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In recent years the fulfillment of the inequalities established by Bell has been tested in different
laboratories in the world. These inequalities make it possible to establish which of the interpreta-
tions of quantum mechanics is correct—the interpretation due to Einstein, according to which
the properties of a quantum system exist as elements of physical reality irrespective of their
observation, or the Copenhagen interpretation of Bohr and Fock, according to which the proper-
ties of a microscopic system described by noncommuting operators do not exist independently of
the means of measurement. The experiments can be divided into three classes: experiments with
optical photons, experiments with y rays, and experiments with nucleons. The experiments that
have been performed convincingly indicate violation of Bell's inequalities. Thus, the Copenhagen
interpretation of quantum mechanics and its associated principle of relativity with respect to the
means of measuring the properties of a microscopic system give at the present the only description
of quantum phenomena that does not contradict experiment.

In 1935, Einstein, Podolsky and Rosen1 published a pa-
per devoted to the foundations of quantum mechanics. In it,
they formulated a thought experiment which, as they as-
sumed, indicated an incompleteness of quantum theory. In
their view, this experiment indicates the existence of a para-
dox, which has become known as the Einstein-Podolsky-Ro-
sen paradox. Of course, now, after the passage of many years
distinguished by successes of quantum mechanics in many
fields—from the theory of superconductivity to the physics
of elementary particles—doubts about the completeness of
the quantum description seem hardly topical. However, the
paradox formulated in 1935 led not only to discussions about
the foundations of quantum theory but also to the carrying
out of a number of important experiments to test quantum
correlations over macroscopic distances. The experiments to
be discussed in the present paper prove the impossibility of
the existence of any reasonable hidden variables giving a
complete description of an individual microscopic event and
permitting the reduction of quantum mechanics to a classi-
cal model such as statistical mechanics, in which definite
properties of objects exist before their measurement by in-
struments. Thus, we shall be considering experiments
(known in the literature as Einstein-Podolsky-Rosen (EPR)
experiments) in which one considers the concept of physical
reality and the form of determinism for microscopic phe-
nomena.

Before we turn to a description of the experiments, let
us consider what are the problems that have been under dis-
cussion all these years in the dispute initiated by the sup-
porters of the hypothesis of hidden variables.

The first problem is the absence in quantum theory of
Laplace determinism. Thus, suppose we have five identical
atomic nuclei. After a certain time, two of them have de-
cayed, but three have not. The physics of the 19th century
would say that there is a "reason" why the two given nuclei
have decayed and not the others. From the point of view of
quantum theory, there is no reason why precisely these nu-

clei decayed; they "simply" decayed, spontaneously. Quan-
tum theory merely peredicts a probability for the decay of a
nucleus, and this probability can be the same for each of the
nuclei. People unsatisfied with this situation say that "in
fact" there is some reason and that there is a "hidden vari-
able," perhaps unknown at the present stage in the develop-
ment of science but nevertheless existing in nature.

Another problem is associated with Bohr's complemen-
tarity, or, as Fock called it, the principle of relativity with
respect to the means of observation.2 This conception also
has its origin in the theory of relativity. In view of the parti-
cular importance of this principle for all the following expo-
sition, let us consider in more detail how we understand the
concept of relativity with respect to the means of observa-
tion. According to the theory of relativity, the length of an
object and the duration of a process described not so much
the object or process itself but rather its relation to other
objects that form the coordinate system. The length of a ta-
ble is different for different observers, and it can be changed
without applying any mechanical forces to the table simply
by making one's frame of reference move sufficiently fast
(which changes the relationship between the table and the
coordinate system).

In quantum mechanics, an object has properties de-
scribed by noncommuting operators A and B, so that
AB — BA 7^0. It is found that there does not exist a state in
which the object can have simultaneously the properties A
and B (if the operators do not commute, they do not have a
common eigenfunction). This has the consequence that the
properties/4 and B characterize the relationship of the object
to different instruments, which pjlay th£ part of frames of
reference, so that if the operators A and B do not commute,
one cannot speak of the existence of the corresponding prop-
erties independently of measurement. If after A one mea-
sures a quantity B that does not commute with it, and then A,
the answer will, in general, be different. Since the first ap-
pearance of quantum theory people have frequently been
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tempted to think that this disturbance by the instrument can
be "explained," by assuming that a very large macroscopic
instrument "affects" the small microscopic particle so much
that the instrument itself prevents the measurement of the
complementary characteristics^ and B. In fact, it was in this
connection that Einstein, Podolsky, and Rosen suggested
that one should measure the characteristics of quantum ob-
jects without subjecting them to any force, so that the ap-
pearance of a definite A (or B } in a measurement of a definite
type will arise in a manner not involving forces. In the pro-
posed method one first takes a system of two particles with a
definite characteristic, for example, a total spin equal to
zero. The particles then separate to a fairly large distance.
After this, measuring the spin (the projection of the spin onto
some axis) of one particle and knowing that the total spin of
the system is equal to zero one can establish (and thus mea-
sure) the spin (the same projection) of the other. But the spin
projections onto different axes are described by noncommut-
ing operators; therefore, in such an experiment we can deter-
mine one or other relation to an instrument without using
any force.

In their paper in 1935, Einstein, Podolsky, and Rosen
put forward the following criterion for the reality of a phys-
ical quantity: "If, without in any way disturbing a system, we
can predict with certainty (i.e., with probability equal to uni-
ty) the value of a physical quantity, then there exists an ele-
ment of physical reality corresponding to this physical quan-
tity."

The essence of the EPR paradox is that quantum me-
chanics contradicts this criterion. Of course, there is no par-
adox3 if one accepts the principle of relativity with respect to
the means of measurement, since physical reality then be-
comes relative and, independently of an instrument, one
cannot speak of an element of physical reality (the Einstein-
ian element of reality becomes a relationship between the
particle and the instrument). A new stimulus to the discus-
sion and experimental verification of the EPR phenomenon
was given by the proof of Bell's inequalities.4 Here, we shall
outline three ways in which these remarkable inequalities
can be obtained.

First, however, let us say a few words about the fate of
the theory of hidden variables (in this connection, see, for
example, Ref. 5). These theories can be classified into theor-
ies of three types: zeroth, first, and second (this classification
is similar but not completely identical to the one proposed in
Ref. 6). In the theories of the zeroth type we have those
whose inconsistency was proved already in the early stages
in the development of quantum mechanics. First, there are
theories that contradict von Neumann's theorem, which
proves that hidden variables cannot exist if an assumption
made in such theories is valid, namely, that the mathemat-
ical expectation of the sum of two quantities calculated using
the rules of quantum mechanics is equal to the sum of the
mathematical expectations of these quantities. Second, there
are the so-called contextually independent theories of hid-
den variables. In these theories, it was assumed that the re-
sult of measurement of a property of a system can be predict-
ed on the basis of knowledge of the values of the hidden

variables of only the system itself. Gleason7 and Kochen and
Specker8 showed that such theories are inconsistent and are
of the zeroth type. Thus, the only possibilities are contextu-
ally dependent theories of hidden variables, in which the
value of a particular characteristic of the system can be cal-
culated on the basis of knowledge of the values of the hidden
variables of not only the system itself but also the hidden
variables of the instrument (so that for different devices there
will be different hidden variables). Here, we already ap-
proach very close to relativity with respect to the means of
observation.

Theories of the first type include theories compatible
with the special theory of relativity (there do not exist signals
that propagate with a velocity greater than the velocity of
light); these are local theories. Theories of the second type
are nonlocal and allow invalidity of the special theory of
relativity. As will be seen from what follows, only such the-
ories are today possible as an alternative to quantum theory.
Usually certain fields are assumed as the hidden variables.
The most exotic variant is the suggestion by Burgers9 (see
also Shimony10) to introduce psychological hidden param-
eters. Thus, one can predict the behavior of a man in a case
when no exterior criteria permit it by asking him "what he
wants to do." From this point of view, quantum particles
make a choice that cannot be predicted by means of external
observations. A living system, in contrast to one that is not
living, is like a ferromagnet, in which the directions of the
magnetic moments are spontaneously aligned. A nonliving
system is a collection of particles that make random choices,
while a living system spontaneously observes a '"tradition."
Such a point of view has the consequence that quantum me-
chanics cannot apply to living organisms (in this connection,
see also Wigner's comments11'60). We note that psychologi-
cal hidden variables must also be connected nonlocally. In-
terest in this variant was to a large degree stimulated by the
well-known paradox of Schrodinger's "alive and dead
cat ,,58.59,61

After this brief excursion into the problem of hidden
variables, we turn to the proof and discussion of Bell's in-
equalities, which show that for whatever choice one makes
of the local hidden variables the corresponding hypotheses
can be experimentally refuted. In different papers these in-
equalities are expressed in different forms, but they are all
called Bell's inequalities after their original discoverer.

1. Suppose there is an object characterized by three
quantities A,B,C which take the values ± 1.

In quantum theory, these quantities can correspond to
noncommuting operators A, B, C.

Suppose however that a particle simultaneously pos-
sesses^, B, C. Then (see D'Espagnat12), considering an en-
semble of identical particles and denoting by A + the case
when A takes the value + 1 (and similarly for B and C) and
A ~ the case when A takes the value — 1, we obtain

N (A+B~) = N (A+B~C+) + N (A+B~C~),
where N is the number of particles with the corresponding
properties. From the equalities

AT (B-C+) = N (A+B-C+) 4 N (A-B~C+),
N (A+C~) = N (A+B+C-) + N (A+B-C-)
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it obviously follows that

N (A+B-) < N (B-C+) + N (A+C-). (A)

This is one of Bell's inequalities. ^
Suppose the operators A and B do not commute. Then,

if, following Einstein, Podolsky, and Rosen, we assume that
the properties A and B exist as elements of physical reality,
so that only the interference of the instrument prevents their
simultaneous measurement, to determine their values it is
necessary to consider, not a system of identical particles, but
pairs of particles. Each pair has the property that if for one
particle A takes the value + 1, then for the other A = — 1
(for example, spin of one particle Sz = 1/2, and of the other
Sz — — 1/2 if the two form a state with zero spin). Then,
denoting the number of pairs by «, we rewrite the inequality
(A) as

n (A+B+) <; n (B~C~) + n (A+C+). (B)

In this inequality, n is the number of pairs of particles in
which one has A +, the other has B +, etc. Thus, checking
these inequalities experimentally, we test whether the parti-
cles simultaneously "have" A, B, C (a similar point of view is
expressed, for example, in Ref. 62) or, in accordance with the
principle of complementarity, they arise in the measurement
as corresponding relations between particle andmstrument.
If A, B, C exist simultaneously (although A, B, C do not
commute), this means that quantum mechanics is incom-
plete and one therefore needs some theory of hidden varia-
bles to describe the subquantum level.

The inequality (B) was tested experimentally at Saclay
in France in 1976,13 the properties A,B,C being the projec-
tions of the spin of a proton onto three different directions.
For a system of two protons in the singlet state the experi-
ment showed that Bell's inequalities are violated and thus
quantum mechanics is valid: The characteristics A J),C asso-
ciated with noncommuting operators do not exist simulta-
neously. The arrangement of the experiment is as follows.
Protons from an accelerator are aimed onto a hydrogen tar-
get and scattering occurs, the result being pairs of protons in
the singlet state (total spin of the pair equal to zero). The
particles of the pair separate to macroscopic distances. Then
each particle passes through a carbon "analyzer," which
transmits only a proton with a definite polarization (projec-
tion of the spin onto some axis) corresponding to the polar-
ization of the carbon atoms (like the optic axis in an optical
analyzer) (Fig. 1). Rotating the analyzer II with respect to
analyzer I, we pass from measurement of B to measurement
ofC.

The most remarkable thing in this (and in other EPR
experiments) is that rotating one analyzer that transmits a

proton "influences" in some unusual manner the probability
for transmission of the proton by the other analyzer, despite
the fact that no material carrier (particle of field) of this influ-
ence exists. A dependence of the probability on the angle can
also appear in a classical theory (see Appendix 3) due to the
common past of the particles and the existence of a conserva-
tion law; it is the result of different sampling of pairs of
events that take place independently of the rotation. How-
ever, the quantum correlations cannot be explained only in
such a way. The point is that in classical physics the proper-
ties of the particles exist independently before their measure-
ment. Therefore, if the particles do fly apart (for example, in
an explosion of some device), in detecting particles with defi-
nite momentum at different angles to the right of the device,
we appear to "change" the number of particles with opposite
momenta to the left, but this is simply a different selection.
But in the quantum case it is impossible to speak of the exis-
tence of a definite projection of the spin before its measure-
ment that could be selected (or detected) differently by the
observer. Here and in what follows, we use a term frequently
encountered in the literature on EPR experiments: "influ-
ence," meaning by this the circumstance that if there is an
observer capable of detecting only the passages of protons
through his analyzer (for example, I) he can, rotating his
analyzer through different angles, change the frequency of
transmission of the protons coupled with his protons
through the second analyzer II (the rotation changes the
"particle-instrument" relationship). Note that the total
probability of transmission of proton II remains the same for
different angles and is 1/2.

Indeed, a simple calculation in accordance with the
rules of quantum mechanics (see Appendix 1) shows that if
analyzer I has transmitted a proton then the probability that
II does so too is wla =( 1/2) sin2(# /2), where 0 is the angle
between the spin projections that I and II measure. This "in-
fluence" (or nonlocality, in Bell's terminology17-50) is mani-
fested as a correlation between the events of transmission of
particles at I and II. To find this correlation it is necessary to
know the events at both analyzers, and therefore transmis-
ion of a signal from I to II by means of the above influence
does not occur. Indeed, the second observer will find that his
analyzer transmits not only protons coupled with those that
pass through I but also others, which are coupled with pro-
tons that do not pass through I. Since observer II does not
know which protons pass through I, and which do not, the
rules of the same quantum mechanics show that he will not
discover any "influence" exterted by I. The probability of
proton transmission through II in the case when a proton
has not passed through I is (1/2) cos2(0/2), so that the total
probability of transmission through II is (l/2)sin2(0/
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2) + (1/2) cos2(<9/2) = 1/2. The same arguments hold for the
"influence" of II on I. The situation here is again similar to
the Lorentz contraction: Although different observers in dif-
ferent frames of reference contract the length of an object
differently an observer in its rest frame does not note any
contraction at all and thus cannot obtain information about
the moving observer by virtue of the Lorentz contraction.

At the same time, just as the Lorentz contraction leads
to definite physical consequences, the feature of quantum
mechanics we are discussing (the relativity with respect to
the means of measurement) leads to the appearance of very
specific correlation functions, which violate Bell's inequal-
ities.

Indeed, since the number of pairs in the Saclay experi-
ment is obviously proportional to the corresponding prob-
ability, Bell's inequality (B) must mean

2 2 2 2 2 2

which does not occur at all angles (for the expression of Bell's
inequalities in this way and their violation for a system with
half-integral spin, see also Ref. 11). We now turn to a differ-
ent form of Bell's inequality.14'16

2. Suppose there are four quantities, each of them tak-
ing the values A,B,A',B' independently. Then it is readily
seen that AB + AB' + A 'B - A 'B' = +2.

For example, if each quantity is + 1, this algebraic sum
if 2; if A = B = + 1, A ' = B' = — 1, then it is — 2, etc.

Assuming that these quantities are random, we write
down for the mean value

W% (AnBn+AnB'n+A'nBn-A'nB'n)

which leads to one further Bell's inequality for the math-
ematical expectations:
\P(A,B) + P (A, B')

+ P (A', B) —P (A1, B') |<2; (C)

where

As A, B, A ', B ' we can again take the spin projections onto
different axes. Quantum mechanics and experiments, which
confirm it, contradict the above inequalities in the case of
two particles described by a common wave function. It is
obvious that the presence of a correlation between/!, B,A',
B ' due to the common past of the particles and some conser-
vation law merely has the consequence that not all + 1 pairs
will be admissible but only a fraction, the final conclusion
remaining the same (see the example in Appendix 3). What is
wrong with our derivation of the inequalities? We have im-
plicitly assumed the existence of an ensemble characterized
byA,B,A',B'in accordance with the notion of hidden varia-
bles. Then the violation of the inequalities shows that we
were wrong to assume that A, even when it is measured at a
point at which no signal can have arrived from the point at
which B is measured, does not depend on B, and this means
nonlocality (contradiction with the special theory of relativi-
ty). For agreement with quantum mechanics, it is necessary

to assume that^4 is a function ofJ? and vice versa; therefore, if
A = 1 when B = 1 , then if B is rotated and made into B ', then
A, in general, cannot remain equal to +1. Therefore, if
AB = 1, then AB' can become — 1 when B' = 1, and instead
of 2 we can obtain 0, 4, etc.

3. Finally, we give a proof of a Bell's inequality that
directly uses the concept of local hidden variables and shows
that quantum theory cannot be regarded as a theory of a
relativistic probabilistic process.17'18 Suppose that at some
point I we measure the quantity ,4,, , and at II, which is sepa-
rated by a spacelike interval from I, we measure some Bb .
Both quantities can take the values + 1, and the indices a
and b indicate a dependence of these quantities on the direc-
tion. For example, if we measure the spin projection onto
some axis, then a (or b ) is the azimuthal angle. Suppose
further that a definite result ( ± 1) of the measurement of A
depends not only on the direction a but also on some hidden
variable A, and that the result of the measurement of B de-
pends accordingly on the direction b and the same A, local-
ized in n, the intersection of the light cones of the past of the
points I and II. Locality of the hidden variables means that A
does not depend on b and B does not depend on a. Therefore,
all correlations between A and B must be due solely to the
common past, in which the A values are given.

We write the mathematical expectation of the product
ofAa andBb as

P (AaBb) = j dXpJ(X) A (a, K) B (b, X),

where p(A ) is the probability distribution of the variables in
n- A (a, A) and B (b, A ) are the values of Aa and Bh averaged
over the possible values of the hidden variables of the instru-
ments (we consider contextually_dependent theories of hid-
den variables!), so that \A \ < 1, \B \ < 1. Let a' and b ' be posi-
tions of the instruments that measure A and B that are
alternatives to a and b. Then, following Bell,19

P(AaBb)-P(A,Bb.)

p ( A ) [ 4 ( a , X)B(b, K)-A(a, K)B(b', A)]

= J c% (A) {A (a, X) B (b, K) [1 ± A (a', X) B (b', K)]}

- j dXp (X) {A (a, X) B(V, *) [1 ± A (a', K) B (b, JL)]}.

It follows from \A \ < 1, \B \ < 1 that
\P(AaBb)-P(AaBb,)\

(i±A (a', K) B(b,
or

]P (AaBb) - P (AaBb.) | s£2 + P (A^Bt.) + P (Aa>Bb),
\P (AaBb) - P (AaBb.) \+\P (Aa>Bb.) + P (Aa.Bb) \ <2. (D)

It is easy to understand why and when quantum me-
chanics contradicts this inequality. The expectation value of
a physical quantity for a known wave function i/r in quantum
mechanics is calculated as

»(ri, ruM^inKn, *n)dri drllf

but the wave function of a system of particles in the general
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case is not the product of the single-particle wave functions
but some superposition of them, for example,

t ('i, = 2 ll (rn),

where Ct are certain coefficients. For example, the ordinary
symmetrization of the product already leads to superposi-
tion.

In quantum theory there is a new connection between
the whole and the part, which de Broglie calls complemen-
tarity between the whole and the part. If we have complete
information about the parts of the system, this does not yet
mean that we know the whole. Therefore, if the system is
described by a wave function (is in a pure state), then a sub-
system is characterized by a density matrix (mixed state).
Because of this, the expectation value of the product AB cal-
culated using the wave function (using knowledge of the
whole) is not equal to the expectation value calculated by
means of the density matrices for I and II. In the latter case,
information about the correlation contained in the whole is
lost. And it is only in the special case when the wave function
is the product of single-particle functions that we obtain
agreement with Bell's inequality.

We now turn to a description of the optical EPR experi-
ments. They are arranged as follows (Fig. 2). There is a
source of low-energy photons (atoms of calcium,20'24 mer-
cury-198,22 mercury-202,21 mercury-20023), which are pro-
duced in a cascade transition in the atom. In one transition
J = 0— >/ = \—tJ = 0 a photon pair is produced in a state
with wave function described by a superposition of states
with total angular momentum J — I . The photons are emit-
ted in opposite directions and pass through the analyzers 1
and 2. If a photon is polarized along an analyzer axis, the
analyzer transmits it; if the polarization is perpendicular to
the axis, it does not. The observable Aa has the value + 1 if
the photon passes through analyzer A „ and — 1 if it does
not; Bb is associated similarly with the analyzer .,42. Then the
quantum mechanical calculation gives (see Appendix 2 and
Refs. 25 and 26) for the expectation value

where a = a — b is the angle between the optical analyzers
A , and A2. After they have passed through the analyzers, the
photons are caught by photon detectors. Experimentally,
one measures the coincidence rate when both photons pass
through the analyzers, both do not, one does and the other
does not. Bell's inequality (D) can be written in the form

I P (AaBb)-P (AaBc)\ + \P (AdBb) + P (AdBc)\ < 2. (E)

Choosing the angles 2a = 0°, 2b = 135°, 2c = 45°, 2d = 90°,
for cos2or we obtain left-hand side equal to 2^2, which obvi-
ously contradicts Bell's inequalities. So far, six optical ex-

periments have been performed (University of California,
1972 (Ref. 20); University of Texas, 1976 (Ref. 23); Harvard
University, 1973 (Ref. 22); Institute of Theoretical and Ap-
plied Optics, Orsay, 1981 and 1982 (Refs. 24 and 66)). Of
these, five confirmed quantum mechancis, and one con-
firmed Bell's inequalities (Harvard). We note however that
Bell's inequalities can be satisifed in some cases (when there
is a product of single-particle wave functions) in quantum
mechanics too (in this connection, we mention the attempt to
explain the results of two experiments with optical photons
and Y rays compatible with Bell's inequalities on the basis of
quantum mechanics in Refs. 27 and 28), but their violation
always rules out the possibility of local hidden variables (a
classical picture).

Besides the optical experiments, experiments with y
rays have also been made. These experiments have much
similarity to Wu and Shaknov's experiment29 to determine
the parity of positronium. A pair of photons is produced by
the annihilation of an electron and positron in a state with
zero total angular momentum when a positronium atom de-
cays into Y rays. The 7 rays then pass through analyzers
(realized by means of Compton scattering) and are detected
by counters. The basic arrangement is the same as in the case
of the optical photons described above. In the optical experi-
ments, the analyzers are better but the photon counters
worse; in the experiments with the Y rays, the counters are
better but the analyzers are worse. Six experiments have
been performed with y rays (University of Catania, 1974
(Ref. 30); University of Columbia, 1975 (Ref. 31); University
of London, 1976 (Ref. 32); Institute of Physics at the Univer-
sity of Bologna, 1977 (Ref. 33), 1981 (Ref. 63); Freiburg Uni-
versity, 1979 (Ref. 34)). The first experiment did not contra-
dict Bell's inequalities, but in all the others they were
violated. The distance between the photons in the second
experiment was 25 cm. Thus, correlations are indeed ob-
served over macroscopic distances. At one time, Schro-
dinger35 conjectured that the quantum mechanical correla-
tions should disappear when the distance between the
subsystems of a system desribed by a wave function becomes
unquestionably macroscopic (see also Refs. 36 and 37). The
experiment shows that this hypothesis must be rejected.
Thus (together with the recent Freeh experiment at Orsay),
11 experiments clearly contradict Bell's inequalities, and
two are compatible with them.

However, from these two experiments it cannot be con-
cluded that in some cases a theory of hidden variables is
possible. There are serious grounds for believing38 that the
reason for the discrepancy was a systematic error in the ex-
periments. The point is that quantum mechanics predicts the
presence of a strong correlation that may escape notice be-
cause of systematic error. But the detection of a strong corre-
lation agreeing with high accuracy with quantum mechanics
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due to a systematic error is improbable.
At the present time, a much cleaner experiment has

been designed39'66 making it possible to confirm the correla-
tions over macroscopic spacelike distances.

In this experiment, one analyzer is effectively rotated
relative to the other. In contrast to other experiments in
which the analyzers were rigidly fixed, in Ref. 66 the one
analyzer is rotated relative to the other so rapdily that no
signal could "warn" the second analyzer that the first has
been rotated in the case of passage of photons through both
analyzers. Therefore, this precludes any imitation of genera-
tion of correlations by a signal connecting the two analyz-
ers.4 The need to make such an experiment follows from
Bell's remark4 that in the case of rigidly fixed analyzers there
can be a connection between them due to the exchange of
signals at velocity less than or equal to the velocity of light,
this resulting in a violation of Bell's inequalities that can be
eliminated only if the analyzers are rotated very rapidly dur-
ing the flight of the particles. In the experiment of Ref. 66,
the effect of a rotation is achieved by deflection of a photon
by optoacoustic interaction of the photon with a standing
ultrasonic wave in water. For this (Fig. 3) the photons, before
arriving at the analyzers, pass through a deflecting device Ct

on the left and C2 on the right, where they interact with an
ultrasonic wave. The light passes through Cl and C2 without
refraction if the amplitude of the standing ultrasonic wave is
zero, and it is completely refracted through angle 2dB where
9B is the Bragg angle, if the amplitude is maximal. If the
light is not refracted, it arrives at the analyzers/I l and/4 2; if it
is, it arrives at the analyzers B, and B2. Choosing the fre-
quency of the ultrasonic wave appropriately, one can ensure
that the time of flight of the photons over the distance from
the source to the deflecting device, t = L /c (in Ref. 66, the
time t is of the order of 40 nsec) is greater than the "deflec-
tion" time (in Ref. 66, of order 10 nsec). Thus, the events of
the transmission of the photons through the left- and right-
hand analyzers are separated by a space-like interval. The
devices C, and C2 to the left and right are connected to ultra-
sound generators working at different frequencies, so that it
can be assumed that they are uncorrelated. The results of the
experiment of Ref. 66 contradict Bell's inequalities and con-
firm quantum mechanics. The experiment of Ref. 66 is of
significant interest as a demonstration of the fact that the
wave packet reduction postulate introduced by von Neu-
mann42 in nonrelativistic quantum mechanics is also valid in
the relativistic region (Fig. 3). What does the experimentalist

directly measure in photon experiments that test Bell's in-
equalities?

If q> is the angle between the optic axis of the two polar-
izers, R (tp ) is the rate of coincidences in the readings of the
photon counters in the presence of both analyzers, /?, is the
counting rate when the second polarizer is eliminated, and
R2 when the first is, but the second remains, and R is the rate
when both are eliminated, then experimentally one measures

c _ 4 (R (P) + J (

For the connection between R (<p } and P(AaBb ), introduced
above with allowance for the nonideality of the analyzers,
see Appendix 2. If Bell's inequalities hold (see Refs. 25 and
26), then one must have — 1 <5>

exp <0; experimentally, for
example, in the experiment of Ref. 20, 5exp = 0.05 ± 0.008;
in the experiment of Ref. 24, Ssxp = 0.126 + 0.014; in the
experiment of Ref. 66, Sexp = 0.101 ± 0.020. In the /-ray
experiments, one measures (see Ref. 31)

where ̂ Vss is the number of cases when the photons undergo
Compton scattering, N is the number of cases when both
photons undergo Compton scattering and both photons are
detected, n, is the number of times when both photons un-
dergo Compton scattering and only photon 1 is detected, nz

is the same number for photon 2, and a and b are the azi-
muthal angles characterizing the Compton analyzers.

Quantum mechanics gives
R ( a , b ) = 1 —MiMtP (AaBb)

= 1 — MiM2 cos 2 (a — b),

where Mlt M2 are certain instrumental factors of the Comp-
ton analyzers. In any local theory of hidden variables, M\M2

must be replaced by some coefficient B<MlM2/^2,^1 since
for consistency with Bell's inequalities cos2(a — b }( must be
replaced by c cos2(a — b ), where c< + A/2~; in the Bohm-
Aharonov37 theory B<MtM2/2, c = 2. Finally, in connec-
tion with the various EPR experiments, we mention the in-
verse EPR experiment analyzed by Costa de Beauregard40 in
connection with the question of time reversal in quantum
mechanics and macroscopic irreversibility (in this connec-
tion, see also Ref. 41).

The scheme of the inverse EPR experiment is as fol-
lows. Two lasers send beams toward each other; the photons
pass through analyzers Al and^42 and excite atoms due to an

FIG. 3.
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inverse cascade transition with absorption of both photons.
The number of excited atoms is then measured by counters.
In a direct EPR experiment the photons have a "common
past"; in the inverse experiment, a "common future" (Fig. 4).

As in the direct EPR experiment, the probability of
photon transmission through both analyzers with subse-
quent two-cascade excitation of an atom depends sinusoidal-
ly on the difference between the angles between the optic
axes of the analyzers. Technically, the inverse EPR experi-
ments are simpler, and the experiments that have been done
do indeed demonstrate the existence of sinusoids. But what
does this sinusoid mean from the point of view of theory?
The probability of excitation of an atom is described by the
same expression as the probability of emission; this last
means that the initial wave function of the photons absorbed
by the atom is not the product of single-particle wave func-
tions of photons emitted independently by lasers but some
symmetrized function. Hence, a wave function representing
the product of single-particle photon functions has been
transformed at some time—reduced in accordance with von
Neumann,49—to a symmetrized function because (or in or-
der that?) at a future time the atom should be excited. Since
the situation in this experiment is the time reverse of the
direct EPR experiment, one can say in accordance with the
theory of the direct experiment that the wave function for
the chosen cases of excitation of the atoms representing the
product of the single-particle functions of the photons emit-
ted by the lasers is reduced to a symmetrized function on the
passage through the analyzers, so that the expectation value
for the product of the spins is the same cosine of the angle as
in the direct experiment. However, can one then transmit
any information from the future (create an "antitelegraph")?
The answer is no, in the sense that one cannot control the
transmission of such information.

Suppose that in some way we can recognize the trans-
mission of the photons through the analyzers (for example,
using Compton scattering in the case of y rays). Then the
inverse EPR experiment indicates the presence of a correla-
tion between the events of transmission of photons through
the analyzers for a definite angle between their optic axes
and excitation of an atom at a subsequent time. As in the case
of the direct EPR experiment, to establish the fact of correla-
tion it is necessary to know both events. Now suppose we do
not know the future and follow only how the photons are
transmitted by the analyzers, the atoms being excited in
some cases and in the others not. Then, generally speaking,
we shall not see sinusoids. And it is only in the case of an
improbable piece of'luck" that we can "predict" the excita-
tion of an atom. The fundamental absence of Laplace deter-
minism in quantum mechanics mentioned at the beginning
of the paper has the consequence that the fact of excitation of
an atom is entirely random and beyond the control of man,

and therefore, if atoms are excited successively several times,
then later they also cease to be excited randomly, and a "pre-
diction" obtained once is completely unreproducible. The
inverse EPR experiments also confirm quantum mechanics
(see Refs. 64 and 65).

However, the example we have given is interesting as an
indication of the possibility of extending the principle of rel-
ativity with respect to the means of measurement for quan-
tum systems not only in the present but also in the
past.43-44'45

In conclusion, we say a few words about the significance
of Bell's inequalities and their verification in EPR experi-
ments.

First, the establishment of these inequalities and the ex-
perimental verification of their violation makes it possible to
rule out entirely a local theory of hidden variables, and thus
we obtain an experimental confirmation of the correctness of
the Copenhagen interpretation of quantum mechanics. The
simplest variant of a nonlocal theory of hidden variables46

also currently contradicts experiment.47 In principle, a non-
local theory of hidden variables is not ruled out (see, for
example, Ref. 48). However, quantum mechanics is much
simpler than such a nonlocal theory, and therefore a nonlo-
cal theory of hidden variables can hardly be regarded as a
serious alternative to quantum mechanics.

Second, the general nature of Bell's inequalities makes
it possible to perform experiments to test them in other fields
of science where we encounter random processes not direct-
ly related to quantum phenomena (for example, in biology).
Then the experimental detection of violation of these in-
equalities would make it possible to establish a correlation
between phenomena assumed entirely unrelated to one an-
other and not due to a common origin.

Third, it is of interest to investigate correlations over
macroscopic distances, not for two-particle states as in the
discussed EPR experiments, but for more complicated
many-particle states (see Ref. 49).

In connection with the important part played by parti-
cle production in cosmology, it has been suggested that cor-
relations of EPR type may be responsible for the observed
isotropy of the background radiation received from regions
that are causally unconnected. In fact, from the vacuum,
which plays the part of the common wave function of the
Universe in the early stage of evolution, pairs of particles
could be produced at spacelike distances,5' so that the obser-
vation of one particle (with definite charge) necessarily en-
tails the appearance at another point of a particle with the
opposite charge (a similar situation for decays of K mesons is
analyzed in Refs. 52 and 53). Finally, the quantum correla-
tions make it possible to give one further proof of the quan-
tum nature of light.54'55 In the literature on the interaction of
light with matter, one frequently encounters the opinion that

Photon absorber

FIG. 4.
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a classical theory can be used to describe many phenomena
involving light. Thus, in a semiclassical theory of radiation
light energy is emitted and absorbed in quanta not because
the electromagnetic field is quantized but because there are
discrete energy levels of atoms. Therefore, one can speak of a
portion of electromagnetic energy described classically and
characterized by a definite polarization. But then in the opti-
cal EPR experiments using cascade transitions it follows
from quantum theory that the ratio of the coincidence rate
when both analyzers are present, R (cp ), to the analogous
quantity R0 (Ref. 55) in the absence of analyzers in R (tp )/
R0 = (J) cos2<p, i.e., for tp = -rr/2 (optic axes perpendicular)
this quantity is zero.

In the classical theory, zero is obtained only in the ex-
ceptional case when the axes of the analyzers exactly agree
with the direction of the polarization vector. If there is any
rotation of the two analyzers that maintains the perpendicu-
larity of the axes, a different result is obtained (both analyz-
ers begin to transmit photons). But in quantum theory a null
result is obtained in all cases. The experimental proof of this
fact prompted Jaynes56 who is actually a well-known sup-
porter of the neoclassical theory of radiation, to write: "I
wish John von Neumann were here to see it."

APPENDICES

LSpinJ

Suppose there is singlet state of two particles with spin |:

'"
We denote the plane formed by the optic axes of the

polarizers by z, x. If the axis of one of the polarizers is taken
asz, then to the axis of the other, rotated through the angle 6
about the y axis, there corresponds the operator

o'z = oz cos 6 + ax sin 9,

where az and crx are Pauli matrices, and
,

°z=
/cos 9 sin 9\

— cose / '\ s i n 0

The eigenvectors of a'z are

2 1 • e /! \ , e / O \
e = - s m T ( o ) + c o s T ( i ) -

Conversely,
n \ e

/o \ . 0 e .
U / =sin "2" *++cos-2 *-

(2)

(3)

(4)

(5)

(6)

(7)

Then it is obvious that if the probability of transmission of a
particle by analyzer 1 (the state i/>+) is \, then the probability
of both analyzers transmitting particles is (|) sin2(0 /2) (since

the state ^_ for the second particle is reduced to f J with

probability sin2f - j). The probability is the same that neither

analyzer transmits a particle. The probability of the first
analyzer not transmitting a particle (the state if>_] and the
second transmitting one is (1/2) cos2(#/2). The total prob-
ability that the second analyzer transmits a particle is obvi-
ously

i . , 9 . i „ e ism - c o s = -
The correlation function is

(8)

2. Spin 1

Suppose the two-photon spin function of photons emit-
ted in an atomic cascade is57

fi\(*\ i°\(°M0 ° + r *WW WW-I (9)
——
V2"

The analyzer 1 measures the projection of the photon
spin onto the optic axis of the analyzer in the x, y plane at
angle a to the x axis; a similar angle b is associated with
analyzer 2. Then (see, for example, Ref. 26)

(cos 2<J sin 2a
sin2« —cos2a

0 0

The eigenvectors of Aa are

°\

!• (10)

X+ = cos sin ax»i X- = —sin cos °Xt.

-(J). *-(!)
W Vo /

The correlation function is

(AaBb) = <i)j | AaBb = cos 2 (a — b).

(12)

(13)

If we bear in mind that the real photons are not emitted
strictly along the axes al =z and n2 = — z but in cones
HI e/3,, n2€/22, then we must introduce a characteristic
such as the angle 9, which is equal to the half-sum of the
angles of the cones f l l and fl2- Finally, we take into account
the imperfection of the polarizers and introduce (Refs. 25
and 26) £^(1 = I, II), the probability of a photon polarized
along the polarization axis of the polarizer / passing through
it, and e'm, the probability of a photon polarized perpendicu-
lar to this axis passing through the polarizer. The effect of
the lenses that direct the photon onto the polarizer has the
consequence that the idealized photon wave function used
above is transformed into if>' = D + ZD _z$, where

/± cos2 q) cos 0 +sin2 q),
4 t= I + cos if f i n <f cos 0—tin qpcoscp,

\± cos tp sin 9,

± sin 9 cos q> cos 0 — cos q) sin (p, +cosq>s in0N
± sin2<pcos0-fcos2q>, =p sin <p sin 9 I _
± sin q> sin 0, ± cos 9 /

(14)

291 Sov. Phys. Usp. 27 (4), April 1984 A. A. Grib 291



The operators D ± z rotate the vectors HI and n2, respective-
ly, transforming them into z and — z. With allowance for
these corrections, we obtain (see Refs. 25 and 26) instead of
the idealized case

(2EjIcos2o + 2E^1sin!!a —1, 2 (ejj—e^) coso sin a, °\

2(ejj —e^)cosasino, 2ejj sin2 a + 2s ̂  cos2 a — 1, O J -
0, 0, I/

(15)
Then the calculation of Ref. 26 gives

P(AaBb) = P(a.) = W \ A a B b \ M f ' )

F1 (6) cos 2<z, a

a = a — b FI
14(0 — lOCOSO-j-aCOS'U— 2COS* b-f-COS0 t

(17)
If a theory of hidden variables were true, then Bell's inequal-
ities would require

s = P (P) + P (T) — P (« + P) — P (a + v) — 2< 0. (18)

For el
m = f" = 0, £1

M = EM = 0.9, 0 = 30°, quantum me-
chanics already gives 5" = 0.306 for a = 45°, /9 = - 22J °,
r = 22^ °.

The quantity P(^a J6) = P(o) is related to the rate of
coincidence of photon pairs by

'M —8m)Fi (9) cos 2(o—b), (16)

(7—3 cos 6—3 cos3 9—cos3 9)a

12(8 — 16 cos 6+9 cos2 9 — 2 cos* 9 +cos" 9) •

(C° ~
(19)

where Rpp (a) is the coincidence rate when both photons pass
through the polarizers, and Rbb (a) is the same quantity when
both do not; Rpb (a) andRbp (a) are the corresponding quanti-
ties when one of the photons does not pass through a polariz-
er. The quantities R (a), Rlt R2 introduced in the main text
are related to Rpp, Rbb, Rpb, Rbp by

Rpp(a,) = R(a.), Rpb(a) = R1—R(a,), RbP (a) = fl2 — R (a), -,

(20)

3. Example of a classical and a quantum case of the
occurrence of a correlation for two particles15

Suppose there is some body initially at rest that breaks
up into two parts with angular momenta Jl and J2 = — J].

Two observers measure the projections of J! and J2

onto certain directions fixed by unit vectors a and P, and
determine

r« = sign (aJt), rp = sign (pJ2).

Suppose the experiment is repeated N times and the di-
rections J! and J2 are distributed randomly. Then the mean
values

are zero but { rare) = (l/N)^jrja rj0 must be nonzero. If
a = 3, then r^ = - rje and ( ra re > = - 1 always.

It is obvious that conservation of the total angular mo-
mentum leads to a correlation between the events observed

by the first and second observers. Rotating the axis a and
following, for example, only the cases of motion of the frag-
ments along a, we could thus make different samplings of
cases of motion of the fragments in opposite directions. This
would change re , but it is obvious that this change is not any
kind of "influence" but merely a consequence of different
sampling of events.

If we consider the unit sphere divided by the equatorial
plane perpendicular to a, so that in the upper half ra = 1
and in the lower ra = — 1, and we then do the same for r^ ,
we obtain four regions in which rare = ±1. Their areas

f\
stand in the ratio - , where 9 is the angle between a and

3. Then

9-(n-6) 29
—

Quantum mechanics for the analogous case of the singlet
state of two particles with spin £, for which one measures
ra = 2as,, rp = 23s2, gives ( ra r^ )
= ( ^|2aSi2ps2|^} = — cos#. The classical mean value
(rare) obviously satisfies Bell's inequality
\(rare) + (ra.,re) + (rare.) - ( ra,rp,)\ <2. For exam-
ple, if a = 3, and a' and 3' are such that
a • 3' = a' • 3 = cos0, a' • 3' = cos 20, then

But in the quantum case

I 1 + 2 cos 9 — cos 26 | = | 2 + 2 cos 6 (1 — cos 9) | ,

which is greater than 2 for any #<90°.
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