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Research on waveguide magnetooptics is examined. A theory is presented of planar waveguides
with dielectric permittivity and magnetic susceptibility taken into account. The properties of
epitaxial films of ferrite garnets that determine their waveguide characteristics are discussed.
Examples of functional elements of integrated optics that employ magnetic materials are given.
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INTRODUCTION

The problems involved in the widespread use of laser
technology, both for practical purposes (communications,
information processing, range-finding, etc.) and for physics
research, have stimulated the development of a new field of
technical physics—integrated optics.™ Although its main
problem has been to establish the principles for constructing
planar integrated-optic circuits, the very phenomenon of
waveguide propagation of light has proved useful both for
studying fundamental problems of the interaction of light
with matter and for studying the properties of surface layers
and thin films, including those offering interest for a number
of new fields of application. We note that when stress is
placed on studying the physical phenomena in waveguides
rather than on integration of optical elements into optical
circuits, it is more expedient, following Ref. 4, to employ the
term ““waveguide” optics..

The propagation of light in the form of waveguide
modes creates specific features and unique potentialities of
the waveguide method, in particular for studying thin films.’
We note also the features of waveguide optics such as the
possibility of propagation of light in a film to distances far
greater than its thickness, the obtaining of high densities of
light energy, the discreteness of the attainable values of
propagation constants, and the transverse energy distribu-
tion along the waveguide, etc. In addition to simultaneous
highly accurate measurement of the thickness and refractive
index of isotropic and homogeneous films, the method is
employed for studying their inhomogeneities and also opti-
cal anisotropy and gyrotropy. The number of waveguide
methods already developed up to now is large (see, e.g., Refs.
5-7). However, they are not yet employed widely enough.

This review is devoted to waveguide magnetooptics—a
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field of physical studies of waveguide structures containing
magnetic materials that is a little more than ten years old. As
the object of experimental study in this field, epitaxial films
of ferrite garnets have been chosen. The technology of pre-
paring them has developed in connection with potential ap-
plications in memory devices based on cylindrical magnetic
domains and in UHF technology. They can find application
also in integrated optics, apparently primarily as nonreci-
procal elements of optical circuits such as isolators, circula-
tors, etc. Although uncoupling elements can be designed
also without using magnetic materials (see, e.g., Ref. 8), they
will hardly be competitive with the magnetooptic elements.
At present it is difficult to estimate the scales of employment,
e.g., of nonreciprocal elements in future integrated-optic
systems. The strong *““noise” and oscillations of output pow-
er of a laser diode when coupled with a fibert® apparently
show the need of using uncoupling elements, not only in fiber
optics, but also in integrated optics. Such elements will be
necessary first of all for hybrid and integrated-optic analog
systems having small losses.

In addition to nonreciprocal elements, this review will
briefly treat also other possible applications of magnetic ma-
terials in integrated optics.

Section 1 of this review will briefly treat the fundamen-
tal problems involved in the description of propagation of
electromagnetic radiation in a magnetic material.

Section 2 will treat the phenomenon of waveguide prop-
agation of light in magnetic films.

Section 3 is devoted to studying the properties of epitax-
ial films of garnets that govern their characteristics as wave-
guides.

In Sec. 4 we shall take up some concrete examples of
employment of epitaxial films of ferrite garnets in integrat-
ed-optics elements.
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1. MAXWELL'S EQUATIONS, MATERIAL RELATIONSHIPS,
AND BOUNDARY CONDITIONS FOR MAGNETIC MEDIA AT
OPTICAL FREQUENCIES

The propagation of electromagnetic waves in dielectric
media is described by the averaged microscopic equations of

Maxwell'%-17:
1 4B 1 6E 4t
VXE=—7 5, VXB=—rt=-17,
VB =0, VE=4np. (1)

Here E and B are the electric-field intensity and the magnet-
ic induction of the electromagnetic wave, J and p are the
current and the charge densities induced by the electromag-
netic field, and c is the velocity of light in a vacuum.
Instead of the current densities and the charge, one of-

ten employs the two vectors Z and A 112
J=—m—+cV><e///, p=—Vﬂ‘. {2)

By using them, one can write Eq. (1) in the following form:

1 9B 1 dD
VXE=— 5, VXH=Z55,
VB=0, VD=0. (3)

Here the vectors H and D are defined by the relationships
H=B—4nd/—[n D=E+4n-§).. (4)

Although the vectors P and A unambiguously define the
current and charge densities, as is evident from (2), they
themselves are not defined unambiguously. The same is true
of H and D. It will become clear below what the meaning of
introducing these quantities is.

In order to make the system of equations (1) and (3)
closed, one must relate the pairs of quantities J and p; Z and
./4 or Hand D to the electric-field intensity and the magnet-
ic induction, i.e., fix the material relationships. We shall
study fields whose dependence on the coordinates and the
time is defined by the function exp[i{ker — wt)]. Within the
framework of linear electrodynamics, the general material
equations for a homogeneous, infinite medium can have the
form'?

D="%(w KE, B'=y (0, k) H. (5)

Here & and i are the effective dielectric-permittivity and
magnetic-susceptibility tensors. The D(B) and H(E]j relation-
ships are contained implicitly in these material relation-
ships.'® As we have already noted above, the quantities H
and D, and hence also & and /1, are not defined unambiguous-
1y.!° In each concrete case one can start with considerations
of convenience of mathematical description and physical in-
terpretation of the experimental results. One can always set
iy =&, (where §; is the Kronecker symbol). Then the re-
sponse of the medium to the action of the electromagnetic
field will be described by the single effective tensor &'(w,k).
The dependence of this tensor on k is not necessarily asso-
ciated with the spatial dispersion of &(w, k) in (5), but may
determine the local interaction of the medium with the mag-
netic component B or the magnetoelectric coupling.'®
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On the other hand, it is often recommended that one
should avoid making such a separation'>!” by employing a
single effective dielectric permittivity tensor &'(w, k), owing
to the ambiguity of the separation of the current into two
components. On the other hand, in certain cases it proves
convenient to introduce the tensor i if this leads to retaining
the boundary conditions in their usual form:

1) n X (E; —E)) =0, 2)n X (H, —H,) =0,

8 0B, —B)=0 4 n(D,—Dy=0 [

Here n is the unit vector normal to the phase boundary of the
media 1 and 2. For example, these boundary conditions are
kept to a sufficient degree of accuracy in the case of local
coupling of J with E and B, or in the case of media having
optical activity.'* We shall restrict the treatment below to
the former of these approximations. We shall write the mate-
rial relationships in the following form:

ing = (e (o) —1)E, 4nof = (1 —p?t(o)B.  (7)

We shall assume the interaction of the electromagnetic
field with the medium to be local and neglect magnetoelec-
tric coupling. The components of the tensors & and j are
determined respectively by the electric and magnetic dipole
transitions. As is known,!* even in this approximation the
magnetic moment of the object is not determined by the vec-
tor 4. The physical meaning of () is ambiguous and can
be elucidated only upon detailed study of the given material
on the basis of microscopic models. As we have already not-
ed above, rather than introducing the tensor ji{w), one can
employ the single tensor £ = (w, k). In the given approxima-
tion, the latter will contain terms quadratic in k.' More-
over, instead of the boundary conditions 2) and 4), we shall
obtain the following from Eq. (6):

n X (Hj — M) =4 [0 X (o y— ofy)],

- - 8
n(D;—Dl')=4nc[n-V><(e//éz—(ylli)]. )

Here we have

0—6[;—2 oL 44— ﬁt —1—43‘[CV,<@/5 H =B
Thus the tangential component of the vector H' and the nor-
mal component of the vector D’ will not be continuous at the
phase boundary of the media if v #0.

The material presented above implies that the introduc-
tion of an effective dielectric permittivity tensor £'(w) not
dependent on k and the use of the ordinary boundary condi-
tions, as is often done in waveguide magnetooptics, means
that one neglects the interaction of the magnetic induction of
the electromagnetic wave with the material. Apparently in
the case of para- and ferromagnetics this is not always val-
id,'® and taking it into account may lead to new effects in
waveguide optics.'® Of course, we should bear in mind the
fact that effects involving the magnetic moment of molecules
induced by the magnetic induction, the magnetoelectric cou-
pling, and the spatial dispersion are small, and generally can
be of the same order of magnitude. Therefore it is usually
difficult to prove that a chosen interpretation of an experi-
ment is the only one possible.!” However, this does not mean
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that it is impossible in principle to distinguish thse mecha-
nisms in all cases.

We shall treat below the waveguide propagation of
light, assuming £ and /i to be independent of k [approxima-
tion (7)] and employing the boundary conditions (6).

Let us study the form of the tensor £ (analogous expres-
sions hold for 4 in the general case) in a magnetically ordered
dielectric. Without allowing for losses, the tensor £ is Hermi-
tian, and it can be broken up into symmetric and antisymme-
tric parts:

C . A
€;; = €ij + [&5j. 9)
Here the components .‘:5 and &7 are real.

The symmetric part of the tensor can be written in ma-
trix notation®’:

£ B¢ €5
g = [:Es €y B4 |,
€5 E4 €3

The antisymmetric part can be written in terms of the com-
ponents of the gyration pseudovector a, the dual tensor £ :

. 0 a3 —a,
gA = [—as 0 a1:|
a, —a; 0
or by using the Levi-Civita
o =i =) — k)i — /2

A
Eij = 5,-jhah.

(10)

(11)

pseudotensor &,

(12)

We shall use the symbol b, for the components of the tensor
nA

173
In connection with the fact that epitaxial films usually

exist in a stressed state owing to mismatch of the lattice pa-
rameters of the film and the substrate (see Sec. 3), we shall be
interested in the tensor £ in the presence of deformation of
the crystal.

Let us restrict the treatment to crystals of the cubic
system, of class m3m (O, in Schoenflies notation), to which
in particular the garnets belong. First let us take up the sym-
metric part of the tensor £ We can write the following
expression for its components?':

eF, =0 —&opijntnt + s MM+ ..., (13)
Here Ve, = n is the isotropic refractive index of the cubic
crystal independent of magnetic ordering, and p,,, u,,, and
8. are respectively the components of the photoelasticity
and strain tensors and the magnetooptic tensor of second
order in the magnetization, while the M, are the compo-
nents of the magnetization vector of the crystal.

The second term on the right-hand side of (13) describes
the nonmagnetic birefringence involved, in the case of epi-
taxial films, with the mismatch of lattice parameters of the
film and the substrate. The last term in (13) is of magnetic
origin and describes effects involved with magnetostriction
leading to macro- and microscopic lattice distortion?? as
well as the Voigt effect.?’ The effects involving macroscopic
distortions are calculated by using the tensor p and the mag-
netostrictive constants. For garnets they prove to be two or-
ders of magnitude smaller than the total contribution of the
two other mechanisms.?* Yet the separation of the contribu-
tions of the mechanisms involving microscopic distortions
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to the dielectric permittivity and responsible for the Voigt
effect is as yet an unsolved problem.

Asregards the antisymmetric part of the tensor &, it can
be written in an approximation linear in the magnetization
in the following form:

=0yl 0r M. (14)

Here the f£, are the components of the magnetooptic tensor
of first order in the magnetization, which determine the Far-
aday effect.

Generally, formulas (14) and the magnetic part of (13)
are valid for ferromagnets; in the case of ferrimagnets, to
which the ferrite garnets belong, one must take the magnetic
sublattices into account. The following expression gives the
antisymmetric part of the tensor & with transitions in the
octahedral and tetrahedral sublattices taken into account:

e = Oun (for Myt farby)— ... (15)

Here the superscripts a and d refer respectively to octahedral
and tetrahedral ions.

Analogously one can write the contribution to the sym-
metric part of the dielectric-permittivity tensor:

el = ghmMiM{T + gl MiM{+ ... . (16)
One can find a more detailed discussion of the problems of
magnetooptics in Refs. 24-26 and in the literature cited
there.

In studying the waveguide propagation of light, we
shall restrict the treatment to the case of transitions at one
ionin one sublattice. That is, we shall use the expressions (13)
and (14).

Let us study the form of the photoelasticity tensor p and
of the magnetooptic tensors g and f for the case of crystals of
the cubic system in class m3m. The cubic symmetry restricts
the tensors p and § to three independent components.?’ We
shall be interested in epitaxial films grown on substrates with
planes parallel to {100}, {111}, and {110}, which we shall
denote respectively as the cases 100, 111, and 110. We shall
select the following systems of coordinates for these cases:

1) z || [1001, y [] 10101, =z | [001] for the case 100,
2) z || [111], y ([ [112], = || T410} for the case 111,
3) z || [110], y || [110], 2|/ [001] for the case 110. (17)

For the case 100, Eq. (13) has the following form (in
matrix notation in expanded form):

i e1—¢€ ] [ PuPiz2P20 0 O Uy
E3— & Pia PupP20 0 0 Uy
€3—E& o P Piapn 0 0 0 ug

€ = =&l 0 0 0 p,a0 ¢ Uy
€5 0 0 0 0 pgu O ug

L & 10 0 0 0 0 pgg |l u

T Bngiag0 0 00 af 7
€12 811 8120 0 O o
€12 812610 0 O aj
+10 0 0 g0 0 || 200 |M2 (18)
0 0 0 0 g4a O 20,0y
0 0 0 0 0 g |l 2042

Here the a; are the direction cosines of the magnetization.
By using the transformation matrices, one can easily go
to the cases 111 and 110 upon employing the recommenda-
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tions presented in Ref. 27. The components of the tensors p
or § in the new coordinates will be expressed in terms of the
components for the case 100:

prr=[0V Q) + 0¥ QY + 0¥ QY| py,
+IQY Q) + 01 0F + 00y +
+Q; 0 + QY0 + Q¥ 0V py

+107Q) +07'Q) + 0V Q4] puss (19)
Here the Q7 are expressed in terms of the direction cosines of
the new and old axes according to the table from Ref. 27 (p.
664).

As a result of using the transformation matrices, Eq.
(19), and the table of coefficients @4 from Ref. 27, one can
derive the following for the case 111 (we shall write out only
the photoelastic part):

P [ Pu—28p/3 pi+Ap/3 pa+Ap3 0 0 0 =

£3—€, P1s+Ap/3  pu—Ap2 p,4Ap6 0 0 —ApBV2 || ua

=t | _ _ a| PutAPB put+Ap/6 py—ap3 0 0 ApB V2 || us
g ¢ 0 0 Y Paa+-Ap/6 Ap/3 V2 0 uy |? (20

e 0 0 0 Ap/3YV2 p,+Ap/3 O us

Loe L o —Ap3V2 Ap/3YE 0 0 Paat+8p/3 || 4,

—— -_—

Herewehavedp = p,; — p1, — 2p,,. The magnetooptic part of the tensor £° has an analogous form. For the case 110 we

have
g —gp | [ Pu—Ap/3 pig+Ap/2 pig 0 O 0
Ey—2&, P1at+Ap/2 py—Ap/3 py 0 O 0
€= | 2 P12 P12 Pu 0 O 0
g =5 0 0 0 pgg 0 0
€5 0 0 0 0 pa 0
€ L (] (] 0 0

As the zero-order approximation, we shall employ the scalar
quantity finstead of the gyrotropy tensor f by setting

ES = f 8y M. (22)

In closing this section, we shall give the solution of
Maxwell’s equation for an infinite, bigyrotropic (i.e., de-
scribed by & and /i) and anisotropic medium in the approxi-
mation (7). It can be represented in the form of the plane
wave

A(r, t) = A explilkrr — w?]]. (23)
Here A is taken to mean any of the fields, E, B, D, or H that
enter into (3) and (7). Upon solving the Maxwell’s equations,
one can obtain the following by selecting, as usual, E and H
as the independent alternating fields:

g2 v —B 0 €23 €91 1 Ey

Y Mas Mari MHsa O 0 gz

—B b P11 Wz O 0 x
=0. (24)

0 pes  Pa ez —% B Hy

g3 O 0 i—v €33 &g1 E;

L e, O 0 i B e;g €13 AL Ex

Here we have 8 =k, /ko, y = k. /ko, kg = /¢ = 27/A, and
A is the wavelength of the light. In (24) the coordinate system
is chosen such that the fields are homogeneous along the y
axis, i.e., k, = 01in (23). The solutions of the system (24) are
the eigenmodes of the bigyrotropic and anisotropic medium.
Upon equating the determinant to zero, we obtain the equa-
tion?®

4

D P, By =0 - (25)
n=0
This is of the fourth order in ¥, and determines four plane
waves (see Fig. 1) that can propagate in this system for a
given value of 8. We see from (24) that, when
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0 paut+4p/2 1| us

Ya ) (21)

= Wo1 = g3
=gy = Py =0 (26)
the system breaks down into two independent systems that
correspond to the linearly polarized TE (E, H, H, ) and TM
(H,E,E,) waves. The P, (B) in (25) are polynomials in 8
from the fourth to the zero order.?®

12 T 891 = YUy,
=Eg

2. PROPAGATION OF LIGHT IN PLANAR MAGNETOOPTIC
ANISOTROPIC WAVEGUIDES

The optical phenomena that occur in the propagation of
light in a waveguide in which at least one of the media (the
substrate, the film, or the top layer) is magnetooptic have
generally been treated in terms of the effective dielectric-
permittivity tensor with the usual boundary conditions (6).
On the basis of the material presented in Sec. 1, evidently the
results of these studies are valid whenever magnetic polar-
ization arising from the magnetic induction is absent. An-
other approach has been developed in Refs. 19, 28-30. In
Ref. 29, the tensor £ was replaced with a scalar, while the

Z
. <_—/’__,J[
e,# oL .
A
2 L,
Z Y
BA Y ! z
J e
J} |
I
I__ 7:
|

FIG. 1. Three-layer waveguide structure with the lower layer having 2* 2.
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magnetooptic effects were taken into account by using a
magnetic-susceptibility tensor with diagonal terms equal to
unity. This method of description was justified by the con-
tradictions that the authors faced when using the effective
dielectric-permittivity tensor to describe the conversions
among the asynchronous modes with the aid of diffraction
grating. Without justification they stated that the contradic-
tions involve the fact that the effective dielectric-permittivi-
ty tensor does not describe the magnetic effects. The argu-
ments presented in Sec. 1 imply that the effective
dielectric-permittivity tensor does not describe the magnetic
effects associated with £ if one uses the ordinary boundary
conditions instead of (8).

In Refs. 19, 28, and 30 the waveguide propagation of
light was discussed on the basis of the dipole-transition ap-
proximation of (7) (see Sec. 1). That is, both the permittivity
and the susceptibility tensors were taken into account with-
out allowing for the effects of spatial dispersion and magne-
toelectric coupling. In the treatment below of propagation of
radiation in gyrotropic and anisotropic waveguides, we shall
also use this approximation with the boundary conditions
(6).

The analysis of the phenomena in such waveguides can
be based on several approximate methods. Some of them use
the geometric-optics approximation without>'® or with?'®
the Goos-Haenchen effect being taken into account, while
others have treated the normal® or coupled®*~** modes. Ex-
act solutions can also exist,?®?%3° which in complex cases
(when the condition (26) does not hold) require using a com-
puter.

Let us study an inhomogeneous, layered medium (Fig.
1). It is homogeneous in the y and z directions, while jumps
exist in the x direction in the values of the components of the
tensors £ and /i at the phase boundaries x = +4d /2. It is
assumed that all three media (the top layer ¢, the film f, and
the substrate s) are absolutely transparent (£ and /i are Her-
mitian) and the thickness of the film is of the order of the
wavelength of the light (d ~A ). We shall be interested in the
guided modes in such a structure, i.e., the light propagating
in the film and near it. In order to satisfy the boundary condi-
tions, the radiation must have the same value of 8 from (24).
Hence the film will contain a combination of four waves (in
the general case with differing values of ¥), and only two
waves in the substrate and two in the top layer.

Upon using (24) and the boundary conditions (6) for the
» and z components of the E and H fields for the two phase
boundaries, we can derive the following system of equations
for determining the fields:

T A A Ag A, 0 0 4 1 [ VR
}”leflz kzeéz }\3"‘;2 }‘4621 0 0 eiz eéz ELZ Vi,
Mhf, Aghl, Aahh AL 0 0 R, B, || Bl Vi
Mbly Ashh, Aokl Aul, 00 Bl owb, | Ew VA
1 1 1 1 1 1 0 o0 ES i :
e, eh b, e, el e300 0 | EpA
R Bh, b, Rl Ry, my, 00 0 || By
h{y hfzy h’; th hiy hgy 0 ba —EthZ}‘é
{27)
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Here we have A, =exp(— i¥.d), A% = expliv:d /2), and
A% =expliy.d /2), while the coefficients e and 4 are deter-
mined by the components of £ and /i and depend on 3.

The values of 3, (where m is the order of the mode) that
make the determinant of the system (27) vanish determine
the propagation constants of the guided modes. When (26) is
satisfied, the modes can be linearly polarized (TE or TM).
Otherwise the modes can be elliptically polarized (in particu-
lar, circularly polarized). Each such hybrid mode will be a
linear combination of four solutions of the system (24) that
differ in the general case in magnitude and direction of the
waveguide eigenvectors (see Fig.l). General restrictions
have been obtained*’ (vanishing of certain components of &
and /i) that the authors deemed necessary to make possible
propagation of radiation in a gyroanisotropic waveguide.
False assumptions were made here that propagation requires
fulfillment of the following equalities: |¢| = |#}], and
|#5] = |7 In fact there is no need of them. The vanishing
of the determinant of the system (27) imposes no general
restrictions on the form of the permittivity and susceptibility
tensors.

At the same time, there are certain relationships
between the components of the permittivity and susceptibil-
ity tensors in the film, on the one hand, and in the substrate
and top layer, on the other, that are necessary for propaga-
tion of light in the waveguide. In lossless media one can treat
a wave as being guided under the condition that the compo-
nent of the time-averaged Poynting vector normal to the
phase boundary vanishes and the fields vanish with increas-
ing distance from the film. The Poynting vector in the ap-
proximation (7) is represented by the expression*’

S=——[ExH]. (28)
The condition s X x, = 0, where x,, is a unit vector along the
x axis (Fig. 1), implies that the propagation constant (ky3,, )
or the effective refractive index of the mode (8,,)} must be
real. The condition at infinity require that Im %}, >0 and
Im y{, <0, which imposes restrictions on the minimal pos-
sible values of 3,,. All these conditions govern the wave-
guide propagation of light.>®

For a completely isotropic waveguide structure, the
condition for propagation is reduced to the requirement that

(29)

Whenever at least one of the media of the waveguide is
anisotropic, the condition for propagation becomes more
complex and becomes multivariant. Let us study the impor-
tant case in which all three media amount to a biaxial crystal
(we assume that u,; = &,;) whose principal dielectric axes co-
incide with the coordinate axes in Fig. 1. Then the symmet-
ric part of the dielectric-permittivity tensor £° will be diag-
onal in these axes with £,#¢€,7¢£;. In this case Eq. (25)
breaks down into two equations:

n® and nt << B,, << nl.

Vi =c¢, — p? for TE- polarization ,

V= g;5(8;, — P¥e, (30)

for TM- polarization -

We can easily derive from this a condition for waveguide
propagation having the form
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for TE-modes,
for TM-modes.

Ve andVea<Bn<Vel
Ve and Vet <Bn <V'el

One can draw from these conditions the conclusion, im-
portant from a practical standpoint, that one can build a
waveguide in which only waves of a single polarization can
propagate. This is a so-called waveguide of the “semileaky”
type.*>™** The name involves the fact, that when a TE2TM
mode conversion exists, the wave propagating in it (say TE)
will “leak out” of the waveguide as it is converted into the
TM mode, while it will propagate in it if not converted. Such
a waveguide requires fulfillment of the condition

ef <& and et, but el >} and e}

(31)

or
ef <e§ and e}, but e>¢ and el (32)

In the former case the TE-mode is a guided mode while the
TM mode is “leaky”, and vice versa in the latter case. Thus
the former structure can be used to design TE isolators, and
the latter for TM isolators.

Now let us proceed to study other important properties
of gyroanisotropic waveguides, namely the possibility of ob-
taining phase synchronization of modes in anisotropic struc-
tures and nonreciprocal propagation of radiation in the pres-
ence of gyrotropy.

As we have already pointed out above, in addition to the
exact solutions of the problem of waveguide propagation of
light, e.g., based on solving the system (27), there are ap-
proximate methods that employ the smallness of the nondia-
gonal terms of the permittivity and susceptibility tensors.
Let us use one of these methods, namely the method of cou-
pled modes,**>~3% with which we shall obtain analytic expres-
sions useful for understanding the phenomena in magne-

tooptic anisotropic waveguides. In the zero-order
approximation, it is useful to set
e (@={ {7 om0
0 is=],
1 i=j,
Pu(z)={0 P 7. (33)

The solution of the waveguide problem in this approxima-
tion is well known (see, e.g., Ref. 29). The eigensolutions are
the linearly polarized TE and TM modes. Figure 2 shows the

A 0 02
zzzt Alm=0)-10

FIG. 2. Dependence of the effective refractive indices of the modes in an
isotropic waveguide structure on the film thickness. Calculation with the
parameters: nf =2.22, n* = 1.945,n* = 1,4 = .15 um.
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calculated £ (d ) relationship for the typical values of the re-
fractive indices of the ferrite garnet film (n = 2.220), for the
gadolinium gallium garnet substrate (»* = 1.945), and wave-
lengthA = 1.15 um. We see from the graph that the values of
B for the TE and TM modes of the same order (for the same
m) for a given thickness are not equal to one another, but
asymptotically approach one another with increasing film
thickness. At thicknesses less than ~0.2 u#m, as we see, prop-
agation of light in such a system is impossible. This arises
from the asymmetry of the waveguide (n* #n'); fulfillment
of the differing boundary conditions at the two boundaries
requires too sharp a variation in the field inside the film. If
one uses films thinner than 0.2 4m, then one must use a top
layer having a refractive index close to that of the substrate.

In practice the situation often happens that one can re-
strict the treatment to only two modes with sufficiently close
values of the propagation constants k, f3,, without taking
into account the existence of other modes, even ifin principle
they can propagate in the given waveguide. We shall restrict
the treatment below to the two-mode approximation.

Let us assume that the two modes being studied in the
zero-order approximation are modes of differing polariza-
tion, but of the same order (the most probable case in prac-
tice). Then we can write the following expression for the y
component of the field in the TE mode:

Ey(z, 7, t) =5 &(@) exp (i Bla—wt)] + C.C.  (34a)
and in the TM mode:
HY (2, 7, t) =+ 3% (2) exp [i (Bhs—at)]+ c.c.  (34b)

Here c. c. denotes the complex conjugate of the first term on
the right-hand side, while the 89 are the values of the effec-
tive refractive indices of the modes in the structure having
the parameters of (33). The distances here are measured in
units of & = A /2#. The difference (mismatch)

A0 —py (35)
is always positive for TE,, and TM,, modes of the same
order. Figure 2 shows the A °(d ) relationship for the zero-
order modes.

Let us study the effect of a perturbation (anisotropy and
gyrotropy) on the characteristics of the light in the wave-
guide. The appearance of nonzero values of the quantities
£; — Egy €13, €3y, M43, and u, alters the propagation con-
stants of the TE and TM modes by the amounts k.5, and
kyOy , respectively'>%

65 = ((ea—e) 8 F 280 (0,62,

st - (5 ) + (2 ()
d s

T H g (36)
Here we have adopted the notation
= | 4@ ds,
and have used the normalization conditions 287

(e '5¢%) =2B%(#?) = 1 and assumed u;; = 1. The upper

Prokhorov et a/, 344




FIG. 3. Mode spectra for the following structures: a)
isotropic; b) film and substrate are negative uniaxial
crystals; ¢) film and substrate are positive crystals; d)
transition from linearly polarized to hybrid modes.

and lower signs in (36) pertain to the two opposite directions
of propagation of light.

Just as in the isotropic case, the modes remain linearly
polarized, and there is no conversion among them. The mis-
match now will be determined by the quantity

AN = A° + §, — Gy (37)

Figure 3 shows the possible variations in the spectrum of the
modes.* To obtain phase synchronization (4 ' = 0), we must
have 6, > 8. ; upon taking into account the fact that the cor-
rections & are mainly governed by the first terms on the
right-hand side of (36), we obtain the following condition for
synchronization of modes:

(B9 (1 58 ) — (e — o) 8 = A°, (38)

As we see from Fig. 3, anisotropy in the substrate or the top
layer has a greater effect on the modes near the cutoff, but
the anisotropy of the film does so far from cutoff.

We see from (36) that the shift in the TE mode depends
linearly on the component b, of the tensor /2, while the shift
in the TM mode depends on the component a, of the tensor
£. In principle this makes it possible to measure the value of
the gyration vectors of the tensors £ and & separately from

s1 A'=2,22, m¥=1954, n'<] x>

5 /’;a\
~ o\

1 (dx)? AR

<s‘ﬂ(ﬁ)> L TSGR

/722,22 7= T4 mt=t

the shifts in the corresponding modes upon remagnetizing
the film along the p axis.'® Figure 4 shows the dependence of
the integrals governing these shifts on the thickness of the
film.

Finally, if we take into account the nondiagonal terms
of the tensors & and £ that enter into (26), we find, in contrast
to the foregoing, that it becomes possible to convert one
mode into the other as they propagate. This means that the
linearly polarized modes are no longer eigenmodes of such a
waveguide. The latter prove to be hybrid modes, having el-
liptical polarization in the general case. If we conduct the
treatment in terms of coupled modes, then their spectrum
remains the same as without taking into account the tensors
that govern the conversion, but their amplitude varies as
they propagate. Instead of (34), the y components of the
fields will be

E, (2,2, )= 3e(2) B} (z, z, 1)+ cc. ,
H, (2,2, 1) =+ h(s) H} (z, z, t)+coc. (39)

Here the slowly varying amplitudes e and 4 are determined
by the coupled-mode equation®*:

Scale

10
———xpy?

In substrate

FIG. 4. Dependence of the overlap integrals on the
reduced thickness d /#. a) In the film; b) in the sub-
strate. Parameters: nf = 2.22, n® = 1.944.
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A rerein

de’ ’oaar ’ s
—dz—: kh e iA z, iz z’ (40)
where we have

e =e(g)e=idet m R =h(z)e

The conversion coefficient of the coupled modes (ratio
of the square of the amplitude of the converted mode to the
sum of squares of the amplitudes for both modes) is given by
the expression

R(z )— sm2vz

(41)

where we have
v=VTE[Z+(A/2).
The coupling coefficient & is determined by the expression

&
b = () = (e 2 )
— if Cua506) + i8] (22 ES0 )
As we see from (41), the maximum conversion (R = 1) can

occuronly when 4 ‘< |k |. It will occur at the distance (in real
length units)

A

(42)

If we treat the phenomenon in terms of hybrid modes
with amplitudes invariant in the process of propagation,
then they will have the following effective refractive in-
dices®*:

Bhybria =B+,

Here we have 8= (1/2)(B% + 8. + B2 + 6 4).

As we see from (44) (see Fig. 3), the curves of the refrac-
tive indices of the hybrid modes do not intersect, but ap-
proach at points of phase synchronization (4 ' = 0).

As Egs. (36) and (40) imply, the components of the ten-
sors £ and /1 arising from optical anisotropy £, t4, s, and g,
and also those arising from gyrotropy a,, b,, a5, and b;, gov-
ern the coupling coefficient, while the diagonal components
of £ and a, and b,, which arise from gyrotropy, govern the
shift in the modes.

The possibility of obtaining nonreciprocal mode con-
version is of especial importance for practical application
(see Sec. 4) of waveguides containing magnetic media. One
should try to have the conversion coefficient equal to zero
(R * =0) in propagation of light in one direction (say for-
ward), and unity (R ~ = 1) in the backward direction. The
nonreciprocity of the conversion coeflicient R can be asso-
ciated with nonreciprocity of either the coupling coefficient
k of (42) or of the mismatch 4 ' of (37). We see from (41) that
nonreciprocity in them will lead to nonreciprocity of the
conversion coefficient. Let us study in turn the possible rea-
sons for nonreciprocity of the coupling coefficient and the
mismatch.

We can show from Maxwell’s equation that the solution
for a mode propagating, say, in the backward direction can
be obtained by the operation of time reversal (f— —f). As
we know, this is equivalent to reversal of the magnetization
(M— — M). Usually it is more convenient, both in the theo-

(44)
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retical and the experimental study of nonreciprocity to em-
ploy reversal of magnetization, rather than of direction of
propagation. We can show from (42) that

Rk = — (5 e ) —(wat
+<(ﬁh—‘— eba g\%’>
Imki=<(ﬁg:—:—rﬁeps) ?ng>i /ay gd7€>

F o LY. @)

Hence we see that nonreciprocity of the modulus of the
coupling coefficient requires a combination of optical anisot-
ropy, as determined by the symmetric part of the tensors &
and /i, and gyrotropy, which is described by the antisymme-
tric part of these tensors. In order to obtain the minimal
coupling coefficient in propagation in the forward direction,
the sign-variant and the constant terms in (45) must mutual-
ly compensate. Moreover, these terms separately must have
as large values as possible in order to obtain the maximum
possible value of |k ~|. Here we must not forget that 4"’
should be minimal.

Figure 4 shows the dependence of the integrals entering
into (45) on the thickness of the film. While the integrals
(&%) increase monotonicaly upon going away from the
cutoff of the modes, the integrals containing derivatives are
substantial near the cutoff. Unfortunately the magnitude of
A ° near the cutoff is so large (see Fig. 2) that it cannot be
compensated, neither by photoelasticity, nor a fortiori by the
magnetooptics of the ferrite film (see Sec. 3). One can find an
escape from this situation by using periodic structures (see
below), strongly anisotropic top layers, or by going over to
two-layer films. We shall return to this problem below.

Now let us turn to another possibility of obtaining non-
reciprocal conversion, namely by nonreciprocal phase mis-
match of the coupled modes as determined by the expres-
sions (36). As we have already noted above, the mismatch
depends linearly on the components of the gyration vectors
when the latter are oriented along the y axis, i.e., perpendicu-
lar to the direction of propagation in the plane of the film
(equatorial geometry). This problem has been treated theore-
tically in Refs. 28, 38, and 46 for the case of zero-order
modes. Figure 5 shows the calculated dependence of the dis-

4 241>
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+
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FIG. 5. Dependence of the displacement of the TM mode to the film
thickness for the forward and backward waves.?® Parameters: n’ = 2.14,
n* =194, nt =1, 28, M? =23.10"4, AgM?= —0.4107%,
£1.M?2=10""%
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placement of the modes for opposite directions of propaga-
tion of light. We see from the graphs that the effect is sub-
stantial only near the cutoff of the modes when the
magnitudes of the integrals (£d & /dx) or {(#°d7/dx) be-
come appreciable (see Fig. 4). Thus, in the case of nonreci-
procal mismatch, just as when one employs nonreciprocity
of the coupling coefficient, difficulties arise owing to the
large magnitude of the detuning 4 © near the cutoff of the
modes. This problem can be solved by using periodic struc-
tures or two-layer films.

In order to proceed to treat concrete waveguide struc-
tures, we must derive expressions for the components of the
tensors £ and & in explicit form. We shall first take up the
anisotropy due to photoelasticity. From the macroscopic
standpoint, the deformation in the film resembles the defor-
mation of a plate upon thermal expansion (or contraction)
when one of its side faces is immobilized. As has been
shown,*’ the stresses in such a plate are homogeneous
stretching (or compressive) stresses lying in the plane of the
plate, apart from its edges, where other stresses arise: inho-
mogeneous shear stresses and stresses perpendicular to the
phase boundary. The latter disappear upon going several
plate thicknesses away from the edges. Study of epitaxial
films has shown that the strain in them can be considered
elastic (see Sec. 3).

Upon neglecting edge effects, we can assume
u, = us = ug = 0. Wesshall assume (see Sec. 3) that the defor-
mation in the film along the y and z axes is the same:

Uy = uy = uy. (46)
We obtain from the vanishing of the stresses perpendicular
to the film the following expression for the coupling of the
strain ¥,=u, with the strain in the plane of the film:

. = —hu,. (47)
For the three cases of orientation of the crystallographic
axes, we have the following expressions for the parameter A:

. ‘
a) hioo=2c:12 , b) hm:2£i?_—-—7—2—iz, % .
(48)
Here we have Ac = ¢,, — ¢, — 2¢,4, and the ¢;; are the com-
ponents of the fourth-order stiffness-constant tensor (in ma-
trix notation) that relates the stresses to the strain:

O; = cyjli;. (49)

c) hyo=

Here and below, we shall assume tensile strain and stresses to
be positive, as is assumed in the theory of elasticity and is
currently recommended also for the theory of photoelasti-
city. Previously the latter theory had usually adopted com-
pressive stresses as being positive. In this case we should put
a minus sign before the coefficients c; in {49).

Upon employing (18), (20), (21), and (47), we obtain the
following expression for £ arising from photoelasticity:

e —gg | 3
€a—&p £,
€3—¢gy s Es
EA =& g, [0
g5 | 0 (50)
~ 8 .0

For the three cases of orientation of the crystallographic
axes in the film, we have
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FIG. 6. Rotation of the coordinate system of the waveguide with respect
to the crystallographic axes.

a) case  100: &= (2p;2— P11h100);
E=8=pyut+pp(l-—hw); &L=0 (51)
. 2 2
b) case 111 51;2pizﬂf§Ap—(p“—§Ap) By

A A
=8y = Pii“‘Ptz"?p— (P12+'3_p) Byys;
£ =0. (52)

A A .
g =2P12+“2£— (Pu‘fp) P1103
A A .
&= P11+p12_7p’" (P12+‘2£) hygo}
Es=pu+p(l—hy); &=0. (53)

We see from (51) and (52) that the film becomes optically
uniaxial for the cases 100 and 111 (in case 111 under the
additional (46)). In the case 110, as we see from (53), the film
is made optically biaxial by the deformation. Hence, by ro-
tating the film with respect to the vertical axis x, one can
obtain a nonzero nondiagonal component of the symmetric
part of the dielectric-permittivity tensor. For the rotation
shown in Fig. 6, we find that in (50) we have

A A
&=pu +P12_—2ECOSZ v— (p12—|——2£cosz '\’) P10

c) case 110:

Ap . Ap .
§3:Pu“‘Piz—?psm“'\"(l’iz‘l‘?pslnz’\’) hisos

1|
v (54)
Ap . I
&= — 7 sin2y (1 +hyy) I
(The value of £, does not change in such a rotation.)

We shall show below that the appearance of a nondia-
gonal component in the symmetric part of the tensor £ can be
employed to obtain nonreciprocal conversion of modes.

Now let us study the magnetooptic anisotropy. Let us
introduce the angles defining the direction of magnetization
in the system of coordinates associated with the geometry of
the waveguide structure (Fig. 7). The direction cosines of the

z Optic axis of
e top-layer crystal
4 ;m
\E 1
b 1
\ 7 f
\ 1
\ g 1
| z
i
|
? {
1
}

g

FIG. 7. Angles defining the direction of the magnetization of the film and
the optic axis of the top layer.
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magnetization will be: a; =sin 6, a, = cos 6 cos ¢, and
a; = cos 8 sin ¢. Upon using expressions analogous to (18),

(20), and (21), one can derive the following for the three cases
of orientation of the film:

|
a) 100:
€ —8g | ~g118in20+g,,cos2 0 -
£9—8p 811 cos? 0 cos? ¢ + g, (sin? 04-cos? 0 sin? ¢)
£3—&g g11 €082 8 sin? ¢ + g, (sin? 0 4-cos? B cos? )
€4 | g4qc0s?0sin2¢ M2, (35)
&g 844 5in 20 sin ¢
_ & _Z44 5in 20 5in ¢ _
b) 111:
B T r can, -
€1—¢€p £12F 2844 8in 9+§AE
€3 —Eg €12+ 2844 c08% O cos?
L1 in? 2 2 1 14
+3 Ag ( sin? 04 cos? § cos? ¢ +3 cos? G—T/Esm 20 cos ¢ )
g3 —8g g12+ 2844 cOs? B sin? ¢ +
1 . 1 1
_ —A 2 2 0 sip? — cos? _— i 2
_ -|-3 g (sm 64-cos? 0 sin ¢+2 cos2 0+ l/Esmzecoscp) M2, (56)
&4 244 5in 20 cosze-l—% 8g (cost 0 sin 2¢ 4 /2 sin 20 sin o)
. . 1 . . .
e £40 50 20sin &+ = Ag (2sin 20 sin ¢ + V2 sin 2¢ cos? 0)
. 1 R
e €40 5in 20 cos ¢ + 28 (2 sin 20 cos » — V2 cos 2¢ cos? §)
c)110
Fsl —g, B13+ 2844 8in2 04 % Ag (sin? 04 cos? 8 cos? @) B
8 —8p £12T 2844 c0S? Gcos? @+ % Ag (sin? 6+ cos? 0 cos? @)
t3—& |=| &12 28440920 sin% @+ Ag cos? O sin? @ M2, (57)
€4 €44 €052 0 sin 2¢
€p £44 Sin @ sin 20
€g (g“-l- Azg—) sin 20 cos @
d) upon rotation the crystal about the x axis (see Fig. 6)
_el—so— g12+ 2644 sin"e-l—-ATg[sin36+cosz 0 cos? (¢ —v)] -
£a—2o £12+ 2844 032 0 COS2 @ —4—925 {Sin” 0 cos? y
—%—% cos? 0 [—3— sin® 2y 4 cos ¢ cos (¢ — 2y) (3 cos? 2y — 1):]}
. Ag .. .
r 2 —_
—_— §12+2844 cos® 0 5in2 ¢ + > {Smz 0 sin? y M2, (58)
= —|—%~cos” 0 [% sin® 2y 4 sin ¢ sin (¢ — 2y) (3 cos? 29+ 1)] }
£qq €052 O sin 2¢ +§4_g sin 2y {1 —3 cos? 8 [cos? y—cos ¢ cos (¢
€
¢ — 21}
e £44 Sin ¢ sin 20 4 -ATE sin p sin 28 cos (¢ — )
£e 244 €08 ¢ 5in 20 - A—zgsin 20 cos y cos (¢ —7)
I
In principle one can write analogous expressions also  antisymmetric part of the tensors £ and fi:
for the tensor /. a, = f®M sin 8, a, = f°M cos 6 cos ¢, (59)
Upon taking into account the approximation (22), we ag = feM cos O sin ¢
obtain the following expressions for the components of the  and analogous expressions for b,, e.g., b, = f* M sin 6.
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One can analyze a concrete situation on the basis of Egs.
(36) and (45) and the concrete form of the tensors £ and /i. As
an example, let us study an undeformed (x, = 0} film of a
ferrite garnet on a nonmagnetic { 111} substrate (the top lay-
er is air).

By using (56), (59), and (45), we find that
e, Re k* = — Bfg,,M2sin 2¢ cos?® F A'BY/°M cos O sin @,

g, Im k* = ppA'g, ;M2 sin 20 cos ¢ + B'f*M sin 0. (60)

For simplicity we have omitted the terms pertaining to the
tensor fi; we have assumed the quadratic magnetooptic con-
tribution to the dielectric permittivity to be isotropic
(4g = 0), and we have introduced the notation

At =speyt, B'=(g%EN (61)

dz

The superscript f indicates that the integration is performed
within the limits of the film. If we select ¢ = 0 and take the
parameters of the film such that the following relationship
holds:

cos 0 = BUfe/2p0A41,, M (62)
then we find that
k=0, a k =i2B'f"Msin0.¢;". (63)

Thus there is no conversion for the forward wave, while it
exists for the backward wave.

If we choose the Faraday geometry (6 =0, ¢ = 7/2),
then we find from (60) that

k* —F A'Bif*Me;. (64)
That is, nonreciprocity is lacking in this geometry
(1k*| = [k ~).

According to (43), the propagation length that corre-
sponds to the maximal conversion under the condition of
mode synchronization (4 ' = 0)isincreased in the case of (63)
as compared with the Faraday geometry by a factor of A/
Bf sin 6. From the standpoint of decreasing the length /, one
must choose a film thickness close to the region of cutoff of
the modes where the quantity Bf has a maximum. However,
the mismatch A © also has a maximum in this region (see Fig.
2) that is difficult to compensate (see Sec. 3) with the anisot-
ropy of the epitaxial film.

As the second example, let us study a film grown on the
{110} plane. By using (54), (58), and (45), we can find that we
have the following expression instead of (64) for the Faraday
geometry in the given case under the same assumptions:

K" = — (oA (1 +hyyg) wyl (T520) B £ fiMe;t At (65)

That is, it proves possible in this case to obtain nonrecipro-
city of the coupling coefficient in the Faraday geometry.

As yet another possibility of obtaining nonreciprocal
conversion, let us study a film made of a gyrotropic material
and a top layer made of an anisotropic material.>>**->° We
obtain from (45) that the condition |k *| = O requires us to
have

eiB' = —aipna’, pleia= —alB. (66)
Forsimplicity we have omitted the terms containing compo-

nents of /i.
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As the top layer, let us study an optically uniaxial crys-
tal, the direction of whose optic axis is defined by the angles
nand{ (Fig. 7). The components of the dielectric-permittivi-
ty tensor will have the form

Tel—g0 cos? {-sin? 1
P — sin2f -sin?
gl —e? cos?n
1 . .
el — | singsin2n .Ae. (67)
1 .
etb -2—cos L-sin 27
eg %— sin 2{-sin? n

Here we have As = £° — £°, while £° and £° are respectively
the squares of the refractive indices of the extraordinary and
ordinary rays of the top-layer crystal. As we see from (67),
the maximum of the quantity £} corresponds to the direction
of the optic axis: = 7/4and { = 7/2. Here we see from (67)
that £ =0. Thus, in the Faraday geometry for which
a® =0, the second equation of (66) is fulfilled. An anisotrop-
ic top layer can be used at the same time to attain phase
synchronization of themodes (4 ° =&, — 8.). When{ = 7/
2, we find that § | ~0. In order to have §, <0, as (36) implies,
we must use a negative crystal as the top layer (£°> £°). The
experimental studies of nonreciprocity in structures with an-
isotropic top layers will be described in Sec. 4. Here we note
only that the practical application of epitaxial films of ferrite
garnets without anisotropic top layers, encounters difficul-
ties in connection with the large mismatch in the cutoff re-
gion. The investigation of anisotropic top layers leads to an
appreciable technical complication of the instrumentation
(see Sec. 4).

One of the possible variants of the solution of the prob-
lem is to use periodic magnetic waveguides®'—>* in which
phase matching of the interacting modes occurs periodical-
ly, rather than matching of their phase velocities, as in the
case of anisotropic structures.

Usually one analyzes such periodic structures on the
basis of the transfer matrix,>® which can be derived from
solving Eq. (40) for the coupled modes. This matrix (T") re-
lates the amplitudes of the fields at the beginning (z=z,) and
at the end (z) of propagation:

(Lo J=e e [ 70 2] 0] (68)

Here we have

A
Ty =rcosv (z—2z) -+ 12—vsm v (z2—2zy),

k.
Tyz==sinv (z—z),
k* .
T21 = — —V—SIHV (Z——ZO),

12
Here the matrix T is written for a region of the waveguide
having a homogeneous distribution of the magnetization.
For a waveguide with a periodic magnetic structure, one can
derive the conversion matrix by multiplying the conversion
matrices for the individual “homogeneous” regions. For ex-

"
T22=cosv(z—zo)—% sin v (z—3,) .
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ample, in the case of periodic variation of the direction of
magnetization along the z axis with the period z—z, = 7/v,
one can easily find that the conversion coefficient will be
determined by the expression

R =sin?2p arcsin ‘—t—l, (69)

Here p is the number of periods. Hence we see that one can
obtain R = 1 by an appropriate choice of the number of per-
iods. The total length of the structure in real units will be
L
2v °
One can also analyze other “cascade” structures by using the
matrix (68), including nonreciprocal ones (see Sec. 4).

In order to build nonreciprocal devices, one can use
waveguides of the “semileaky type” of (32). One of the possi-
ble variants of an isolator based on such a waveguide has
been studied in Ref. 50 (see Sec. 4). Along this line, it is of
interest to study the conversion between guided and radia-
tive modes.*?>* Let us study the case in which the TE mode
is the guided mode and the TM mode is the “leaky” mode
(see (32)). Figure 8 shows the situation corresponding to the
case in which the material of the substrate and of the film are
isotropic, while the anisotropy of the top layer is such that
£ > &' > £}, Then the normal modes of TE polarization will
include guided modes having discrete eigenvalues 3, while
those with TM polarization will consist of radiative modes
with a continuous spectrum (damped modes corresponding
to imaginary values of 3 play no substantial role below, and
we shall not treat them). We see from the diagram that the
discrete spectrum of TE modes overlaps the continuous
spectrum of TM modes belonging to both the film and the
top layer. The diagram shows the profiles of the fields in
different regions of the spectrum of modes. The radiative
modes belonging to the film and the top layer have a sinusoi-
dal field distribution, both in the film and in the top layer,
and they decay exponentially in the substrate.

Thus, in contrast to the case of interaction between
guided modes, the condition of phase matching is always
satisfied in the interaction of guided modes with radiative
modes. Instead of (41), we have the following expression in
this case for the conversion coefficient**:

(70)

(71)

R (z) = 1 — exp (—2az).

FIG. 8. Distribution of fields: a) not realizable; b)modes of the top layer; ¢
and d) guided modes; €) “film-top layer” radiative modes; k) “film-top
layer-substrate” radiative modes.
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Here the decay constant a arising from coupling of the guid-
ed mode with the radiative modes is determined by the
expression

BV et ]
Vet Vei—ps lo=8,
Here f3, is the effective refractive index of the guided £ = 3,
mode, while the coupling coefficient k£ for the case in which

only the components a and £ of the dielectric-permittivity
tensor differ from zero is given by the expression

a=§§[|k(ﬁ>lz (72)

dy2 w .
Rek* = (% 31 afe’se” dz+ | ot Siaz).  (73)
-d/2 d/2

At the same time, we have Im £+ =0 (since £g = a, = 0).
Here the superscripts “g” and “r”’ respectively pertain to the
guided and radiative modes, while p is a normalizing con-
stant having the dimensions of power.

Thus here, just as in the case of interaction of guided
modes, one can obtain nonreciprocity of the coupling coeffi-
cient by an appropriate choice of the quantities @’ and ¢! to
make the integrals in (73) identical in magnitude. If, for ex-
ample, we have k * =0, k “— oo, then the structure will
behave as an isolator that transmits the TE wave in the for-
ward direction without transmitting waves of either TE or
TM polarization in the backward direction. In contrast to an
isolator based on interaction of guided modes, this isolator
requires no mode filter (see Sec. 4), since the radiative modes
are conducted (leak) out of the waveguide.

Let us examine the requirements imposed on such a
structure in order that the integrals in (73) should have as
large values as possible while identical in magnitude. As re-
gards the first integral in (73), to increase it one must use a
film made of an isotropic material. Then the transverse wave
number of the TE guided mode kyy, = ky/ei — B2 will be
equal to the transverse waveguide number of the TM ““film-
top layer” radiative mode koy, = kg5 /€t /) — B2 while
the longitudinal waveguide numbers are equal: ko8, = S, k.
Here the overlap integral will have a maximum value.

As we see from Fig. 8, the guided mode and the “film-
top layer” radiative mode have substantially different varia-
tions in the overlap region. Nevertheless, as calculation
shows,** the second integral in (73) can have a maximum
near 3, = f3,, independently of the thickness of the film, of a
magnitude that makes the two integrals in (73) comparable
in value.

The imaginary component of the coupling coefficient
arising from the components of the dielectric-permittivity
tensor £} and &’ has an infinitesimally small term containing
the component g of the tensor at 3, = f3,, in contrast to the
case of interaction of guided modes. Thus the variant of the
nonreciprocal mode converter employing the imaginary
component of the coupling coefficient fails in the case of
interaction of a guided mode with a radiative mode. Section
4 will study a concrete waveguide structure employing the
interaction of a guided TE mode with radiative modes for
design of an optical valve.

Itis of especial interest to study the waveguide propaga-
tion of light in four-layer waveguides and those with more
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FIG. 9. Dependence of the TE,=2TM, conversion for the optimal propa-
gation distance on the specific Faraday rotation for two film thicknesses
and three refractive indices of the substrate for nf = 2.2, A = 1.15 um.*

layers. The point is that real epitaxial films are often layered
(see Sec. 3). Then their waveguide properties can be de-
scribed by the model of a multilayer waveguide. Moreover,
in such heterostructures one can obtain the waveguide prop-
erties necessary in practice (see Sec. 3). For example, in such
structures one can obtain synchronization near the mode
cutoff.>*>7

The dispersion equations for a four-layer isotropic
structure have been derived in Ref. 59. Figure 9 shows the
dependences of R, = (|k |/v)* calculated for the funda-
mental modes on the specific Faraday rotation in the case in
which the refractive index of the film is close to that of the
substrate. We see from the diagram that one can increase the
conversion with a constant Faraday rotation by decreasing
the difference n; —n,. For example, for d = 3 pum,
ng —ng, = 1072, and F, = 300 d deg/cm, we find from Fig. 9
that R,,, = 0.5, whereas for an analogous structure, but
with n; —n, = 0.3, one can calculate that R_, =0.15.
Thus, by using an intermediate film one can increase the
mode conversion, including the region near cutoff.

3. EPITAXIAL FILMS OF FERRITES HAVING THE GARNET
STRUCTURE—OPTICAL WAVEGUIDES

Polycrystalline films of the ferrite garnets have been
proposed as a magnetooptical medium for designing various
functional elements of integrated optics.*® The technology of
growing such films has been developed in connection with
application in memory devices based on cylindrical magnet-
ic domains. Moreover, they can find widespread application
in UHF technology employing spin waves. As we shall show
in Sec. 4, these films can also find application in various
functional elements of integrated optics.

In this section we shall briefly treat the properties of
epitaxial films of ferrite garnets that govern their waveguide
characteristics, and also discuss the studies that have treated
the properties of epitaxial garnet films by the waveguide
method.

First let us take up the mechanical properties of these
films. The stresses and strains existing in epitaxial films can
affect their magnetic and optical properties, owing to mag-
netostriction and photoelasticity. In this regard, it seems im-
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portant to take up, however, briefly, the stresses in epitaxial
films.

The nature of the stresses in them involves the funda-
mental question of epitaxy—the character of the matching
of the crystal lattices of the film and the substrate (see, e.g.,
Ref. 60). The studies of epitaxial films of ferrite garnets®'~"°
have shown that their stressed state is described rather well
by the accommodation model proposed in Ref. 67. Accord-
ing to this model, one can distinguish two regions of the
stressed state of the film, depending on the magnitude of the
mismatch.

ag— tlo

f=2 (74)

(]

Here g, is the lattice parameter of a massive specimen of the
film material at room temperature, and g, is the lattice pa-
rameter of the substrate at room temperature. At sufficiently
low values of f(~ 10™?3), the epitaxial film deforms elastically
until its lattice paramter along the phase boundary equals
that of the substrate (region of surface pseudomorphism). At
larger values of f, complete match of parameters does not
occur, and certain atomic layers in the film (or in the sub-
strate) do not continue into the substrate (or film)—disloca-
tion mismatch arises. Thus, at the temperature of growth of
the film with large mismatches of parameters, a fraction of
the elastic stress of the region of pseudomorphism appears to
be relieved by formation of mismatch dislocations. Thus the
final planar deformation » of the film is determined by the
expression

uu = f — 6,
Here 6 = (a, — ay)/a, is the accommodation of the film
arising from formation of mismatch dislocations, we have
u) = (ay ~80)/ag, and @y is the lattice parameter of the film
along the phase boundary.

One can derive the following expression®® for the
magnitude of the elastic deforation of the film at room tem-
perature:

Here Aa = a; — a, is the difference in temperature coeffi-
cients of linear exansion of the materials of the film and the

substrate, A T is the difference between the growth tempera-
ture and room temperature, and the annealing parameter is

(75)

bey —bs

== - 77
Here the b; are the corresponding lattice parameters at the
temperature of growth of the film. The expression (77) is
valid if we assume that no additional annealing of the film
occurs upon cooling. In the converse case, 7 in (76) must
characterize the total accommodation (both at the time of
growth and during cooling). In the pseudomorphism region
(p = 0), complete match of the lattice parameters of the film
and the substrate at the phase boundary occurs, while when
7 = 1, the stresses at the temperature of growth are fully
relieved by formation of mismatch dislocations. There is a
smooth transition between these regions when the stresses
are partially relieved by mismatch dislocations. This transi-
tion region has been found experimentally in Ref. 65.
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In Ref. 67 a study was made of the process of formation
of mismatch dislocations by bending them and extending
them along the phase boundary of the film and the substrate.
As a result this study obtained the time- and temperature-
dependence of the annealing parameter, which has been dis-
cussed for the garnets in Refs. 63 and 64. Qualitatively the
model describes the experimental data,®® although, owing to
lack of the latter, one cannot at present speak of quantitative
agreement.®

As is evident from Sec. 2, it is important in waveguide
magnetooptics to obtain phase synchronization near the cut-
off of the modes. To do this, as will be shown below, one
needs epitaxial films with deformations exceeding 102 (an-
other possibility is two-layer films). In this regard the ques-
tion arises of the possibility of growing films with such defor-
mations. As is known, at mismatches |f|> 1.5-3X107?
even nucleation of the film crystal ceases,®®* % while the re-
gion of pseudomorphism is restricted to values
|f| ~2X 1073, Outside this region, the quality of the films
usually deteriorates.5-6-68

According to Ref. 71, the magnitude of the linear ex-
pansion coefficient for the garnets depends weakly on substi-
tution in the dodecahedral lattice sites. For the aluminates,
gallates, and ferrites, it amounts respectively to 8.6 X 10-%,
9.2 1075, and 10.4x107° K~'. At growth temperatures
~10% K, the quantity Aa-AT is ~2x 1073, and it deter-
mines the deformation in the regions when 7= 1. Thus one
should seek an increase in the strain in garnet films by way of
extending the region of pseudomorphism, which, however,
is unlikely.**

At large tensile strains, cracking of the films can occur.
For a brittle material such as garnet one can estimate the
critical value of £ by the formula’

fr=t-w)y <.

Here v is the Poisson coefficient (see below, Table 1), ¢ is the
interatomic distance (~3A), and d is the thickness of the
film. Here we have assumed that 7 = 0. A mismatch of lat-
tice parameters exceeding f2 is a necessary, but not yet a
sufficient condition for formation of cracks. If the film con-
tains no centers for crack formation, then fulfillment of the
condition f>f~ does not lead to cracking. Spontaneous
crack formation will occur if”

(78)

1—
Figure 10 shows the predictions of Egs. (78) and (79). If the
parameters of the film correspond to points under the line 1,
then a crack will not propagate, even if the film contains
centers of crack formation; between the lines 1 and 2, crack

(79)

7’

7
w2k

1
Wi
v L 1 L 1
A w' /] Zum

FIG. 10. Diagram of the mechanical state of an epitaxial film.”?

formation requires the existence of centers (scratches, inclu-
sions, etc.); above the line 2 cracks will form spontaneously.
Thus in theory, one can obtain films with a mismatch 1073!-
1072 and of thickness 1-10 um, as are usually employed in
waveguide optics, without cracking if they contain no de-
fects that could serve as centers for crack formation. What
we have said above pertains to stretched films. In waveguide
magnetooptics, more often films in the compressed state are
used. Under the condition 7 = 0, such films contain no
cracks.®’ However, when a certain critical film thickness and
magnitude of mismatch are exceeded, they can exfoliate
from their substrate and then crack. Other possible mecha-
nisms of crack formation are: breakdown of the substrate
itself along planes perpendicular to the film,”> or shear
stresses caused by screw dislocations.5*

Table I gives the values of the stiffness constants, the
Poisson coefficient, and parameters 4, ,, for certain garnets
according to Ref. 73.

The garnets resemble an elastically isotropic material
{Ac = 0} in their elastic properties. As we have already not-
ed, the elastic properties of epitaxial garnet films affect the
most important characteristics of light propagating in wave-
guide fashion (see Sec. 2). Therefore a knowledge of these
properties and ability to control them by ion substitution in
the garnet lattice define in many ways the possible applica-
tion of these films in integrated and waveguide optics.

The magnetic properties of epitaxial films of ferrite gar-
nets have been widely discussed in connection with the prob-
lem of cylindrical magnetic domains. Hence we shall take
them up here very briefly. The equilibrium direction of spon-
taneous magnetization of a monocrystalline film of a ferrite
is determined by the minimum of the magnetic energy:

E=FE.+ Es + Eg + Eu + Ep. (80)
The energy of the crystallographic cubic anisotropy is
E.=K, (afal +aloel+alad)+ .... (81)

Here K, is the first cubic anisotropy constant, and the ; are

TABLE I
. Cn Ciz Caq aAC C1s .
Composition 107 dyne/cm? v 111
Y,Fe;04, 26,8 11,06 7,66 0,42 0,292 0,85
Y,Gas0,, 29,03 11,73 9,547 —1,794 0,288 0,74
Y3A);0,, 33,32 11,07 11,5 —0,75 0,249 0,64
EugFe;0,, 25,10 10,70 7,62 —0,84 0,299 0,81
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the direction cosines of the magnetization with respect to the
fourfold axes. If we assume that (46) holds, the energy in-
volved in the stresses in the film’* has the form

"3 ; 1
Eo = haoo ( oiB; + i + Bt — )

+ 3R 4q {040,848y + 0tp03PoP5 +- aiaaﬁiﬁa)} Oy -
(82)
Here oy is the in-plane stress, the 4, are the magnetostrictive
constants along the corresponding axes, and the B are the
direction cosines of the normal to the film with respect to the
cubic axes. The energy of growth anisotropy’ is expressed in
terms of the constants 4 and B:

- 1
Eo = A (i +oip} + ol — 7

+ B (o,@9B1Pe + oty afafis + o,0t304B3)- (83)
The energy of interaction with the external field is
Ey = —MH. (84)

The energy of demagnetization for the case of a homogen-
eously magnetized film is

Ep = 2aM? (a,f; + aofy + asfa)? = 2aM?cos® . (85)

Here £ is the angle between the magnetization direction and
the normal to the plane of the film.

Periodic magnetic structures may be of interest for
waveguide and integrated optics, either when created in the
film by an external field, or inherent in the film itself.?**'~>¢
The parameters of stripe domains are determined by the
minimum of the energy of the domain walls and the demag-

netization’*:
1o - 22

(86)

Here W is the wall energy density per unit surface, and D is
the period of the stripe domain structure. The second term in
(86) has been derived under the assumption that the wall
thickness is small in comparison with the period of the struc-
ture. For a homogeneously magnetized film (D— «}, Eq.
(86) reduces to {85). In the garnets the period of the stripe
domains lies in the range 1-25 #m. These structures can be
used to design matching elements and mode converters. Sec-
tion 4 will treat the problem of using periodic magnetic
structures in integrated optics using concrete examples (see
also Ref. 29).

The domain structure realized in the film is determined
by the energy minimum in (80) and (86). Depending on the

=]

_2W . qagp Dcos?E
EWT?‘ 8M n2d 2

n=1,3,5, ...

TABLE II.

relationship of the different contributions to the overall en-
ergy, both period and irregular structures can be realized. In
addition to the films with stripe domains noted above, films
are of interest in which the magnetization lies in a plane
(“‘easy-plane” type), and according to (85), the demagnetiz-
ing field is zero. With a small coercive force and anisotropy
in the plane of the film, one can control the magnetization
with very small fields (~0.1 Oe). Usually such films have
broad domains, which can be observed by ordinary method-
ology in polarized light by placing the film at 45° to the optic
axis of the microscope.’? If the total energy in (80) is mainly
governed by the contribution E, associated with stresses,
then films grown on {111} substrates will have the corre-
sponding energy.

E,= —%0’;\ Ayyqcos20. (87)

Thus the magntization will lie in the plane of the film
(6 = 0) for ferrites with A,,, <0 in the case of films in the
compressed state { f<0). Since yttrium iron garnet has a lat-
tice parameter smaller than gadolinium gallium garnet
(GGG), then when one uses the latter as the substrate, one
must replace iron and/or yttrium ions with those of larger
dimension, e.g., scandium and gadolinium ions, respective-
ly. One must study the problem of the choice of replacement
jointly with the magnetooptic, optical, and other proper-
ties.”> Certain compositions useful for application in inte-
grated optics have been given in Ref. 76. A defect of the
garnets of the scandium system is small values of the factor
M, = (F,/47M_)* <0.14 (deg/cm-G)*. In the gadolinium
system M is larger and reaches 11.7 (deg/cm-G)>. Introduc-
tion of Pr’* ions leads to very large negative values of the
Faraday rotation constants.***’” Introduction of Pr** ions
together with Bi** and Yb** ions made possible obtaining
films with an anisotropy of the ‘‘easy-plane” type and a large
negative Faraday rotation.”® Certain parameters of films of
this system are given in Table II (data taken from Ref. 76).
Here a is the attenuation constant, and F, is the Faraday
rotation constant. An important characteristic of the gar-
nets for waveguide magnetooptics is the refractive indices.
Their approximate values for the ferrites (~2.22), gallates
{~1.95), and aluminates { ~ 1.85) have been given in Ref. 59.
Since the refractive indices of the garnets mainly arise from
absorption bands in the visible and ultraviolet regions of the
spectrum, in the near infrared one observes only a weak dis-
persion of the refractive index. Moreover, n varies somewhat
with different replacements in the rare-earth sublattice. In
particular, compositions containing ions of large radius
(such as Bi** and Pr**) have larger values of n.

A

Composition

4nM, Gauss
F,, deg/cm

ag — ag,
My

(deg/cm-G)?

= Fo/a,
deg/dB

M2

(Yb, Pr),,5Biy,sFe,Ga,0;,
(Yb, Pr)z,sB{o‘ﬂies,BGal,zO12
(Yb, Pr),,1Big,oFes 43Gay, 15012

—0,031 270
—0,002 150
—0,019 220

—950 |40
—1190 |30

6,25

n=2,25
160 |3 =1,15 um
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Investigation of waveguide propagation of light con-
sists of studying the spectrum of modes (dependence of the
light intensity on the value of 3), and effects of conversion
and absorption dispersion. Here one can determine the re-
fractive index, the thickness, the birefringence, and Faraday
and Voigt constants,and the magnitude of the absorption
and scattering. From the standpoint of using the films in
integrated optics, the important characteristics of a film are
the maximum amount of conversion, the minimum distance
corresponding to this conversion, and nonreciprocity of con-
version. The magnitude of the coupling coefficient and the
mismatch are also of interest.

Different mthods of studying waveguide propagation of
light in thin films have been described in a number of original
and review studies (see, e.g., Refs. 5-7). The possibilities of
this method of studying the properties of thin films are still
far from being exhausted. Since we can not take time to dis-
cuss the method, we refer the reader to the literature cited in
Refs. 5-7, 78, and 79.

Let us examine what information one can obtain from
measuring the values of 5,, . As is known,>” the accuracy of
determining f3,, , for example by the method of prism input,
amounts to 107%~10~%, The sum of the deviations in the
least-squares method is

k-1

o= 3 Bn—Bu(n, P (88)

m=0

Here the B,, are the experimental values of the effective re-
fractive index of the mth-order mode, and the B,, are the
calculated values for an isotropic waveguide with an ideal
refractive-index step profile, and k& is the number of the
modes. The magnitude of o for modes of the same polariza-
tion evidently must not exceed 10 3-1071°. In this case n
and d are determined with an accuracy of respectively 10 %~
10~%and 107357

As a rule, real epitaxial films of ferrite garnets do not
possess an ideal step profile of the refractive index, owing to
existence of transition boundary layers®® or inhomogeneities
throughout the thickness of the film.®’-%? One should also
take into account the existence of birefringence (see below)
and of the air gap between the prism and the film.”

When the value of o exceeds the value arising from ex-
perimental error, in an isotropic structure this implies a de-
viation of the refractive-index profile from the ideal. Usually
here the distortions in the case of inhomogeneities in the
bulk of the film differ from the distortions that arise from
existence of transition boundary layers. Namely, in the for-
mer case the entire spectrum is distorted, while boundary
layers exert a stronger influence on the higher-order modes.
This involves the differing energy distribution of the modes
through the thickness of the film for modes of different or-
ders. Unfortunately, the effect of different inhomogeneities
in epitaxial films on the mode spectrum has not been studied
broadly enough, As a rule, in the studies on the mode spec-
trum in epitaxial garnet films, the value of ¢ is not indicated.
Hence one cannot estimate the accuracy of the values of the
parameters derived from the mode spectrum. In addition,
measurement of the distortion of the mode spectrum charac-
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FIG. 11. Variation of the quadratic deviation of the spectrum of TE modes
upon annealing an epitaxial garnet film.®'

terizes the inhomogeneity of the films, which sometimes
cannot be found by other methods.

Reference 81 has studied the effect of annealing on the
magnitude of the distortion of the mode spectrum (o). It was
determined from the nature of the distortions that the latter
are associated not with boundary layers, but with the layered
nature of the films throughout the thickness. Figure 11
shows the dependence of o on the temperature of annealing,
which was carried out for two hours at each point. We see
that the homogeneity of the films increases with increasing
annealing temperature. Apparently the increase in o at tem-
peratures about 900 °C involves blurring of the film-sub-
strate boundary by diffusion of ions across the boundary.

One can determine the linear birefringence in films by
measuring either the spectrum or the mode conversion. In
the former case, for thick enough films in which more than
two modes of each polarization can propagate, one deter-
mines the value of £, by measuring the specturm of the TE
modes, and £, by measuring the TM modes. Here the error of
measuring the birefringence amounts to 6X10~%/Jk,
where k is the number of modes in the film.%?

By using (36) one can find that the birefringence 4n for
modes far from cutoff is determined by the approximate
expression®?

An=Ve,—V e, ~A—A, (89)
1t was assumed in deriving this expression that all the energy
of the modes is concentrated in the film and that
B =B ~e,.

The magnitude of the mismatch 4 ’ can be found in ab-
solute value by measuring the conversion as a function of the
propagation distance. One can also determine from these
measurements the mode-coupling coefficient. By using (41)
one can find that

1A = AV I—Pmax

|k| _ A VRmax
21, - l

e (90)
Here [, is the propagation distance of the light correspond-
ing to the maximum conversion coefficient. We note that one
can determine 4 ' only in absolute value by measuring mode
conversion, since the mismatch enters (41) only as the
square. Moreover, one can find 4 ' from measuring R (z) only
if one can obtain a curve with a maximum, which is difficult
in the case of films with a large Faraday rotation, for which
lo~1 mm, as well as strongly absorbing films. It is impossi-
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FIG. 12. Dependence of the birefringence on the deformation of epitaxial
films of YTbFeAl and YGdFeGa from Refs. 38 (triangles); 84, 87
(crosses); 45, 86 (dots).

ble if the dimension of the film is less than /,. In all these
cases, and also if one must know the sign of the mismatch,
one must employ measurements of the mode spectrum.

Experimental studies of birefringence in films have
been carried out in Refs. 38 and 83-87. The deformation of
an epitaxial film was determined there by x-ray measure-
ments, while the birefringence was found from waveguide
measurements. Figure 12 shows the dependence of the bire-
fringence on the deformation as derived from the experimen-
tal data of Refs. 38, 84, and 86, which studied films of the
YTbFeAl and YGdFeGa systems. A linear An(u, ) relation-
ship was found within the limits of experimental error. This
implies that the photoelasticity constants p,, are indepen-
dent of the composition in these films. Upon employing (50),
one can find that

_ Va-Va __vVa-vE
PUT R = WA e

One can find the mean value, p,, = — 0.045 + 0.005
from the data of Refs. 38, 84, and 86. This agrees with the
data found® for a series of garnets from measuring the bire-
fringence under uniaxial compression (the positive sign of
the constant in Ref. 23 is in error). Table I1I gives the charac-
teristics of epitaxial films from Refs. 38, 84, and 86. The
composition of the films is given based on the batch composi-
tion; a; was determined from X-ray measurements; it was
assumed that @, = 12.383 A; the values of 4,,, and c,, are
taken from Table I for YIG; the refractive index n and the
thickness d of the film were calculated from measurements
of the mode spectrum, whereupon the mismatch 4 ® was cal-
culated; 4 ' was determined from the mode spectrum; A n was
calculated by (89); and the value of p, by (91). The quantities
R_.. 6 =0,¢ =90°,; and a were found by displacing the
exit prism, and |k | and |4 '| were found from (90).

The positive values of p,, for two films (Nos. 2 and 6)
involve misprintsin Ref. 86. Apparently the values of A ®and
4’ have been interchanged for film No. 2, and an incorrect
value of a;, has been given for film No. 6. These films were
not taken into account in calculating p,,. Probably the ap-
preciable deviations of the values of p,, from the mean for
different films arise from lack of allowance for magnetooptic
birefringence in these studies. Attention is called to the bet-
ter agreement between the value of the mismatch found form
the mode spectrum and from mode conversion.

Conversion of guided modes has been studied experi-
mentally in Refs. 38, 45, 46, and 84-91. Figure 13 shows the

TABLE IIL
Film Composition Ry, dB/cm| Refer-
- o - _ , _ef &y
No. ; ] e A | w1076 [ g g, pm| (8% | a0 | Anto-s | Y L0 [omm (A1 10785 TRy | onces
Ys-xThgFes_yAlyOy,
1 2,07 0,43 12,3868 | —1,7 |2,192| 7,4 | 3,8 —9,3 13,1 0,4 0,59 | 4,3 8.6 13 38, 80
2 1,59 0,33 12,3842 | —0.5 |[2,189| 5.7 | 3.7 82 | —4.5| —0.45 | 095 | 3.5 3.7 6 Ditto
3 1,23 0,25 123849 | —0.8 |1.196] 6.3 | 6,2 0.0 6.2 038 | 1.0 | 32| 00 5,6 >
4 1,11 0,28 123769 | 2.7 |2.189] 6.8 | 5,0 24 046 | 0.3 1.6 | 301 7.6 > >
5 1,27 0.25 12,3830 | 0.0 (2.493| 5.1 | 11,4 | 11,3 0,1 - 076 | 25 | 11.3 5.6 > >
6 1,34 0,26 12,3841 | —0,48 |2,195| 8.2 | 2.9 59 | -3 —0,32 | 093 | 2.6 5.9 5.9 > »
7 1,09 0.29 123815 | 0,66 |2.188] 5.6 | 8.6 5,4 042 | 074 | 24 | 14 5.5 >
8 1,09 0,29 12.3778 | 2,27 (249 | 6,7 | 5,3 —23.7 056 | 0.3 1.7 | 28,3 = )
9 1,10 0,28 123815 | 0,66 |2.49 | 6.1 | 7.3 ~6.7 052 | 015 | 24 | 1307 - Ditto
10 1,22 0,29 123841 | —0,48 {2019 | 7.6 | 3.8 2.8 035 | 0,95 | 2.3 5.6 — »
GdyYs_xFe;_yGayOys
11 5 9 12,3848 | —0,79 |2,147| 5,3 | 10,7 3,8 6,9 0,48 | 0,95 | 3,4 3,8 - 53, 87
12 8,’2 ?,o 12,3838 | —0.35 J2045 | - 197 ] 18,7 3.0 047 | 034 | 2.8 16,7 - Ditto
13 0.4 1.0 123830 | 0.0 |2.15 | 3,4 |36 0 2 015 [ 1,5 | 354 — >
14 0.4 1.2 12,3724 | 4.6 [243 | 58| 5 —33 0,4 0,02 | 1.5 | 38 6 M
15 0.45 0.9 12,3850 | —0.87 |2.45 | 4.5 | 16,1 8,1 8 0.5 0,55 | 5.8 5 — 81
16 — — 12,3846 | —0,7 2045 | - 184 | 1 6,4 0.5 0,47 | 3.4 | 12,4 — Ditto
17 0,62 1,0 12,3841 | —0,48 |2.145| 5,4 | 10 A 4.9 056 | 0,85 | 4,8 4.7 5,7 3
18 0.7 0,995 | 123884 | —2.4 |2.147| 7.6 | 3,6 | —12,5 16.1 037 | 049 | 3.3] 125 6.5 | Ditto
19 0,677 1,0 123862 | —1.4 [2.446) 9.2 | 2 8.8 108 042 0,64 | 3.9 8.9 6.0 > »
20 0,69 1,014 | 12,3882 | ~2,3 [2/148| 4.2 | 19,6 0 1706 | 042 | 0197 | 5.0 2.0 5.2 » »
2 0.674 1,05 12,3870 | —1,75 [2447| 4.4 | 17.3 9 15,2 | 047 | 0.97 | 5.0 200 5.4 > »
22 0,687 1,03 1273859 | —1,27 {2.150| 5.5 | 87| —1,7 10.4 0,45 | 0,98 | 5.1 1.6 7.0 > »
23 0.7 0,978 | 12,3871 | —1.,79 |2.445| 4.7 | 14,3 | —1.2 1575 047 | 0,99 | 4.6 1.3 5.0 »
% | Euy 0Yy.6Aly.0sFes 5,012 | 12,3913 | —3,6 2,13 | 7,3 | 35,3 951 31,4 049 b - Z -
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FIG. 13. TE,—TM, mode conversion. a} In film No. 3 in Table III (Fara-
day geometry,®® curve—calculation by (41) with 4°’=0 and
|k | =9%10~°); b) in a film close in composition to No. 2 in Table IIT
(angles of the magnetization: 8 = 45° and ¢ = 0°; curve—calculation by
(41) with |4 '] = 1.3x 10~ % and |k | = 6 X107 %

experimental relationship of the conversion coefficient for a
Faraday geometry to the propagation distance for film No. 3
from Table II1, from which we can find that / = 3.2 mm and
R,... =1. Upon using (90), we find that A’ =0 and
|k | =9x107>. According to (50) and (56), for the given ge-
ometry (@ =0, ¢ = 90°), we have

A
By —ey = - M2 2pye () —uy), (92)

If we assume that the light propagates along the (110} axis.
Since mode synchronization requires that £, > €,, then if we
assume that 4g is small enough, we find that the film must be
in the compressed state (4, <0). This is confirmed by x-ray
measurements (see Table I1I}. We note that a non-zero non-
diagonal component of the symmetric part of £ exists in the
given geometry, namely £, = V24g/6. Thus the coupling
coefficient is determined not only by the Faraday rotation
constant, but also by the anisotropy of the Voigt effect.

Figure 13 shows the variations of R (z) when the magne-
tization direction was defined by the angles 8 = 45° and
¢ = O(Fig. 7) for a film close in composition to No. 2 in Table
II1. In the given geometry the conversion arises, as one can
find from (56), from the nondiagonal component
€¢ =844 + 0.24g. We can find from the experimental R (z)
relationship that |4 ’| = 1.3X107*and |k | = 6X 107>

An important characteristic of a waveguide is the mag-
nitude of the losses. The total losses are mainly composed of
absorption in the material of the film and of scattering, both
at the boundaries and in the bulk of the film. Since these
mechanisms have different dependences on the mode order
(owing to the differing distribution of the field in a transverse
cross-section of the waveguide for modes of different orders),
one can distinguish their contributions to the overall
losses.’! Figure 14 shows the relation of the overall losses to
the mode order and indicates the contributions from the dif-
ferent mechanisms.

Mode conversion was studied in Ref. 89 with account
taken of the absorption a, and a,, of the TE and TM modes
respectively. In this case the conversion coefficient will be
determined by the expression

R (2) = exp [ — (cte + o) 2] - 1202

)<{sin2 (%cos %)—l—sin h2 (% sin %)} (93)
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FIG. 14. Losses for modes of different orders. a y—total losses, @,—ab-
sorption in the film, a,—scattering in the film, a;—scattering at the boun-
daries.

Here we have
L={[4v2— A2 + & (A’ - Aac)2} /%,

- _tan—l[ Tif__'%] , Aa=oae—oay.

If Aa = 0, then (93) reduces to (41), apart from the exponen-
tial factor exp( — 2az) (omitted in error in Ref. 89). Figure 15
shows the experimental dependence of the conversion (film
No. 14, Table I1I) on the propagation distance and the theo-
retical dependence according to (93) for ¢, = 6 dB/cm,
a, =11 dB/cm, kk, =75 deg/cm, 4 'k, = 1200 deg/cm.
The increase in the conversion maximum is explained by the
difference in losses of the TE and TM modes.

References 84 and 88-90 have studied the dependence
of the conversion on an external magnetic field. The rela-
tionships are described by (41) and (56). Figure 16 shows the
dependence of the conversion on the magnitude of a magnet-
ic field applied along the x axis (perpendicular to the film).
The conversion passes through a maximum (when the mag-
netization lies at angles & = 45°and ¢ = 0°) and it vanishes at
fields above ~ 800 Oe (when 8 = 90°), as is implied by (56).
Figure 16 shows the theoretical dependences obtained under
the assumption that Ag = O and sin 8 = H, /H,, where H,
is the uniaxial anisotropy field (~ 820 Oe for the given film).
The agreement with experiment is good.

Nonreciprocal mode conversion in epitaxial films of
ferrite garnet has been found®® upon reversing the direction
of a magnetic field along the direction of propagation (Fig.
17). It was explained by a combination of reciprocal conver-
sion in the substrate owing to optical anisotropy caused by
stresses and nonreciprocal conversion in the film caused by
the Faraday effect. Figure 18 shows the dependence of the

R(TE,=7M,)
4021

aark 0

O\ O,

1 1
2z 4 6 z, mm

FIG. 15. TE,—TM, mode conversion for film No. 14 in Table II1.545°

Curve—calculation for @, = 6 dB/cm, a, = 11dB/cm, K = 2.4 X 1073,

|4’] = 3.8 107 by Eq. (93).

Prokhorov et al. 356




R(TES-TH,)
a6
#=50e
N z=1mm
o
g4
z=5mm
A
0,2t y, &
I~ Z=2mm.
1

| |
200 400 600 H, Oe

FIG. 16. Conversion as a function of the magnitude of the constant mag-
netic field perpendicular to film No. 11 in Table HI.***¥ Curves—calcula-
tion by (41) and (56) for K = 1.4x 1073, 4'=4.7x107% 4g =0, sin
¢=H./H,, H, =8200e.

conversion of the magnitude and direction of the field for
several pairs of modes of the same order. The decreasein R /
R,.. with increasing mode order confirms the hypothesis
that the nature of the nonreciprocity in this case involves
birefringence in the substrate.

In Ref. 46 a considerable nonreciprocity (R * = 0.93;
R — = 0.09) was observed in an inhomogeneous magnetic
field. The authors explained its origin by the existence of
magnetic birefringence in some parts of the film and gyrotro-
py in others.

Let us note some further experimental studies on wave-
guide propagation of light in ferrite films. An influence of
coupling between modes on the mode spectrum was demon-
strated in Ref. 92. As we have already noted above (see Sec.
2), coupling leads to a change in the propagation constants
according to {44) and to “hybridization” of modes. Both
these effects were discovered with a birefringent rutile
prism, which split each hybrid mode into two rays corre-
sponding to its components having different polarizations.

In Ref. 7 the absorption spectrum was studied of epitax-
ial films of ferrite garnets by the method of waveguide optics.
Waveguide optics was first applied for continuous recording
of an absorption spectrum. This made it possible to reveal
the features of the spectrum that cannot be detected by ordi-
nary methods of absorption spectroscopy (owing to the small
thickness and absorption of the film). Figure 19 shows the
transmission spectrum obtained by transilluminating the
film and by the waveguide method.’

RITM-TE;)

! l I
-100 00

L L I
-300 300 H,Oe

FIG. 17. TM—TE, mode conversion as a function of the magnitude of
the longitudinal magnetic field for a film of Y,Sc 37 Fe; 4, Ga, o, O, ~9-
pm thick.*°
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FIG. 18. Nonreciprocal mode conversion for a film of Y,;Sc,;;Fe-
3.61G210: 012

A promising line for designing more highly miniatur-
ized elements of integrated optics is to use multilayer wave-
guides. The first step in this direction is the synthesis and
study of bilayer epitaxial films,>5-38.93.94

It was proposed’® to employ a double epitaxial hetero-
structure to obtain quasisynchronization of modes. A film is
grown on a substrate of gadolinium gallium garnet that con-
sists of two layers. The layer closest to the substrate has a
refractive index somewhat smaller than in the next layer. the
propagation constants without allowance for anisotropy and
gyrotropy can be calculated by using the dispersion equa-
tions for a four-layer waveguide structure derived in Ref. 58.
In the region of S values not too close to the refractive index
of the intermediate layer, such a waveguide structure be-
haves like an ordinary three-layer waveguide in which the
intermediate layer plays the role of the substrate. Since the
range of £ values in such a structure is restricted to the nar-
row region between the two refractive indices of the film,
then evidently, the difference between the wave numbers of
the TE and TM modes of the same order (4 °) will be smaller
than without the intermediate layer. This has been verified
experimentally with the heterostructure GdGa-YbSc-
GaFe-YbScFe,”® in which R = 0.5 was obtained for the
first-order modes.

The value R = 0.96 was attained in Ref. 57 for a similar
structure (the upper layer of the film also contained gallium,
but in smaller concentration than in the intermediate layer).

Transmission

0 1,2 14

76 4, pm

FIG. 19. Dispersion relationships of the transmission in ordinary transil-
lumination and the absorption coefficients in waveguide propagation for
(YSmLuCa);(FeGa)sO,,.”
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Such a large conversion (instead of the calculated R = 0.2 in
the case of an isotropic structure) arises from the additional
coming together of the modes owing to the photoelastic an-
isotropy in the upper layer.

It was noted in Ref. 57 that, with a refractive-index dif-
ference of the two layers of the film equal to 0.005, one can
obtain a conversion coefficient R = 0.95 without anisotropy
with a specific Faraday rotation of 200 deg/cm. However,
too rigid requirements are placed here on the control of the
refractive index of the two layers of the heterostructure. The
requirements on the control of the refractive indices can be
lowered by depositing a coating with a sufficiently high re-
fractive index (equal in the limit to the refractive index of the
intermediate layer).

As will be eivdent from Sec. 4, in devices using coupling
of waveguide modes, it is essential to have as great as possible
a conversion between them. In closing this section, let us list
the possible ways of increasing mode conversion.>® It can be
increased by using: 1) an anisotropic material in the wave-
guide structure; 2) the Voigt effect; 3) a metallic top layer
separated from the waveguide by an intermediate film®%; 4) a
periodic structure; 5) materials with a strong Faraday rota-
tion; and 6) two-layer films.

4. FERRITE FILMS IN FUNCTIONAL ELEMENTS OF
INTEGRATED OPTICS

Although the first demonstration of the possible appli-
cation of epitaxial films of ferrite garnets in integrated optics
was a modulator (switch),’’ they are most promising for
building nonreciprocal elements, which will mainly be treat-
ed here.

The principles of constructing nonreciprocal elements
of integrted optics have been developed in Refs. 31b, 33, 39,
43,48, 50, 54, 55, 57, and 96-103. Usually the main elements
of such devices as an isolator, a circulator, etc., is the so-
called unidirectional mode converter (UMC), which in the
idealcase has R ¥ = 0and R ~— = 1. As was shown in Sec. 2,
nonreciprocal conversion can be associated with nonreci-
procity of the mismatch or of the coupling coefficient. In all
UMC:s proposed up to now, nonreciprocity of the coupling
coefficient has been employed. As is clear from Sec. 2, one
can obtain a nonreciprocal coupling coefficient by combin-
ing a certain optical anisotropy with the appropriate gyro-
tropy. Such a combination can be of the cascade® or single-
section®® type. If we base our discussion on the variants
proposed up to the present, the single-section combinations
have the advantage with respect to miniaturization, but they
are as yet less practical commercially.

Now let us proceed to discuss the concrete variants of
UMCs. Figure 20 shows an isolator proposed in Ref. 48. It
was proposed to obtain a nonreciprocal coupling coefficient
by gyrotropy of a ferrite film and anisotropy of the top layer
made of a monocrystal of lithium iodate. However, experi-
mentally it was not possible to obtain nonreciprocal conver-
sion in this system. As was shown in Refs. 33 and 48, the
coupling coefficient in such a system depends very sharply
on the size of the air gap between the film and the top layer.
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FIG. 20. Isolator of the “‘semileaky type”® (variant 1) and a UMC* (2).

The unfavorable choice of the material for the top layer,
which is hygroscopic, apparently led to the negative result.

A single-section system was experimentally demon-
strated for the first time in Ref. 99 with a nonreciprocity of
conversion of 7 dB (Fig. 21). A film of BiTmFeGa garnet was
pressed onto a diffusion waveguide based on lithium niobate
until optical contact was made. In the region of the latter,
either a two-layer waveguide arose, or a system of two cou-
pled waveguides, depending on the size of the air gap
between the diffusion waveguide and the magnetic film. In
both cases, the energy partially propagated along the mag-
netic film, where conversion arose from the Faraday effect.
It was possible by varying such parameters as the pressure on
the film and the length of optical contact to obtain a nonreci-
procityofconversionin(l — R *)(1 — R ")=1*/I (I *and
I~ are the intensities of themodes when propagating in the
forward ( + ) and backward ( — ) directions) of 7 dB for the
zero-order modes at A = 1.15 um and a length of optical
contact ~3 mm.

Increase in the nonreciprocity requires a more careful
choice of the parameters of the diffusion waveguide and the
magnetic film. On the whole, this nonreciprocal system has
the advantage over those discussed in Ref. 48 that one can
construct immediately beyond it an electro- or acoustoopti-
cal modulator using the same diffusion waveguide.

An UMC of the cascade type has been described in Ref.
101. It consists of two sections of the same epitaxial garnet
film. A Faraday geometry is realized in one section by using
an external magnetic field, while in the other section another
source of an external magnetic field creates the geometry of
the Voigt effect. The match of phase velocities of the modes
necessary for operation of the UMC was obtained by defor-
mation of the film during epitaxial growth by selecting the
appropriate mismatch of the lattice parameters of the film
and the substrate (see Sec. 3). by using (36), (37), (45), (56), and
(59), one can find that the following expressions for the quan-
tities entering into (68) hold for modes far from cutoff:

: BLTmGﬂFBG
m D(/LLNWJ

FIG. 21. Isolator with nonreciprocity of conversion of 7 dB.*
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k=fM cos 0 sin ¢ 4 ig,, M?sin 20 cos ¢,
A" =2g,,M?(sin%0 —cos2 0 cos? ¢),
vE=(fM)?cos? 0 sin® ¢ + g2 M4 (1 —cos? 0 sin? ¢)2,

(94)

Here we have assumed that 4 ° = Ag = 0. Upon substituting
into (68) the values of k and v from (94) for the two sections of
the UMC in which the directions of the magnetization are
defined by the angles 8, =0, ¢, =#/2, and 6, =7/8,
¢, =0, while the length of the sections is z, = 7/4v, and
z, = 7/2v,, we find that the overall matrix of the two-section
UMC will have the following forms for the forward ( + ) and
backward ( — ) waves:

T+=—,T;T2-—:i[—f> ?J rr=nf _l[(‘)éj

Thus full conversion occurs for the backward wave and
no conversion for the forward wave.

A UMC has been realized that is based on a film made of
YGdGaFe garnet 5-um thick grown on a substrate of gado-
linium gallium garnet with {111} orientation. The light pro-
pagated along the (110} direction. The Faraday section of
the UMC was 3.5-mm long, and the section with the Voigt
geometry 12 mm long. The study demonstrated nonrecipro-
city of conversion, but gave no quantitative estimate of it.

An isolator can be built based on a UMC by placing
mode filters at both ends of it.>> As was shown in Ref. 104,
the filter transmitting only the TE modes can be a metallic
coating. The damping of the TM modes for an aluminum
coating is * 60 dB/mm, whereas the losses for the TE modes
are < | dB/mm. One can diminish the absorption of the TE
modes by depositing a dielectric film between the waveguide
and the metal.

Another type of isolator ws proposed in Ref. 43 and
realized in Ref. 50 (Fig. 20). It is based on using waveguides
of the semileaky type (see Secs. 2 and 3). the nonreciprocity
obtained in a waveguide structure made of a film of yttrium
iron garnet with a top layer of a crystal of lithium niobate
amounted to 10 dB at a distance of 1 cm for A = 1.15 um.
The main feature of this isolator is that a guided mode inter-
acts with a radiative mode in it, rather than with a guided
mode. In this case the strict requirements on mode syncr-
honization, length of the isolator, thickness of the film, and
quality of optical contct that exist for devices that employ
conversion between guided modes are considerably relaxed.
For example, a semileaky-type isolator cn operate with any
propagation length. That is, doubling the length leads to
doubling the nonreciprocity. We note that it isimposssible to
obtain complete nonreciprocity in such an isolator, since the
conversion varies exponentially (see (71)). In Ref. 50 a nonre-
ciprocity of 10 dB was obtained in a length of 1 cm, which is
comparable with the results obtained in conversion of guid-
ed modes (10.1 dB in a Inegth of 8 mm*¢). The requirements
on the optical contact are also less strict in thcase of a semi-
leaky-type isolator.

Despite all the merits presented above of a semileaky-
type isolator, it is by no means universal, mainly because of
the complexity of construction, cost, the need for having two
high-quality single crystals, lack of commrcial feasibility
(poor fit with planar technology), etc. It is also unclear to
what extentone can increase the nonreciprocity without sub-
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FIG. 22. Isolator employing a bilayer film.5’

stantial complication of the technology. We should note also
the large losses introduced for the forward wave of ~ 10.1
dB for a nonreciprocity of 9.9 dB.

Apparently many of the defects pointed out above can
be eliminated in an isolator based on a two-layer film. One of
the variants of such an isolator was proposed in Ref. 57.
Figure 22 shows the fundamental scheme of it. The light
from a semiconductor laser passes through the two-layer-
film, whose plane lies at a 45° angle to the plane of polariza-
tion of the laser. After rotation by 45° in the film, the polar-
ization of the light corresponds to the polarization of the TE
modes and the radiation passes through a filter in the form of
a metallic coating. The backward wave in the form of TE
polarization (the filter does not transmit TM polarization)
passes through the two-layer film with a rotation of the plane
of polarization by 45° and is incident on the semiconductor
laser. Since the angle between the plane of polarization of the
laser and the backward wave amounts to 90°, th backward
radiation does not affect the characteristics of the radiation
of the laser. The operation of the two-layer film is based on
almost complete TE = Tm conversion (see Sec. 3).

An isolator was proposed®’ for TM modes that used
nonreciprocity of the phase shift §. as determined by (36),
and which did not require mode conversion. The isolator has
the structure of an interferometer (Fig. 23) in which the
phase nonreciporcity is converted into amplitude nonreci-
procity. This isolator has not beenrealized in practice.

A theoretical detailed analysis has been performed'®° of
a five-layer waveguide structure consisting of two isotropic
dielectric waveguides coupled by a gyrotropic and/or aniso-
tropic medium. It was shown that one can design an optical
circulator based on this structure that does not require a
mode separator at the input and output, and an isolator that
does not require mode filters.

It has been proposed'®® to use magnetic materials with a
large natural optical anisotropy, such as YFeO, and FeBO,,
for designing UMCs. The practical realization of different
variants of the devices from REfs. 100 and 103 will depend
on the future development of thin-film technology, both

Magnetooptic
waveguide
4/

|
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s
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3dB

FIG. 23. Isolator based on the principle of nonreciprocal phase shift.®’
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with respect to attaining high quality of waveguide struc-
tures and to possible strit control of their parameters.

In closing this section, we shall take up some possible
applications of epitaxial ferrite garnet films that do not per-
tain to nonreciprocal elements. A deflector was described in
Ref. 105 that employs a periodic grating made of stripe do-
mains (Sec. 3). The light propagating in waveguide fashion in
the film was diffracted by the grating of stripe domains,
which had a sign—variant component of the magnetization in
the plane of the film. A rutile prism was used to excite the TE
mode, which was diffracted by the polarization grating of
stripe domains. The light was converted to the TM, mode
and deflected by diffraction at a maximum angle of 3° with a
maximum efficiency of 15% (the ratio of intensities of the
deflected light to the total transmitted light). A filmwas used
of thickness 4.4 pum of composition Gdg4sY, ssFe-
12 G203 0,,. The variation of the intensity of the diffracted
light as a function of the angle of incidence can be calculated
by Eq. (41), where in this case one should assume for a rec-
tangular profile of variation of the magnetization: R = 1/1,,
k| =|Fo|/2m,z=L,A" =27(® — P)/D. Here [, and I
are respectively the intensities of the incident and diffracted
light, F,is the specific Faraday rotation, L, is the interaction
length, D is the period of the stripe domains, @ is the angle of
incidence in the plane of the film with respect to the domain
walls, and @ g is the Bragg angle, as determined by the rela-
tionship sin @5 =4 (2nD )~ .

Figure 24 shows the I /I  relationship, where Iy is the
intensity forthe Bragg angle. The calculated curve corre-
sponds to the parameters L = 4 mm, F;, = 130 deg/cm, and
D = 25 um. Here the theoretical value of the diffraction effi-
ciency is 30%. The curves in Fig. 24 correspond to an effi-
ciency of 3%. By increasing the distance to 1 ¢cm, a maxi-
mum efficiency of 15% could be obtained. To increase the
efficiency, one should use films with better regularity of do-
main structure and with higher values of the Q-factor
M, =Fy/a.

In Ref. 106 a grating made of stripe domains in an epi-
taxial film of BiYbFe garnet was used to introduce light into
a glass waveguide. The efficiency of diffraction in the first
order for a film 0.41-xm thick was 0.41%. The intensity of
the light introduced into the waveguide was diminished by
72% by using an external pulsed magnetic field, which al-
tered the period of the domain structure.

It has been proposed'®’ to employ epitaxial films of gar-
nets to design integrated-optics logicl elements. By the esti-

10 I/1g ~— Calculated
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05
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FIG. 24. Diffraction of “waveguide” light by stripe domains.'®®
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mates of the author, these have dimensions (~23 pm) far
smaller than the analogous elements based on electrooptical
materials (millimeters}.

As we have already mentioned at the beginning of this
section, epitaxial films of ferrite garnets can find application
in amplitude modulators,**>">* whose quality factor is com-
parable with the best electrooptic modulators (~1 mW/
MHz), while the limiting frequency values can lie abové 1
GHz. We shall not take up the discussion of modulators
here, since their operation has been described and their char-
acteristics compared with acousto- and electrooptical modu-
lators in the review of Ref. 1. We shall call attention only to
Ref. 108, in which studies were begun on the interaction of
“waveguide” light with surface spin waves. In an epitaxial
film of yttrium iron garnet with collinear propagation of the
light and the spin wave, a 4% conversion was obtained at a
frequency ~4 GHz. Attaining a greater conversion with de-
creased interaction length hinges on the possibility of grow-
ing films with a narrow width of ferromagnetic resonance
and a larger Faraday rotation.

One of the main problems on the pathway to using epi-
taxial films of ferrite garnets in integrated optics remains the
large optical losses. As we see from Table III, the best result,
5 dB/cm, greatly exceeds the losses in massive specimens of
yttrium garnet, .26 dB/cm.'*~''* Apparently this involves
the preesence of lead in the film. If the device is based on
using solely the Faraday effect, then the losses introduced
are governed by the ratio of the Faraday rotation to thelosses
(M,,). Introduction into the garnets of ions of Bi** and/or
Pr’*, while appreciably increasing the Faraday rotation,
unfortunately also increases the losses (see Table II). Im-
provement of the situation is made possible by increasing the
wavelength of the radiation and cooling.'® We note that an
increase in the wavelength, e.g., to 1.55 um, simultaneously
leads to increase in M, and to a considerable decrease in the
losses in the optical fiber.

CONCLUSION

We have discussed the effects that can be observed (or
have already been observed) in waveguide structures con-
taining gyrotropic media. We wish to stress again that wave-
guide magnetooptics can solve fundamental, materials-
science, and applied problems. The fundamental problems
that waveguide magnetooptics can clarify include, e.g., the
problem of the contribution of the magnetic susceptibility to
magnetooptic effects.

From the standpoint of characterizing thin-film materi-
als, waveguide magnetooptics is a very accurate method of
determining such parameters as the thickness, the refractive
index, the birefringence, the Faraday rotation, the constants
of the photoelastic tensor and the magnetooptic tensor of
second order in the magnetization, etc., some of which are
difficult, and sometime even impossible to obtain by other
methods.

The potentialities of applying the effects of waveguide
magnetooptics are extremely varied. The Faraday and Voigt
effects can be employed to modulate light with small mag-
netic fields {~0.1 Oe). On the level of nonreciprocity, one
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can design isolators, circulators, and gyrators in an integrat-
ed-optics form. Isolators based on epitaxial garnet films al-
ready can find appliction in optical communications systems
to diminish the strong noise arising from reflected radiation.

At this stage it is difficult to draw concrete conclusions
on the future application of magnetic materials in integrated
optics. The most likely sphere of their application, as we
view it, is in nonreciprocal uncoupling elements. We do not
agree wth the opinion put forth in Ref. 3 that nonreciprocal
devices are not necessary in integrated-optics circuits. Al-
though reflections from joints in thin-film devices can be
substantially diminished with joints of the “slanted edge”
type and not all the reflected energy forms a backward wave
in the waveguide, one cannot state that other inhomogene-
ities in the optical circuit (e.g., modulators, couplings with
fibers, etc.) will not lead to forming a backward wave of con-
siderable power. Moreover, it has already been shown ex-
perimentally® that, in coupling a semiconductor laser with a
fiber, a nonreciprocal device is necessary to eliminate the
amplitude and frequency oscillations caused by the reflected
wave.

The authors thank V. N. Gridnev, E. L. Ivcheko, O.G.
Rutkin, R. v. Pisarev, and A. S. Trifonov for useful discus-
sions of this article.
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