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The problem is discussed of the statistical and wave content of photometric concepts. The photo-
metric and statistical definitions of the concept of radiance of illumination are treated. We stress
that photometry describes the limiting case of a statistically quasihomogeneous and quasistation-
ary wave field. The relationship of the phenomenological and statistical approaches to the theory
of radiation transport is traced with the example of the problem of diffraction of the radiation
from plane sources. The concept is discussed of the generalized radiance, which enables one
partially to take into account within the framework of the radiation transport theory diffraction
effects by a transition from the phenomenological radiance to the local spectrum of a quasihomo-
geneous field. We present also the fundamental results on the statistical and wave substantiation
of the theory of transport in scattering media.
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1. INTRODUCTION

Photometry, i.e., the discipline of the measurement of
light magnitudes, had been formed as independent field of
physics long before Maxwell formulated the fundamental
laws of electrodynamics. For a long time it had been used
successfully in various applications of optics, while remain-
ing invariably a phenomenological theory operating with
simple, and more importantly, pictorial geometric-optical
concepts, such as ray tubes, independent beams of radiation,
etc.

At the end of the 19th and beginning of the 20th centur-
ies, owing to the studies of Khvol'son and Schuster,1-2 pho-
tometry developed further in the form of the theory of radi-
ation transport, which allowed one to describe radiation in
scattering media with the aid of phenomenological photo-
metric concepts (see the reviews3"7 for the history of the
problem and the later advances of the phenomenological
theory).

For a long time phenomenological photometry1* existed
as a closed, self-consistent theory that had been constructed

"We shall understand by this name here photometry proper together with
the theory of radiation transport.

practically without any connection with wave optics and
which completely ignored the wave and statistical properties
of light (not without reason was the transport equation trans-
ferred practically unchanged into neutron physics). All that
photometry borrowed from the rigorous wave theory re-
duced in essence to the statement of the need for going to the
geometric-optical limit A—*Q, as well as the requirement of
noncoherence of natural light sources. The "self-evidence"
of the geometrical-optical pictures on which photometry is
based led to a clearly insufficient interest in its physical bases
and to the tendency to treat photometry in isolation and
independently of the electrodynamic theory of light (see,
e.g., the textbooks on photometry8'9).

The situation has changed substantially in the past 10-
20 years. The development of statistical optics has opened up
a deeper, statistical-wave content of photometry, which has
permitted deriving the photometric relationships from first
principles, i.e., from Maxwell's equations for random elec-
tromagnetic radiation. The nontriviality of these results be-
comes clear as soon as one even tries to ascribe a more rigor-
ous meaning to the usual photometric concepts. Within the
framework of the traditional phenomenological approach,
such attempts ultimately prove fruitless and only destroy the
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initial illusion of the "self-evidence" of the photometric con-
cepts. This remark holds especially true as applied to the
theory of radiation transport, in which one deals with the
description of radiation in scattering media. While the use of
assumptions of going to the geometric-optical limit and of
mutual noncoherence of beams travelling in different direc-
tions basically suffices for the applicability of the photome-
try of free radiation (as will be shown below, these assump-
tions are not necessary!), in the case of a scattering medium
the traditional photometric approach faces almost insur-
mountable diffir ItieF Many questions of principle actually
lie outside the limits of the phenomenological theory. Thus,
for example, within the framework of transport theory, it
remains unclear how to define the radiance of radiation near
an individual scattering inhomogeneity, which may not at all
be smooth on the scale of a wavelength, so that the geomet-
ric-optics approximation loses its validity. One can give a
satisfying answer to this and analogous questions only with
the more rigorous statistical approach, in which the radi-
ation and the medium are treated as two interacting random
fields (naturally, in the linear theory, to which we shall re-
strict the treatment here, all the properties of the medium are
considered fixed and independent of the properties of the
field).

The principal aim of this review is to describe the status
of the problem of the statistical and wave content of photom-
etry and the theory of radiation transport, while directing it
primarily toward readers accustomed to the classical pheno-
menological approach. Some of the problems treated below
have been dealt with in the reviews of Refs. 10, 11 and the
monographs of Refs. 12,13 which, however, do not present a
clear enough picture as a whole.

The wave foundation of transport theory is constructed
in this review on the basis of the concept of statistical quasi-
homogeneity of the radiation (the need for quasihomogen-
eity was first stressed in Ref. 21 and later in Refs. 14, and 15,
which treated the general case of partially polarized radi-
ation in a scattering multimode medium, although this con-
dition had been used in implicit form even earlier in practi-
cally all studies on substantiation of photometry; see below).

This review presents a rather detailed list of the litera-
ture on the problem of substantiation of the theory of radi-
ation transport. The number of articles on this topic contin-
ues to grow unceasingly, exceeding the number of really new
results.

The authors dedicate this study to the memory of its
initiator, G. V. Rozenberg, whose unexpected demise pre-
vented him from participating directly in writing this re-
view.

2. PHOTOMETRY AND THE STATISTICAL DEFINITION OF
THE CONCEPT OF RADIANCE FOR FREE RADIATION

a) The photometric description of free radiation

First of all, let us recall the fundamental results of pho-
tometry and the wave theory for radiation in free space. The
photometric description of free radiation is given by the
spectral radiance Im =/a)(r, n), which is defined at each
point r of space for all directions n and frequencies <a (for

FIG. 1 . On the definition of the concept of radiance of radiation.

simplicity we shall consider the radiation pattern to be sta-
tionary, i.e., not varying with the time t ). As is known, 8'9>16

the wave field in photometry is treated as a set of noncoher-
ent ray beams (i.e., giving independent energy contribu-
tions). Thus, if we place at the point r an arbitrarily oriented
putative area having the normal z, then it will be traversed by
beams in all possible directions (Fig. 1). In agreement with
this picture, the magnitude of the radiance Ia enables one to
express the mean energy flux density S and the mean energy
density Wby the usual relationships

S = S(r)= n/u(r, n) dQn dco,

W = W (r) = -L j /„ (r, n) dQn dco.

Here c is the velocity of light. Hence we see that we can
define/,,, as

T — ••*• f>\ ~~
AS7

Here Sz, is the component of the flux density S in the direc-
tion of the unit vector z, while cos 6 = n2.

Further, we shall restrict the treatment for simplicity to
the case of monochromatic radiation and examine the corre-
sponding case of the value of the spectral densities

f f l =- |L= jn / udQn, (1)

For brevity, we omit the arguments or subscripts o:

Elementary considerations involving conservation of
energy in the ray tube lead to the fundamental equation for
photometry of radiation transport for the radiance / = /„
(see, e.g., Ref. 16). In the case of a homogeneous medium as
the radiation becomes more remote from the source, the sol-
id angle in which the source is visible declines simultaneous-
ly with the broadening of the ray tube. Consequently the
radiance proves constant along the ray. We can write this
condition for a stationary field in the form of the transport
equation

£-«• »
Here d/ds = nV is the derivative along the ray.

Thus, in classical photometry we have on the one hand,
the relationship (1), which relates the mean flux and energy
density with the radiance, and on the other hand, the trans-
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port equation (2), which determines the behavior of the radi-
ance of illumination. Here the radiance/is considered to be a
nonnegative (energy ) quantity, />0, while otherwise it can
be arbitrary. The bar over S and Win (1) denotes averaging
over space on certain scales L>/1 and over a time interval
7>r, where A and r are the characteristic wavelength and
period of the radiation (the latter statement is somewhat
vague, as is generally characteristic of the phenomenological
theory, although it is "rather self-evident").

Let us compare the photometric relationships (1) and (2)
with the results of the rigorous wave theory, where the fun-
damental quantity is not the radiance, but the random com-
plex amplitude of the wave field. Here we shall not treat
quantum effects, restricting the treatment to the framework
of the classical theory, which suffices for understanding the
essence of the matter.

b) Model of the wave field

We shall use as the initial "wave" model that of a ran-
dom field cp (scalar for simplicity), since taking into account
the polarization of the radiation is not fundamental for what
follows, and essentially involves only technical difficulties.
We shall assume that the instantaneous flux and energy den-
sity of the field are expressed in terms of the real scalar po-
tential as

Here we have <p=d<p/d t. Then the equation of continuity

which expresses the law of conservation of energy, reduces
for £>^0 to the wave equation

A <P ^ !4-\Atp -t- = 0. > '
c

For monochromatic radiation we can introduce the
complex field u by assuming, as usual, that tp = Re ue ~'"".
Then Eq. (4) takes on the form

Here k0 = co/c. Also, the average values of S and ffover the
period T = 2ir/co can be written as

(6)

We can naturally treat the field u = w(r) in (5) as ran-
dom. That is, w(r) is a random function of the space coordi-
nates (for simplicity we shall consider the mean over the
statistical ensemble to be zero, (u) =0, although this re-
quirement is_not necessary; see Ref. 78). Evidently the quan-
tities S and W also will be random functions. Further, if we
adopt the natural assumptions of statistical homogeneity
and of spatial ergodicity of u (to fulfill the latter condition in
the case of a Gaussian field, it suffices to require a decline in

correlation; see, e.g., Refs. 12 and 17), then the means (S)
and (W) over the statistical ensemble will coincide with the
means over space, i.e., with the mean values S and W that
figure in the phenomenological theory:

(S)=Hm • = S, (W)^ W. (7)

For a statistically homogeneous field we can express the
means in (7) in terms of the coherence function:

r = r (p) = (u (n) «* (ra)>.
Here we have p = r^ — r2. Consequently we have

(8)
p=0

In the latter relationship we have taken into account the fact
that r satisfies the wave equation

(Ap + ftJ)r = 0, (9)

which stems directly from the wave equation (5) for u.

c) Interrelation of photometry and wave theory for free
radiation

Let us elucidate the interrelation between the pheno-
menological expressions (1) and the results of the statistical
theory from Sec. 2b. We see from (1) that the radiance
/ = / (r, n) has the meaning of the angular spectrum of the
radiation, and hence it must be somehow related to the spa-
tial spectrum of the random field, i.e., to the Fourier trans-
form of the coherence function

(10)

Let us substitute into (9) the inverse expression to (10) that
gives the coherence function in terms of the spectrum

r(p)=Jfke*«d»k. (11)

Thus we arrive at the equation

Hence we see that the spectral density 2^ can differ from
zero only when k — k0. The physical meaning of this condi-
tion amounts to taking into account the wave nature of the
radiation, and is associated with the idea that the free field u
is formed of running plane waves whose wave vectors k sa-
tisfy the dispersion equation fc = k0. Upon taking this into
account, we can write J°k in the form of the product of a
delta function S (k — ka) with some function / ' & :

f k = / * 6 ( f c —fc0). (13)

Here we have n = k/k. Upon substituting (13) and (11) into
(8) and comparing the obtained expressions with (1), we find

,_ ftjjtO ,'

2 n (14)

Thus the spectrum of the coherence function of free, statisti-
cally homogeneous radiation is expressed in terms of the
phenomenological radiance / as
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(15)

Here the proportionality coefficient a in the scalar-field case
being treated is equal to 2/kgto, while in the general case it
depends on the nature of the field (for an electromagnetic
field a = C/STT; see Ref. 12, p. 116). The existence of the delta
function in (15) corresponds to localization of the spectrum
at the dispersion surface k = k0.

Equations (15) and (11) imply that one can express in
terms of the radiance / not only the mean flux and energy
density of the field in (2), but also the coherence function

r(p)=«j (16)

In classical photometry this relationship has not been em-
ployed in any way, since the correlation characteristics of
radiation are not included in the traditional photometric
quantities.

It is interesting to note that, although the relation of the
radiance to the correlation functions (16) of the field had
already been known for a long time for equilibrium thermal
radiation (see, e.g., Refs. 18-20, where relationships of the
form of (16) have been used to calculate the correlation func-
tions of thermal radiation), this relation became clear in pho-
tometry only after the studies of Dolin,21'22 who treated the
special case of radiation in the small-angle approximation.
This is explained by the fact that thermal radiation in free
space is an example of a statistically homogeneous field,
whereas in transport theory the fundamental interest is di-
rected to describing changes in the radiance of illumination,
i.e., taking statistical inhomogeneity into account. There-
fore, in order to use (16) in transport theory, one must first
generalize it to the case of statistically inhomogeneous fields,
which in essence has been done in Refs. 21 and 22.

d) Local spectrum of a quasihomogeneous field

According to (15), the spectrum 3?^ of the wave field is
proportional to the radiance of the radiation. At the same
time, just as the concept of the spectrum «^k itself, the rela-
tionship (15) is applicable only to a statistically homogen-
eous field M, for which the radiance/ does not depend on the
space coordinates. Real physical fields are never strictly sta-
tistically homogeneous, if only because of their spatial boun-
dedness. Here the need of taking into account the depen-
dence of / on r for finite physical systems is evident.
Fortunately we can considerably weaken the condition of
statistical homogeneity: it suffices for a "wave" substanti-
ation of photometry to require that the field be statistically
quasihomogeneous. The latter means that the field differs
not too strongly from a statistically homogeneous field—in
the sense that its statistical characteristics can vary smooth-
ly (on the scale of the range of coherence) from point to point.

In order to describe a quasihomogeneous field, one
must generalize the usual concept of the spectrum in (10) so
as to take into account the possibility of weak inhomogene-
ity. We shall call this generalization the local spectrum of the
fluctuations with the wave vector k near the point r, and
denote it by &± (r). Evidently, the local spectrum must be
expressed by a linear transformation of the coherence func-

tion: ,2 k (r) = QF, where Q is a certain linear operator. It
proves impossible to introduce the spectrum J^k (r) in such a
way that it strictly satisfies all the intuitive properties of a
spectrum, if only because of the approximateness of the very
concept of the "wave vector k near the point r." One can
treat various definitions of local spectra (in this regard see
Refs. 23-28, where analogous concepts of spectra have been
discussed mainly for nonstationary processes). The most
widespread definition takes the local spectrum to be the so-
called Wigner function

fk(R) = j e-** (« (R + f ) u* (R — f-)) d3p.(2ji)-',

(17)
This was introduced by Wigner into quantum mechanics for
completely different purposes (as the first example of quasi-
probability).29'95 We can easily see that the function in (17) is
real, and coincides with the ordinary spectrum J°k of (10)
for a statistically homogeneous field u. However, in the pres-
ence of statistical inhomogeneity it can take on negative val-
ues. Therefore, in the general case one must not attribute an
energy interpretation to it. Only in the case of a quasihomo-
geneous field differing not too strongly from statistical ho-
mogeneity does it become admissible to treat the Wigner
function as a measure of the intensity fluctuations having the
wave vector k near the point r. The need for this requirement
is not a defect of the Wigner function, and is inherent in any
other reasonable definition of the local spectrum.

Qualitatively one can write the condition of quasihomo-
geneity in the form of the inequality

ar ar

(18)

This implies the smallness of the variations of the coherence
function with respect to the argument of the "center of gra-
vity" R as compared with its variations with respect to the
difference variable p (for a statistically homogeneous field
we have 3F/d'R = 0, and (18) is satisfied to any degree of
accuracy). When the inequality (18) is satisfied, we can show
by using the wave equations for the coherence function F
arising from (5) that Eq. (15) will be satisfied approximately
for the local spectrum. That is, we have

A v 6 (k— fco) /-) Q\
n) u • \Lyl

Here the radiance / can now depend smoothly on R. Upon
taking into account the definition of JTk (R) in (17), this
implies an expression analogous to (16):

(20)(R, p) = a j / (R, n) eift."P dQn.

Upon substituting this relationship into (8) and thereby neg-
lecting terms of the order of VR F in the expression for (W},
we again obtain photometric relationships of the form of (1),
where the mean flux and energy density can now depend
smoothly on the spatial coordinates R. Further, the trans-
port equation (2) arises from (20) and from the wave equation
for F with the condition (18) of quasihomogeneity for / (R,n)
taken into account. Thus, we have obtained in the "quasiho-
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mogeneous limit" (18) a wave substantiation of the funda-
mental photometric relationships (1) and (2).

We note that, although the radiance / enables one ac-
cording to (20) to obtain an expression for the coherence
function of the wave field, the inverse expression of the radi-
ance in terms of the coherence function is not unique. This
involves the fact that the relationship (20) holds only for a
quasihomogeneous field obeying the inequality ( 1 8). In other
words, not every coherence function can be expanded in an
angular spectrum of the type (20). Thus, for free radiation
the expansion of the random amplitude u into a spatial spec-
trum generally contains a contribution from inhomogen-
eous, damped waves. This contribution corresponds to a sta-
tistically inhomogeneous field, and is not taken into account
in the expression ( 1 9), in which the field is considered statisti-
cally homogeneous and formed only of running waves. One
can easily derive the simplest of the possible inversions of
(20) from (19) by simple integration with respect to k, which
gives

JT(R, p) e~ (21)

This relationship was first discussed30 for the problem of
scalar radiation from plane sources (see also Ref. 31, where
this problem has been treated for vector electromagnetic ra-
diation). One can derive other forms of the expression of/ in
terms of F by first multiplying both sides of ( 19) by an arbi-
trary function <p(k).

We stress that, when the quasihomogeneity condition is
satisfied, one could employ for substantiation of Eq. ( 1 ) other
definitions of the local spectra differing from (17) instead of
the Wigner function, and ultimately arrive at equivalent re-
sults. Actually, the essential point for substantiating pho-
tometry is not so much the choice of the definition of the
local spectrum as the necessary requirement of quasihomo-
geneity (18), which expresses the restriction on the statistics
of the wave field that allows a photometric description.

Up to now we have been speaking of monochromatic
radiation, for which the time-dependence of the field is de-
scribed by the factor e ~ la". Fully analogous arguments con-
tinue to hold as applied to a nonmonochromatic field. Here,
naturally, the requirement of quasihomogeneity must be
supplemented with the condition of quasistationarity of the
field (one can combine these two conditions together under
the name of space-time quasihomogeneity).

3. RADIANCE OF PLANE SOURCES AND GENERALIZED
PHOTOMETRY

a) The photometric description of the radiation from plane
sources

Next in complexity after the description of free radi-
ation is the problem of the radiation from plane sources in
free space. A rigorous solution is known for this problem
that enables one to compare directly the photometric and
wave approaches. First let us examine the photometric de-
scription of this problem.

In photometry one can assign to plane radiation sources
a radiance distribution 7° (rL,n) in the plane z = 0 (herein-
after a± denotes the component of the vector a transverse to

z). Then the radiance 7 of radiation for z > 0 is expressed in
terms of the radiance of the sources 7° as the solution of the
transport equation (2):

<22)— ̂ -, n ) ,

This corresponds to conservation of radiance along the rays.
By using the radiance of (22), one can express the coher-

ence function of the field in line with (20). This gives

r (R, p) = a J P (R± - R, -^, n ) e«.»P dQn. (23)

Let us compare this relationship with the results of the wave
theory.

b) The wave description and the generalized radiance of
plane sources

In the wave theory, instead of the radiance 7° of the
sources in the plane z = 0, one fixes the boundary values of
the complex amplitude of the field u° (rj. This allows one to
express the amplitude of the diffracted field u for z > 0 by
using the Rayleigh method (expansion in plane waves) or by
using the known Green's function for this problem (see, e.g.,
Ref. 12). The result has the form

(24)u( r )=

Here
(25)

is the Green's function, and we have r = (r± ,z).
Upon termwise multiplication of the expression (24)

taken at two points rl and r2 and averaging of the results, we
find that the coherence function of the field

T = <« (rt) a* (r2)>= (« (R + f ) "* (R ~T

for z, 2 > 0 is expressed in terms of the coherence function of
the field at the screen

, PI) = U ' H I + - « " * R I — (26)
as

r(R, P)

xr«(Rl, pi)d«RidV. (27)

Now let us employ the following approximation in (27):

I G (R - Rl) | (28)

Here the dependences on the difference variables p, and pL.
and on the coordinates R and R1. of the center of gravity are
separated (here n = (R - Rr)/|R -R±.). Then Eq. (27)
turns out to acquire the photometric structure of (23). The
quantity that plays the role of the radiance 7° here is
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7« (Rx, n) = 4- (-^-)2cos0 j r«(R±) p±) e*>

(29)

In order to derive Eq. (29), it suffices to substitute (28) into
(27) and go over from integrating over Rr to integrating over
a solid angle near the direction n.

In order that the approximation (28) be applicable, it
suffices that the following inequalities be satisfied in the re-
gion essential for integration:

•v IP-Pi !• R= (30)

(31)

The first of these allows one to assume that (p — pL, )/2sO in
the amplitude coefficients of the Green's functions of (25),
while the second one allows us to keep only the terms linear
in/7 — /7r in the phase coefficients (the quadratic terms in the
phases drop out, so that (31) expresses the condition of small-
ness of the third-order terms).

The importance of the relationship (29) consists of the
fact that it relates the characteristics of plane sources in the
phenomenological and wave theories. A formula of this type
was first derived by Walther.32 Subsequently it has been
treated from various standpoints in many studies (see, e.g.,
Refs. 33-52, and also the reviews of Refs. 53,54). The very
simple problem of the radiation from plane sources possesses
an exact wave solution, which has been studied for a long
time in detail in the radiophysical literature (see, e.g., Refs.
12, 55, 56). The existence of such great interest in it can be
explained by the relative novelty of the "correlation" ap-
proach to photometry, the essence of which is traced most
distinctly in this problem.

It is important to note that in the general case one can
treat (29) only as a certain generalized radiance of sources,
since it does not possess all the properties of phenomenologi-
cal radiance. The point is that the conditions of quasihomo-
geneity of the field generally do not require quasihomogen-
eity of the sources themselves. In the case of substantially
inhomogeneous sources, the field near them will also be sub-
stantially inhomogeneous. Hence, in this region it does not
allow a photometric description. At the same time the condi-
tions of quasihomogeneity can be fulfilled far from the
sources, where the photometric approach becomes valid. It
is precisely in this case that we must understand (29) as a
generalized radiance not possessing all the properties of the
photometric radiance, but nevertheless giving the correct
description of the radiation in a region of quasihomogeneity
by allowing one to take diffraction effects into account by
transport theory. The latter cannot be done if one stays fully
within the framework of classical photometry.

We note that, if one employs some other definition of
the local spectrum instead of the Wigner function to sub-
stantiate photometry, then one can derive other expressions
different from (29) for the radiance 7° of sources in terms of
the coherence function (in this regard, see Refs. 32 and 33).
These differences involve the above-noted ambiguity of the
expression of the radiance in terms of the coherence function
of the field. However, all these differences drop out for a

FIG. 2. Diffraction by an aperture.

quasihomogeneous field, and all the more so for a statistical-
ly homogeneous field.

Let us illustrate what we have said with some examples.

c) Examples

1) Coherent source. Let us study the diffraction of a co-
herent (i.e., nonfluctuating) plane wave u° = eik'r normally
incident on an aperture in a plane screen having a character-
istic dimension 7_>/l (Fig. 2). Although fluctuations are ab-
sent in this problem, under certain conditions the coherence
function of the field .T= (u(r1)u*(T2)) = u(r1)u*(r2) proves to
be quasihomogeneous and hence allows a photometric de-
scription.

Actually, upon assuming in the physical-optics approx-
imation that U°(TL) = 0s(Tj.), where Os(rL) is the transmis-
sion function of the aperture, which equals unity directly at
the aperture and zero outside it, we obtain from (29) the
following expression for the generalized radiance of the
source:

(32)

Substituting this expression into (23), we shall estimate the
value of the coherence function .T for observation points ly-
ing in the Fraunhofer zone with respect to the aperture
where |RZ + {pz/2)\^k0L

2. For simplicity we restrict the
treatment to the case of small-angle diffraction, so that
nz ~ 1. Consequently we obtain

(R, p) = a j 7 (R, n) eih dQa

X exp [i A- (Hi - Ri) (Pl - pi) ] d2Pi d»Ri.
(33)

Here we have R = (R^ RJ. One can find exactly the same
expression from wave theory by using the small-angle
Green's function to solve the diffraction problem.12

We note that, although the distribution of the field over
the aperture is homogeneous in the given case, the general-
ized radiance 7° is no longer homogeneous, but varies from
point to point. Thus, for example, if we treat as 2 a slit of
width 2L unbounded along the_y axis, then the calculation of
the integral on the right-hand side of (32) yields

8 (n,)9in [2&0n« (L- \ ] 6 (L- |RX |

Here 6 (x) is the Heaviside step function. This quantity varies
over the surface of the slit, and can acquire negative values.
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However, if we substitute this expression into (23), then with
the conditions (30) and (31) taken into account for the inten-
sity of radiation F p = 0 = ( \ u 2> the integration over d/2n

now yields a nonnegative quantity.
Let us turn to the conditions (30) and (31), which allow

one to employ a photometric description for the given prob-
lem in terms of the generalized radiance / °. The vector p that
enters into these inequalities is given by the spacing of the
observation points, and the vector p± by the spacing of the
points on the aperture ( \pL, \ 5 L ), while the vector n esti-
mates the characteristic direction of diffraction (nz~cos i?,
where & is the characteristic angle of diffraction). In order to
satisfy the condition (30), it suffices to require simultaneous
satisfaction of the inequalities Rz^p cos i?~/o (i.e., the spac-
ing of the observation points must be small in comparison
with their distance from the source) and Rz >Z, cos i? (the
dimension of the source L cos i? visible in the direction of j? is
small in comparison with R2; see Fig. 2). As regards the
condition (3 1 ), for the case in which the points of observation
coincide (p = 0), upon omitting the numerical coefficients,
we have RZ^L cos •& ^k^L sin *? . This inequality is far
weaker than the condition for the Fraunhofer zone

2, so that the applicability of the generalized radi-

Here we have

ance of (32) does not require going into the Fraunhofer zone
of the aperture.

Thus in this case the generalized radiance of (32) allows
one to describe diffraction of radiation by an aperture. The
expression (32) remains applicable also in the case of two
apertures if we assume that the transmission function 6S is
equal to unity at each of them (i.e., 62 — 0{±} + 6(]j>, where
6 ^'2) is the transmission function of each of the apertures).
This implies that (32) also describes the interference of aper-
tures, in particular, the two-slit Young interferometer. We
note that in this case the generalized radiance of (32) will
contain interference terms proportional to the product
Q H'f? !|', which prove to be different from zero for values of
R± lying between the apertures. This does not correspond at
all to physical intuition. The explanation of this paradox is
that the usual photometric description in this situation be-
comes applicable only far from the apertures, in a region for
which the apertures act as a single effective source.

2) Quasihomogeneous source. For a quasihomogeneous
source, the coherence function F° (Ri,pi) varies smoothly
with the argument Rx as compared with the rapid variation
with p± . For simplicity, let us assume that F ° can be fac-
tored, i.e.,

= a2 (RJ K (Pl). (34)

This condition is not necessary, although in the literature
analogous factorization conditions are sometimes included
in the definition of quasihomogeneity.41 Here the depen-
dence of the dispersion (^(Ri )={ |«°(Rj. )|2) on Rj^ describes
a smooth statistical inhomogeneity with the characteristic
scale LR, while the correlation coefficient K (pL) approaches
zero when | p± | £ /k, with /k <LR. The expression for the ra-
diance (32) corresponding to (34) has the form

J- (35)

According to (23), the coherence function here is

(36)

. (37)

If the field at the screen z = 0 is statistically homogeneous,
so that a2 — const, then one can easily reduce this expression
to the form

a* J
I*!!**

This agrees with the well-known result of wave theory for
diffraction by a random screen (see Ref. 12, p. 74). In con-
trast to the exact solution, Eq. (38) neglects the contribution
from inhomogeneous waves, which decay exponentially
with distance from the plane z = 0.2)

3) The radiant intensity and the inverse problem — mea-
surement of the coherence function of sources. Let us examine
the expression for the radiant intensity corresponding to a
source localized in the plane z = 0 with dimensions of the
order of L. In relation to observation points far from the
source (withz>L ), such a source acts as a point source, while
the radiant intensity J (n) corresponding to it is obtained by
integrating the radiance of (32), multiplied by «2 = cos 6,
over the plane of the source z = 0:

(39)

Here

u°(xj.)= u»(RJ.le
l*J-Hj (40)

is the spatial spectrum of the field of the source. We see from
(39) that the radiant intensity/(n) corresponding to the gen-
eralized radiance of (32) is non-negative and depends only on
the low-frequency (i. e., large-scale) part of the spectrum u°
(XL), which corresponds to rather small wave numbers
XL = fc0| o- The large values XL \ > k0, which describe

exponentially decaying waves, are not taken into account in
(32).

This implies that, for a known angular distribution of
radiant intensity, one can express the contribution of the
low-frequency part of the spectrum u° to the coherence func-
tion of the field at the aperture. Actually, we shall assume
that the field u° can be considered statistically homogen-
eous. For this to be so, the dimensions L of the source must
be sufficiently large in comparison with the correlation radi-
us lc of the field u°, so that we can neglect edge effects involv-
ing the boundedness of the source. Then we obtain from (39)
and (40)

2'In most cases one can neglect this contribution, although there are ex-
ceptions.57'58
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7 ») * r°
sharply directional beams with a sufficiently small angular

Here -21 is the area of the aperture.
If now we denote the contributions from the low-fre-

quency (1*1 |<fc0) and high-frequency (\XL |>k<,) parts of the
spectrum u° to the coherence function 7"0 respectively as F °f

and r%f , then we can invert the Fourier transform entering
into (41) to obtain easily59

(42)

We note that in some cases one can express the function
F hf in terms ofF ff by using analytic continuation. Here the
measurement of the angular dependence of the radiant in-
tensity enables one to reconstruct fully the coherence func-
tion F0 of the sources (see Refs. 60-64).

Thus we see that classical photometry and the theory of
radiation transport are from the "wave" standpoint a pheno-
menological theory of the statistically homogeneous random
field.

d) Relation of the radiance to the coherence function in the
small-angle approximation

In optical applications one often encounters propaga-
tion of narrow beams of radiation. For a wave description of
such beams, one can use the small-angle approximation, also
called the quasioptical approximation or the parabolic-
equation approximation. In this approximation, Eq. (21),
which expresses the relation of the radiance to the coherence
function of the field, can be simplified somewhat. For this
purpose let us write, as is usually done, the complex ampli-
tude of a beam propagating along the z axis in the form

it = u'e^a*.

Here the random amplitude u' varies slowly with z as com-
pared with the rapidly varying phase coefficient. Then the
coherence function is represented in the form

T = <«X> = <»X*> eih°P* = r'eift°p*, (43)

where ul2 = u(Tl2), while F' is the coherence function for
the amplitude u', which varies slowly with varying pz as
compared with the "fast" factor exp (ik^p^. Upon neglect-
ing this variation, we can write

r' = r ip t=0 = r(R, PI)- (44)
Now, upon substituting (43) and (44) into the general expres-
sion (21), we find

r(R,

= -1 \

- - T(R, pj (45)

Thus, in the small-angle approximation the radiance is
expressed as the Fourier transform of the coherence function
of the field in "difference" coordinates transverse to the di-
rection of propagation. This connection between the radi-
ance and the coherence function was established in the
above-cited studies of Dolin.21'22 We note that (45) agrees in
form with the expression (29) for the radiance of plane
sources if we set nz = 1 there.

The inverse expression of the coherence function F in
terms of/ can be obtained by going over to the small-angle
approximation directly in the general relation (20), which
yields

T(R,

Here, in contrast to (45), we have retained the terms quadrat-
ic in nx in the exponential. Now if we assume p2 = 0, taking
into account the known properties of the Fourier transform
for the range of the transverse correlation of the beam /± , we
easily obtain the estimate

Zj fc0 | raj. | ~Z.,Mft 3* 1

or, if we omit the numerical coefficients, /± zzA /8&. Analo-
gously, upon assuming pL = 0 we find for the range of the
longitudinal correlation /y

2 2 =* "'

so that /|, Z A /(<5i?)2.

e) Limiting resolving power in photometric measurements

The wave nature of radiation imposes fundamental re-
strictions on the accuracy of photometric measurements
that can be viewed as a consequence of the wave uncertainty
relationship. The photometric radiance /(R, n) depends on
two arguments-the direction of propagation n and the posi-
tion vector R. Hence it is expedient to find out how compati-
ble an increase in angular resolution is with an increase in
coordinate resolution. We can obtain an answer to this ques-
tion with the example of a very simple measuring device—a
lens of diameter D, in whose focal plane the angular distribu-
tion of the radiation is being determined (Fig. 3).

The angular resolution A6 of the lens, which equals A /
D, improves with increasing diameter D of the lens. At the
same time, the localization of the radiance is impaired: one

In the argument of the delta-function, we have assumed ap-
proximately that |nx | s;0, which is allowable in the case of FIG. 3. Recording of radiation in the focal plane of a lens.
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should not ascribe the measured radiance / (R, ft) to the point
R, but to a spatial region of diameter D. That is, the uncer-
tainty AR of the coordinate amounts to approximately D.
Consequently the product of the uncertainties Ad and AR
equals the wavelength:

A e . A f l « A - / > = X . (46)

Thus an increase in the angular resolution unavoidably en-
tails a loss in resolution in the spatial variables, and vice
versa.

If the field in the plane of observation is statistically
homogeneous, then one can make the angular resolution ar-
bitrarily high by increasing the diameter D of the lens. At the
same time, in a quasihomogeneous field an increase in D
exceeding the scale of the quasihomogeneity LR becomes
unreasonable, since when D^,LR the distribution of the ra-
diation in the focal plane of the lens is unable to characterize
the angular distribution of the radiation. Consequently, the
limiting angular resolution A0min amounts to

ice - - - l £ ' pr. (49)

A9min = - (47)

This requires a lens of diameter D^LR.
Upon determining the angular distribution of the radi-

ation in the focal plane of the lens, we can determine the
coherence function of the field F (R, p) by a Fourier transfor-
mation of the form (20). The accuracy with which one knows
the coordinate R of the center of gravity, i.e., the accuracy of
localization, approximately equals the diameter D of the
lens. With increase in the difference variable p, the recon-
struction of the coherence function qualitatively worsens.
The limiting valuepmax is estimated as/?max ~A /Ad = Di.e.,
also as the diameter of the lens.

Similar restrictions also apply to the reconstruction of
the time coherence function from the measured value of the
spectral density.

f) On the relation between photometric and correlation
measurements

Let us examine the conditions under which the readings
of a photodetector can be interpreted in photometric terms.
The fundamental photometric device is the quadratic photo-
detector, whose output current / is proportional to the inten-
sity E2 of the light field averaged over some time T:

- r \ E2(r, t)' (48)

(for simplicity we neglect the polarization, treating one of
the components of the vector E as E). Here the averaging
time T is determined by the lag time of the detector and in
optical measurements usually proves large in comparison
with the characteristic period of the light oscillations
T = 2-rr/o}. If we assume the field to be quasimonochromatic
(one can achieve this, for example by fitting the photodetec-
tor with a monochromator with a transmission band
A a., <<y) and write E = Re£ 'e ~ ""', where E' is the slow com-
plex amplitude of the field, then (48) acquires the form

Hence the measured current is proportional to the square of
the complex amplitude of the field \E '(r, t ) \2 averaged over
the time T.

If the input aperture of the photodetector is small
enough, while the device itself has a small lag time, so that
the slow amplitude E' cannot vary appreciably in the time T,
then \E'\2T^\E'\2, and the measured quantity is the local
instantaneous intensity \E '(r,t )|2. In this case, evidently, the
photodetector readings do not admit an interpretation in
terms of averages over the ensemble of quantities, since the
photocurrent proves to fluctuate with time and from point to
point.

On the other hand, if the field is stationary and ergodic
in time (see Ref. 12), while the averaging time T is large in
comparison with the coherence time rcoh of the field (which
equals in order of magnitude the variation time of E', and in
the case of a monochromator can be of the order of the reci-
procal width of the transmission band Tcoh ~ 1/4«S

3)), the
time T in (49) can be made to approach infinity. Here the
time average will equal the average over the ensemble: \E' 2T

zz ( | E' |2). In this case the photocurrent practically does not
fluctuate, and will describe the mean intensity of the field at
the point r at the frequency a. That is, it is proportional to
the integral of the photometric radiance Ia over the direc-
tions, i~Sltad fln. If we can consider the radiation to be
isotropic, so that $Imdfln = 4irlm, then one measures the
spectral density /„,, which enables one to find the time corre-
lation function/" (r) of the radiation. There is also the reverse
possibility—to find the spectral density Ia from measure-
ments of/"(r) (Fourier spectroscopy).

Another case, in which the averaging action of the de-
vice reduces to averaging over the ensemble, involves spatial
ergodicity. Let us assume that the field is strictly monochro-
matic, thus ruling out time fluctuations of the amplitude E',
i.e., considering it to be independent of time (in practice this
means that the observation time T is small in comparison
with the coherence time of the field rcoh). Then the intensity
\E' |2 zz \E' 2 does not depend on the averaging time Tand is a
random function of the spatial coordinates. Let us examine
the typical scheme of photometric measurements shown in
Fig. 3. The photodetector lies in the focal plane of the lens,
which can be oriented in different directions in order to de-
termine the angular distribution of the radiation, i.e., the
radiance /„ (ft). The amplitude of the field in the focal plane
E F is proportional to the Fourier transform of the amplitude
in a plane immediately in front of the lens:

*°n^ dVi. (50)

Here we restrict our treatment to the small-angle approxi-
mation, considering points near the z axis, so that fi± = rx /F.
Here the photocurrent of the detector is

3'See also Ref. 65, where the treatment of the coherence time as the charac-
teristic duration of the light trains constituting the field is described in
detail.
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|2 <x f \ E' (ri) E'* (r'i) '^ d2ri d2r'i

= 5 S
(RI— )e

i f t»

Here the integration is performed over the distribution of the
incident light over the lens aperture 2. The integration over
R'x that enters into (51) can be viewed as a spatial averaging
over the aperture.

Now let us assume that the random incident field in the
plane of the lens is statistically homogeneous and spatially
ergodic, and has some finite range of coherence /coh . Then, if
the dimension D of the lens is large in comparison with 4,,,, ,
then the integration over R\ in (51) reduces to statistical
averaging and multiplication by the area 2 of the lens:

(52)= S J T (pi) X" cc Z/B (n).

Here P is the coherence function of the field E ', and Ia (n) is
the radiance of the radiation, which is related to F by Eq.
(45). We see that in this case the photocurrent proves to be
nonfluctuating and proportional to the photometric radi-
ance /„, , owing to the spatial averaging action of the lens.

Yet if the dimension of the lens is small in comparison
with the scale of coherence /coh , the averaging action of the
lens will be insignificant, so that the photocurrent will be a
fluctuating quantity. To average it we must collect the statis-
tics of repeated measurements for different positions of the
lens in the plane z = 0. This case is analogous to that treated
above of averaging over time with a small averaging interval
T.

One can find the coherence function F ( p) from the mea-
sured values of the radiance Ia (n) by using the fundamental
relationship (45), which establishes the correspondence
between the photometric and field characteristics of the elec-
tromagnetic field. In principle the inverse sequence of deter-
mining /<„ and F is possible: first one measures the coherence
function F (p), and then calculates the radiance /^(n). This
type of measurement might be called spatial Fourier spec-
troscopy. In essence, this is precisely what one does in using
the Michelson stellar interferometer; see Ref. 16.

In closing this subsection, let us point out some studies
treating problems involving the substantiation of the pho-
tometry of free radiation. In Ref. 66 the properties of the
coherence function of volume (nonplane) sources in free
space are discussed (as in the case studied above of plane
sources, the exact wave solution of this problem is well
known). References 67 and 68 have treated the passage
through a lens of a generalized radiance defined in a some-
what different way from that in this review (the possibility of
different definitions of generalized radiance was noted
above). References 69 and 70 have studied the generalized
radiance for the vector electromagnetic problem. Reference

71 has attempted to construct a more detailed theory of
transport theory for free electromagnetic radiation; in Ref.
72 the same problem has been treated on the basis of a quan-
tum approach.

4. STATISTICAL THEORY OF RADIATION TRANSPORT IN A
SCATTERING MEDIUM

Now let us proceed to the very complex case of radi-
ation in a scattering medium, restricting the treatment only
to a brief review of the fundamental results obtained up to
now. One can find a more detailed presentation of these
problems in Refs. 10-12.

a) The equation of radiation transport

In the phenomenological theory the behavior of the ra-
diance of radiation in a scattering medium is described by
the well known transport equation (see, e.g., Refs. 73,74). In
the simplest case of a scalar monochromatic field it has the
form

-j—r-a^ = I cj(n-«-n')/(r, n')dQn.. 153)Qg ' J * / \ / / 11 \" — /

The left-hand side of (53) describes the attenuation of the
radiance /along the ray involving scattering and adsorption
and linked under the name "extinction" (a is the extinction
coefficient and s is the length of the ray). The right-hand side
characterizes the contribution of scattering, with the param-
eter a as the scattering cross-section per unit volume. For a
weakly scattering medium with continuous fluctuations, a is
usually calculated in the Born approximation, while in the
case of widely separated discrete scatterers it is calculated in
the approximation of independent particles with a possible
correction for a weak correlation of the scatterers. Thus, for
example, in the very widespread scalar model of scattering of
radiation by continuous fluctuations of dielectric permittivi-
ty e = 1 +£, {e) = 1, the Born approximation for the scat-
tering cross-section yields

a = CTO = ^L. j (e (0) e (p)> e-
tto<"-"'>.° d3p (2ji)-3, (54)

For scattering by point dipoles with polarizability P in the
single-scattering approximation we have

a = (T, [N+N (N— 1) %(k0(n — n'))]. (55)

Here N is the number of dipoles per unit volume, al = k J/J2

is the scattering cross-section for a single dipole (without
allowance for the polarization factor), and % (q)
= {exp(/q»(r, — r2))) is the characteristic distribution func-

tion of the relative coordinates of the dipoles r, and r2. Here
the first term in (55) corresponds to scattering by indepen-
dent particles, while the second takes into account correla-
tion of the positions of the particles (see, e.g., Ref. 12, Sees.
26 and 31).

In the absence of absorption the extinction coefficient a
proves to be equal to the total (over all directions) scattering
cross-section

a = f a (n' -<- n) dQn- . i56\

(This relationship is called the optical theorem.)
To derive the transport equation (53) in the phenomeno-

logical theory, one uses simple arguments of energy balance
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in a physically infinitely small volume of the scattering medi-
um.

b. Statistical derivation of the equation of radiation transport

In proceeding to the statistical substantiation of the
transport equation (53), we first note that the statistical
meaning of the radiance as the angular spectrum of the co-
herence function of the wave field evidently must be kept for
radiation in a scattering medium. Of course, here the condi-
tion of quasihomogeneity (18), which permits introducing
the concept of a localized spectrum, must be satisfied. As
before, we shall use as the latter the Wigner function. How-
ever, the condition of quasihomogeneity no longer suffices,
since the scattering must be in some sense "small" in order
that the transport equation may hold. This leads to certain
restrictions on the parameters of the scattering medium.

For a "wave" derivation of the transport equation in the
linear theory, we can naturally start with the stochastic wave
equation for a random field a, considering the statistical
characteristics of the scattering medium to be fixed. Such a
medium can be either continuous and described by some
random field (usually the dielectric permittivity of the medi-
um serves as such a field), or discrete, i.e., consisting of sepa-
rate scattering particles whose properties and positions are
random. Here the course of the argument is practically inde-
pendent of the model of the medium: for any model of the
medium, the stochastic wave equations are used to derive the
equations for the statistical moments of the field, with the
equation for the second moment (i.e., for the coherence func-
tion F ) serving for deriving the transport equation. The
equation for the coherence function is known as the Bethe-
Salpeter equation. For radiation in the absence of sources, it
can be written in the form (see, e.g., Ref. 12):

Here.T= (a(rj)a*(ri2)) = (u^u*) is the coherence function
of the field in the scattering medium, the Dyson operators Dl

and D2 act on the arguments with subscripts 1 and 2, respec-
tively, and K12 is called the intensity operator.

In the general case the operators D12 and K12 are
known only in the form of expansions in infinite series.
Therefore, in order to employ Eq. (57), one must practically
always restrict the treatment to certain approximate values
of the operators Dl 2 and Kt2 involving the assumption of
"sufficiently weak" scattering.

One can derive the radiation transport equation from
the Bethe-Salpeter equation by methods differing in form
but coinciding in physical content: the diagram method,75'76

the operator method,77 by asymptotic expansions,14'78 etc.
(see also Refs. 79-93, where the transport equations were
derived under the most varied initial assumptions). Actually
the essence of all these methods consists of solving the Bethe-
Salpeter equation in the geometric-optics approximation un-
der the assumption that the coherence function F of the field
is quasihomogeneous. Ultimately this enables one to intro-
duce the pithy concepts of the local spectrum (17) and the
radiance of radiation (21); here the radiance / will satisfy the
transport equation (53). The essential point is that this ap-

proach does not apply the method of geometric optics to
individual realizations of the field, but only to the equation
for a quantity averaged over the ensemble—the coherence
function. This immediately removes a number of method-
ological problems involving the treatment of the concept of
the radiance in a scattering medium. In particular, the ques-
tion that was mentioned in the Introduction loses meaning—
what to take as the radiance near sharp scattering inhomo-
geneities? Actually, as we have seen, radiance is essentially a
statistical concept characterizing the ensemble of realiza-
tions, or in other words, the quadratic characteristics of the
radiation averaged over large regions of space. Therefore it is
generally pointless to speak of the value of radiance at a point
near an individual inhomogeneity.

The approach that we have just described enables one to
go from the rigorous Bethe-Salpeter equation (57) to the or-
dinary equation of radiation transport (53) by expressing si-
multaneously the extinction coefficient a and the scattering
cross-section per unit volume a in terms of statistical param-
eters appearing in the wave theory—the explicit form of
these parameters depends on the model of the medium that
one employs.

As we have already noted above, when using the Bethe-
Salpeter equation one must restrict the treatment to approxi-
mate values of the operators D12 and K12. The most impor-
tant approximation for the theory of radiation transport,
known as the "one-group" approximation, has been pro-
posed in Ref. 94. For a medium having continuous fluctu-
ations, this approximation is a natural generalization of the
simplest approximations in which one keeps the first non-
vanishing terms of a power-series expansion of the fluctu-
ations—the Bourret approximation for D12 and the ladder
approximation for K12. For a medium with discrete inclu-
sions, the one-group approximation generalizes the approxi-
mation of independent particles.

The importance of the one-group approximation for
AT12 involves the fact that this approximation keeps only the
terms of the expansion of Kn that lead to a "local" scattering
cross-section depending on the properties of the medium in a
volume of the order of several correlation ranges of the fluc-
tuations. It is precisely this cross-section, which character-
izes the local properties of the medium, that is introduced in
the phenomenological theory. The one-group approxima-
tion for Z>! 2 in the sense that it leads to the law of conserva-
tion of energy being satisfied approximately (valid to the ac-
curacy of the omitted many-group terms).

Let us formulate some important results that stem from
the "wave" derivation of the transport equation (53).

1. Instead of the heuristic picture of a noncoherent su-
perposition of ray beams on which photometry rests, the
wave theory employs the picture of quasihomogeneous ran-
dom fields. The quasihomogeneous coherence function in a
scattering medium is connected with the radiance by the re-
lationship (20) as in free space. Here, however, the wave
number k0 for free space must be replaced by the quantity Re
keff, where kefr is the effective wave number in the scattering
medium. It satisfies the dispersion equation for the mean
field, which corresponds to the homogeneous Dyson equa-
tion D (u) = 0.
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2. In deriving the transport equation, the method of
geometric optics is applied, not to find the individual realiza-
tions of the field, but to solve the equations for the moments.
This eliminates many difficulties in the substantiation of
photometry. The "effective medium" in which the radiation
is propagating is described by the Dyson equation for the
mean field. This enables one to take into account many ef-
fects lying outside classical photometry, in particular, the
influence of inhomogeneity of fluctuations on the refraction
of rays.

3. The transport equation (53) can be derived only under
the assumption of weak attenuation of the mean field, i.e.,
small extinction. In turn, this requires smallness of both true
absorption and scattering, so that the field may have the
character of running waves within the confines of individual
inhomogeneities. If we define the extinction length le as the
reciprocal of the extinction coefficient or, then the inequality
/e >yt>£ must be satisfied, where pe is the range of correlation
of the inhomogeneities of the medium.

4. In the wave derivation of the transport equation, the
previous phenomenological characteristics—the scattering
cross-section a and the extinction coefficient a—acquire a
microscopic meaning. In the wave theory these quantities
prove to be expressed as series, the first terms of which differ
little from a Born approximation like (54), or (for a discrete
medium) from a single-scattering approximation like (55).
The subsequent terms of the series, which are calculated by
the "one-group" approximation, allow for a possible non-
Gaussian character of continuous fluctuations or particle-
correlation effects. However, here multipoint distribution
functions appear in the theory whose experimental deter-
mination at present is difficult. Moreover, theoretical mod-
els are lacking that give a sufficiently full statistical descrip-
tion of any real scattering media. All this impedes evaluating
the conditions of applicability of one-group approximations,
as well as comparing the results of theory and experiment.

5. The diffraction content of the transport equation has
become evident in the wave substantiation. In particular,
this equation, when supplemented with the Dyson equation
for the mean field, has made possible a description of the
transformation of coherent radiation into a scattered com-
ponent78; here it turned out that the single-scattering ap-
proximation in the theory of radiation transport yields re-
sults equivalent to the diffraction theory of single scattering.
Moreover, as Dolin22 has shown, the transport equation in
the small-angle approximation is identical with the diffrac-
tion parabolic equation.

6. If we start not with the wave equation, but with Max-
well's equations, we can derive a transport equation for the
radiance matrix whose evolution describes various polariza-
tion effects: birefringence, depolarization of waves in the
process of propagation, Rytov rotation of the plane of polar-
ization, etc. (on the question of taking polarization effects
into account in transport theory, see Refs. 3,7,67,69,71,31,
14, 80, 82-84, 87-88).

7. Up to now we have mainly been treating the case of
the three-dimensional problem of scattering theory. There is
a large number of studies evaluating the conditions of appli-
cability of transport equation in the one-dimensional prob-

lem (see Refs. 96-99 and the literature cited there). The re-
gion of applicability of the transport equation in the
one-dimensional problem has proven to be substantially nar-
rower than in the three-dimensional case. When back-
scattering is taken into account in the absence of absorption,
this region differs little from the region of applicability of the
Born approximation. Within the framework of transport
theory, this does not allow one to allow effectively for multi-
ple backscattering. The result concerning the restricted ap-
plicability of the transport equation in the one-dimensional
problem has been obtained by direct comparison of the wave
solutions with the conclusions of transport theory. In all li-
kelihood, it is related to the phenomenon known in solid-
state physics of localization of eigenstates in one-dimension-
al systems.100-101

8. In speaking of the theory of radiation transport, one
must also mention nonlinear problems. The transport equa-
tions in these problems are widely employed and are known
under the name of equations for quantum numbers or—in
turbulence theory—as kinetic equations for waves.102'103

The discussion of the nonlinear theory lies outside the scope
of this review. We note only that in the nonlinear problems
the substantiation of transport theory is closely associated
with the problem of the onset of random behavior in dynam-
ic systems.104-106

5. CONCLUSION

The principal result of the research on the statistical
and wave content of the concepts of classical photometry
consists of the fact that these concepts have found their natu-
ral interpretation in the terms of statistical optics as the spec-
tral characteristics of the coherence function of a quasiho-
mogeneous and quasistationary random wave field. The
most fully developed are the physical bases of the photome-
try of free radiation, although even here there are some un-
solved questions. In particular, the case of nonplanar
sources must be studied in greater detail, as well as studying
the inverse problems of the type of the problem mentioned in
Sec. 3 of reconstruction of the coherence function of sources
from the distribution of light intensity. The problems that
are associated with the description of individual experi-
ments, also require more detailed study, including the prob-
lems, hardly touched upon in this review, of the conditions
for space and time ergodicity of radiation, of the choice of
the necessary averaging intervals, of the possibility of "self-
averaging" of certain parameters of radiation in the process
of propagation, etc.

Considerably more points remain unclear in the theory
of radiation transport in scattering media. First of all, one
should note here the need for quantitative specification of
the conditions of applicability of the fundamental equation
of radiation transport (53), as well as the need for construct-
ing detailed models for calculating the statistical character-
istics of scattering media. Further, since one can substanti-
ate the transport equation only under conditions of
sufficiently weak absorption and scattering, the problem,
which is important in principle, of describing scattering in
highly turbid media, in which near-field effects are essential,
i.e., effects of strong mutual irradiation of particles with par-
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ticipation of inhomogeneous waves, still remains open. Fin-
ally, the field of activity is open for performing experiments
interpretable on the basis of the correlation content of photo-
metric radiance.
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