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The unique superfluid properties which distinguish the A phase of *He from other superfluids (He
11, the B phase of *He, and electrons in superconductors) are described. These properties result
from the specific breaking of the invariance of the state under gauge transformations and rota-
tions in orbital space, so that all the superfiuid properties are related in a fundamental way to the
dynamics of textures of the liquid-crystal-anisotropy vector. The flow of the superfluid compo-
nent of the liquid, for example, is not a potential flow; its vortical part is related to textures. The
relationship between the structure of the superfluid velocity and the nature of the symmetry
breaking is analyzed in detail. Simple phenomenological considerations are used to derive an
expression for the current and to explain the strange term in the current which is not present in the
model of a Bose gas of molecules having a Cooper-pair structure in the A phase. The existence of a
normal density at T = 0 and the nonlocal properties of the density of the intrinsic orbital angular
momentum of the liquid are discussed. The coexistence of superfluid properties with a nonpoten-
tial superfluid flow and also with the vanishing of the critical Landau velocity for the creation of
excitations is discussed. Conditions for the global and local stability of the superfluid flow are
described. The changes in stability upon changes caused in the topological structure of the order
parameter by external conditions are discussed. The relaxation dynamics of a superfluid flow is
analyzed. An instanton mechanism for phase slippage is analyzed; this mechanism leads to ob-
servable oscillations analogous to the ac Josephson effect in superconductors. Principles for
constructing a generalized two-fluid Landau hydrodynamics taking an orbital variable into ac-
count are outlined. Continuous and singular vortex structures which arise upon rotation are
discussed, as are their topology, phase transitions between them, and some other topologically
nontrivial structures: a vortex with a free end, a boojum, and an instanton. The basic experiments
in which the unique superfluid properties are observed are discussed. Some other existing or
possible systems in which a nonstandard breaking of gauge invariance leads to unusual properties
are cited; examples are a neutron star and a superconductor with the A-phase structure. In the
latter medium there is a structure similar to a Dirac magnetic monopole. This structure is dis-
cussed.
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INTRODUCTION

The discovery of the A phase of *He renewed interest in
the problem of superfluidity. Because of the particular struc-
tural features of the order parameter in this substance, its
superfluid properties are fundamentally different from those
of all other known superfluids: He 11, the B phase of *He, and
the electrons in a superconductor. Suffice it to say that the
velocity of the superfluid component of the A phase is not a
potential velocity, and the Landau critical velocity is zero.
These circumstances contradict the conventional wisdom
that the flow of the superfluid component must be a potential
flow and that the emission of excitations must be forbidden if
superfluidity is to exist.

For *He-A we need to reexamine all the questions raised
by superfluidity: 1) Does friction accompany the motion of
the superfluid component? 2) Are there stable superflows of
the nature of the persistent flow of He 11 in a closed channel
or of an electric current in a closed superconductor? 3) What
are the relaxation mechanisms for the superfluid current? 4)
Is there an analog of the ac Josephson effect? That is, do
oscillations of the flow arise under steady external condi-
tions? 5) What is the structure of the A phase in a rotating
vessel? 6) Is there a two-velocity hydrodynamics for the A
phase, as is characteristic of He 11, and do all the conse-
quences of such a hydrodynamics exist (second sound,
fourth sound, the mechanocaloric effect, etc.)? Among the
many other questions that might be asked is how do the orbi-
tal variables and an anisotropy affect the superfluid proper-
ties.

As we will see, most of these questions can be answered
by analyzing the structure of the order parameter of the A
phase. In other words, most of the phenomena associated
with superfluidity are consequences of the symmetry of the
order parameter and depend only slightly on the particular
medium which is the carrier of this structure. The distinc-
tion between one medium and another of the same symmetry
is usually expressed in the numerical coefficients, which do
not alter the qualitative picture. For example, all the proper-
ties of superfluid “He—a real liquid with a strong interac-
tion—can be found by analyzing the model of a slightly noni-
deal Bose gas. This model retains the most important point:
the structure of the order parameter. Correspondingly, the
properties of the A phase can be found by analyzing a model
of a slightly nonideal Fermi gas with an interaction potential
of the type which gives rise to the p-pairing with the A-phase
structure (the so-called weak-coupling approximation). An-
other model which gives a qualitative description of the su-
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perfluid properties of the A phase is the model of a slightly
nonideal Bose gas of diatomic molecules for which the wave
function of the relative motion of the atoms in a molecule has
the symmetry of the wave function of a Cooper pair of the A
phase.

In the discussion below we will be using both these mod-
els, which lead to qualitatively identical results in most
cases.

1. STRUCTURE OF THE ORDER PARAMETER AND THE
SUPERFLUID VELOCITY

a) Structure of the order parameter

In *He, as in superconductors, we have the Cooper
phenomenon: Spin-1/2 quasiparticles form bound states or
“Cooper pairs” on the Fermi surface. Cooper pairs with an
integer spin are bosons, whose condensation into a Bose con-
densate gives rise to superfluidity. In contrast with the elec-
tron Cooper pairs in a superconductor, the pairs in *He have
a nonzero spin, S = 1, and an angular momentum L = | of
the relative motion of the quasiparticles in the pair (a so-
called orbital angular momentum). Cooper pairs are thus
anisotropic in both shape and magnetic structure. By virtue
of the macroscopic coherence, Cooper pairs are oriented
identically, so that the superfluid phases of *He have, on the
whole, a coherent magnetic structure and are therefore or-
dered magnetic materials (or antiferromagnetic materials),
and they have a spatial anisotropy and are therefore liquid
crystals. Mineev' has reviewed the magnetic and liquid-crys-
tal properties of the superfluid phases of *He.

The A phase has two anisotropy axes: the magnetic axis
d and the orbital or liquid-crystal axis I. The meaning of
these vectors can be seen easily in the model of a Bose gas of
molecules having the structure of Cooper pairs in an A
phase. The unit vectors d and 1 determine the quantization
axes of the spin and orbital angular momenta, respectively,
of the molecule. The projection of the spin (S ) of the molecule
onto the d axis is zero (Sy = 0); i.e., the spins of the molecule
are oriented equiprobably in the plane perpendicular tod, so
that the molecule has no average spin, and the A phase there-
fore has no average nuclear magnetic moment: The A phase
is a uniaxial antiferromagnet. The projection of the angular
momentum L onto the 1 axis is 1 (L, = 1); i.e., the orbital
angular momenta of the pairs are directed along 1. The A
phase thus has an internal orbital motion around L. In Sub-
section 1g we will see how this motion is manifested.

The wave function of a molecule in a state with these
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projections breaks up into the product of the spin wave func-
tion y . and the orbital wave function f(R }Y;,(n):

Yap (R) = %xapf (R) Y1 (m), (1)

where R = r; — r, is the coordinate of the relative motion of
the atoms in the molecule, and n = R/R. The spinor corre-
sponding to S =1, 4 = 0 is (see §57 of Ref. 2)

Aap = idi (Uigy)aﬂv (2)
where the o, are the Pauli matrices. The spherical harmonic

Y,,(n), which describes the orbital motion with L =1,
L, =1,is (§57 of Ref. 2}

™ ) /'4_ .
Vm = sintee = ) (eringd, ()

where 6 and ¢ are the polar and azimuthal angles of the
vector n in the coordinate system with polar axis along I (Fig.
1). The unit vectors A’ and A” in this figure are the directions
of the coordinate axes in the plane perpendicular tol, so that
we can write

ny -+ in, = (A" + iA”, n) = (¢n). (4)

By virtue of the macroscopic coherence of the mole-
cules in a Bose condensate, their wave functions must be
identical. This assertion means that all molecules have the
same complex vector = A’ + /A" and the same real vector
d. These vectors are degeneracy parameters of the A phase,
since the energy does not depend on their orientation, if we
ignore the weak spin-orbit or so-called dipole interaction,
which tends to orient d and 1 = (i/2) [ynp*] parallel to each
other.! States of the A phase thus have five degrees of free-
dom: three Euler angles specifying the orientation of the tri-
ad of unit vectors A’, A”, 1, and two angles specifying the
direction of the vector d. In the discussion below we will
consider only the orbital part of the degeneracy parameter 1,
since it is this part which, by virtue of its complex nature, is
pertinent to the superfluid properties of the A phase.

The complex vector degeneracy parameter ¥ in the A
phase is analogous to the complex scalar degeneracy param-
eter ¢®in He 11, where @—the phase of the order param-
eter—is identical for all atoms of the Bose condensate of
wave function ¢ = |¢/|e’®. The quantity serving as the order
parameter in “He, which is analogous to the complex func-
tion ¢ in He 11 and which vanishes above the superfluid tran-
sition temperature T, is the complex matrix 4,, . This is the
matrix of coefficients in the expansion of the wave function

FIG. 1. Local coordinate system with the unit vectors A’, A”, 1, in which
the wave function of the pair has the form in (1).
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.5 of a molecule with.§ =1, L = 1 in nine eigenfunctions
corresponding to states with different projections .S and L:

Yap (R) = i (0;0,)apf (R) Apnp.
At equilibrium in the A phase, the order parameter takes on
the values [see (1)—(4)].

Ay = C(T) dig,

where the constant C vanishesat T=T.

b) Current and superfiuid velocity in the model of a Bose gas
of molecules

In He 11, in a slightly inhomogeneous state, the degener-
acy parameter ¢ depends on the coordinate of the atom, r,
giving rise to a coherent superfluid current of atoms of the
Bose condensate. At T = 0, this current is
h
(P*Fp—pVp*) = p - VD —pws,

2im,

j=

where p is the density of “He atoms. In the A phase, in a
slightly inhomogeneous state, the degeneracy parameter 1 is
a function of the coordinate of the center of mass of the mole-
cule, r = (r; + r,)/2. There may also be a coherent current of
Cooper pairs in this case. In the model of a Bose gas of mole-
cules, the current at 7 = 0 is found by multiplying the cur-
rent of a single molecule,

[ ar] vt (g -+ g

2img 0ry 2imy  dry

) Y, +cc. ]

2 h , "
= Tims (WY — B V) =—— AV A
by the density of molecules, p/2, where p is the density of
*He atoms and m, is the *He mass:

. h , p 5
]'7PMA1VAZ. ( )

To this expression we must add the current which flows be-
cause a molecule has an angular momentum 7l equal to
(§115 of Ref. 2)

%rot( 2:;3 {hl),

The coefficient of proportionality between the current and
the density p in (5) is naturally called the “superfluid veloc-
ity,”

VS:E’%A;VA’;, (6)
so that the total current density in a Bose liquid of molecules
with the A-phase structure is, at 7= 0,

i —pvi 5 rot { —nl). (7)

We will see in the following subsection that in a real A
phase the current also has another term with the curl (rot) of
I; this term does not change the superfluid velocity.

Let us mention some of the properties of the superfluid
velocity v*. If the field of the vector 1 is fixed in space, the
parameter 1 is left with only a single degree of freedom:
rotation through an arbitrary angle around the 1 axis. We
assume that 1 is uniform; then all values of the parameter 1
can be found by specifying some fixed value 1, and acting on
it with the rotation matrix ﬁ( — 1), which performs a rota-
tion through an angle — @ around the 1 axis:

$ =R (—1D) , = e, (8)
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We see that when the 1 field is uniform the angle @ plays the
role of the phase of the Bose condensate. According to (6),
the superfluid velocity

P _vo (9)

ma
has the same form as for an ordinary Bose condensate in He
11. In the general case in which 1 depends on the coordinates,
however, the superfluid velocity can no longer be represent-
ed as the gradient of a phase. Taking the curl of both sides of
(6), we find that curl v* is not zero but is related to the gradi-
ents of the vector 1 by the relation

V8=

(10)

rot v¢ =

el [V, V1,

4mg

which is called the Mermin-Ho relation.®> The superfluid
flow is thus a potential flow only for a certain class of vector
fields 1: those for which the right side of (10) vanishes. In-
cluded in this class of fields is, for example, a planar distribu-
tion of 1.

c) Strange term in the current in the model of a Fermi gas

A calculation of the current in the weak-coupling mod-
el leads to a term in the current which is not found in (7).
The appearance of this new term, which contradicts the sim-
ple model of a Bose condensate of molecules [this model
leads to (7)], seemed so strange that many investigators con-
tinued to doubt its existence until it became clear that this
term results from a nonremovable singularity in the state
density at two points on the Fermi surface where the gap in
the excitation spectrum vanishes. We will not go through the
calculations? here, but we will show how to derive the final
result from some simple arguments.>®

In contrast with a Bose liquid, whose molecules are pro-
duced by a pairing of atoms in real space, the atoms in a
Fermi liquid combine into Cooper pairs on the Femi surface
in momentum space. The atoms which pair up have opposi-
tely directed momenta k and —k, so that the resultant mo-
mentum of the pair is zero at equilibrium. The angular part
of the wave function of a pair with a given k is found by
replacing R by k in (3):

Y = A, (A" + iA”, n), n = Kk/k. (11)
The wave function 3, is normalized in such a manner that its
modulus

[ | = Bo | n, 11| (12)
coincides with the gap in the excitation spectrum E :
k2 2
Ee =V (oo —er) + il (13)

In contrast with ordinary s pairing in superconductors, the
gap in the spectrum depends on k: It vanishes if k||l and
reaches a maximum value 4, at kil. The phase of the wave
function of the pair,

@y =arctg it (14)
also depends on k and has a singularity at k||1, where it is not
defined.

The current density is determined by =, kn(k, r), where
n(k, r) is the distribution function of the Fermi particles. The
coherent change in the distribution function at 7= 0 due to
aslight inhomogeneity can be found by noting that the phase
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of the wave function is, in the classical limit, the mechanical
actions = (fi/2)® (§17 in Ref. 2). The momenta in the distri-
bution function are thus shifted by an amount VS, and the
coordinates are correspondingly shifted by — (dS /Jk). Asa
result we have

a(:Dk an

8n (k, 1) =(1/2) (Vr - — 2V, ), (15)

and an integration by parts gives us the following expression
for the current density:

j= Z kén (k, r)
k

1 o1 o
=T§nkvcka7vi(§kn 6k,-k)
1
“7§k"k(v ai - al:; V)CD“' (16)

Substituting in @, from (14), we find pv* and (1/2) rot( p#il/
2m;,) for the first and second terms in (17), wherep = 2, n(k,
r), and v° is given by (6). Accordingly, the difference between
the current in a Fermi liquid and that in a Bose liquid, (7), lies
in the third term in (16), which would vanish if @, had no
singularity at k||1, i.e., where the gap in the excitation spec-
trum is zero. Because of this singularity, the mixed deriva-
tives of @, are not equal and instead differ by a 5-function of
k , where k, =k — 1(kl):

(v %_%v)cpk:zn (1rotl) (k1) 8 (k). (17)
We then find the following expression for the current in the

weak-coupling model at 7 = 0:

s |2

]=pvs—|—%rot(2mLs hl)—z—'ns—COl(lrotl), (18)
where

Compty | akikiR (0, 0, ky), By = (kD). (19)

For a stepped distribution function n = 20[ex — (k 2/2m,)],
as in a Fermi gas, we would have

Co=mqk¥/3n2,

which is the same as the density of a Fermi gas, p. This agree-
ment is of course only approximate, since the pairing alters
the system, and C, differs from p by an amount of the order
of p(44/€x)*. In a real *He-A liquid, C, may be quite differ-
ent from p.

Without going into detail we would like to point out
that that singularity in the wave function of the pair which
gives rise to the unusual term with C, in the current is stable
with respect to small changes in the order parameter,’ al-
though the system may leave the A phase. The reason is that
the A phase is one of a family of states whose wave function
has a vortical singularity in momentum space: The phase @,
changes by 27 when the 1 axis in momentum space is circum-
vented. A vortex which is stable with respect to small pertur-
bations leads to a singularity in the state density at points at
which the vortex intersects the Fermi surface, k = + kgl,
and it is this singularity which produces the strange term in
the current. The gap in the excitation spectrum vanishes at
these points.

The model of a nonideal Fermi gas thus changes the
term associated with curl 1, i.e., that part of the current
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which stems from the angular momentum of the pair, but it
does not alter the determination of the superfluid velocity v°.
The identical expressions for v° in the two models suggest
that the definition of v° and therefore its nonpotential nature
are general structural properties of the order parameter, i.e.,
are associated with a symmetry breaking which is character-
istic of the given structure. Let us examine this question in
more detail.

d) Superfluid velocity and joint deviations from rotational and
gauge invariance

In the A phase, as in “He, the invariance of the state
under a gauge transformation is disrupted specifically, un-
der such a transformation a state with an order parameter ¥
goes into another state with an order parameter ¢ #1,
where a is a parameter of the transformation. Simultaneous-
ly, the invariance of the state under a three-dimensional ro-
tation in coordinate space is disrupted: Any three-dimen-
sional rotation which can be specified by an orthogonal
matrix R sends the state with ¥ into a state with another
order parameter R{#1. The A phase is analogous in this
respect to a liquid crystal, whose states also change upon
spatial rotations. The A phase is peculiar, however, in that
the combined invariance is preserved: A state does not
change upon a simultaneous gauge transformation Y—e* ¥
and rotation through an angle @ around the 1 axis. According
to(8), ¥ does not change upon this combined transformation:

b — "R (Io) = . (20)
It is because of this circumstance that the superfiuid velocity

v’ must be related to the rotational degrees of freedom. To
show this, we write the order parameter ¥ as
P = (A + iA") e, (21)

We have replaced three variables (the three angles specifying
the orientation of the triad of unit vectors A’, A”, 1) by four
variables, by artificially distinguishing a phase variable @.
We assume that @ changes only under a gauge transforma-
tion, while the unit vectors A’, A”, and 1 change only under
rotations. Since the state of the system is not changed by the
composite transformation

O>D+a, A+id— R(la) (A +iA") (22)
all physical quantities must depend on only certain combina-
tions of the variables A’, A”, and @, namely, combinations
which do not change under transformation (22). These com-
binations are 1 = [A’, A”] and

VG:EZT(V(DqLA{VA'{). (23)
The latter combination is an invariant definition of the su-
perfluid velocity which is invariant under (22) and which
differs from that in the case of He 11, where we have v° = (#i/
m, )V, in that this velocity is necessarily affected by the
orbital variables. Definition (13} does not differ from defini-
tion (6), since the phase variable @ is incorporated in A’ and
A" in (6). All that we need to note is that the variables A" and
A" in (6) and (23) differ in transformation properties: In (23)
they are invariant under a gauge transformation, since they
are purely liquid-crystal variables, while in (6) they trans-
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form in accordance with A’ + iA” ¢ (A’ 4+ iA”) under a
gauge transformation.

The unusual symmetry breaking in the A phase, which
leaves the combined gauge-rotational symmetry unchanged,
leads to a unique relationship between the superfluid and
liquid-crystal properties of the A phase. Consequences of
this relationship are the nonpotential nature of the super-
fluid flow and other phenomena discussed in this review.

€) Current and energy of the A phase at 70

In the model of a Fermi liquid, the normal motion is
associated with Fermi excitations of the system which arise
against the background of the superfluid ground state. At
T #0 these excitations make a contribution to the current in
addition to the background coherent current (18):

P =2 kv, (24)

where v, is the distribution function of the excitations. At a
local equilibrium, v, is characterized by a local temperature
and a local velocity v" of the normal motion:
E, —kvo -1
k
1 ) ,

Vg = ( exp ——T——

where E is the local energy of the excitations. In a slightly
inhomogeneous liquid, £, would differ from (13) in that it
would also depend on the phase (@, ) of the wave function of
the pair. This dependence can be easily found by generaliz-
ing the known expression for the excitation energy in the
presence of a superfluid flow: E, —E, + kv® in He 11 (Ref.
8), where v* = (fi/m,)V®, or in a Fermi liquid with s pair-
ing,’ where v* = (#i/2m)V®. Here it should simply be re-
called that the phase of the wave function of a Cooper pair
depends on k. As a result we find®

Ey = I/(ZL”:-—SF)Z-F ]‘Pk|2+‘2713— kV®D,.

Expressing V@, in (26)in terms of v* and curll with the
help of (14), and substituting (26) and (25) into (24), we find
the following expression for the current in the approxima-
tion linear in v* and curl 1 (we are ignoring terms ~ Vp):

(25)

(26)

i :Fvs +<B;1v" + Zims?curl 1 (27)
with the tensor coefficients
03 =0%0;5—pol;l,
oL =(0—0%8is+polily, Ciy=C8;;—Col;l;. (28

The coefficients p*, p,, C and C, have the temperature de-
pendence
1

€ =5 (0*—po) =5 Ci,
oy =3p | T nimy (1—Y (a, T)), (29)
where Y (n, T') is the Yosida function
Y (n, T)= ZmiaT iodkk sechz—g",—, (30)

0

which vanishes at T=0andisequaltolat T=T,.
In a real Fermi liquid, the temperature dependence of
the coefficients p*, p,, C, and C;, would be more complicat-
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ed,*!% but the structure of expression (27) would remain the
same.

Let us write a general expression for the energy of a
slightly inhomogeneous state. Like the current, the energy
depends only on combinations which are invariant under
transformation (22), i.e., on 1 and v°:

r={av{5o (vo —vR)2——py (I, V8—vn)2
+ ﬁa_ € (vs—vo,curl )

3 1 ¢ & 2
g Co(Lourl 1) (vo —v3, 1) o (m) K, (VI)2.
3

17 & \2 1 2
+7(m) Kz(l Curl])z +7(m) K3[l1cur11]2

+jv8— 2 p (vR)2 — Lyl +- cur] val, (31)
The dependence on v" is found through a Galilean transfor-
mation from the coordinate system in which v* = 0. The
term curl v, stems from the internal angular momentum of
the Cooper pairs, Lyl. The particular form of expression (31)
for the energy is characteristic of this type of disruption of
the symmetry and does not depend on the particular medium
which is the carrier of the structure. The particular medium
determines only the relationships among the coefficients p°,
Por C, Co, K, K, K5, and L. In the model of a Bose gas, for
example, we would have p, = C, =0, L, = (fi/2)p.

f) The normal componentat 7 =20

The vanishing of the gap in the excitation spectrum has
a curious consequence. Considering the terms in the current
which are nonlinear in v* and curl 1, we find that the density
of the normal component is nonzero, pj %0, evenat'' T = 0.
To prove this assertion, we note that at T = 0 the quasiparti-
cle distribution function (27) degenerates into a step func-
tion:

ve = 0 (—Ey + kv, (32)

For ordinary s pairing (in superconductors), the gap in the
excitation spectrum does not vanish anywhere at 7= 0.
Consequently, if the difference v*—v" is sufficiently small,
states with a negative effective energy £ — kv” <0 will not
exist, and there will be no excitations at 7=0. In the A
phase, the gap in the excitation spectrum vanishes at k;, =0,
s0 that for nonzero v° — v* and curl 1 there are states with a
negative effective energy E, — kv” <0. Although the den-
sity of these states is small, of the order of the small quanti-
ties v — v" and curl ], these states make a substantial non-
linear contribution to the excitation current (24) at 7T=0.
Substituting (32) and (26) into (24), we find

kp
b L, curl 1]

kg
+P Ad lill(vs—vnv ])Z;

py(T=0)~p

(33)

where k ;- is the momentum on the Fermi surface. We note
that the dependence of ™ on curl 1is nonanalytic. The coef-
ficients in expression (33) were calculated in a more rigorous
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theory in Refs. 12 and 13.

@) Orbital angular momentum in the A phase

As follows from Subsection 1a, each Cooper pair has an
internal orbital angular momentum #1. We would thus ex-
pect that the entire liquid would have an orbital angular mo-
mentum in a homogeneous state. The magnitude of this an-
gular momentum, however, depends strongly on the model.
In a Bose gas of isolated molecules, the rotational motion of
the molecules is easily separated from the translational mo-
tion, so that in this model we can introduce the concept of a
density of the internal orbital angular momentum, which is
equal at T = 0 to the product of the density of molecules, p/
2, and their internal angular momentum #1: L, = (#/2)pl.

In a Fermi liquid these molecules overlap markedly,
since the dimension of a Cooper pair (of the order of the
coherence length £~107'°-10'5 cm; see the review by
Mineev') is much larger than the interatomic distance a. In
this situation it is difficult to distinguish the translational
motion of the Cooper pairs from their rotational motion. It
thus becomes difficult to determine the density of the inter-
nal angular momentum, if only because a local characteristic
of the liquid of this sort may not exist at all. In singling out a
part of the volume in which we wish to calculate the internal
angular momentum, we must necessarily include those Coo-
per pairs which intersect the boundary of the volume. Their
contribution, like that of the surface currents to the orbital
angular momentum, is comparable to the resultant orbital
angular momentum of the internal pairs. The orbital angular
momentum is thus not of a local nature in the A phase. To
demonstrate this point, we consider the change in the angu-
lar momentum upon a local change in the density p and the
vector 1 against the background of a homogeneous state,
working from an integral relationship between the angular
momentum and the current, f dV'L = § dV [rj]. Expressing
the current variation in terms of §p and & 1 with the help of
(18), we find the variation of the orbital angular momentum
to be

8L =2-18p+ 2 (p—Cy) 8.

Equation (34) shows that the density of the orbital angu-
lar momentum is not a total differential in a Fermi liquid,
where C;50, demonstrating the nonlocal nature of the an-
gular momentum. Nevertheless, the quantity L, = (f/2)( p—
C,) found from a variation with §1, has a definite physical
meaning: It is that part of the orbital angular momentum
which is related to the rotational, rather than translational,
motion of the Cooper pairs. For a Bose gas this is obvious,
since we would have L, = (#i/2)p. In the A phase, this con-
clusion is indicated by the following circumstances: First, it
is this quantity which appears in the energy (31), forming
along with the local angular velocity of the rotation of the
liquid, ® = (1/2)curl v*, a term — Lgjle which is character-
istic of a liquid with an internal angular momentum. Second,
L, appears in the dynamic equation for the vector 1, which is
analogous at low temperatures to the equation for the mag-
netic moment in a magnetic material with an angular mo-
mentum L, (Ref. 11).

The quantity L is very small, Ly~ #po(4,/ex ) Infeg/

(34)
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4,), specifically because of the strong overlap of Cooper
pairs, since A,/ ~a/£<€1. We can thus assert that the
strong overlap of Cooper pairs causes their orbital motion to
transform basically into a translational motion at the surface
of the vessel. Only a small fraction of the angular momen-
tum, ~#jp(a/& )?, corresponds to a local rotational motion of
pairs. It is easy to see the origin also of the first term in (34).
Even when thereis a strong overlap of pairs, an excess (5N ) of
pairs in a given volume element gives rise to an orbital angu-
lar momentum #lSN in this volume element. This angular
momentum is related to the currents which flow over the
surface of this volume. For the same reason, the total angu-
lar momentum of an A phase with a homogeneous distribu-
tion of I in a vessel containing N *He atoms is {#/2)N 1. For
more details on the orbital angular momentum we refer the
reader to Ref. 11 and the bibliography there.

2. SUPERFLUIDITY OF THE A PHASE

a) Why the superfluid component superflows

As can be seen from (27), the current of the A phase
consists of three parts. The first, characterized by the veloc-
ity v", describes the normal motion. The density of the nor-
mal component, p", is a tensor, in contrast with the scalar
density in He 11 and *He-B. In the A phase we can thus
clearly see the arbitrariness of this separation of the liquid
into two components. Specifically, we cannot represent the
liquid as consisting of two types of atoms—superfluid and
nonsuperfluid—because in this case both densities would be
scalars. It is thus more appropriate to say that in the liquid
there are several types of motions, one of which occurs at the
normal velocity v". At low 7, the Fermi excitations of the
system are entrained in this motion, while the entire liquid is
entrained above 7. This motion clearly experiences a fric-
tion, both an internal friction and a friction exerted by the
walls. Do the other types of motion with v* and curl 1, exper-
ience a similar friction? The nonpotential nature of the ve-
locity v* and the vanishing of the Landau critical velocity®
vy, = min(E, /|k|), at which excitations begin to be created,
cast doubt on the superfluidity of these motions. To answer
the question of whether the superfluid component in the A
phase superflows, we first consider He 11. We analyze the
reason for the superfluidity of its superfluid component. We
consider the flow of He 11 through a closed channel. The
velocity of the normal component of He 11 falls continuously
to zero because of friction exerted by the wall and by viscos-
ity, which causes the slowing to penetrate into the interior of
the liquid. The superfluid velocity of the liquid, on the other
hand, cannot fall continuously to zero: Stopping of the su-
perfluid flow requires a certain type of disruption of the co-
herent superfluid state. If the wave function of the Bose con-
densate, ¥ = {p,e®, is continuous everywhere, and if its
phase @ is defined everywhere, i.e., if p, vanishes nowhere,
then the circulation of the superfluid velocity v° = (/
m,)V@ over any contour around the channel takes on a
quantized value

2nkh

mg

§ vSdr= N; (35)
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here the integer NV specifies that @ changes by 27N, and ¢
returns to its original value. Because & is discrete,the veloc-
ity v* cannot decrease continuously. A substantial expendi-
ture of energy is usually required to produce discontinuities
in a superfluid liquid; if these processes are ignored, then a
flow with minimum energy in a set of flows with a given
N #0is stable. This flow is nondissipative, since it does not
require an external source of energy. Since there is no overall
dissipation, there is no local dissipation in any volume ele-
ment of the liquid. In other words, despite the fact that there
is a velocity difference v* -v" in each volume element, there is
no consequent dissipative decrease in this difference. This
conclusion means that the superfluid component can move
without resistance in a vessel of arbitrary geometry, includ-
ing an unclosed channel. This is the fundamental property of
superfluidity. This property of course does not mean that
there is absolutely no mechanism for relaxation of the super-
fluid velocity. The superfluid motion may prove unstable
with respect to the formation of various structures which are
inhomogeneous in space and time, with discontinuities in the
phase of the order parameter which give rise to an ac Joseph-
son effect, which we will be discussing below. The property
of superfluidity means that there is no homogeneous relaxa-
tion of the superfluid velocity v* toward v".

b) Superfluidity and the Landau criterion

How are these arguments affected by the possibility of
the creation of excitations (phonons, rotons, or Fermi quasi-
particles)? Excitations are created when the velocity of the
superfluid motion (more precisely, v°—v" ) exceeds the Lan-
dau critical velocity v; = min(E, /k ). The resulting quasi-
particles do not alter the continuity of the phase of the con-
densate wave function ¢ = yp,e'®, so that the velocity v* in
a closed channel does not change. A dissipation of the super-
fluid flow p° v* can occur only through a decrease in p*, and
this decrease does occur, since the normal density
p" =p — p* increases because of the creation of additional
quasiparticles. Whether the superfluid flow falls to zero in
the process depends on the particular conditions. In a Bose
liquid, both cases are possible: For example, the creation of a
large number of excitations can change the excitation spec-
trum, with the result that the increase in the density of the
normal component is brought to a halt, and the system ac-
quires an equilibrium value p* which dependson v*-v; . Ina
Fermi liquid, the increase in the number of excitations is
brought to a halt as soon as the Fermi excitations fill the
states with a negative effective energy £ + (k, v*-v") <0,
and the liquid again goes into an equilibrium state with a
flow. This is precisely the situation in the A4 phase, in which
we have v; = 0 because there is no gap in the excitation
spectrum. The excitations are formed at an arbitrarily low
velocity v°, but the number of states with negative energy is
proportional to (v°—v" )2, The Fermi excitations thus rapidly
fill negative energy levels, the dissipation stops, and the su-
perfluid current circulates with a slightly altered density p°.
At T'=0 we thus have [see (33)]

B8 k% 8 n\2
p—p% 5z (Ve —vR)R

(36)
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The Landau velocity thus does not generally constitute a
critical velocity above which a dissipationless flow of the
superfluid component exists.

c) The A phase is moving even In the ground state

We turn now to the condition for a potential flow. We
will show that this is not a necessary conditjon for superflui-
dity. To establish the property of superfluidity in the case of
He 11 we made use of the circumstance that dissipationless
current states were possible in principle in the liquid. Such
states also exist in the A phase, although its superfluid veloc-
ity is not a potential velocity. We will now prove this asser-
tion.

We consider the ground state of a liquid in a spherical
vessel. Because of the boundary conditions (lis directed nor-
mal to the boundary of the vessel), the liquid cannot be in a
uniform state. Two possible distributions of the field 1 are
shown in Fig. 2. In the first case, the singularity in the field 1
are shown in Fig. 2. In the first case, the singularity in the
field 1 is at the center, while in the second case it is at the
surface of the vessel. In general, it is easy to see that if there
were not singularities it would not be possible to construct a
configuration which satisfied the boundary conditions. We
note that in both configurations shown here the velocity v is
nonzero. That this is true can also be seen from the Mermin-
Ho relation (10). If we are interested in axisymmetric distri-
butions of the fields 1 and v*, we can express v* directly in

terms of 1 by working from (10) (Ref. 3):
B~ 1—(l2)

VB = —

2mg [

(37)

where , p, @ are the unit vectors of a cylindrical coordinate
system. In a spherical vessel with *He-A there is thus always
a nonzero flow with a velocity v*, even in the ground state.'*
There is accordingly no uniform relaxation of v®*—v". The
superfluid component of the A phase is thus a superfluid not
only in name. Analogously, it can be shown that a flow with
curl 1 also experiences no resistance.

The potential nature of the flow is thus not a necessary
condition for superfluidity. Nor is it a sufficient condition.
To demonstrate this point, we consider a two-component
liquid, e.g., a solution of two normal liquids. Although the
flow of one of the components with respect to the other may
be a potential flow, e.g., uniform over space, there is a local
friction between the components, and the velocity difference
undergoes a uniform relaxation. For superfluidity to occur,
there must exist an order parameter in terms of whose spatial
derivatives the superfluid velocity can be expressed. In other

a b

FIG. 2. Two states of the field 1 in a spherical vessel. a—There is a point
singularity in the field 1 at the center of the vessel, and from this point
emerges a singularity in the field v*: a vortex (wavy line); b—there is a
point singularity at the surface of the vessel: a boojum.
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words, we need a disruption of gauge invariance. The A
phase is a superfluid because there is a disruption of the
gaugeinvariance. The fact that this disruption is coupled in a
nontrivial manner with a breaking of rotational symmetry
does not eliminate the superfluidity, but it does lead to some
unusual superfluid properties.

d) Vortex with a free end and the boojum

Which of the states in Fig. 2 is the ground state? From
(37) we see that for the configuration in Fig. 2a the superfluid
velocity is singular on a radius descending from a singular
point. Near this radius the velocity v° is

KA
vs=_(P1

_— (38)
the same as the velocity field near a quantized vortex in
He 11. There are no other singularities anywhere in the lig-
uid. We thus observe a surprising phenomenon: A quantized
vortex may terminate in the volume of the liquid.'>'® This
would be absolutely impossible in either He 11 or *He-B and
also in a superconductor. This fact is a simple consequence
of the topological properties of the order parameter in the A
phase: A singularity of the vector field 1 having a nonzero
topological charge is a source of a vortex line."* Because of
the energy of the vortex, states of the system with a singular-
ity in the volume are not favored, and a ground state exists
only if the singularity moves off to the surface (Fig. 2b). In
this case the vortex contracts to a point, so that the singular-
ity at the surface of the vessel has the configuration of a point
vortex. The circulation of v* along a contour along the sur-
face and circumventing the singularity is 27%/m,. This point
vortex was first studied by Mermin,'” who named it a *““boo-
jum” (a mysterious object from Lewis Carroll’s poem 7he
Hunting of the Snark; how this term came to be adopted in
the physics literature has been related in a delightfully hu-
morous way by Mermin'®). The reader is referred to Ref. 19
for a topological classification of surface defects in ordered
media which are similar to the boojum in the A phase. Boo-
jums play an important although not governing role in the
relaxation of a superfluid flow (Section 3).

e) Topological stability of a macroscopic flow

Wesaw in Section 1 that the superfluid velocity v° could
not undergo a uniform relaxation; a superfluid flow can re-
lax only as a result of processes which are nonuniform over
spaceand time. We know that in He 11 the decay of the super-
fluid current results from the creation of, or the motion of
existing, structural defects in the channel: quantized vortex
lines at whose axes the superfluid state is disrupted. The
phase @, which changes by 27N as the vortex axis is circum-
vented, is not defined on the axis itself. It follows from the
continuity of the order parameter ¢ = yjp, €’® that the quan-
tity p°, a measure of the superfluid state, vanishes on the
vortex axis.

Figure 3 illustrates the decrease in the circulation of the
superfluid velocity in He 11 in a closed channel by a single
quantum through the creation and motion of a vortex witha
single quantum of circulation. This process would ordinarily
require a large expenditure of energy, in order to increase the
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FIG. 3. Passage of a vortex (wavy line) across the cross section of a channel
at successive times during a decrease in the superfluid flow in He 11 by one
quantum of circulation (N—N — 1).

size of the vortex as it sweeps over the cross section of the
channel. A state with ;V 50 is thus extremely stable, a conse-
quence of the topology of the system. The current may be
macroscopically large if the topological charge of the state N
is large.

f) Topological characteristic of flows in the A phase

We wish to determine whether the A phase has an in-
teger invariant of motion which ensures the stability of mac-
roscopic flows. It might seem at first glance that we could
resolve this question by starting in the same way as in He 11.
Asin He 11, we could introduce a condensate phase @, which
would have to change by 27N upon a circuit of the channel,
and this change would seemingly give us stability. That this
line of argument is erroneous can be seen simply from Eq.
(21). Without changing the degeneracy parameter 1, we can
use combined transformation (22) to distill the dependence
@ (r) into an r dependence of the unit vectors A’ and A”. In
other words, without changing the state, we can convert the
shift of the phase @ by 27N into a shift by 27N of the angle
through which the vectors A’and 4 " arerotated around 1. In
this case we are dealing with three-dimensional rotations,
and we have no guarantee that a change in the angle of the
rotation around 1 will not be undone in some fashion through
a rotation of the unit vectors around other directions. The
problem thus reduces to one of determining whether there
are distinct configurations of the field of unit vectors, which
do not continuously convert into each other, and how these
configurations are related to the magnitude of the superfluid
flow. Questions of this type are resolved by topological
methods (see Ref. 20 and the reviews in Refs. 21-23),

The solution procedure is very simple. We examine the
changes in the order parameter as we go along some arbi-
trary closed contour y around the channel, noting the path I
traced out by the values of the degeneracy parameter over its
range R. We assume that I is closed, so that in this circum-
vention we return to a value of the degeneracy parameter
Y(r,) at the same point (r,) in the channel from which we
started (Fig. 4). In the space R there may be different sets of
closed contours which cannot be continuously deformed
into each other. It is intuitively clear, and confirmed by a
rigorous analysis, that the number of different configura-
tions—not convertible into each other—of the field of the
degeneracy parameter in a channel is determined by the
number of different contours in R space (which cannot be
converted into each other).

Let us check this picture for He 1. The space of the
degeneracy parameter, R (the range of the phase @), is a
circle. On this circle we can easily construct various types of
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FIG. 4. The contour y circumventing the channel is mapped by the field of
the degeneracy parameter {(r) into a continuous contour I”in the space R.

closed contours which cannot be converted into each other.
These are the contours, I'y, I',, . .., 'y, which go around

thecircle1,2,. .., N times in the positive direction (¥ could
be negative). These contours also correspond to configura-
tions with 1, 2, ... quanta of the circulation of the super-
fluid velocity.

In the A phase, in order to describe the sets of closed
contours in the unit-vector space R we need a convenient
way to represent this space. All possible orientations of the
triad of unit vectors A’, A”, 1 can be specified conveniently by
means of the orthogonal matrix of three-dimensional rota-
tions R (Subsection 1d), which transforms this triad from the
fixed position ¥, into all other positigns. In other words,the
range of { is the range of the matrix R, which is related to ¥
by

b= Ryp,. (39)

Rotations are conveniently specified by the vector a,
whose direction specifies the rotation axis and whose modu-
lus specifies the rotation angle. The range of all nonequiva-
lent values of the vector a is a sphere of diameter 7, since a
rotation through an angle greater than 7 can always be rep-
resented as a rotation through an angle less than 7. A rota-
tion through an angle 27 > |a| > 7, for example, is equiva-
lent to a rotation through an angle 27 — |a| < 7 around the
opposite axis. It follows that rotations through an angle 7
around oppositely directed axes are equivalent; i.e., diame-
trically opposite points on the surface of a sphere are equiva-
lent. Figure 5 shows all possible types of closed contours in
the space R. A closed contour of the type I', can be deformed
continuously to a point, so that the corresponding inhomo-
geneous state can be continuously transformed into a state
with a constant order parameter, i.e., without a flow. The
contour I"| is also closed, since it begins and ends at points
with the same ¥. It cannot, however, be deformed into a
contour of type /',. There are no other closed contours. For
example, the contour I°,, which passes twice in succession

o, || =
|

NaZ

/
AL 4

FIG. 5. Two sets of closed contours in the space of three-dimensional
rotations.
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along I', (Fig. 6), can be continuously contracted to a point;
i.e., it belongs to the set of contours I'y. This circumstance
can be described algebraically by

r,r, =T, (40)
i.e., the product of two contours of set I, is a contour of set
T',,. This differs from the corresponding law in the case of a
circle, where we would have I",,-I",, =1, ...

The A phase in a closed channel can thus be in only two
topologically different states. If a state corresponds to the set
of contours I',, it can be continuously transformed into a rest
state. If, on the other hand, it corresponds to set I';, then it
can be continuously transformed into a state with the least
energy, (31), in this set, i.e., into the state with the smallest
flow, which corresponds in order of magnitude to a flow with
a single quantum of velocity circulation in He 11, i.e., with
v* ~#i/m,L, where L is the length of the channel.

g) How can the flow in the A phase be continuously reduced?

Let us consider in more detail how a macroscopic flow
relaxes into one of these states. We assume that the field 1is
directed along the flow (the z axis). This orientation of 1 is
favored from the energy standpoint, because of the term with
pPo>0in the energy in (31). The order parameter in this cur-
rent state depends on the coordinates in the following way:

b=R(a(2)2) (x+iy). (41)
The angle (a) specifying the rotation of the unit vectors A’
and A" around the Z axis runs over the values from Q to 27N
as the channel is circumvented. Figure 7 shows the path (')
traced out by the order parameter in the space R; this path
represents N sequential paths I',. The contours I'; are direct-
ed vertically along z, showing that rotations are being per-
formed around the % axis. Pairs of neighboring contours I,
can annihilate continuously, as shown in Fig. 6. As a result,
we pass in succession through states of a homogeneous flow
with 1{|Z but with a flow which decreases by two quanta in
eachinstance (Fig. 7, a and c). In the intermediate states (Fig.
7b), 1 varies continuously in space (a curvature of the contour
I in R means that rotations are performed not only around Z
but also around other axes, and these other rotations involve
the vector 1).

We thus see that, in contrast with He 11, the topology
does not guarantee stability of a macroscopic superfluid
flow. In other words, the flow is globally unstable. The flow
can undergo a continuous relaxation, and in the course of
this relaxation we would find not a creation of discontinuous
singular formations (quantized vortices), as in He 11 but a

BA 8 A
‘:A< >A=¢»' )
a AB b g c A

FIG. 6. Contraction to a point of the closed contour I', (4B4 ), which is
initially (a) the product of two closed contours of set I'| (4B and BA; the
points 4 and B in part (a) are equivalent).
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a N b C N-2

FIG. 7. Representation in the space R of the continuous decrease in the
flow by two quanta of circulation in the 4 phase.

continuous and inhomogeneous change in the vector field 1,
i.e., the formation of continuous textures.

h) Stability of the flow near a wall and in a magnetic field

In contrast with the topological instability of the flow in
achannel, a flow near a surface in an A phase is topologically
stable.'” The field 1 is fixed at the boundary of a channel, so it
cannot lead to a damping of the flow. As a result, we find a
unique situation in which there is no flow in the channel (or it
is very small), but a flow is circulating in a narrow layer
along the surface. The flow at the surface can relax only
through the creation and motien of point vortices on the
surface, i.e., boojums.

Second, in the A phase there is the unique possibility of
regulating the topology by applying a magnetic field.>* As a
result, as we will see in Section 5, a macroscopic flow inan A
phasein a closed channel in a magnetic field becomes global-
ly stable.

i) Local stability of a superflow in the A phase

Since there are no formidable topological obstacles to
prevent a continuous relaxation of a macroscopic superfluid
flow in the A phase, such a flow is far simpler to disrupt than
in He 11. The relaxation process may occur without an acti-
vation energy, if there is a monotonic decrease in the energy
in (31) in the course of the transformation from the state in

' Fig. 7a to the state in Fig. 7c; alternatively, an energy barrier

may be surmounted if the elastic energy of the field 1in (31) in
the intermediate state (Fig. 7b) exceeds the increase in the
kinetic energy of the liquid due to the decrease in v°. How-
ever, even if there is a barrier of this type, it would be much
simpler to surmount than a barrier dictated by the topology,
whose surmounting would require the creation of discontin-
uities in the ordered state. The existence of a barrier depends
on the relation between the coefficients in the energy in (31).
Analysis of a flow with a uniform 1 directed along the flow
shows that it is locally stable if >

[Cot 5 (@ —p0) ] <poks: (“2)
In the model of a Bose gas of molecules we would have
Po = Cp, =0, and condition {42) would never hold; i.e., the
flow would always be stable. In a real A phase, which can be
described well by the weak-coupling model near T, inequa-
lity (42) may or may not hold at a given temperature, depend-
ing on the width of the channel. This circumstance is a con-
sequence of the spin-orbit (dipole} interaction between the
orbital vector 1 and the spin vector d (see the review by Min-
eev!). In narrow channels, with a diameter smaller than the
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dipole length £ , ~ 107> cm, d does not depend on the orbital
vector 1 and is unrelated to the superfluidity. In wide chan-
nels, with a diameter greater than £, the dipole interaction
orients d along 1, and the elastic energy of the field d is added
to the elastic energy of the field 1, effectively increasing the
coefficient K, in (42). Let us consider the two cases separate-
ly.
In narrow channels we would have

00=C :%95=%K3:2K,=2K2, (43)

and condition (42) would not hold. In other words, such a
flow would be unstable. It can be shown that at these tem-
peratures this flow can be transformed into a state without a
flow with a monotonic decrease in energy.”

i) The helix—a spiral current structure

In wide channels the coefficients in the energy in (31)
are

1 2
po=Com o= K, K,=K,=Ki, (44)

and condition (42) holds; i.e., the superfluid flow is locally
stable. As the temperature is lowered, condition (42) may
also cease to hold for wide channels at some T = T *. Analy-
sis of aflow at T just below T * shows that, although the local
energy minimum corresponding to the homogeneous flow
disappears, a new local minimum arises which corresponds
to a flow with a spiral structure in the field of the vector 1 (a
helix)?¢-28;

W =exp [i (u—v) 2] R(—v2) R (By) (x+ iy),

=Qcosﬁ+(;l cos vz—)A'sin vz) sin §; (45)

where £ is the angle made by 1 with the axis of the spiral, z,
and (27/v) is the pitch of the spiral. The velocity v in the
helix is directed along the flow,

(46)

but the current also has the structure of a helix, by virtue of
the tensor nature of the superfluid density p°. An interesting
feature of the current in a helicoidal structure is that the
terms with curl I contribute to the constant component of
the current, i..e., part of the macroscopic superfluid flow is
created by the texture.

We again note that the absence of topological restric-
tions makes the stability of locally stable macroscopic flows
extremely tenuous, and experimentally a relaxation of the
flow can be observed directly through space-time variations
of the vector 1 (Ref. 29). The kinetic energy of the flow is
transferred by the normal component due to the rotational
friction which arises upon a local precession of the vector 1.
To find quantitative characteristics of the flow relaxation we
must analyze the system of hydrodynamic equations.

Vszﬁ:i(u—v(i—cosﬁ)),

3. HYDRODYNAMIC EQUATIONS OF THE A PHASE

a) Principle for constructing these equations

In this section we discuss the derivation of a closed sys-
tem of nonlinear hydrodynamic equations for the A phase
and certain consequences of this system. This system must
describe the dynamics of both those variables which are
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characteristic of an ordinary liquid (the mass density p, the
current density j, and the entropy .5') and those variables
which are associated with the degeneracy parameters ¥ (1
and v*). The phenomenological hydrodynamic equations are
a generalization of the equations of the Landau-Khalatnikov
two-velocity hydrodynamics.® Some new points which must
be taken into account stem from the new variable |, not pres-
ent in the case of He 11. In the first place, a corresponding
equation must be constructed for this variable. Second, we
need to take into account the circumstance that the condi-
tion curl v = O in He 11 is replaced by the Mermin-Ho con-
dition (10), which expresses curl v* in terms of 1. Third, be-
cause of the liquid-crystal anisotropy of the A phase, with an
anisotropy axis along 1, the coefficients in the equation are of
a tensor nature. Otherwise, the principles for constructing
the equations are the same: 1) All the conservation laws must
hold (mass, energy, momentum, and angular momentum). 2)
The dissipative function describing the conversion of dy-
namic energy into heat and the increase in entropy must be
positive definite and must vanish at local equilibrium. 3) The
symmetry conditions must be satisfied; i.e., the equations
must not change upon a Galilean transformation, a rotation,
or a displacement of the coordinate system. 4) The equations
must have solutions which correspond to an equilibrium
state in a vessel in uniform rotation, and this equilibrium
state must not depend on the time in the coordinate system of
the vessel.’®3! All these requirements, especially if we are
not interested in the terms of high order in the nonlinearities,
leave us with little latitude, specifically, some uncertainty
regarding the phenomenological coefficients in the equa-
tions: the dynamic coefficients (of the type of p°, py, and C,)
and the kinetic coefficients (the thermal conductivity and the
various viscosity coefficients). This last bit of latitude is eli-
minated by comparing with the linear dynamic equations
derived in the microscopic theory.3?

b) Dissipative function and equilibrium conditions

Before we write equations which meet these require-
ments, we wish to discuss the dissipative function R, whose
form follows from the conditions for a local equilibrium,
under which it vanishes. At local equilibrium, the entropy of
a liquid in a closed vessel must have a local maximum, pro-
vided that the total energy, the mass, the momentum, and
the angular momentum remain constant:

SdV {6S—a66—b6p —¢bj—d [r, 6§l 47)

— (e rot V'—z,ﬁ—,e:mnli (Vi Vil )} =0.

Here, a, b, ¢, and d are constant Lagrange multipliers; e is a
coordinate-dependent Lagrange multiplier, which ensures
that the Mermin-Ho relation (10) is satisfied; and 8¢ is an
energy variation, which is related thermodynamically to the
other variables by

8E = S dvée = S dV [T8S + ubp + vnsj  (48)
4+ B8l + (§ — pv) ovel,
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where

SF

“::5_9 ,S. 1, vE

is the chemical potential, and the quantity

SE

B = FTlo, 5, v%. 5

is analogous to the molecular field in a nematic liquid crys-
tal.>®* Here we have also used the following relations, which
follow from (31) and (27):

SF

—_— — v
Svs

8j s, p v81

=.—— vll
S.0,51 1PV

(49)
Relations (49) are actually quite general, independent of the
particular form of the energy, since they are a consequence
of Galilean and gauge invariance.

Substituting (48) into (47), and equating the coefficients
of 8p, 88,81, 6v°, and &j to zero, we find the following condi-
tions, which determine the local equilibrium:

T =const, p=const, v'=[w, r]+v,

o =const, v=const, (V, j—pv?)=0, [I, i]:O,

~ 8 §E | &% 5 _
= - —_— = — —— - v .
b= 61 lvs + 6U§ 1 81— h 2’"’8 [lv (] pvnv ) l]

(50)
The dissipation function must vanish at local equilibrium, so
that it could depend on the hydrodynamic variables only in
certain combinations, which vanish under conditions (50),
namely, the following quantities:

vT, vy, Bih=%(vhv?+viv2),

curl curly?, [1, h], (V, j—pvwo). (51)

In the quadratic approximation in these expressions, if we
ignore the higher gradients (including the term curl curl v*),
the dissipative function is

1 1 fnd
= S av {7 VinimBinBim +oy (I, b)?
1 i .
+ 5% ViIVT +50(Y, j—pve)?

+8&iiBiy (V, i—pv®)+ 8L+ lieinm Buflh} .
(52)

In a uniform state with a nonzero difference v¢—v",
there is no dissipation, since the dissipation function vanish-
es. In other words, there is no uniform relaxation of the su-
perfluid velocity, a characteristic of superfluidity (Subsec-
tion 2a).

All the kinetic coefficients except & appear in the hydro-
dynamic equations of He H and in the hydrodynamics of a
uniaxial nematic liquid crystal. The second viscosity coeffi-
cients § and £, are found in the case of He 11 (Ref. 8), but in
contrast with the He 11, where £;; is isotropic and equal to
£,63, in *He-A & is anisotropic: &; = £¢8; + &1/;1;- The
thermal conductivity tensor »; = x%,8; + %./;/; is charac-
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teristic of a liquid crystal with a uniaxial anisotropy. The
tensor v,,,, contains five viscosity coeflicients, also charac-
teristic of a uniaxial anisotropy.*® In nematic liquid crystals,
the coefficient ¥ describes a rotational friction which arises
upon rotation of the anisotropy axis with respect to the me-
dium.*® In 3He-A this coefficient is called the Cross-Ander-
son orbital viscosity coefficient, after the investigators who
first calculated it.** Only the coefficient £ lacks an analog in
liquid crystals. The reason is that the anisotropy vector 1 in
the A phase and the director n, which specifies the anisotro-
py axis in a nematic liquid crystal, have different symmetry
properties. Time reversal in the A phase reverses the direc-
tion of the vector 1: 1{t ) = — I( — ¢), since the wave function
(1) [or (2)] is converted into its complex conjugate upon time
reversal. The term with £ in (52) contains an odd power of 1
and is linear in v", so it does not change upon time reversal.
In a nematic liquid crystal, states with n and — n are indis-
tinguishable, so that the physical quantities can contain only
even powers of n.

c) Hydrodynamic equations

Here are hydrodynamic equations for the A phase
which satisfy the requirements listed in Section 1 (these
equations are derived in Refs. 35, 36, and 31, among other
places):

ap .
ST Vi=0, (53)
as 2R R
7+VQ='T‘+VW’ (54)
aalz . (p+ vnv5+4—f‘sl curl v“)
N oin R
+ oy CimnliVin =V g (55)
dj; R
—6—t+vhﬂih'—“vhm’ (56)
S b (V) L — (81— Lily) LBys
+ 40, curl vl l, B, = — 2 (57)
dhy

In (54) and (56), Q and 7, are reversible heat and momen-
tum fluxes:

Q=Sva++BIl, V7], (58)
7y =P8+ jvi +14 (i—PV“)j+¢%V i
+ o €inla (Y, §—pv®)

..y .
—Za(lihyy+ 1)+ e (1, bl

+(Vieipg + Vg €s p1 + Vil €1 pg + Vid €y p1) LpVatls

(59)

where P is the pressure
P=_—e+4+ TS + pp 4+ vhj. (60)
The reactive coefficients , B, and n in Egs. (53}{57) are

G. E. Volovik 374




arbitrary; the tensors ¥ in (59) are symmetric, satisfy the con-
ditions

W =w" =2 v =72, (61)
and are otherwise arbitrary. These coefficients are deter-
mined along with the kinetic coefficients from the micro-
scopic theory.**

That Egs. (53)—(57) are consistent with the Mermin-Ho
relation (10) can be seen by taking the curl of each side of Eq.
(55). We find

7} k
< (rot Vo= €imndi [Vim, vz,,1) -0, (62)

which means that if {10) holds initially then it will continue
to hold at all subsequent times.

Equations (53)(57) describe all the superfluid effects.
At a constant value of 1, which is the situation near boundar-
ies or in narrow channels, for example, Egs. (53)—(56) differ
from the two-velocity hydrodynamic equations of He II es-
sentially only by the tensor nature of the coefficients, if we
ignore several other, relatively small terms (the term with
Icurl v" in the equation for v* and the terms with S and 7, ).
Therefore in the case 1 = const, all the superfluid effects
characteristic of He 11 are reproduced, e.g., the mechanoca-
loric effect and fourth sound (oscillations of v* and of the
density p with the normal component halted in narrow chan-
nels). Experimental observation of this effect would be rigor-
ous proof of the superfluidity of new phases of *He. The
other terms in the equations may give rise to new effects. The
term Icurl v" in the equation for v*, for example, gives rise to
an interesting *“gauge wheel,”*” which has not yet been ob-
served. This effect may be summarized by saying that the
rotation of the normal component with a nonzero gradient
V(lcurlv”) generates a translational motion of the superfluid
component.

d) Goldstone modes

In the A phase, in addition to the ordinary Goldstone
mode, which is characteristic of a superfluid liquid and
which is either second sound or fourth sound, depending on
the experimental conditions, there are also some Goldstone
modes, associated with four other degrees of freedom in the
degeneracy parameters of the A phase. Two of them—the
degrees of freedom of the vector d—give rise to the spin
waves' which are observed in NMR experiments. The other
two are related to the dynamics of the vector 1.

1) Fourth sound. The propagation velocity of fourth
sound depends on the propagation direction.*® To demon-
strate this point, we write the equations of motion in a nar-
row gap between two plane surfaces with v' =0 and
1 = const in the linear approximation, ignoring dissipation
and temperature changes:

Z—‘,’ +V (p°ve —pol (Ive)) =0,

ov | o
From (63) we have a wave equation for the density,
(64)

3 I [
Bt‘: 2957’;— [Ap —p—g(lv)ZPJ,
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from which it follows that the propagation velocity of fourth
sound, c,, along the direction of n depends in the following
way on the orientation of I:

Gm=c & [1—L 2], (65)
where ¢, is the propagation velocity of ordinary sound,
8
=045 (66)

Equation (65) can be used to determine experimentally the
anisotropy of the superfluid density (see Ref. 39, for exam-
ple).

2) Second sound. The hydrodynamic equations have so-
lutions which describe second sound (oscillations of the tem-
perature, v° and v" at an essentially constant current j). The
velocity of the second sound,

s (my o 5207 (PL e Pl e )

M=% (p‘i A (67)
turns out to be extremely small (of the order of 1 cm/s),
howeyver, because the entropy of the liquid is low at such low
temperatures. Consequently, the incorporation of a dissipa-
tion causes the imaginary part of the frequency to become
much larger than the real part at the wavelengths attainable
experimentally. As a result, the second sound is unobserva-
ble at the existing dimensions of measurement cells, in either
the A phase or the B phase. Second sound has been observed
experimentally in the A, phase, where, because of a specific
combined invariance, the velocity of second sound increases
sharply due to a coupling with spin waves (Section 6).

3. Dynamics of the vector 1. Equation (57) for 1 is superfi-
cially reminiscent of the equation for the director n in a ne-
matic liquid crystal.>® We write this equation in the linear
approximation, in the absence of flows, and in broad chan-
nels, where d|[1, assuming that the coefficient %, which stems
from the internal orbital angular momentum L, is essential-

ly always small in comparison with 3~ !:

2
v o= (2%) Ky [A1—1(1, Al)]. (68)
This is of the nature of a diffusion equation.

The variable 1 is a very slow variable because y is large:
v~ 6,610 (1 — T/T,)3? g/(ecm™"s™"). (69)

Consequently, the vector I can be assumed to be constant at
all times in the sound process (as long as we remain within
the range of applicability of the hydrodynamic equations).
The dynamics of the vector | becomes important only in slow
hydrodynamic flows, where it plays a governing role in the
decay of the superfluid flows.

4. RELAXATION OF SUPERFLUID FLOWS IN THE A PHASE

a) Effective friction between the superfluid and normal
components

A Manchester group® carried out the first experiment
in which a decay of a superfluid flow due to the dynamics of
the vector | was observed directly. This experiment involved
the vibrations of a rotational pendulum consisting of a stack
of 25 toroidal channels 4.9-10 72 c¢m in diameter with a ma-
jor-circle radius of 7.5-102 cm and a resonant vibration fre-
quency ~60 hz. This experiment revealed that upon the
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transition to the superfluid state in both the A phase and the
B phase there is a shift of the vibration frequency, which
occurs because the superfluid component does not partici-
pate in the vibrations; the result is a change in the inertial
mass of the pendulum. The frequency shift depends in very
different ways on the vibration amplitude in the A and B
phases. In the A phase, the shift decreases rapidly at large
vibration amplitudes, and this behavior is not found in the B
phase. Consequently, in the A phase there is a strong effec-
tive friction between v* and v*, which forces the superfluid
component to follow the normal component, with the result
that the inertial mass of the pendulum becomes nearly the
same as in a normal liquid, and the shift of the resonant
frequency nearly disappears. This mechanism for the relaxa-
tion of a superfluid flow, which does not occur in the B
phase, is related to the dynamics of the vector 1. The relaxa-
tion of the flow also affects the damping of the pendulum.
This experiment showed that if a transition to the B phase
occurs then the damping is essentially unchanged, but it does
change considerably in the A phase.

Let us make a quantitative comparison of theory and
experiment. For this purpose we consider those equations
from the system (53)—(57), and those terms in these equa-
tions, which are pertinent to the experiment. The normal
component in the narrow channels which were used moves
as a whole along with the pendulum, because of the high
viscosity of the normal component (the viscous penetration
depth v/w, where v is the kinematic viscosity, exceeds the
diameter of the channel). For slow motions we can ignore the
change in the density. Of all the dissipative coefficients the
most important is the orbital viscosity coefficient ¥, so this is
the only coefficient which we will retain. The temperature
has only a minor effect on the dynamics of 1 when the normal
component is retarded. We write the necessary equations in
a coordinate system moving with the pendulum [a(¢) is the
instantaneous acceleration of the pendulum]:

Vj =0, j __:__‘Esvs —1—2—:;;6,Cl11'] 1. (70)
avs h 61_,;4 — 71
St VBt emalVin 5= —a, 7y
al i
Vor=—hi+z- [l ()1, (72)

Let us examine Eq. (71) in more detail. Since the channel is
closed, we have V,, = 0. If 1 remains constant over time, v*
follows the acceleration and remains fixed in the laboratory
coordinate system. As we saw in Section 2, however, the
topological instability of the flow causes the superfluid ve-
locity to relax to ¥v" by virtue of the dynamics of the vector 1.
This circumstance is seen in Eq. (71) in the appearance of an
effective friction force

h dln
Fﬁ- = Tma etmnlivlmT ’

(73)
which is exerted on the superfluid component by the normal
component. This force can be estimated from dimensional
considerations. The scale distance (z,) and the scale time (,)
are
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[N
0 g (F—o)?

ty ~ £ (v —ym2. (74)
r

The value of ¢, is found by substituting z, into Eq. (68) for 1.

The effective friction force btween the superfluid and normal

components is thus of the form*'

F,— (75)

where £ is a coefficient of the order of unity. The effective
equation for the superfluid velocity is thus
TrrVetee g oo —a (76)
Analysis of the experimental data with Eq. (75) yields S ~4.
A more obvious manifestation of the effect of the orbital
dynamics on the properties of the superfluid flow was ob-
served in the experiments of Ref. 44, where stable, long-lived
oscillations of the vector 1 were observed. In this case these
oscillations can be interpreted as an analog of the ac Joseph-
son effect for the A phase.

1 0% /s n\3
— (V8 — VD)3,
® (v v)

b) The ac Josephson effect in the A phase

The original purpose of the experiments of Ref. 44 was
to use ultrasound to measure the orientation of the vectorlin
a heat flow in the presence of walls and a magnetic field. [Ina
heat flow Q = Sv", in the absence of a mass flux, j =0, a
velocity difference

P Q

VW—vVl~— —

05 S (77)

arises and orients 1 along Q by virtue of the second term in
the energy in (31).] For this purpose, magnetic fields of var-
ious strengths and directions were applied to change the ori-
entation of the field 1 by virtue of the spin-orbit interaction,’
and the ultrasonic damping, which is sensitive to the orienta-
tion of 1, was measured. Unexpectedly, a certain procedure
of applying and then completely removing a field gave rise to
large, periodic oscillations in the intensity of the sound sig-
nal transmitted through the sample. These oscillations,
which imply the onset of oscillations in the vector field 1,
proved very stable, lasting for hours in several cases.

Some of the mystery can be stripped from these oscilla-
tions by recalling that an analogous effect is observed in su-
perconductors, where, at a given potential difference, i.e.,
under steady-state external conditions, an oscillatory regime
arises and can be observed, for example, by measuring the
electromagnetic radiation which it induces. This regime re-
sults from the action of two opposing factors: On the one
hand, the current should increase because of the potential
difference across the Josephson contact; on the other hand,
the current decreases because of some phase-slippage mech-
anism, e.g., 2 motion of vortices in the cross section perpen-
dicular to the current direction. The effective friction force
which results tends to cancel the effect of the electric field.
As a result, an oscillatory equilibrium current with periodic
phase slippage is established. If one specified the current
across the contact rather than the potential difference, there
would be no resistance at a low current, while at a high cur-
rent an oscillatory regime would arise with a potential differ-
ence across the contact.
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The oscillations in the A phase evidently arise in a simi-
lar manner.*?*5 At a given heat flux density, i.e., at a given
v*—v", the flow can occur in two regimes: either a steady-
state regime without friction and with a homogeneous field 1
or a dissipative regime, with a difference in chemical poten-
tials arising between the edges of the channel. In this regime
there is a relaxation of the superflow because of friction force
(73), which cancels the resulting difference in chemical po-
tential, so that on the average we have (dv* /dt ) = O[see (76),
where a must be set equal to zero]. In this regime the vector 1
evolves continuously, causing a continuous conversion of
kinetic energy into heat because of the orbital viscosity. A
motion of this type, which frequently occurs in phase-slip-
page processes, is periodic. Its period is determined from
considerations based on the dimensionality of Eq. (74),
which gives a good description of the experimental situation.

¢) Instanton phase slippage

The field 1 can evolve in different ways. Phase slippage
can occur, for example, through a motion in the flow cross
section of so-called nonsingular vortices, which have a foun-
tain-shaped distribution of the field 1 (Ref. 46; we will discuss
these vortices in the next section). The experimental data
instead imply a vortex-free oscillatory regime. In this regime
the distribution of the field 1 depends on only a single coordi-
nate, the coordinate z, along the flow.*"*? On the z, # plane (¢
is the time) the field 1 forms a two-dimensional periodic
structure with a cell area

AS ~ z4t,

[see (74)].

Two possible versions of the structure are shown in Fig.
8. Each cell of the structure contains a definite integer topo-
logical invariant*” v, which is equal to the power of the map-
ping of the two-dimensional torus (a cell with periodic
boundary conditions) onto a sphere (the range of the vector
1). This invariant is described analytically by

) (79)

and tells us the number of times the vector 1 sweeps out a unit
sphere in the course of its motion, while the coordinates z
and 7 run around the cell 4S. For the configurations in Figs.
8a and b, we have v = 2 and v = 1, respectively.

Taking an average over the spatial and temporal per-
iods of the friction force (73),

h dt dsz ol ol 20k v
(Fie) =~ S 0[5 )=

AR
//‘/1/ ‘\/14\‘

FIG. 8. Space-time periodic structure of the field l(z, 7 ) in the course of the
ac Josephson effect in the A phase. The topological charge (79) of the cell
of the structure is 2 in part a) and 1 in part b).

(78)

v:% ‘ dtdz( (01

(80)
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we see that v being different from zero is a necessary condi-
tion for the existence of a dissipative oscillatory regime.

The cell of the periodic structure is directly analogous
to instantons in field theory*’: dynamic structures with a
topological charge. In field theory an instanton is a process
of a transition between two vacuums with different topologi-
cal charges. In the A phase an instanton also has a topologi-
cal charge v and performs as transition between ‘‘vacuum”
states of the liquid (states with a uniform distribution of 1)
which differ by an integral number of quanta of circulation
of the superfluid velocity, 27#v/m,. The ac Josephson effect
in the A phase is therefore a periodic array of instantons in a
space-time continuum.

In contrast with a superconductor, in which only one of
two regimes can prevail (either a dissipative regime or an ac
Josephson effect) at a given electric current, in the A phase
both regimes can be stable at a given counterflow v*—v", as
can be seen by working from a crude model which can be
used to analyze the trajectory of the sytem in phase space.*®
A transition between regimes can be induced by a strong
perturbation of the system, as is verified experimentally,
where it is necessary to turn a rather strong field on and off in
a rather complicated manner.

5. THE ROTATING A PHASE

a) Free energy of a liquid in a rotating vessel

The theoretical conclusions regarding the possibility of
a continuous vortex motion of the superfluid component of
the A phase have been confirmed in experiments with a ro-
tating A phase,**®! in which continuous vortex structures
arise.

Let us consider equilibrium dissipationless structures
which arise in a rotating vessel. The conditions for the equi-
librium of the A phase are given by Eqgs. 50. In order to make
these equations compatible with the boundary conditions at
the surface of the vessel for the normal velocity v", we must
set @ in (50) equal to the angular rotation velocity of the
vessel. Conditions (50) are obviously satisfied for many dif-
ferent local-equilibrium states. Among these states, a state
with a maximum entropy for a givend/a = — o is absolute-
ly stable [see (47)]. This situation corresponds to a state with
a minimum value of the functional

F=F—o{avmj), (81)
where F = E-TS'is the free energy. Since we have v* = [, r]

at equilibrium, we find from (31) the following expression for
F:

= av {5 o tv—lo, M —F 0o ll, v—[o, 1)?
+ ZLms C (v¢—Jw, r], curll)

— 27‘ Co(l, v*—Jo, r)) (1 curl 1)

4 _2_( ) K, (VD)2 + = ( ) K, (lcurl1)?
€ %( S ) K,, curll]z} Sde [@, ]2
(82)
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We consider motions with low values of ®, so that the
change in the density p can be ignored and the last term in
(82) discarded, under the assumption that it is a constant and
does not affect the minimization.

The corresponding functional for He 11 is

7 :S dv 4 p* (v — o, 1])?, (83)

where v° = fiV®/m,. A straightforward minimization of
(83) with respect to v* yields v* = [o, r] for the superfluid
component of the rigid-body rotation; this result of course
contradicts the potential nature of the superfluid flow. The
condition of rigid-body rotation in He 11 can be satisfied only
on the average, and for this purpose a system of quantized
singular vortices must form. Since each vortex has a single
quantum of circulation, equal to 27#/m,, the density of vor-
tices must be m,w/7#, so that the average vorticity of the
corresponding rigid-body rotation is
2nh mye
nh

The energy per umt length of a vortex is
& B

=np* ( W) In e,

where r,, ~ (m#i/mw)"/?is the distance between vortices, and
a is the radius of the vortex core. Hence the energy density F
for He 11 is (per unit volume of the vessel)

F_ 10 egnte (85)
my a

=20.

{ curl v% —; (84)

V
b) Topology of continuous vortex structures in the A phase

In the A phase,the superfluid velocity can in principle
be of a rigid-body nature, not on the average but exactly,
since the velocity v* is not necessarily of a potential nature.
There is accordingly no need for the formation of discontin-
uities. It follows from the Mermin-Ho relation (10) that with
v’ = [, r] gradients of 1 should arise along the coordinates x
and y, which are transverse with respect to the rotation axis.
These gradients should be, in order of magnitude,

1 \2 14\2 ®

(%) ~ (&) ~ =5 (86)
Substituting (86) into Fin (82), and using K 12,3 ~p°, wefind
the following estimate of the energy F for a nonsingular peri-
odic structure:

—V- = A p's (87)
where A is of the order of unity. Expression (87) differs from
the corresponding expression for He 11, (85), in the absence
of the large logarithm. This difference is a consequence of
the difference between the continuous distribution of the de-
generacy parameter in the A phase and the discontinuous
distribution in He 11. The coefficient A in (87) has not yet
been calculated exactly, and the exact equilibrium configu-
ration of the fields 1 and v* has not yet been found. It is
possible, however, to draw some qualitative conclusions.>®> A
configuration of the field 1 with gradients along x and y
which are constant on the average should naturally be a two-
dimensional periodic structure, like a system of singular vor-
tices in He 11. The characteristic period of this structure
must be of the order of the distance between the vortices in
He 1, r, ~|V.1]~! ~(#i/m,w)'/. The cell area can be found
exactly from topological considerations. The field of the vec-

378 Sov. Phys. Usp. 27 (5), May 1984

tor l(x, y) in a cell describes a mapping of the cell (a two-
dimensional torus, by virtue of the periodic boundary condi-
tions) onto the sphere over which the vector 1 varies. The
integral topological invariant—the degree of the mapping—
is given by analytic expression (79), in which ¢ and z must be
replaced by the two-dimensional coordinates x and y:
1 1
vegr e w (1[5 ) 88
A%
The average vorticity {curl v*) = 2e can be expressed in
terms of v and the cell area 4.5 with the help of the Mermin-
Ho relation (10):

20 = {rot v8) _-L— 5 dzx dy rot vs
2nh ~ v

=22:lsS ( [az’ay) m L3S

AS [ ]

(89)
The area of the cell of the continuous periodic structure is
thus quantized

AS = — Ve (90)

Ascan be seen from (89), the topological invariant v must be
nonzero. It is easy to see from energy considerations that
states with large values of v in the cell are not favored from
the energy standpoint. We would thus expect that v would
take on the value 1 or 2. We have already seen some illustra-
tive field configurations with v = 2 and v = 1, in parts a and
b, respectively, of Fig. 8. The numerical analysis carried out
in Ref. 53 by means of trial functions of a definite type indi-
cates that the structure with v = 2 is preferred. That analy-
sis, however, did not take into account all possible realiza-
tions, so that the structure question remains open.

The distribution of the field v* in the cell is interesting.
The circulation along the cell boundary C,

dzdy

sk
Y (91)

erv’— z S dzdyrotve = 2
AS

is also quantized; i.e., the cell is a quantized vortex, which
has no singularities anywhere, in contrast with the quantized
vortices in He 11. A nonsingular quantized vortex withv = 1
was first analyzed in Refs. 54 and 46. In addition to nonsin-
gular vortices, the A phase may contain singular vortices, an
array of which may be preferred from the energy standpoint
to a nonsingular structure under certain conditions. We will
therefore examine in more detail the properties of vortices in
the A phase.

¢) Topology of vortices in the A phase

In He 11, the vortices are topologically stable singular
structural defects in the form of lines. We need to determine
which of the various possible, topologically distinguishable
configurations of the field of the unit vectors in the A phase
have singularities on a line. The sets of linear defects are
found in the same way as the sets of flows in an annular
channel (Subsection 2f). We have to run a closed contour ¥
around the line of interest and determine what this contour
is mapped into in the space of the order parameter. We al-
ready know that only two sets of contours, I, and I, are
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FIG. 9. The contour ¥, which circumvents a singular line in the A phase, is
mapped by the field of the degeneracy parameter into a closed contour of
one of two possible sets, I, and I}, in the space R.

possible in this space (Fig. 9). Consequently, there are only
two possible sets of singular lines corresponding to the con-
tours Iy and I",. A singular line with the index N = 1, corre-
sponding to contour [, is topologically stable, since the
contour I, does not leave its set upon an arbitrary deforma-
tion of the field 1, the contour 7, and the line itself. A singu-
lar line with N = 0 can continuously disappear. Upon the
coalescence of two singular lines with N = 1, the lines mutu-
ally annihilate by virtue of Eq. (40), which can be written

14+1=0. (92)

Figure 10 shows two examples of linear singularities
with N = 1. Figure 10a shows a vortex with a single quan-
tum of the circulation of the superfluid velocity, 27#/2m;, (in
*He, the quantum of circulation includes the doubled mass
of the atom, 2m,: the mass of a pair):

1=z, A'+iA"=¢i (x+ iy),

kR kR ~ 2nh
8 — = e (], S ==
V= 2mg Ve 2m3p P @v dr 2mg ?

(93)

where p, z, ¢ are the coordinates of a cylindrical coordinate
system. Figure 10b shows an entity from the same set but
without any sort of superfluid flow:

1=p, A +iA" = ¢+ iz, vs=0. (94)
The entity has a singularity in the field 1 and is called a “radi-
al disgyration.” Since both line defects belong to the same
set, they can transform continuously into each other. Upon
such a transformation, this circulation of the superfluid ve-
locity around a line is not conserved. Consequently, in con-
trast with He 11, the topological invariant which character-
izes line singularities in the A phase is not related to
quantization of the circulation. The quantization of circula-
tion which occurs in a cell of a periodic structure of a rotat-

- :
a Y

FIG. 10. Line singularities in the A phase corresponding to the set I", of
closed contours. (a)—Singular vortex; (b)—radial disgyration.
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ing A phase, (91), is related to a completely different topo-
logical invariant, v, which characterizes continuous periodic
distributions of the field 1.

d) Singular vortex and structural phase transition

A line defect of the set N = 1, which has the lowest
energy and thus actually occurs, is—in contrast with other
defects of the set, which may continuously relax into it—a
vortex with a single quantum of circulation but with a far
more complicated structure than the vortex described by Eq.
(93) (Refs. 55-57)

We wish to point out that a singular vortex of the field of
the superfluid velocity also has no singularity, since only the
field 1 has a singularity. The vorticity curl v* is concentrated
within a region ~ £, in size around the vortex axis, in a so-
called soft core of the vortex [in contrast with the “hard
core” of a vortex, ~ £, which arises because of a singularity
in the field 1 (Fig. 11)].

Atlow angularrotation velocities, at which In(r,, /£ 1, ) is
large, a nonsingular periodic structure is preferred from the
energy standpoint to an array of singular vortices. In the
following section we will see that the situation changes in a
magnetic field, and an array of singular vortices becomes
preferred. We may thus observe a structural phase transition
upon a change in thefield. Figure 1 shows how a transition of
this type from a singular structure to a nonsingular structure
may actually occur. For simplicity we are assuming that the
field 1 in the singular vortex has the configuration shown in
Fig. 10a. In the course of the transition, pairs of vortices with
N = 1 combine to form vortices with two quanta of circula-
tion (Fig. 12b), which belong to the set N = 0 by virtue of (92)
and which can therefore be dissipated through a deforma-
tion of the field 1. Vortices with free ends—monoples—form
in the course of the dissipation; these monopoles move up-
ward and downward, consuming the singular vortices (Fig.
12¢). As a result, a nonsingular state forms (Fig. 12d). In this
state, the superfluid velocity, which is given in the axisym-
metric case by (37), changes from zero at the center to #/m.p
at the periphery. In other words, we find a nonsingular vor-
tex with two quanta of circulation, which forms a cell of a
nonsingular periodic structure.

e) Rotation in a magnetic field

We have seen that the unusual superfluid properties of
the A phase result from a certain structure of the order pa-
rameter. This structure can be changed by external means,
e.g., a magnetic field, and the behavior of the A phase can
thus also be changed. The magnetic field H acting on the

FIG. 11. Array of singular vortices in a rotating vessel (line defects with a
minimum energy in the class N = 1). The distributions of the fields1and d
are shown by arrows and dashed lines, respectively.
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FIG. 12. The coalescence of two singular vortices (a), which gives rise to
the formation of a nonsingular vortex (d). In the intermediate state, an
unstable singular vortex with two quanta of circulation (b) and then breaks
up, forming monopoles—vortices with free ends (c)—which move off to
the surface of the vessel.

spin vector d also influences 1 through the dipole interaction,
orienting | perpendicular to H (Ref. 1). In this case the degen-
eracy parameter 1 is

p=1e¥® (h-i[l, hj),

b= 4 (95)

The degeneracy parameter has two degrees of freedom: the
condensate phase @ and the angle through which the vectorl
rotates in the plane perpendicular to H. These variables are
independent; there is no rotation of l in the plane which can
eliminate the shift of the phase @. The superfluid velocity
v* = (fi/2m;)V® is unrelated to the orbital variablel, so that
for a planar distribution of 1 the right side of the Mermin-Ho
relation (10) vanishes, and v* assumes a potential nature.
Since the phase @ is specified on a circle, the basic superfluid
properties of the A phase in a magnetic field must be analo-
gous to the properties of He 11 and *He-B. In particular, the
vortices must have a quantized circulation with a quantum
of circulation equal to 277%/2m;. Vortices with even and odd
values of the circulation have different core structures, how-
ever. The size of the core of a vortex with an even number of
quanta is the length A, which is a characteristic of the inter-
action between H and 1:

JL={§D%, H<2 G,
B H>2 G. (96)
Near and inside the core, the magnetic field is no longer
capable of constricting 1 to the plane perpendicular to H, and
the order parameter varies over the entire space of three-
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dimensional rotations. Inside a region of size A, an even vor-
tex has no singularities anywhere, since it belongs to the set
N = 0in the space of three-dimensional rotations. The num-
ber of circulation quanta 277#/2m; of an even vortex is equal
to two times the topological invariant v in (88), where the
integral is carried out along a surface intersecting the vortex.
An odd vortex, in contrast, belongs to the set N = 1, so that
within the soft core of dimension A thereisa hard core witha
dimension of the order of the coherence length £, where the
parameter ¥ is not defined. As a result, even and odd vortices
have different types of energy. For example, the energy of a
vortex with N =2 is

2
E—Z=1,4—;L-£—gpslnl:—, N=2. (97)
The energy of a vortex with N = 1, on the other hand, essen-
tially does not change in a magnetic field.

What occurs in a rotating vessel as the magnetic field is
increased from zero?>® In weak fields, with A larger than the
cell size r,,, a nonsingular periodic structure (Subsection 5b)
is not perturbed. As the field is increased, and A becomes
smaller than r_, nonsingular quantum vortices in the cell
become well localized with a core dimension ~A [see Fig.
13, which illustrates the case in which the cell of the struc-
ture is a nonsingular vortex with two quanta of circulation;
this situation corresponds to Eq. {91) to a unit value of the

topological invariant v in (88)].

f) Experiments with vortices in the A and B phases

Vortices in the A phase were recently detected experi-
mentally**~>° at Helsinki Technological University, where
a rotating minilaboratory has been constructed for studying
superfluid *He during rotation. The vortices were detected
from the appearance of a new, “vortex” absorption peak in
NMR, due to the excitation of spin waves localized at the
soft core of vortices. Theoretically, both singular and non-
singular vortices in the magnetic field H ~ 300 G used in the
NMR experiments should give rise to a vortex peak, since
vortices of both types have a soft core. Comparison of the
theoretical results of Ref. 56 for the position of the vortex
peak with the experimental data implies that what we are
actually seeing are nonsingular vortices, despite the fact that
they are less favored than singular vortices in such fields. Itis
simpler for a nonsingular vortex to be produced than it is for
a singular vortex, which requires the formation of a hard
core. Consequently, as the nonsingular vortices are rapidly
produced they occupy all the positions in the periodic struc-
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FIG. 13. (a)—Continuous change in a nonsingular periodic structure in
rotating *He-A as the magnetic field is increased; (bj—the nonsingular
vortices become well localized.
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ture, leaving no room for the singular vortices. Transitions
from one structure to another are hindered because (Fig. 12)
the splitting of a nonsingular vortex into two singular vorti-
ces—the process inverse to that shown in this figure—re-
quires a large expenditure of energy. The reader is referred to
Refs. 51, 58, and 59 for more details on the vortices in the A
phase and on their effect on NMR.

Vortices have also been discovered in the B phase of *He
(Refs. 60 and 61). Although these vortices were expected to
be similar to the vortices in He 11, there is an important dif-
ference between the two: in the core structure. While super-
fluidity is disrupted ( o* = 0) in the core of a vortex in He 11,
the core of a vortex in the B phase may contain other super-
fluid phases with a continuous distribution of the vorticity
curl v*, without a disappearance of superfluidity. A core
may contain both the A phase and another phase with a
nontrivial disruption of gauge invariance: a  phase with
ferromagnetically ordered spins.®> Experiments reveal a
first-order phase transition from one core structure to an-
other at 7= 0.6 T.( P = 29.4 atm). In addition, a magnetic
moment of a vortex has been detected; it is concentrated in
the core.®® The existence of a spontaneous magnetic moment
in the core of a vortex is a result of a specific disruption of the
symmetry in the B phase, which preserves invariance under
a combined rotation of the spin and orbital spaces. Conse-
quently, the orbital angular momentum of the liquid asso-
ciated with the motion around the vortex gives rise to a spin
angular momentum. The reader is referred to Refs. 61-65
for more details on vortices in the B phase.

g) Vortex formation in a magnetic field

In concluding this section we note that a magnetic field
also affects the stability of a flow. A macroscopic flow in a
channel becomes stable because of a quantization of the flow
along the channel, as in He 11. The current can decay at low
velocities only as a result of a formation of nonsingular quan-
tized vortices with a core size ~A [see (96); the formation of
such vortices involves an activation energy]. The decay of a
current due to instanton dynamics of the vector 1 or to the
formation of nonsingular vortices (not involving an activa-
tion energy) can become important only at velocities exceed-
ing*S #i/m3A. By varying the magnetic field we have a unique
opportunity to study the dependence of the vortex formation
on the radius of the vortex core; corresponding experiments
may cast light on the problem of vortex formation in He 11,
which remains unresolved. The critical velocity v, at which
the flow of the A phase in a channel becomes dissipative has
been observed experimentally.®® The velocity v, has turned
out to be independent of the temperature and approximately
equal to fi/mé (v, ~0.5 mm/s) in strong fields (HZ 40 G).
With decreasing field, v, decreases, reflecting the increase in
the core radius A [see (96)] with decreasing field. The broad-
ening of the NMR absorption line observed when the critical
velocity is exceeded is evidence of intense formation of vorti-
ces. The same value has been observed for the critical veloc-
ity in experiments with rotation,**-*! with the implication
that nonsingular vortices are being produced.
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6. SYSTEMS SIMILAR TO THE A PHASE

We have seen that the unique nature of the superfluid
properties of the A phase is a consequence of a peculiar sym-
metry breaking, in which the order parameter is not invar-
iant under gauge transformations but is invariant under a
combination of a gauge transformation and a rotation in or-
bital space. Can other substances with a similar symmetry
breaking exist?

a) The A, phase of 3He

In strong magnetic fields there is yet another superfluid
phase of *He—the A, phase'—in a narrow temperature
range between normal *He and *He-A. In this liquid, the
only atoms which become paired are those whose spins are
oriented along the field. The spins of the Cooper pairs are
thus oriented identically: along the field. The orbital struc-
ture of a Cooper pair is the same as in the A phase, i.e., as
described in (1). As a result, many of the superfluid proper-
ties of the A and A | phases are similar. Nonsingular vortices
can exist in both phases (the core radius of such vortices is of
the order of £ ; in strong fields in each phase), and surface
vortices or boojums can also exist in both phases. The non-
singular vortices and the boojums cause a relaxation of the
flow respectively in the interior of the channel and at its
surface. There are, on the other hand, some important dis-
tinctions, associated with the circumstance that the general
structure of the order parameter, including its spin part, is
different for these two phases. The total order parameter,
with spin taken into account, is specified by a matrix A,
which can be written as follows for the A, phase:

A, =const-(dy +idy) (Ak + iA%) €iP; (98)
here d’ and d” are orthogonal unit vectors whose vector pro-
duct s = [d’, d"] specifies the direction of the spin angular
momentum of the pair. The unit vectors d’, d”, and s trans-
form as vectors under a rotation of the coordinate system in
spin space. The symmetry breaking in the A, phase is even
more interesting than that in the A phase. The order param-
eter does not change if the gauge transformation is accompa-
nied by a corresponding rotation of either the orbital or spin
space (or of both spaces simultaneously). In other words, two
combined transformations with the parameters a and a’,

D> D4«a,
d' +id"—>R(—a’s) (d' 4-id"),

-~

A+ A" > R (& +a) 1) (A'-HiA"), (99)

do not change A, . The superfluid velocity v*, defined in a
manner invariant under these transformations, is

V= (VO AV A+ V) (100)

and satisfies a modified Mermin-Ho relation [see (10)]:
T (Comnls [V, V0l ot [Vs, V53
(101)
It follows in particular from the form of the superfluid veloc-
ity that a relaxation of the superfluid current could in princi-
ple occur through oscillations of the vector s. In reality,
however, this does not occur, because s is tied quite rigidly to
the magnetic field.

rot v —
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There are some consequences of this symmetry break-
ing which can actually be observed. The mass flow with re-
spect to the normal component, de/dv* = j — pv" [see (49)],
is simultaneously a superfluid flow of spin, since the spins of
the pairs are oriented identically. Consequently, second
sound in the A, phase consists of coupled oscillations of the
temperature and the magnetization.%”-%® Because of the pro-
nounced spin rigidity, the propagation velocity of the second
sound is not low, as it is in the A phase (Subsection 3d), and is
instead approximately equal to the spin-wave velocity ~ 10
cm/s, so that these waves could be observed experimental-
1y.69

b) The A phase in neutron stars

A system similar to an A phase can arise in a neutron
star.!* It is believed that the same type of Cooper pairing
occurs in a neutron star as in superfluid *He, i.e., with an
orbital angular momentum, L = 1 and aspin.S' = 1. Because
of the strong spin-orbit interaction, a state with a total angu-
lar momentum J = 2 is established. The order parameter, as
in *He, is a complex matrix 4,,, which must be symmetric
and traceless because of restrictions on the total angular mo-
mentum J:

Aik =AM, Aﬁ = 0. f

The order parameter in a phase with a nontrivial symmetry
breaking is

Ay, =const-ei® (AJ+ A7) (Ak -+ iAz); (102)
here, as in the A phase, A’ and A” are orthogonal unit vectors
whose vector product 1 = [A’, A”] specifies simultaneously
the directions of the orbital angular momentum and the spin
of the pair. The order parameter does not change upon a
simultaneous gauge transformation and rotation of the spin-
orbit space around the axis

O—>D+ta,
A'+iA"—>R(-°‘2-1) (A’ +iA"). (103)
The invariantly defined superfluid velocity
v =%(V(D—|—2A£VA’§), (104)

where m, is the mass of the neutron, satisfies the modified
Mermin-Ho relation

rot v8 = '2—mﬁ_n"eimnli [vzm’ vzn]

(105)
In a rotating neutron star with the structure in (102) there
should be a nonsingular periodic structure in the field of the
vector 1, in contrast with the singular array of vortices which
should exist if another phase exists. This difference may have

experimentally observable consequences.

¢) Superconducting A phase and the magnetic monopole

Some interesting effects should also be expected in
those—as yet undiscovered—superconductors in which
Cooper pairing occurs in a p state with the structure of the A
phase. Here are just two of the most surprising properties of
such superconductors: There will be no Meissner effect, be-
cause the superfluid velocity is not a potential velocity, and
there can be monopole-like defects, by which we mean for-

382 Sov. Phys. Usp. 27 (5), May 1984

mations with a field of the vector potential A which is the
same as that of the A field near a Dirac monopole. Let us
consider the latter effect. For simplicity we write the energy
of the superconductor in the London limit in a simplified
form, retaining only the two constants p* and X of the seven
possible constants in (31):

F= S dV{%ps (vs—
+5 K (Vi)
The equations found by minimizing F under the Mermin-Ho
condition (10) are
rot rot A = 4xnj,
13 .
KA+ 1, (iV) 1} =0,

A),

A)z—}—:;T(rotA)z

mec

(106)

i=e (v

(107)

We seek a solution of these equations at distances from the
defect exceeding the characteristic depth to which the mag-
netic field penetrates into ordinary superconductors:

A= (g 8
In this case the vector potential A completely cancels the
superfluid velocity in the flow, A = (m_c/e)v*, and the solu-

tion describing the monopole-like defect is (¢, 8, § are the
unit vectors of a spherical coordinate system)

o A~ 1—cos@
- s _
l=r, V=50 Fxme
A met o Fic » 1—cosB
A= e YV T o rsin® (108)

This defect is a point singularity in the field of the vector 1,
from which a line singularity of the fields v, and A emerges: a
vortex with two quanta of circulation (Fig. 14). While the
magnetic field in an ordinary superconductor falls off expon-
entially with distance from the vortex by virtue of the
Meissner effect, in this case the magnetic field

— _ Mmet s_ e T
H=rot A= = rot v§ = 5 3

(109)

\

T

—~—y

A

FIG. 14. Monopole-like defect in a hypothetical superconducting A
phase. Heavy lines—the field of the vector 1; light lines—the magnetic
field H.
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falls off in a power-law fashion with distance from the center
of the point singularity. The magnetic charge of this mono-
pole-lie defect is #ic/2e. The magnetic flux, 27fic/e, which is
directed outward from the point defect is cancelled by the
magnetic flux which flows toward the defect along the vor-
tex. The field A has exactly the same form as the vector
potential of a Dirac monopole. If a genuine magnetic mono-
pole’®"! happened to alight on this monopole-like defect, the
line singularity in the field v* would disappear completely.
We would be left with only a point singularity in the field 1, at
whose center there would be a magnetic monopole.

CONCLUSION

In summary, the unique properties of the A phase and
of similar systems stem from the peculiar symmetry break-
ing, which preserves invariance under a composite transfor-
mation including a gauge transformation.

The internal symmetry also determines other properties
of the superfluid phases of *He: magnetic, liquid-crystal,
electrical, etc. The symmetry approach has proved particu-
larly effective in studying some vortex structures recently
detected in superfluid *He-B. A study of the unusual break-
ing of the so-called relative spin-orbit symmetry in the B
phase led to the experimental discovery of a magnetic mo-
ment concentrated in the hard cores of the quantum vortices
which arise in a rotating vessel.®> The symmetry approach
has been taken to describe the phase transition observed in
the rotating B phase, which occurs in the cores of vorti-
ces.®>®! As a result it has been learned that there are five
types of vortices, all having the same number of circulation
quanta but differing in the symmetry structure of the core.®?
The superfluidity is disrupted in the cores of some vortices,
as it is in the vortices of He 11, while the cores of other vorti-
ces are superfluid, as they are in the A phase. There are vorti-
ces with a spontaneously broken parity, which exhibit a
spontaneous electric polarization along the vortex axis. For
other vortices with a spontaneously broken composite par-
ity, there is an undamped super-fluid flow in the core along
the vortex axis; etc.

In terms of the wealth of broken symmetries and the
variety of topologically nontrivial entities, the unique super-
fluid properties of the *He phase are unmatched and can
compete with vacuums in modern field theories. It is thus
not surprising that study of the symmetry in superfluid *He
has proved useful in many other fields of physics.
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