov and Susskind129 have dis-
cussed, a phase transition from a phase of hadronic matter to
a phase of a quark-gluon plasma must occur at some tem-
perature Tc: the deconfinement temperature. The tempera-
ture Tc was calculated by the Monte Carlo method in Refs.
99-101, 83, and 104-106 for the SU(2) gauge group and in
Refs. 102-104 for the SU(3) group.

We know quite well that a description of a system at a
finite temperature Tc requires examining a lattice which is
infinite in the three spatial directions with a finite number of
spacings n, along the time axis t, along which periodic
boundary conditions are imposed. The temperature is relat-
ed to n, by

(4.34)T = (ant)-1,

where a is the lattice constant.
At a finite temperature there is yet another gauge-invar-

iant quantity: the trace of the product of matrices Z7XiA1 along
a line passing through the lattice parallel to the t axis. Gauge
invariance is assured by periodic boundary conditions.
Quantities of this type are denoted by L* since the spatial
coordinates of all the links of the lattice forming the given
line are identical and equal to x. Repeating the arguments in
Subsection If, we see that the quantity

1
antFn= — (4.35)

where the expectation value (Lx ) is determined with the
help of general expression (1.32), represents the change in the
free energy of the lattice system upon the introduction of a
static quark at the point x. To calculate the deconfinement
temperature by the Monte Carlo method one makes use of
the fact that in the confinement phase F0 is infinite, so that
we have <Z,X ) = 0, while the phase with unconfined quarks
F0 and (Lx) are finite. In practice, for a given n, one calcu-
lates (Lx) for various values of the charge g2, and determines
that value g2. at which <L X ) becomes nonzero (under the
condition g2, <g2). The calculations are then repeated with
other values of«,. In this manner, g2 is found as a function of
n,, or, equivalently, Tc -a is found as a function of g2..

Since Tc is a dimensional quantity, it must be propor-
tional to AL, according to dimensional transmutation, and
at small values of g^ it must depend on 1/gf exponentially if
the resulting value Tc is to refer to the continuum limit. This
property was established for the SU(2) gauge group in Refs.
98-101, where the following relationship was found between
Tc and/lL:

Tc = (38-43) AL = (0,43-0.47) V~K, SU (2) (4.36)

[(4.14) has been used here]. Correspondingly, an exponential
dependence of Tc on 1/g2. has been investigated also for the
SU(3) gauge group, and the following result has been de-
rived102-104:

TD = (75-83) AL « 200 MeV, SU (3), (4.37)

where (4.16) has been used for A L.
Monte Carlo calculations have also shown83-103 that

near Tc the temperature dependence of the energy density of
the system, e(T], changes abruptly from the value corre-
sponding to hadronic matter to that corresponding for a
gluon plasma. At T> 2TC, we can describe e(T) well by the
Stefan-Boltzmann law

15 (4.38)

with the coefficient calculated for an ideal gas of free mass-
less gluons. This change in the behavior of e(T) has been
exploited83-103 to calculate Tc.

How well (4.37) agrees with experiment can be tested on
the basis of cosmological consequences and also in experi-
ments on heavy-ion accelerators (see the review by Fein-
berg130).

f) Universality

As we mentioned in Subsection 3e, quantities referring
to the continuum limit must not depend on the type of lattice
action used in Monte Carlo calculations, and they must be
identical for, say, actions (1.18) and (3.16). This property is
called "universality," and such actions are said to belong to
the same universality class.

In calculations with various types of action, however,
the constants which relate, say, A L and -JK [see (4.16)] are
different. In order to test universality we must interrelate the
parameters A L corresponding to different actions and show
that JK does not change in the process. This difference in
the value of A L is caused by the same factor as the difference
in the value of A L for the Wilson action and Amom given by
(4.22). Let us first see how this relation arises.

To find the relationship between Amorn and A L, Hasen-
fratz and Hasenfratz125 used a lattice perturbation theory to
calculate the gluon propagator and the three-gluon vertex at
a symmetric point in momentum space, p\ = p\
= (pj — p2)

2 = M2, using the single-loop approximation.
The renormalized charge g(M) is expressed in terms ofg0 and
the renormalization constants Z3 (of the propagators) and Z,
(of the vertex) in the standard way:

(M) = (4.39)

Substituting the values of Zl and Z3 calculated in the single-
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loop approximation, Hasenfratz and Hasenfratz derived the
following expression for the SU(3) group in the Feynman
gauge:

j.W-,;[l+rf(.^ln^ + 0,457)]. (4.40)

On the right side of this expression we have shown only those
terms which remain finite in the limit a—*0. All the nonco-
variant terms cancel out in this limit.

It should be noted that the coefficient of the logarithm
in (4.40) is the same as the asymptotic-freedom coefficient b.
This agreement shows that in the limit a->0 not only does
the classical action (1.18) convert into the action of the con-
tinuum theory, but there is also a correspondence between
the results calculated by perturbation theory. The constant
terms, which depend on the regularization method, differ,
giving rise to differences in the values of the parameters A.
Expression (4.22) is derived by substituting expression (4.40)
into the definition

•475Aj>, (4.41)

where A L is given by Eq. (4.17).
The calculations which lead to (4.40) are quite involved.

Along with the oridinary diagrams there are some diagrams
with additional vertices, which are coupled with other terms
of the series expansion of Up. For example, the Lagrangian
obtained in the limit a^O takes the following form in the g%

order:

where we have C4 = 1 for the action (1.18). Although the
second term is propertional to a4, it gives rise to "tadpole"
diagrams, which diverge as a~4, so that their contribution is
finite. These are the diagrams which make the numerically
largest contribution to the ratio Amom /A L.

The differences between the values of A L for various
types of lattice action are due entirely to differences in the
coefficients C4 [for example, we have C4 = 1 + 6/3A /
(/? + 2/6'A) for the mixed action (3.16) with the SU(2) group].
The ratio of parameters A L can be calculated most simply by
the lattice version of the background-field method.131 Essen-
tially all we need to do here is to determine the coefficient of
one of the tadpole diagrams. The answer is132'133 [for the
SU(2) group]

AL r 5^2

Wilson =eXP[_~~44~ ^~
(4.43)

There are corrections of O (g2,) to this expression, and these
corrections may be large if g% is not small enough. Some of
them (the dominant ones) were calculated in Ref. 134.

Monte Carlo calculations with actions of other types
have been carried out for the string tension,46'116'133 glueball
masses,87'97 and the deconfinement temperature.105'106 It
turns out that for the versions of the lattice action proposed
by Manton135 and Villain (see Ref. 136) universality holds
even when we use the simple relation (4.43). For the mixed
action (3.16), however, the use of (4.43) near the end point of
the phase diagram (Fig. 16) has led133 to physical quantities

differing by a factor of four from the results calculated with
the Wilson action. It was shown in Refs. 106 and 137-140
that relation (4.43) actually does not hold near the end point
of the phase diagram. A nonperturbative calculation of the
ratio of parameters A L has shown140 that universality also
holds for the mixed action. Consequently, the quantities
which are pertinent to the continuum limit actually do not
depend on the type of lattice action used in their calculations
by the Monte Carlo method. It is nevertheless better to use
the Wilson action, than, say, the mixed action at 0A > 0,
since the g% dependence of A L is described well by simple
expression (4.15) for the Wilson action in the region in which
the Monte Carlo calculations are carried out.

INSTEAD OF A CONCLUSION

We have seen how the Monte Carlo method is used to
study gauge theories on a lattice, including quantum chro-
modynamics without quarks. The results are quite reliable,
although it remains to be seen whether changes will result
from a decrease in the lattice spacing or an increase in the
spatial dimension of the lattice. The dimensional quantities
(string tensions, glueball masses, and deconfinement tem-
peratures) calculated by this method in QCD without quarks
have the correct renormalization-group behavior and refer
to the continuum theory.

In addition to the quantities which were discussed more
or less in detail in Section 4, the size of the gluon conden-
sate141'142 and the correlation function for the topological
charge density143'144 have been calculated by the Monte
Carlo method in QCD without quarks. There is some uncer-
tainty in the calculations of these quantities because of the
particular way in which they are defined on a lattice.

We have not taken up Monte Carlo calculations in
QCD with quarks. Methods have been developed145 for in-
corporating quarks in Monte Carlo calculations. The most
interesting calculations in this direction are calcula-
tions85'146"149 by these methods of the mass spectrum of ha-
drons made up of quarks. The first calculations were carried
out in the pioneering studies by Hamber and Parisi,85 Marin-
ari et a!., and Hamber et al.146 (see also the more recent stud-
ies in Refs. 148 and 149) in an approximation which incorpo-
rated only the valence quarks and ignored virtual ("sea")
quarks; alternatively, the virtual quarks have been taken into
account by the approximate method of Ref. 147. Calcula-
tions have been carried out on lattices ranging in size from
5 3 XlO to 103X20, and the masses found have depended
slightly on the lattice size. The masses of low-lyingy ordi-
nary and strange mesons and baryons and certain other
quantities have been calculated. The resulting masses agree
within the errors with experimental results (the agreement is
slightly better for the larger lattices), although the errors are
quite large, about + 150 MeV. These errors will decrease
significantly, possibly in the immediate future, as a result of
the refinement of calculation methods, the increase in the
statistical base, and the incorporation of virtual quarks. (In
some first studies in this direction, virtual quarks have been
taken into account exactly150'151 and approximately152 in
Monte Carlo calculations.)

427 Sov. Phys. Usp. 27 (6), June 1984 Yu. M. Makeenko 427



Doubt has been expressed153 whether reliable results
for QCD with quarks can be achieved at all on lattices of
such small dimensions as were used in Refs. 85 and 148. Any
substantial increase in the lattice size would require signifi-
cant improvements in computer speed and memory. As it is,
the hadron-mass calculations which are presently being car-
ried out are straining the existing computational capabili-
ties. By way of example, the calculations carried out by
Lipps et a/.148 required about 30 h on a Cray IS computer
(the cost of this much computer time is estimated to be about
$100 000). Nevertheless, the effort to increase lattice size is
continuing, and calculations on even larger lattices are
planned for the immediate future.

I wish to thank M. I. Polikarpov for useful comments
and for assistance in writing Section 3.
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