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The properties of narrow superconducting channels carrying a direct current are reviewed.
Among the topics covered are the stability of the normal state of the current-carrying channel and
the mechanism for a transition from this normal state to the superconducting state. In a homogen-
eous channel, the transition occurs through the formation of a critical nucleus and is a first-order
phase transition. In a channel with inhomogeneities, the transition is quite different. In this case
the normal state can exist only down to a certain value of the current, below which the normal
state is absolutely unstable. The review is devoted primarily to the theory of the resistive state of
narrow channels, which exists at currents above the critical Ginzburg-Landau current. The de-
scription is based on the concept of phase-slippage centers. Phenomenological models are dis-
cussed, as is a model of a fluctuational excitation of phase-slippage centers. The results obtained
from the microscopic dynamic theory of superconductivity are discussed at length. Among these
results are the voltage-current characteristic of the resistive state, the abrupt change in the voltage
on this characteristic, and the structure of the phase-slippage centers.
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1. INTRODUCTION venient because the problem is effectively one-dimensional,
with all quantities depending on only the coordinate along

This review deals with the properties of narrow super- the length of the sample. As a result, the mathematical dim-
conducting channels carrying a direct current. "Narrow culties are eased, and the physics of the phenomenon
channels" here are those conductors whose transverse di- emerges more clearly.
mensions are small (or, in practice, of the order of) the mag- Let us briefly summarize what is known about narrow,
netic-field penetration depth and the coherence length £ (T). current-carrying, superconducting channels. The Ginz-
These conditions are satisfied by narrow strips and whiskers. burg-Landau theory predicts that at temperatures below the
For tin, for example, the transverse dimensions must be of superconducting transition temperature such a channel can
the order of a few tenths of a micron to one micron. We be in either a homogeneous superconducting state or a nor-
assume that the samples are quite long—longer than the mal state, depending on the magnitude of the current flow-
electric-field penetration depth /E which will be defined be- ing through the channel. Specifically, at low currents the
low. Experimentally, the properties of narrow supercon- channel is in a superconducting state. When the current den-
ducting channels have been studied quite thoroughly. The sity is increased above the so-called Ginzburg-Landau criti-
states which occur in such channels are quite unusual, and cal current/,, the homogeneous superconducting state disap-
their explanation frequently requires appealing to new de- pears, and the channel should go into the normal state. This
velopments in the microscopic theory ("new" in comparison description, however, is a simplification of the actual situa-
with the classical ideas regarding superconductivity). For tion in at least two regards,
the theoretician, on the other hand, these entities are con- First, experiments show that above the Ginzburg-Lan-
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dau critical current the superconducting state does not dis-
appear completely but instead converts into a so-called resis-
tive state in which superconductivity and a static electric
field exist simultaneously. In other words, there is a finite
potential difference across the sample, while by other mea-
sures the sample is a superconductor. This state is evidence
that the simple absence of electrical resistance is not a funda-
mental property of superconductivity. Generally speaking,
resistive states are not confined to the case of narrow chan-
nels. The best-known example is the flow of current in the
mixed state of a type II superconductor,1>2 where the genera-
tion of an electric field is associated with the motion of vorti-
ces driven by the current flowing through the sample. In
narrow superconducting channels, however, the resistive
state is unrelated to the motion of any defects of the super-
conducting structure and represents a qualitatively new
phenomenon. The properties of the resistive state will be the
subject of the main part of this review.

Second, the Ginzburg-Landau theory does not take up
the question of the particular mechanism which is responsi-
ble for the transition from the normal state to the supercon-
ducting state as the current is reduced. We know that the
normal state of a channel of infinite length is stable "in the
small" (i.e., with respect to infinitesimally small fluctu-
ations) at an arbitrarily weak current. This effect is explained
by arguing that a Cooper pair which arises in a fluctuational
manner is accelerated by the electric field in the sample until
it acquires a high velocity and breaks up. This conclusion is
not, however, extended to fluctuations of finite size. Since
the electric field penetrates a finite depth /E into the super-
conducting region, a critical nucleus of the superconducting
phase can appear in the normal phase. In this critical nu-
cleus, the electric field is quite weak and cannot prevent the
Cooper instability of the normal state. Nuclei exceeding the
critical size grow and eventually fill the entire sample, which
is thereby put in a superconducting state. The transition
from the normal state to the superconducting state in a ho-
mogeneous narrow channel of finite length with a current is
thus essentially a first-order phase transition. The size of the
critical nucleus depends on the current, increasing with in-
creasing current. Above a certain/2 a critical nucleus cannot
exist. This current^ is usually considerably higher than the
Ginzburg-Landau critical current. We can thus assume that
the current interval jc <j<j2 corresponds to the region in
which the resistive state discussed above exists, but this
question requires further study.

The events which occur at the ends of the channel and
near the various inhomogeneities in the channel play an im-
portant role in the transition of a channel from the normal
state to the superconducting state. The inhomogeneities and
the boundary with the normal metal (for example, at the
contacts with the normal conductors which are the leads to
the measuring instruments) significantly promote the ap-
pearance of a superconducting nucleus. There exists a criti-
cal current jl such that atj<j\ the normal state near an in-
homogeneity or an SN boundary is absolutely unstable with
respect to the formation of an infinitesimally small super-
conducting nucleus, which subsequently grows over time

and expands, in such a manner that the entire channel be-
comes a superconductor after a sufficiently long time.

These phenomena are the subject of the present review.
We emphasize that this is a review of the theory of these
phenomena; we will be discussing the experimental results
only to the extent required to draw a sketch of the events in
question. We make no claim for a comprehensive discussion
of the experimental results. Furthermore, we will not at-
tempt to cover everything in the literature; we will discuss
only the basic ideas and accomplishments of the theory.

2. DYNAMIC EQUATIONS

The behavior of superconductors in the presence of an
electric field is far from a steady state and must be described
by the dynamic equations of superconductivity. Unfortu-
nately, the system of time-varying equations for supercon-
ductors is extremely complicated in its general form; fur-
thermore, the equations for the superconducting properties
contain generalized kinetic equations for the distribution
function of the excitations. It is exceedingly difficult to fol-
low the phenomena of interest here when forced to work
with a general system of equations of this type. The approach
which has customarily been taken to obtain specific results
from the microscopic theory has been to restrict the param-
eters of the theory (most commonly the temperature) to cer-
tain intervals in which the complete system of dynamic
equations can be simplified substantially without giving up
the features which are important for the phenomena of inter-
est.

This is the approach which we will also take in the pres-
ent review. We will write out a comparatively simple system
of dynamic equations which can be derived from the micro-
scopic theory of superconductivity in a narrow temperature
interval near the critical temperature for the superconduct-
ing transition, Tc. This system of equations will be used to
derive some quantitative results. The qualitative results ob-
tained without appealing to specific dynamic equations are
of course more general in nature.

We denote by A and % the modulus and phase of the
superconducting order parameter. We also introduce the
gauge-invariant electromagnetic potentials Q = A — (fo/
2e}V% and <P = <p + (fi/2e)dx/dt where A and <p are the ordi-
nary electromagnetic potentials. In this section of the review
we write a system of dynamic equations which contains only
the superconducting parameters A, Q, and 0; this system of
equations can be obtained from the microscopic theory near
the critical temperature if the changes in these parameters
over space and time are sufficiently slow. More specifically,
we require Dk 2, co^r^ \ where D is the diffusion coefficient,
rph is the inelastic electron-phonon relaxation time, and k
and a> are the characteristic wave vector and characteristic
frequency of the problem. These equations are quite general
and hold in a temperature range which is quite accessible
experimentally. These equations were originally derived in
their most general form by Kramer and Watts-Tobin3 (see
also the later paper by Watts-Tobin et al.4 and the papers by
Golub5 and Shon and Ambegaokar6). These equations are
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+ ̂ -div(A2Q)=0,
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where

From the condition for electrical neutrality,

div j = 0.

and (2.2) and (2.3) we find

2T

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Equation (2.6) describes the relaxation of the so-called
electron-hole disbalance. We will not discuss this pheno-
menon in detail here; the interested reader is referred to the
original papers7"10 and the reviews (Refs. 11 and 12, for ex-
ample). We do wish to mention the circumstances which are
of greatest importance for the discussion below. The gauge-
invariant potential 0 = <p + (ft/2e)dx/dt can be written as
the difference # = (l/e)(^p — fj,c), where fic = — etp is the
chemical potential of the normal quasiparticles, reckoned
from the Fermi level, and /zp = (fi/2e}dx/dt is the chemical
potential of the Cooper pairs per particle. At equilibrium we
always have//p =fic and <f> = 0. In a nonequilibrium situa-
tion, however, the chemical potentials of these two particles
species may be different. In a superconductor, this deviation
from equilibrium can also be described in terms of a disba-
lance of the populations of the electron-like and hole-like
branches of the energy spectrum. This deviation from equi-
librium has a characteristic relaxation time rQ, so that elec-
tron diffusion causes the difference 0 = (l/e)(^p — ̂ e) to
decay over distances /E = ^Dr^. It is not difficult to see that
Eq. (2.6) describes specifically this process; the relaxation of
4> results from spatial dispersion (the term containing d<t> /dt
is small at a)<r~b'. Equation (2.6) determines a characteristic
length /E, given in the case A = const by

(2-7)

This length is the penetration depth of the static electric field
(dQ/dt = 0, E= -V*).

In the gap-free case, rph4<^, Eqs. (2.1)-(2.3) become
the equations of the time-dependent Ginzburg-Landau the-
ory.13-14 In the opposite limit, 4rph>^, Eq. (2.1) is the same
as the dynamic equation for a gap-free superconductor,
which was first derived by Gor'kov and Eliashberg15; Eq.
(2.6) in this case determines the penetration depth of the elec-
tric field,

5-' <2-8)

in agreement with the result of Refs. 9 and 10.
The relaxation of the potential # results from an inter-

action of the condensate with excitations. In a gap-free su-
perconductor this interaction is strong, so that the electric-

field penetration depth is quite small, /E = (2DTfi/irA 2)1/2,
of the order of the coherence length £ ( T ) , where

nDh
8(7-0-7-) • (2>9)

In a superconductor with a gap, on the other hand, the inter-
action of the condensate with excitations can occur only in-
directly (through phonons in this model), so that in this case
the length /E in (2.8) contains the long electron-phonon colli-
sion time rph and is large in comparison with £ (T).

From Eqs. (2.1)-(2.3) we see that the characteristic fre-
quency is of order

(2.10)

where

(2.11)

is the equilibrium value of the order parameter. The condi-
tion for the applicability of these equations, w, Dk 2<rp"j;',
thus requires that the temperature be quite close to Tc:

I¥I<Trr7- <2-12»

The values of the quantity rph T /ft are large for real materials
(Table I). From the standpoint of condition (2.12), the best
experimental situations are those in Pb, In, and perhaps Sn.

In some cases it will be convenient to use Eqs. (2.1 )-(2.3)
in dimensionless form. In such cases we adopt as the charac-
teristic length and the characteristic time the quantities £ ( T )
and TGL = WQL, respectively; the order parameter is divided
by its equilibrium value A OL; and the current is expressed in
units of -rraA QL/4er|". In terms of these units the critical
Ginzburg-Landau current isy'c = 2/3V3~0.385. In dimen-
sionless variables, our equations are

I, (2.13)

(2.14)

(2.15)

uA2 (~ + 1) ~1/2 0> + div (AZQ) = 0,

(2.16)

The gauge-invariant potentials in these units are
& = <p + dx /dt, and Q = A — V%. We will ignore the mag-
netic field because of the narrowness of the sample, and we
will assume Q = — V^-. In Eqs. (2.13) — (2.16) we have in-
troduced a depairing factor

»* 1 -"1 (2.17)v '
r =

2TphA

TABLE I. Values of the parameter rph ksTc/fi for various superconduc-
tors.

Material

Pb
In
Sn
Al

rc, K

7.2
3.4
3.8
1.2

*Ph-s

2-10-11

lO-io
3-10-10

lO-8

•WaV"

2-10
4-10
102

103
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and the numerical parameter u = ir4/l4g (3)^:5.79.
The gap-free situation corresponds to A <F. The de-

pairing factor F depends on the temperature. In a narrow
neighborhood of Tc, specifically 1 - (T/Tc )<(«/Tph T}2, the
factor r is large, /> 1, so that we would always be dealing
with a gap-free situation. For those temperatures at which
experiments are customarily carried out, however, the factor
F is usually much less than unity, so that the product rph 7*c /
ft is quite large. In such cases, therefore, when A is of the
order of its equilibrium value (A ~ 1 in our units), the inequa-
lity A >-T usually holds. This inequality corresponds to the
presence of a gap in the energy spectrum. In this situation,
the electric-field penetration depth is given in order of mag-
nitude by /E ~(uF)~l/2, as can be seen from (2.16), and is
much larger than £ (T) (£ = 1 in our units).

Equations (2.13)-(2.15) can also be written in complex
form by introducing the complex order parameter
i/> = A e\p(ix):

-t/2

(2.18)

(2.19)

3. ANALYSIS OF THE STABILITY OF THE NORMAL STATE OF
A CHANNEL

a) Infinitely long homogeneous channels

In this section we analyze the stability of the normal
state of a current-carrying superconducting channel. We
first consider a homogeneous channel which is so long that
its boundaries can be ignored.

We begin the stability of the normal state of such a cur-
rent-carrying channel with respect to infinitesimally small
fluctuations of the order parameter. For infinitesimally
small values of the order parameter the gap-free situation,
4rph <#, always prevails, so that the superconductor can be
described by the time-dependent Ginzburg-Landau equa-
tions. For an analysis we use the equation in the form in
(2.18), (2.19); we linearize these equations for \if>\<r, 1. In
this case we have qp = — jx and

- (3.1)

where the x axis runs along the length of the channel. A
solution of this equation can be written in the form16

where i/>(y, 0) describes an initial (t = 0) fluctuation of i/>. The
term ( 3 in the exponential function describes the acceleration
of Cooper pairs by the electric field and causes all the infini-
tesimally small fluctuations to decay as t— >• oo . Fluctuations

cordance with

According to the work by Gor'kov17 and Kulik,18 we can
thus conclude that the normal state is stable with respect to
infinitesimally small fluctuations.

The behavior of a superconducting channel in an elec-
tric field depends strongly on just how the electric field is
produced. If the superconducting sample and the external
field sources form a system in which a static electric field is
maintained in the superconducting channel (as, for example,
in the case in which the electric field is produced in the chan-
nel by induction), then the normal state will always be stable.
This stability is clear from the acceleration of Cooper pairs
by the electric field which we have just mentioned. The situa-
tion is different where there is a state with a given current in
the system. In this case, fluctuations of finite amplitude be-
come important. Since the electric field penetrates only to a
depth /E into the superconducting region, there may arise a
finite-amplitude superconducting fluctuation of such a na-
ture that the electric field in the superconducting region is
substantially suppressed and cannot prevent the Cooper in-
stability of the normal state. A fluctuation of this type serves
as the critical nucleus of a superconducting phase in the nor-
mal phase. All the nuclei with dimensions greater than the
critical expand and propagate to fill the entire channel.

The critical-nucleus problem involves a study of nonlin-
ear equations, so it is an extremely complicated problem
from the mathematical standpoint. Numerical methods can
be of much assistance here. Watts-Tobin et a/.4 have numeri-
cally solved the critical-nucleus problem for system of equa-
tions (2.18), (2.19). Figure 1, taken from Ref. 4, shows the
shape of the critical nucleus (in a steady state, but not at
equilibrium) for various values of the parameter F for a cur-
rent./' = 0.25. With decreasing current, the amplitude of the
critical nucleus decreases; i.e., a transition to the supercon-
ducting state occurs more easily at lower currents. With in-
creasing current, however, the amplitude of the critical nu-
cleus increases, and above a certain j2 a critical nucleus
cannot exist. Estimates yield

;2~/c|f-. (3.2)

Figure 2, also taken from Ref. 4, shows./2 as a function of the
parameter F. In the limit F—>0, the asymptotic behavior
y'2 = 0.030F ~1 is found, in terms of the dimensionless units.

with an initial amplitude | =40, for example, and
with characteristic dimensions greater than J" evolve in ac-

FIG. 1. Shape of the critical nucleus according to a numerical solution of
Eqs. (2.18) and (2.19) for the current4 y = 0.25. The nucleus is symmetric
with respect to the point x = 0; only the right half of the nucleus is shown.
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FIG. 2. Dependence of/2 on F ~'. At r = 00 the currenty2 is 0.335, while
at .T = 0.18 it isy'2 = jc =0.385. The dashed line is the asymptotic behav-
ior.

In terms of the ordinary units, we would have

. o.osor-1.

The transition from the normal state to the superconducting
state in the presence of a current thus results from the forma-
tion of a critical nucleus and is therefore a first-order phase
transition.

The current y'2 is the boundary above which the normal
state of the channel is absolutely stable. As mentioned above,
/E is usually much larger than £ (T), so that the current^ is
considerably higher than y'c. If the current (j) flowing
through the channel is less thanyc , then the channel will go
from the normal state to a homogeneous superconducting
state. In this state, the entire current will be carried by the
superconducting electrons, j =js, where the superconduct-
ing currenty's = A 2V% is related to the modulus of the order
parameter by

We know19 that a superconducting current state of this type
can exist only in the current interval 0 <j <jc . If on the other
hand, the current j lies in the interval jc <j <J2, then the
transition from the normal state will occur not to a homo-
geneous superconducting state but to a resistive state, which
will be described in Sections 4—7 below.

b) Effect of an SN boundary and of inhomogeneities on the
stability of the normal state of a current-carrying channel

A transition accompanied by the formation of a critical
nucleus involves overcoming an energy barrier, which is ex-
tremely high because of the macroscopic dimensions of the
sample (the width and thickness of the barrier are hundreds
and thousands of times greater than the atomic dimensions).
As a result, the probability for the formation of a critical
nucleus must generally be very small.

Up to this point we have been discussing a homogen-
eous superconducting channel of infinitely great length. By
analogy with ordinary first-order phase transitions we
would ask what role is played by the ends of the supercon-
ducting channel and by inhomogeneities in the channel in
the transition from the normal state to the superconducting
state in the presence of a current. Since the superconducting
sample in an actual experiment is connected to the measur-

FIG. 3. Narrow superconducting channel (S) whose ends are in contact
with normal conductors (N).

ing instruments by means of normal contacts, it is natural to
consider first the problem in which a narrow superconduct-
ing channel is connected at its ends to normal conductors, so
that SN boundaries form in the contact regions (Fig. 3). The
effect of an SN boundary on the stability of the normal state
of a current-carrying channel was studied in Ref. 20. Let us
take a brief look at the results of that paper.

We consider a semi-infinite, narrow conducting chan-
nel which fills the region x < 0 (Fig. 3). We assume the condi-
tion A = 0 holds at the boundary with the normal metal, as it
does if the contact is with a "good" normal metal, i.e., if the
order parameter in it decays over distances less than J" (T) in
the superconductor.

The solution for an infinitesimally small nucleus is
found from the linearized version of Eq. (3.1). We set

q = e-ftf(x), (33)

For/(*) we find the equation

!• I \ I / it / I Qx^1 V '

whose solution can be expressed in terms of Bessel functions
of order 1/3:

/ (x) = [1 + iu (co + ;*)]1/2 Z1/3(z), (3.5)

where Z,/3 is one of the solutions of the Bessel equation, and

Figure 4 shows the z interval in the complex plane corre-
sponding to changes in x from — oo to + oo. A solution
which decays in the limit x—* — oo can be found by choosing
Z = H |2J3, where H (2J3 is the Hankel function of the second
kind. We thus write

/ (x} = [1 + iu (co + /*)]!/» H(% (z). (3.6)

Figure 4 shows a cut along the negative real z semiaxis corre-
sponding to the determination of the principal branch of the
function H(2). As we move away from — oo along x, the
argument of the Hankel function goes out of the region in
which the principal branch of //<2) is defined. An analytic

FIG. 4. Range of the argument of the Hankel function, H(?)3{z), in the
complex plane as x varies from — oo to + oo. The cut corresponds to the
definition of the principal branch of the function.
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continuation under the cut yields

-i-yi/3 (a') sin- (3.7)

wherez = e"V, and/1/3 and Yl/3 are respectively the Bessel
and Neumann functions. We see from (3.7) that in the limit
x—> + oo the function H {2)3 (z) would increase exponentially,
meaning that there would be no infinitesimally small steady-
state solution of Eq. (3.1) in a channel of finite length, in
accordance with the result of the preceding section. In our
case, however, the superconducting channel is restricted to
the region x < 0, and we must require H (2}

/3 (z) = 0 at x = 0.
The roots of the Bessel function /1/3(z')cos(v7/6)
— y,/3(z' (sin (77/6) lie on the positive real z' semiaxis. We
need the smallest root, which corresponds toz' = sl ~2.383.
Equating z = s^e'" at x = 0, we find the following condition
on the frequency:

where the critical current y', is determined by

u/,-*^ 0.791.

Using the numerical value of the parameter u, u = 5.79, we
find

A « 0.137 w 0.356/c.

It can be seen from expression (3.8) that at a current
j <jt we have a growth rate Re( — ita) > 0, and an infinitesi-
mally small solution grows over time. Ify >y',, the infinitesi-
mally small solution decays. To determine the subsequent
fate of an infinitesimally small nucleus, we consider Eqs.
(2. 18) and (2. 19) in the region |/, —j\ 4jlt and we consider the
nonlinear terms in these equations. Here we have

— jx — cps,

where

(3.9)

Again writing i/> in the form in (3.3), we find, for

[1

P+

(3.10)
We set

/ = cy. (x) + A (X),
where C<<1 is a positive constant, and/0(x) is of the form in
(3.6). The small correction /, ~ C 3 also satisfies the condi-
tions/,^) = 0 at x = 0 and /,(.*:)— »0 in the limit x— »• — oo .
Since the solution of linear, homogeneous equation (3.4) is
orthogonal with respect to the nonlinear part of Eq. (3.10),
we find the following equation for the frequency:

-"—

FIG. 5. Result of a numerical solution of Eq. (3.4) withy =yV The function
f(x) is normalized to satisfy the condition max[/(jc)| = 1. To obtain the
actual values of A, <p,, andj, it is necessary to multiply the result for
[/'(x)|byCandtomultiplytheresultsfory5 and^s by C 2, where Cis defined
by (3.16).

where the quantities a' and a" are determined by integral
expressions which contain the nonlinear part of Eq. (3.10).

To analyze the stability of a small superconducting nu-
cleus we need a'. After a numerical evaluation of the corre-
sponding integrals we find

(3.12)

where

0.981, 72 w 0.496, 73 « 0.372.

In the evaluation of the integrals, the function f0(x) is nor-
malized to satisfy max[/0(.x)| = 1. Figure 5 shows the results
for [f0(x)\,<ps, andy's. It can be seen from (3.11) and (3.12) that
a small solution at/ <y, could be stable only if/, — I2u —13/
2P2>0. Since w>/,//2~1.98, however, we have
a' = - bC2, where b = I2u-Il + (I3/2r2)>0, and the
growth rate of the solution,

(3.13)

will always be positive fory <J1. Thus, fory'<y',, an infinitesi-
mally small solution will grow with time. lfj>j\, on the
other hand, then the curve described by the expression

(3.14)

determines the threshold for the stability of the normal state
with respect to the formation of a nucleus with an amplitude
C near the SN boundary. Figure 6 shows a sketch of the
curve C (/').

These results refer to nuclei with small amplitudes
C<T, 1. Equations (2.18) and (2.19) have been integrated
numerically20 in order to determine the behavior of a nu-
cleus after it has acquired a finite amplitude. Let us examine
the results.

(3.11)
FIG. 6. Sketch of the current dependence of the amplitude of a critical
nucleus, C(/).
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FIG. 7. Results of numerical calculations describing the growth and ex-
pansion of a superconducting nucleus at the current j = 0. 1 and at the
parameter values F = a>,P= 1/3, and 7" = 0.1. Curves 1, 2, etc., corre-
spond to the
[tn = 30(n - 1)].

successive times tl = 0, t2 = 30, <3 = 60, etc.,

When j >j\, small perturbations decay with time. On
the other hand, there exists a critical amplitude C (/) such that
an initial perturbation with a greater amplitude, C>C(/),
will grow even under the condition y >jl. This behavior is in
agreement with that described above.

Small perturbations grow in the case of currents j <ji,
the initial growth of the amplitude of the nucleus continues
until it reaches a value near unity. At this point the nucleus
begins to expand, and its boundary moves into the interior of
the superconductor. This behavior is analogous to the ex-
pansion of a superconducting domain as studied in Refs. 21
and 22 on the basis of the time-dependent Ginzburg-Landau
equations. The velocity of the boundary of the nucleus and
its slope both decrease with decreasing P at a given current.
With decreasing current, the velocity of the boundary in-
creases, while its slope decreases. Figure 7 shows the results
of numerical calculations for the parameter values F = oo,
r = 1/3, and F = 1/10 with the current held aty = 0.1.

We thus see that conditions favoring the appearance of
a superconducting nucleus against the background of the
normal state arise in a superconductor near a boundary with
a normal metal. The reason is that near the SN boundary
nearly the entire current in the superconductor is carried by
normal excitations, so that the current of Cooper pairs and
their velocity are small. In other words, the boundary pre-
vents the acceleration of Cooper pairs by the electric field,
facilitating the formation of a superconducting nucleus.

The role played by inhomogeneities can be analyzed in a
completely analogous way. Following Ref. 23, we consider
an inhomogeneity of such a nature that the critical tempera-
ture of the channel depends on the coordinate x:

Tc =
Te, \x\>d,

|*|<d.

If the dimension of the inhomogeneity is small in compari-
son with g ( T ) , then by considering the problem over dimen-
sions of order £ (T) we can replace the term (Tc — T)/TC in
Eq. (2.1) by [Tc ~T+(Tcl - Tc)2dS(x)]/Tc. When we
switch to dimensionless units, an additional terms aS(x)
arises in Eq. (2.18), where the parameter

is a measure of the "intensity" of the inhomogeneity. The
parameter a may be either greater or less than unity in abso-
lute value. If the inhomogeneity weakens the superconduc-
tivity (Tcl <TC), then we have a>0; if the inhomogeneity
instead strengthens the superconductivity, we have the op-
posite result.

Because of the 5-function, the condition at the point
x = 0 becomes

(3.15)

For an infinitesimally small nucleus with x ̂  0 we again
find Eq. (3.4), and the solution of this equation is again of the
form in (3.5), but now Z1/3(z) at x < 0 and x > 0 must consist
of different linear combinations of the Hankel functions H w

and H (2) satisfying the respective decay conditions x— > — oo
and x—* + oo . Joining these functions with the help of condi-
tions (3.15), we find the critical current./! as a function of the
inhomogeneity parameter a. We will write expressions for

j\(a) only for certain limiting cases:

(a) =

2/6
JC'

it In (2/| a |) /C1

VI . I 2n |a |
2u ]e Ur2(2/3)

2d TC— —T\-i/2

In the case a-* + oo, the result is the same as that for the case
of the SN boundary, discussed above. In a homogeneous
channel, with a-»0, the critical currenty t tends toward zero,
reflecting the fact that the normal state is stable in a homo-
geneous current-carrying channel.

Analysis of the nonlinear equations reveals that the pic-
ture of the stability of the normal state is precisely the same
as that in the case of an SN boundary, discussed above. At
currents j <y\ the normal state is absolutely unstable. A
growing nucleus arises near an inhomogeneity and expands;
it eventually fills the entire sample. This process is unrelated
to the overcoming of an energy barrier, and it does not re-
quire an activation energy. At currentsy >jl the normal state
is stable with respect to infinitesimally small fluctuations but
unstable with respect to the formation of nuclei with ampli-
tudes above a certain critical value. The physical reason why
the growth of the superconducting nucleus is facilitated near
an inhomogeneity is that the inhomogeneity limits the veloc-
ity of the Cooper pairs, preventing their acceleration by the
electric field, as in the case of an SN boundary.

In this discussion of the stability of a normal state with a
current we have seen that the transition from the normal
state to a superconducting state in the presence of a current
occurs through the formation and growth of a supercritical
nucleus and is essentially a first-order phase transition. If
j <jc, then the growth of a nucleus leads to an ordinary su-
perconducting state, while ify >y'c the final state is a resistive
state. As mentioned earlier, at currents above the current j2

given by (3.2) the normal state of a homogeneous channel is
absolutely stable. For this reason, the normal state at cur-
rents y'<y'2 may be called "supercooled," by analogy with
metastable states in thermodynamics. The size of the super-
critical nucleus drops to zero a.tj<jv The currenty, is thus a
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lower boundary on the current of a supercooled normal
state. At currents belowy',, the normal state cannot exist in a
homogeneous channel.

In the sections of the review which follow we take up the
resistive state, which occurs in the current intervaljc <j <j2

(in some cases, the resistive state may also extend partially
into the region j <jc).

4. GENERAL IDEAS REGARDING THE RESISTIVE STATE

The easiest way to detect the existence of the resistive
state experimentally is to study the voltage-current charac-
teristic of the sample. The voltage-current characteristics of
pure and not very long samples were measured in Refs. 24—
27. The curves in Fig. 8a are taken from Ref. 25. They clearly
show voltage steps. As the length of the sample is increased,
and as the electron mean free path is reduced, the steps be-
come less well defined, and the curve becomes smoother. For
a while the curve runs nearly parallel to an Ohm's-law line
and then departs from it.28'29 This behavior is shown in Fig.
8b, taken from Ref. 29. Figure 8c shows the initial part of
this characteristic on a larger scale. Although the curve has
become almost completely smooth, the derivative d V/dJ ex-
hibits traces of the voltage steps.

The experimental voltage-current characteristics can
be compared with that derived from the Ginzburg-Landau
theory,19 shown in Fig. 9. At a current exceeding the critical
Ginzburg-Landau current the superconductivity should be
disrupted according to this theory, and the sample should
abruptly switch from a superconducting state to a normal
state. The primary distinction between the characteristics in
Fig. 8 and that in Fig. 9 is that in practice there are broad
ranges of the current and the voltage in which superconduc-
tivity exists against the background of a constant electric
field. This is the state which we call the "resistive state." We

4mA
20 -

50 100 150 ZOO /,

FIG. 8. Experimental voltage-current characteristics of narrow supercon-
ducting channels, a—Voltage-current characteristics for narrow tin
strips, with voltage steps25 (the different curves correspond to different
temperatures); b—voltage-current characteristic for a long, narrow tin
film with a short electron mean free path29; c—the first part of the charac-
teristic of part b on a larger scale.

FIG. 9. Voltage-current characteristic of a narrow channel according to
the Ginzburg-Landau theory.

wish to point out that it does not arise in the classical Ginz-
burg-Landau theory.

An important feature of the characteristics of channels
of finite length is the presence of voltage steps, which are
observed in the cases of both whiskers24 and samples in the
form of narrow strips.25"27 Samples in the resistive state also
have some important time-dependent properties. The fore-
most of these properties is a time-dependent Josephson ef-
fect, which is exhibited by samples exposed to microwave
radiation.25 Generation of lower frequencies is also ob-
served; the radiation is generated at the ends of the sam-
ple.28-30

We see that the behavior of narrow superconducting
channels in the resistive state is greatly different from the
classical picture of superconductivity. Furthermore, the
small transverse dimensions of the samples rule out an expla-
nation of these phenomena in terms of the ordinary motion
of vortices or regions of the normal phase through the sam-
ple. It can thus be argued that the resistive state in narrow
channels is a new type of superconducting state.

The primary task of the theory is to explain the most
unexpected circumstance: how superconductivity can exist
in a sample in which there is a constant electric field. It is
well known that Cooper pairs have a charge, so that in an
electric field they should be accelerated until the supercon-
ductivity is disrupted. As we will see, however, this is not
what occurs in the resistive state. The motion of Cooper
pairs in a superconductor and, in general, the behavior of a
superconductor in an electromagnetic field are determined
not by the vector potential A and the scalar potential <p of the
electromagnetic field but by the gauge-invariant potentials

which were introduced in Section 2. We can use the poten-
tials (4.1) to write

-^_=— (E + V<J>), (4.2)

where the velocity (vs) of the Cooper pairs is expressed in
terms of the gauge-invariant potential Q by

so that Eq. (4.2) describes the acceleration of Cooper pairs
which we just mentioned. If the velocity of the Cooper pairs
is not to increase to infinity the electric field must, on the
average, be cancelled out by the term with V#. It follows
that the resistive state of the superconductor must be a very
nonequilibrium state with 0^0 and/ze T^//P, where/ze and
Hp are the chemical potentials of the quasiparticles and Coo-
per pairs, respectively (Section 2). In a superconductor, how-
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ever, the potential <P cannot be arbitrarily large, for other-
wise the superconductivity would again be disrupted. Let us
assume that the sample is infinitely long. In this case the
potential difference (8<p) between sufficiently remote points
can take on very large values. If <P is to be kept finite, this
potential difference 8q> must be offset by a corresponding
difference in the chemical potentials of the pairs, Sfj,p , or,
equivalently, by a corresponding rate of increase in the phase
difference between these points.

In principle, there are two ways to describe the picture.
The first static model assumes that a structure which is peri-
odic along the length of the sample is established in the sam-
ple and that the parameter of the superconducting order
vanishes at the points of maximum | <P . The adjacent super-
conducting regions have different values of the chemical po-
tential /4p ; the difference is equal to the potential difference
8<p between these regions. In each superconducting region
we thus have E = — V#, d Q/dt = 0 and fip = const. The
potential <P is kept bounded because the potential difference
8<p offsets the difference between the chemical potentials of
the pairs in the adjacent superconducting regions. At points
where the order parameter vanishes, the macroscopic phase
coherence is disrupted, and /j.f and thus 0 are discontin-
uous. This picture is sketched in Fig. 10, where A is the mo-
dulus of the order parameter, and x is the coordinate along
the sample. A similar static model has been suggested by
Fink and Poulsen3'-34 and Galaiko et a/.27-35^11

This picture, however, ignores an extremely important
circumstance: The adjacent superconducting regions have
different pair chemical potentials fip = (fi/2)dx /dt. Conse-
quently, the phase difference between adjacent regions will
increase with time. Since the transition region along x
between these regions (i.e., the region in which A is approxi-
mately zero) has a width of order g, the values of the complex
order parameter in these regions will interact strongly with
each other. To see this, we write the complex order param-
eter ifi = Ae'x as

where .4 (I-2) exp(2j/z<,ll2V are the values of the order pa-
rameter in two adjacent superconducting regions. It is clear
that the modulus of the order parameter will oscillate with
time in the region in which A (l\x)andA (2\x) overlap, and the
static picture should be disrupted here. We are thus led to
ask to what extent the static model corresponds to reality at
all. This topic is discussed in more detail in Section 7; at this
point we will simply note that, as we will show below, the

FIG. 11. Representation of the complex order parameter in the space {i/>t,
ip2, x}. The only way in which the number of loops in the spiral can be
reduced is for the radius of the turns to vanish at some point.

oscillations occur only in some extremely narrow neighbor-
hoods of the points at which phase coherence is disrupted,
and all quantities oscillate only very slightly over essentially
the entire interval between adjacent points of this type.

The second description assumes a time variation from
the very outset. This is the description which we will have in
mind in the discussion below. As we have already men-
tioned, if <? is to be kept finite the potential difference 8<p
between remote points x, and x2 in the sample must be offset
by the rate of increase of the phase difference between these
points:

£•£ «X*0. (4.3)

This interpretation is conveniently illustrated in a space in
which the real and imaginary parts of the complex order
parameter ^ = 1/>I + iif>2 are plotted along two axes, while
the coordinate x (along the sample) is plotted along the third
axis42 (Fig. 11). In a homogeneous state the modulus
A = TJift + ift is constant, and the turns of the spiral in Fig.
11 are of constant radius. As time elapses, the phase differ-
ence 8% increases, and the turns of the spiral move closer
together. This tendency, however, cannot continue forever.
The phase difference 8% determines the condensate velocity

which will thus increase, and should again disrupt the super-
conductivity. If this is not to happen, some mechanism must
operate to cause a reduction in the phase difference, which is
increasing with time. It is clear from Fig. 11 that if the spiral
is to be able to lose one loop the radius of the spiral, A, must
vanish at some point x between xl and x2.

The points at which the order parameter vanishes and
its phase undergoes jumps equal to a multiple of 2w, are
known as "phase slippage centers" (PSCs).

For superconductivity to exist in the sample, the phase
slippage must occur repeatedly in time; the relationship
between the average time (t0) between phase jumps and the
average voltage between points xl and x2, V, can be deter-
mined from (2.3). Since the phase difference slips by 2ir upon
the elimination of each loop, we find the following equation
by averaging (2.3) over the time:

FIG. 10. Sketch of the structure of the order parameter and of the poten-
tials /ic,/ip, and A in the static model of the resistive state. 2eV=- (4.4)
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This is the ordinary Josephson relation. We will offer a rigor-
ous derivation of a similar relation below, based on the topo-
logical properties of phase slippage centers.

There are two possible mechanisms for the formation of
phase slippage centers. First, they may form as a result of
thermodynamic fluctuations in the system. The probability
for such an event is proportional to exp( — SF/T), whereSF
is the energy barrier between two homogeneous states before
and after the phase slippage. It is clear that this process is
more likely to occur in the immediate vicinity of the critical
temperature, where the barrier SF is low. This mechanism
was proposed by Langer and Ambegaokar,42 who should
also be credited with developing the general picture of phase
slippage described above.

As we move away from the critical temperature the
probability for the formation of phase slippage centers as a
result of fluctuations falls off sharply, and internal and
therefore more fundamental factors come into play. One
might say that the process by which phase slippage centers
are excited in a superconducting channel due to a sufficient-
ly large direct current flowing through the channel is analo-
gous to a self-excited oscillation. From a more formal stand-
point, this assertion means that the formation of phase
slippage centers, i.e., the oscillations of the order parameter
at certain points in a sample, is a consequence of nonlineari-
ties of the limiting-cycle type which are inherent in the sys-
tem.

If a superconducting channel has structural inhomo-
geneities then the formation of phase slippage centers will
occur more probably at "weak points," where the order pa-
rameter is suppressed by extraneous factors. In long and ho-
mogeneous samples, however, the phase slippage centers
should form periodically along the coordinate and in time
because of the spatial and temporal homogeneity.

It is convenient to examine the formation of phase slip-
page centers in the two-dimensional (2D) space-time43 [x;
c t } (Fig. 12). The circles in Fig. 12 are phase slippage centers,
i.e., space-time points where the modulus of the order pa-
rameter vanishes, A =0. We assume that these points form a
periodic structure in the space {x; ct}. It is easy to see that
the elimination of « loops as A vanishes in Fig. 11 is equiva-
lent to the requirement that the phase of the order parameter
change by 2irn, where n is an integer, as we move along a

i
n

FIG. 12. The space jx; ctj. The circles are phase slippage centers, i.e.,
points of such a nature that going around them along a closed contour
results in a change in the phase by 2-irn. Contour / bounds an elementary
cell of the structure of phase slippage centers in the space-time j x; ct j .

closed contour around a phase slippage center in the {x; ct}
space-time. The phase slippage centers can thus be thought
of as topological singularities of the vortex type in the 2D
space-time {x; ct}.

A quantization rule on the electric field "flux" in the
space {x; ct}, analogous to the quantization of magnetic flux
in coordinate space, can be derived43 for topological singu-
larities of this type. In our 2D space-time we introduce the
2D vectors

p = {z, ct}, q = {<?*- -<&}. « = {4*, — <p}.

These vectors are related by

he <3x (4.5)

We integrate the vector q along a closed contour around a
phase slippage center. From (4.5) we find

(4.6)

Using the Stokes theorem, we can express the first integral
on the right side in terms of an integral of rot a (rot = curl)
over the area enclosed by the contour /. It is not difficult to
see that

*—J-£-£=<«*•>.•
The second integral on the right side of (4.6) gives us a phase
shift 2irn as we go around the phase slippage center; we thus
have

qdp = s> E dx'cdt — 2e

If we consider an isolated center, we conclude that the inte-
gral along ther infinitely remote contour on the left vanishes.
In the case of a periodic system of phase slippage centers, this
integral vanishes if we choose as the integration contour the
boundary of an elementary cell of the phase slippage center
in the space {x, ct}. We thus find

\ E As = <p0n, (4.7)

where <p0 = -irfic/e is the quantum of "flux," numerically
equal to the quantum of magnet flux in coordinate space, and
the integration is extended to the elementary cell in the space
{x, ct}: ds = dxcdt. "Quantization rule" (4.7) is a generaliza-
tion of the Josephson relation to the case in which the poten-
tial drop varies and is distributed over the sample. If E re-
mains constant in time, then we immediately find from (4.7)
the ordinary Josephson relation, (4.4). Quantization rule
(4.7) is extremely useful, since it expresses the electric field
averaged over time and space (strictly speaking, this is what
is measured experimentally), in terms of the periods of the
slippage-center structure over time (t0) and along the coordi-
nate L:

ctnL (4.8)
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5. PHENOMENOLOGICAL THEORIES OF THE RESISTIVE
STATE

a) Fluctuations! excitation of phase slippage centers

Let us take a brief look at the basic qualitative theories
which have been proposed for describing the resistive state.

When the current flowing through the sample is small
(and the exciting force is small) the primary mechanism cre-
ating phase slippage centers must be thermodynamic fluctu-
ations in the system. The probability for such fluctuations is
proportional to exp( — SF/T ), so that they occur only in the
immediate vicinity of Tc , where the activation energy is low:
SF~(Fn -F8)£(7>0cc(rc - T)3'2. We now have experi-
mental proof that thermodynamic fluctuations are indeed
responsible for the appearance of a resistive state at tempera-
tures only very slightly different from the critical tempera-
ture,44"*6 1 - (T/TC } 5 10~4. This effect was first discussed
by Little.47 A more systematic theory was derived by Langer
and Ambegaokar42 and developed further by Halperin et
a/.48'49 Here we will outline the basic results of Langer and
Ambegaokar's theory.42

As was shown above, the rate at which the phase slips,
i.e., the frequency at which phase slippage centers are
formed, is related to the voltage across the part of the super-
conducting channel where the phase slippage center is
formed by relation (4.8) or, equivalently, (4.4). In order to
find the resistance of a superconducting channel we must
thus relate the frequency of the fluctuational formation of
phase slippage centers to the current through the sample. In
the theory of Langer and Ambegaokar this problem is solved
in the following way.

We consider a channel of length L0, and we assume for
definiteness that the order parameter satisfies cyclic bound-
ary conditions at the ends of this channel; in other words, we
are assuming that the spiral in Fig. 1 1 has an integer number
of loops. We assume that the wave function of the supercon-
ducting electrons, which is proportional to the order param-
eter, can be written as follows in the homogeneous current
state:

states is thus proportional to the quantity

*fc = Ak exp (ite), (5.1)

where k = 2irn/L0. The corresponding current density

is equal to jk = (efi/m)kA \ . The free energy
[a=a0(Tc-T)]

(5.2)F= J d'r

in current state (5.1) is

(5.3)

where s0 is the cross-sectional area of the channel. It is easy
to calculate the extent to which the free energy of a sample in
state (5.1) with «loops differs from that of a sample in a state
with n — I loops. This difference is

,. „ __ dF 2n ZxHsQ .

The frequency of the transitions k+±k — 2ir/L0 between
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<5-4'
In the theory of Langer and Ambegaokar the coefficient of
the exponential function, fl (T), is written as

where Nc = SoLffi^ is the number of electrons in the sample
(«e is the number density of electrons), and r is a characteris-
tic time of the microscopic processes; this time is left unde-
termined in this theory. The quantity SF0 is the energy bar-
rier between the states fa and fa -(2^/1^- Finding the
probability flux of the system from state fa to state fa _ 2w/L •
and equating it to 2eV/rfi in accordance with (4.4), we find

Langer and Ambegaokar suggested that the time T in this
expression is the same as the relaxation time which appears
in the expression for the conductivity of a normal metal,
an = ne2r/m. If we adopt this suggestion, we can easily de-
rive the resistance of the sample in the limit/— »0. Using (5.4),
we find

(5.5)

To complete the calculation of the resistance in (5.5) we
must find the energy barrier separating states which differ in
that the phase differences at the ends of the channel in these
states differ by 2ir. The energy barrier is a saddle point of the
functional (5.2) in the space of the functions if>(x). The func-
tion i/>0(x), which corresponds to the "saddle-point solu-
tion," must therefore satisfy the condition SF/Sif> = 0; i.e., it
must be a solution of the Ginzburg-Landau equation,

aat|) I i | 12 _n f\ K\

written in terms of the dimensionless units of the Ginzburg-
Landau theory [x is expressed in units of £(T), and i/> is ex-
pressed in units of ̂ GL = \la/b ]. In terms of these units the
current density is

(5.7)

It is convenient to separate the modulus and phase of the
order parameter i/> = Ae'x in these equations; i.e., it is con-
venient to transform to the gauge-invariant variables
A = |̂ | and Q = — dx/dx (here/4 = 0). Equations (5.6) and
(5.7) become

(5.8)

By virtue of electrical neutrality, the current density is con-
stant along the sample:

1 = 0. (5.9)

Equations (5.8) and (5.9) have the first integral

The structure of the solution A (x) can be visualized quite
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FIG. 13. Sketch of the potential u(A ) for Eq. (3.10).

easily by making use of a mechanical analogy: the motion of
a particle in the potential

a(A) = A2 + -^-—y-. (5.11)

Here A is playing the role of the coordinate of the particle,
while x is playing the role of the time. The potential u is
shown in Fig. 13. Bounded solutions are possible for A only if
the value of the constant on the right side of (5.10) is less than
or equal to «max (/') (Fig. 13). In this case the solution A (x) is a
function which is periodic in x and which can be described
implicitly by

d&
/C-u(A)

(5.12)

where the origin is put at the point A = A2. We need to con-
struct a solution which asymptotically becomes a homogen-
eous state A — A0 with the given current j as *— »• ± oo . We
obtain such a solution by choosing C = u^^ ; in this case the
period becomes infinite, and we have

dA (5.13)
'

The behavior of this solution is sketched in Fig. 14. The val-
ue of A 0 for a homogeneous current state is related toy by

; = A;/T=AJ. (5.14)

Equation (5.14) has a solution only ifj<Jc; forj>jc, no ho-
mogeneous current state is possible.

Solution (5.13), shown in Fig. 14, is a function which
corresponds to the maximum free energy F {if>} along that
path in the space of the functions ^ which connects two
states which lie before and after the formation of a phase
slippage center, i.e., before and after the slippage of the loop
in Fig. 1 1 ; this path is along states with the lowest possible
free energy.

We are interested here in small currents, j— >0. In this
case, the solution of (5.13) becomes

= th- (5.15)

FIG. 14. The Langer-Ambegaokar solution (3.13) for Eq. (3.10).
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This solution crosses zero at x = 0 and corresponds directly
to the time at which the phase slippage center is formed.

Substituting (5.15) into (5.2) we can now easily calculate
the height of the barrier:

2ft (5.16)

Expressions (5.5) and (5. 16) constitute the basic result of the
Langer-Ambegaokar theory.

It should be noted, however, that estimates of the coeffi-
cient of the exponential function, fl ( T ), in expression (5.4) for
the fluctuation probability in the Langer-Ambegaokar the-
ory may raise serious doubt. An exact calculation would re-
quire a direct analysis of the dynamics of the transition of the
system through the potential barrier during the formation of
the slippage center. This problem has been solved by
McCumber and Halperin48 on the basis of the time-depen-
dent Ginzburg-Landau equations supplemented with Lan-
gevin random forces to describe the fluctuations. According
to the results of Ref. 48, the coefficient fi (T) in expression
(5.4) is

where r(T} = -nH/S(Tc — T) is the characteristic relaxation
time of the modulus of the order parameter in the time-de-
pendent Ginzburg-Landau theory, and N(T) is the effective
number of statistically independent subsystems over the
length of the sample, which is proportional to the ratio £</£>
where L0 is the length of the channel. For small currents we
find

Q(T)=-

Using this expression, we find that the coefficient of the ex-
ponential function in McCumber and Halperin's theory is
about ten orders of magnitude smaller than the result de-
rived by Langer and Ambegaokar.

b) Spontaneous formation of phase slippage centers

As was mentioned earlier, the fluctuational mechanism
for the formation of phase slippage centers is important only
in a very small neighborhood of Tc: 1 — (T/TC)^ 10~4. Out-
side this especially narrow interval the probability for fluctu-
ations is exceedingly small. If, in addition, the current
through the sample is small, then there will be no mechanism
to form phase slippage centers, and the voltage across the
superconducting channel will be zero. As the current is
raised above a certain value (which depends on the length of
the sample), the conditions required for the spontaneous ex-
citation of phase slippage centers become satisfied in the sys-
tem (the system enters the limiting-cycle attraction region),
and initially one phase slippage center forms in the sample.
This event is seen on the voltage-current characteristic as a
voltage jump (Fig. 8a). With a further increase in the current
in the sample, two, three, etc., centers can form, and their
formation will be accompaied by corresponding voltage
jumps on the voltage-current characteristic. This is the situ-
ation in a sample of finite length. In an infinitely long sam-
ple, the total number of slippage centers is always large, and
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the density of these centers increases smoothly with increas-
ing current. The corresponding voltage-current characteris-
tic is a smooth curve (Fig. 8b).

It is now clear that it will be exceedingly difficult, if
possible at all, to derive an exact solution for this nonlinear
problem. We will thus first consider some qualitative theor-
ies which describe the properties of phase slippage centers.

A crude picture of the excitation of a slippage center has
the potential difference causing an increase in the velocity of
the superconducting condensate. At a certain time, and at a
certain place in the sample, this velocity reaches a value such
that the superconducting state becomes unstable, so that the
order parameter vanishes at this place. When A vanishes, the
phase coherence is disrupted. Since the sample is below the
critical temperature, the formation of a superconducting
condensate begins again around this point. The supercon-
ductivity is restored with a different phase, however, so that
the difference between the phases on the right and left of the
centers differs by ITT from the phase difference in the original
state. After a certain time, determined by (4.4), the process
repeats itself.

The formation of phase slippage centers has been simu-
lated numerically by Rieger et a/.50 They took the time in
which a center is formed to be the time in which the free
energy of a region of the sample, as it is increasing because of
the acceleration of Cooper pairs by the electric field, be-
comes higher than the free energy of the state which would
prevail in this region if the phase difference between its ends
were 2ir smaller. This condition is extremely artificial, of
course, and the procedure of Ref. 50 is good only as a first
step in solving the problem of the excitation of phase slip-
page centers.

Let us take a qualitative look at the establishment of the
voltage across a phase slippage center. We will be following
the model of Skocpol, Beasley, and Tinkham.26

We write the total density of the current flowing
through the superconducting channel as the sum of a super-
conducting party's

 an(i a normal part/n = aE:

(5.17)

All quantities on the right side of (5.17) depend on the time,
changing periodically with a period t0 = 2ir/6>j, where coj is
the Josephson frequency. We are interested in the time aver-
age of the voltage, which is the quantity which would actual-
ly be measured in a real experiment. Taking the average of
(5.17) over time, we see that the term with dQ/dt vanishes
because of the periodicity. We find

(5.18)

In the Skocpol-Beasley-Tinkham model the equation
for the time average of the potential 0 is written in the simple
form [cf. Eqs. (2.6) and (2.7)]

7^<*>. <5'19)dx*

where /E is assumed independent of x. In this case, the solu-
tion of (5.19) is

where c is a constant, and x, is the point at which 3> = 0. We
assume for definiteness that the ends of the superconducting
channel are connected to massive superconducting "banks,"
which are at equilibrium, so that x = xl corresponds to the
end of the channel. Using (5.19) we find

We assume that the sample has a finite length and that
there is only a single phase slippage center in the channel, at
the point x = x0. The change in the potential between x l and
the slippage center is

0), =csh-X|)7Xl .
'E

Adding the potential change #2 between x0 and the other
point (x2) at which <P = 0 (the other end of the channel), we
find

(5.20)

If |x0 -*i|, \x2-x0 >/E,then

and the differential resistance for a single slippage center is
/od=2/E/cr.

The quantity Vis the difference between the time aver-
ages of the chemical potentials of the Cooper pairs to the
right and left of the slippage center. The spatial potential
distribution near a phase slippage center predicted by the
Skocpol-Beasley-Tinkham model has been confirmed in a
brilliant experiment by Dolan and Jackel.51

If the superconducting channel has no inhomogene-
ities, then the first slippage center will form in the middle, so
we find from (5.20)

75 — —C— ~{ 11 IE sh[(a—'iVtel
~" ~~Ja(xo» a ch(L0/2iE) '

where L0 = x2 — x^ is the length of the channel. It is now a
simple matter to derive an expression for the superconduct-
ing current:

d<f> . ,. ~ i \i ch [Ix—a
: _• ,' T r̂ i I -J •! I rv \ 1 LI

The superconducting current js reaches a maximum at the
ends of the channel (which are connected to the supercon-
ducting banks), given by

/ —7s (go)7s, max — 7 —
ch (i/2/E) *

Clearly, this current cannot exceed the Ginzburg-Landau
critical currentyc. On the other hand, as the total current./ is
increased the condition./,. max <jc will eventually be violated
at some current. In this case, a solution with a single slippage
center in the channel becomes impossible, and one more slip-
page center must form. Correspondingly, there will be a vol-
tage jump on the voltage-current characteristic. With a
further increase in the current, three, etc., slippage centers
form and are seen as corresponding voltage jumps on the
voltage-current characteristic. The Skocpol-Beasley-Tink-
ham model thus also furnishes a qualitative explanation for
the voltage jumps on the voltage-current characteristic.52
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We will return to this topic for a more detailed discussion in
Section 7, where we will use equations from the microscopic
theory.

The simple physical arguments above give us a key to an
understanding of the nature of the resistive state. It is impor-
tant to note, however, that these arguments should be in
agreement with the known dynamic properties of supercon-
ductivity, which have been established on the basis of the
microscopic theory. This question is the subject of the fol-
lowing sections of this review.

6. RESULTS OF NUMERICAL SOLUTIONS OF THE DYNAMIC
EQUATIONS FOR THE RESISTIVE STATE

As we have already stated, the phase-slippage processes
are inherently very nonlinear, so that it is an extremely com-
plicated matter to derive a mathematically exact analytic
solution of even the comparatively simple dynamic equa-
tions (2.1)-(2.4); no solution has been found so far. Numeri-
cal methods can be of considerable assistance in reaching an
understanding of the phenomenon.

The first results by this approach were obtained by
Kramer and Baratoff.53 They studied the time-dependent
Ginzburg-Landau equations, which apply to gap-free super-
conductivity, which corresponds to the limit ,T> 1 in terms of
Eqs. (2.18)-(2.19). In this limit, the gap-free situation is pro-
vided by an electron-phonon interaction:

(6.1)

(6-2)

0.8 \

There are corresponding equations for gap-free super-
conductors with a high concentration of magnetic impuri-
ties.54 In the latter case it is necessary to set u = 12.

Kramer and Baratoff studied Eqs. (6.1 )-(6.2) for the two
values u = 5.79 and u = 12 and obtained the following re-
sults.

1. At a current j below a certain ymin (/min = 0.326 for
u = 5.79 andymin = 0.284 for u = 12), perturbations against
the background of the purely superconducting state die out,
and the superconductor returns to a homogeneous current
state with an order parameter satisfying the condition
j = A 2Jl-A2. We note thatymin <JK.

2. At a current j>j2 (/'2 = 0.335 for u = 5.79 and
j2 = 0.291 for u — 12) the superconducting current state de-
cays, converting into an expanding normal domain. At/ >j2

the superconducting state is thus unstable. This condition is
the same as the stability condition for the interface between
superconducting and normal phases in the current state
studied by Likharev and Yakobson.21-22

3. In the current interval between jmin andj2, there is a
solution which corresponds to phase slippage. This solution
is constructed in the following way: Over most of its length
the channel remains superconducting, but in a certain region
there are local oscillations of the modulus of the order pa-
rameter. At the time when A vanishes, the phase jumps by
2ir. Asy—*/min the oscillation period tends toward infinity,
and at t—> ± oo the solution asymptotically becomes the so-
lution of Langer and Ambegaokar,42 (5.12). As the current is

P.Z

FIG. 15. Profiles of A and of the potential pe along the coordinate at
various times according to the results of numerical calculations53 for the
equations of the time-dependent Ginzburg-Landau theory, u = 5.79,
y=y m l n = 0.326.

increased, the amplitude of the oscillations decreases. Figure
15 shows Kramer and BaratofFs solution for u = 5.79 and

J 7min •
These results constitute the first direct evidence that

there exists a solution with phase slippage, and they demon-
strate that the system (6.1)-(6.2) has a limiting cycle which
gives rise to oscillations of the appropriate type.

The system (6.1)-(6.2) was studied later by Ivlev et
a/.16'55 They used the equations of gap-free superconductivi-
ty to simulate the processes which occur in gap supercon-
ductors. The basic idea of their approach can be summarized
as follows: In the gap situation, which corresponds to small
values -T<1, the electric-field penetration depth is large,
7E ~r^1/2>l. In terms of Eqs. (6.1) and (6.2) this circum-
stance can be modeled by assigning the parameter u small
values: M<1. The very simple equations (6. l)-(6.2) can thus
describe that property of real superconductors which is the
most important from the standpoint of the resistive state: the
large electric-field penetration depth.

System (6. l)-(6.2) was solved numerically for the value
u = 0.01 in Refs. 16 and 55. The interval 0<x <L, where
L = 40, was selected, and at the boundaries of this interval
the conditions dA 2/dx = 0 and <P = <p + (d% /dt} = 0 were
imposed. These conditions follow from the periodicity of the
structure along x and from the symmetry of the problem
with respect to the points x = 0 and L; the even parity of A
andy's and the odd parity of <P are taken into account. The
length L is thus the distance between adjacent phase-slip-
page centers, which form a periodic structure along the sam-
ple. Figure 16 shows a solution which describes oscillations
of the modulus of the order parameter fory = 0.4. Curves 1-
3 correspond to the times tl = Q,t2 = 0.053, and t3 = 2.188;
the oscillation period is t0 = 2.52.

An extremely important point to be noted in these re-

FIG. 16. Profile of A along the coordinate at various times according to
the numerical results of Refs. 16 and 55 for the equations of the time-
dependent Ginzburg-Landau theory, u = 5.79, j = 0.4.
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FIG. 17. Profile of A along the coordinate for various values of the param-
eter r. The solid curves correspond to a minimum of A (x = 0), while the
dashed curves correspond to a maximum of A (x = 0). These are results of
a numerical solution4 of Eqs. (4.9)-(4.12).

suits is that the oscillations of the order parameter are con-
fined exclusively to a rather small neighborhood of the
phase-slippage centers, while A ,js, and # remain essentially
constant in time over most of the distance between two
centers. The reasons for this behavior will be discussed in the
following section.

Kramer and Watts-Tobin3 and Watts-Tobin et a/.4 pur-
sued the numerical studies directly for Eqs. (2.18)-(2.19) for
various values of the parameter F. They found that the cur-
rent interval in which a phase-slippage solution exists ex-
pands with decreasing value of the parameter F; the current
j2 increases in proportion to F ~1 at small values .T< 1. The
oscillations of the order parameter are of qualitatively the
same nature as in the case of the simple time-dependent
Ginzburg-Landau equation. Figure 17 reproduces the re-
sults of Ref. 4 for A with L = 6 and a current j = 0.4 for
several values of .T. Watts-Tobin etal.4 pointed out that with
decreasing/" the^ (x,t) curves approach that corresponding
to a static dependence of the order parameter near a bound-
ary with a normal phase, i.e., the curve which satisfies the
boundary conditional (x = 0) = 0. This result is explained in
Subsection 7a.

These numerical results are extremely important. In the
first place, they establish that solutions corresponding to
phase slippage do in fact exist. They thus confirm the basic
concepts on which our understanding of the nature of the
resistive state rests. Because of their particular nature, how-
ever, numerical methods cannot give us a comprehensive
description of the properties of the resistive state as func-
tions of various parameters of the sample and of the condi-
tions in an actual experiment. It would thus be extremely
important to attempt to derive (where possible) an analytic
solution of the corresponding equations. The following sec-
tions of this review describe recent progress in this direction
in the theory of the resistive state.

7. MICROSCOPIC THEORY OF THE RESISTIVE STATE

We turn now to a description of a more rigorous theory
of the resistive state, based on an analysis of the time-varying
microscopic equations of superconductivity.

a) Structure of phase slippage centers

Let us consider the dynamic equations of superconduc-
tivity, (2.13)-(2.16), in the case of a gap superconductor,
.T< 1, which is the most interesting case both experimentally
and theoretically. This case corresponds to temperatures (ft/
fph Tc )

2< 1 - (T/TC). We recall that in this case the electric-
field penetration depth is large, /E/£~.T ~1/2. The discus-
sion below is based on the results of Refs. 16, 55, and 56.

We recall in this connection that according to quantiza-
tion rule (4.7) the electric field averaged over time and the
coordinate is related to the periods of the structure of phase
slippage centers. In the dimensionless units of Section 2, the
relationship is

<*>=-ZT-. (7.1)
i/*u

The integer n is the multiple of 2ir by which the phase slips at
the time when a slippage center forms. We will set n = 1
here, working by analogy with the ordinary vortices in type
II superconductors.

Considering a homogeneous sample (without defects),
we clearly see that the distance between phase slippage
centers is determined by the relaxation rate of the potential
<P, i.e., by the relaxation rate of that deviation from equilibri-
um between the chemical potential of the pairs, f i p , and the
chemical potential of the quasiparticles^e, which is created
by the phase slippage. It follows that this distance must be of
the order of the electric-field penetration depth /E. If the
current through the sample is not very large, i.e., if
j~aE~js (j~ 1 in our units), then the period of the oscilla-
tions in time, t0, will be of order t0~L ~ l~F1/2, according to
(7.1).

At sufficiently large distances from a slippage center,
where A ~ 1, we can write Eqs. (2.14) and (2.15) as

dt
d

dx
' i 9 (A'(?) "I
. A dx \

A2<?. (7.2)

Let us estimate the terms on the right side of (7.2). The first is
of order Q_ 10~' ~ Q_ F ~1/2, where Q_ is the variable part
ofQ:Q = Q + Q_. The superior bar denotes the time aver-
age. The second and third terms are of order Q at distances of
order /E ._It follows that the variable part Q_ must be small,
Q~Fl/2Q, so that we have QzzQ. The variable part Q is
comparable in magnitude to Q only at very short distances
from a slippage center, where the first and second terms in
(7.2) are comparable in magnitude. Clearly, this situation
occurs at distances of order xl ~F ~ 1/4<L from a slippage
center. In ordinary units, we would have xl = (J"/E)1/2. We
wish to emphasize that the oscillations of the parameter over
these distances are still small, as can be seen by evaluating
the corresponding terms in Eq. (2.13). At distances x J5 1 we
find (A /F]dA /dt~A from (2.13), from which it follows that
A _ Ft0 ~ .T3'2. At .4 ~ 1, this oscillation amplitude is insuffi-
cient for the vanishing of A at certain times. It is thus clear
that near a slippage center the order parameter must be sup-
pressed to an extremely small value, A2^\. This region of
very small values of A determines the characteristic dimen-
sion of the slippage center proper, i.e., the dimension of that
part of the sample in which the order parameter oscillates
markedly. We denote by x2 the dimension of this region.
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Since we have A 2 ~ (dA /dx)x2 and dA /dx ~ 1 in this region,
we conclude that x2~A2~ 1.

We first consider the problem at a large distance from a
slippage center, *>*,, where all the quantities are essentially
independent of the time. In this case, the system (2. 1 3)-(2. 15)
can be written

dx2 -=0, (7.3)

(7.4)

(7-5>

where an average has been taken over time and where we
have introduced the superconducting current/s = — 4 2Q.
At distances x >1 we can omit the term with d 2A /dx2m(7.3),
so that

/s = A2lA — A2. (7.6)

The system (7.4)-(7.6) can be integrated easily:

'-o
(/-A2/l —A 2 ) (3A2 -2)

°

"0
L _ 1 (•
2 X — uT ) A (}

_
uT

A

j d A

I —A 2

3 A2-2

(7.7)

1/1 — A 2 0) (A)

(7.8)

and 40 are the values of/s and 4 halfway between
slippage centers, i.e., atx = L /2. The integration limits have
been chosen on the basis that, by virtue of the symmetry of
the structure with the point x = L /2, the potential <P, which
is odd, vanishes at this point. Consequently,/^ is the maxi-
mum value of js , reached halfway between centers. In the
integration in (7.7) and (7.8) we should choose that branch of
the 4 (/, ) dependence from (7.6) which is thermodynamically
stable, i.e., the branch with 0 </s <jc, 1 >4 > ̂ 271 (Fig. 18).

We turn now to distances x-</E ~F ~l/2, and we seek
the value ofdjs/dx. From (7.5) we have djs/dx~F<P. Since
<p = irt 0~ ' ~F ~ ] /2, we can write

dx (7.9)
Since the derivatives djs /dx is small, we may assume that/s

is independent of x at;t<r~1/2. We average (2.13) over the
time and write it in the region where 4 is static, i.e., at -x>JC2-
The derivative dA /dt drops out when the average is taken,
and we find

(7.10)

By virtue of condition (7.9), the solution of Eq. (7.10) can be

\/Z/3 1 A

FIG. 18. The function _/, (A ). Solid curve—thermodynamically stable
branch; dashed curve—unstable branch.

found by the same approach which was taken to derive the
solution of Langer and Ambegaokar42 (Subsection 5a); the
result is (5.12), where u(A ) = A 2 - (4 4/2) + (y]"/4 2) (Figs.
Band 14). This solution must be joined at *>1 with solution
(7.8), which contains the small derivative dA /dx<\. A solu-
tion (5.12) which has a vanishing derivative at x> 1 is found
by choosing C = wmax. The solution we need is thus of the
form in (5.13), where x = 0 corresponds to some minimum
value of 42. As was found above, as we approach a phase
slippage center in the static region along x the order param-
eter must decrease to values far smaller than unity, which
correspond to 42<1. A small value of 4 is possible only if
j2 •< 1. It is clear from the form of the potential u(A ) that in

this case we have 42 = -J2 y'2. In this case, (5.13) reduces to

A = th 1 (7.11)

in the region with A >
The quantity A2 is of the order of the average value of A

in the oscillation region. In this region we evidently have
A ~js, so that it is a simple matter to estimate A from (2.13).
SinceQ~js/A

 2~A -1, we have (4 /F]dA /dt~A -\andwe
conclude that in the oscillation region we have
4 ~ (A,)'/3 ~ Pl /2. For the width of the oscillation region we
&ndx2~r1/2 orx2 = £T1/2 in ordinary units.

It is interesting to examine the behavior of the potential
<P. Its time average, <!>, is essentially independent of x at
;c</E ~F~112, as follows from Eq. (2.16), averaged over the
time:

We thus see that the change (8<I>) in the potential over dis-
tances Jc<T ~' / 2 is small: 5#<0. Consequently, in the limit
x—>0 the potential <?> remains finite: <P (x—* + 0) = <P0,
where #0 is determined from (7.7), which holds at x>xt. On
the other hand, by virtue of the symmetry of the problem
with respect to the point x = 0 and the odd parity of <P, the
potential 0 (x = 0) must vanish at all times except at times of
phase slippage, when <P (x = 0) becomes infinite. It is easy to
find from Eq. (2.15) that the growth of <P from zero to a value
of order #0 occurs over distances of order x2.

We have thus found the following results.
1. In a neighborhood of a phase slippage center with a

width of order gFl/2, all quantities undergo large oscilla-
tions. When 4 vanishes, the phase x jumps by 2ir, while
0 (x = 0) becomes infinite. The oscillation amplitude 4 is of
theorderof4OLr1/2.

2. The oscillations of 4 die out rapidly with distance
from a phase slippage center, and at x>jc2 = £F'/2 the order
parameter is essentially independent of the time. Its behav-
ior in this region is described by (7. I I ) . At x$-g the order
parameter reaches an equilibrium value (4 = 1 in our units).
The superconducting current oscillates but remains small,
so that the entire current is carried by normal excitations.

3. At distances x^x^lE the oscillations in all the
quantities are negligibly small. In this region there is a relax-
ation of the deviation of <P from equilibrium which is created
in the vicinity of the slippage center. The behavior of <P and
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FIG. 19. Behavior of A and_/s (a) and of the potential <t> (b) in the static
region (solid curves) and in the dynamic region (dashed curves). The
hatching shows the region of values which A and/s can take on in the
course of the oscillations.

of the currents is determined by (7.7) and (7.8). With decreas-
ing 0, the normal current decreases, the superconducting
current increases, and A decreases.

Figure 19 shows the behavior of the order parameter,
the potential, and the currents. The behavior of the order
parameter near a slippage center agrees well with the results
found by numerical calculations.4

To conclude this subsection we find the range of appli-
cability of these results along the temperature scale. The Jo-
sephson oscillation frequency o)} is of order (A 2/T)F~112.
Since the conditions /X1 and a)j <TpJ1

1 must be satisfied for
Eqs. (21.)-(2.3) to be applicable, the temperature must satisfy
the condition (*/rph TC)2<1 - (r/rc)<(«/rph TJ6'5.

b. Voltage-current characteristic 1('5<

Taking the time average of the expression for the elec-
tric field,

dt dx '

we find E = — dS> /dx. It follows that the field averaged
over time and the coordinate, which we again denote by E, is

E = ̂ , (7.12)

where <P0 and L are determined by (7.7)-(7.8), with
allowance for the boundary conditions established above;
that for l<x</E the order parameter isA = 1. Using (7.8) we
find the period of the structure to be

L = dA 3 A2 —2

_A»<D (A)
(7.13)

where 0 (A ) is determined by (7.7). For the voltage-current
characteristic we finally find16'56

£ d A - 3A2—2

, A0)
= 2/(A = l, A0), (7.14)

tl

0 )=J dx-
/I-**

(7.15)

To find the voltage-current characteristic it is thus suf-
ficient to derive a solution of the equations for the potential
only in the static region. In this regard the results of the
dynamic theory of the resistive state16'43'55'56 converge on
those of the static model developed by Galaiko et al.

26-35~*°
Comparison of Fig. 10, which illustrates the static model,
with Fig. 19 reveals that the behavior of the potential <P is
nearly identical in the two cases over almost the entire dis-
tance between phase slippage centers, except in a narrow
region directly near a center. In the static model the process
by which the voltage at a slippage center is formed is of the
same physical nature as in the dynamic theory, and it results
from a relaxation of the difference between the chemical po-
tentials, # = (fip — /*„ }/e, at distances large in comparison
with the coherent length. We should point out, however,
that when taken literally the results of the static mod-
ej26.3s^to jjave an important shortcoming: In integrating the
equations for the potential [equations like (7.4) and (7.5)],
Galaiko et al. used the thermodynamically unstable branch
of the A {js) dependence, which has A vanishing in the limit
js —»0 (Fig. 18). A solution of this type could not exist in a real
physical system. The results of these papers must therefore
be corrected.

An important point for the discussion below is the rela-
tionship between the length of the superconducting channel,
L0, and the distance between adjacent phase slippage
centers, L. If/E ~L0, there is a finite number of phase slip-
page centers in the channel, and the behavior of the voltage-
current characteristic is determined by the appearance of
new slippage centers as the current increases. This question
will be discussed in Subsection 7d. At this point we consider
the opposite limit: /E <Z,0. In this case the number of phase
slippage centers in the channel is large, so we may assume
that their density increases smoothly with increasing cur-
rent. Equations (7.14) and (7.15) describe a family of curves
determined by the adjustable parameter A0 (orysj. These
curves are shown in Fig. 20. To choose the parameter A 0 we
need to appeal to some additional physical considerations.
Here we can make use of the principle of minimum entropy

o.e £

where

FIG. 20. Voltage-current characteristics calculated from Eqs. (5.19) and
(5.20) for various values of the parameter .40. Visible here are regions with
an excess current ycjlc = ajc. 1—A0 = V2/3, a = 0.68; 2—40 = 0.9,
a = 0.61; 3—A0 = 0.975, a = 0.35; 4—normal state.
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tion (minimum dissipation). According to this principle, at a
given current in the system there must be a regime with a
minimum possible field E, so that the dissipative function jE
is minimized. Such a regime corresponds to the upper curve
in Fig. 20, which in turn corresponds to the parameter value
A0 = -v/2/3 or (/^ =jc). This choice is equivalent to adopting
the condition that the superconducting current must reach
its maximum possible value. We now assume that we have
adopted this value of A0.

In order to transform to ordinary units in (7.14) and
(7.15) we need to replace E by 1aE /3V3/T and to replacey by
2//3/c -/3~- As a result we find

equation can be written in a form analogous to (7.5):

dx
(7.17)

where nowz = 8(7; - T)TptlQ
2/Trfi. Equations (7.3), (7.4),

and (7.17) can also be integrated easily. As a result, we find
the following replacements for Eqs. (7.7) and (7.8)

iHdA
A,

Q — A* /I — A')(.W — 2)

d A -

=Wq (x)

3A' — 2

l — A a <D(A) q (z)'

^ L dx-
V2/3)

The function/(x, V2/3) is determined by (7.15).
On the volage-current characteristic corresponding to

(7.16) we can see two characteristic regions (Fig. 20).
I) Initial region.] —jc <yc. In this case the period of the

structure is logarithmically large:

31/ 3 / /1, J/ -3- j . (7.16) The voltage-current characteristic is determined by expres-
sion (7.12); in this case, it looks much like that discussed
above, and it is qualitatively the same as in Fig. 20.

These results span a broader temperature interval:

CJc

A0 7 — / c

where c~ 1. The voltage-current characteristic is

/ — /c = /cexp ( ''jfT-} •

In the limit E—>-0, the characteristic has a vanishing slope,
which is a consequence of the infinite length of the sample.

2) High-current region. J>JC. Here the voltage-current
characteristic runs parallel to an Ohm's-law line: j = aE
+7'exc with an excess currenty'exc = ajc, where

i

4)rLJ P(X, 1/2/3)

while

(x, *„)=
2 2

The voltage-current characteristic (7.16) was derived in
Ref. 16, where the characteristic was also calculated for the
more complicated case in which the relaxation of <P is affect-
ed by the velocity of the superconducting condensate, i.e.,ys.
As mentioned above, to find the voltage-current characteris-
tic it is sufficient to solve the problem of the potential distri-
bution in the static region alone. In this region, the equation
for the potential is analogous to Eq. (2.6), but now the right
side contains a factor which reflects the effect of the super-
conducting current57:

Z)V2<t> = irA

where

YZ, i<z<r2/AG L,
and z = 4Z>e2e2rph/tf

2c2. In the units of (2.9)-(2.11) this

223 Sov. Phys. Usp. 27 (3), March 1984

Looking back at Table I, we see that this temperature inter-
val corresponds to temperatures at which experiments can
actually be carried out. In principle, it is thus possible to
compare these voltage-current characteristics with experi-
ment both qualitatively and quantitatively (Section 8).

c) Upper boundary on the resistive state

The resistive state of narrow superconducting channels
extends over a rather broad current range experimentally
(Figs. 8a and 8b). As we have seen, the lower boundary of this
range is of the order of the Ginzburg-Landau critical current
yc and has a temperature dependence (Tc — I")3'2. We are
also interested in the upper boundary of the resistive state, by
which we mean the current at which the deviations from
Ohm's law first become apparent. Strictly speaking, there
must always be deviations from Ohm's law because of the
fluctuational formation of the Cooper pairs, which subse-
quently disappear as a result of acceleration by the electric
field.17'18 However, at those high currents at which the de-
viations are actually observed experimentally these fluctua-
tional corrections must still be exceedingly small. Here we
can speak only in terms of a change in the structure of the
entire state of the current-carrying channel and the appear-
ance of a resistive state of this type.

The first attempt to determine the point at which the
normal state of the channel converts into a resistive state was
made by Galaiko,35-39'40 who worked using the static model
of the resistive state. Galaiko studied the appearance of nu-
clei of the superconducting state against the background of
the normal state of the current-carrying channel. According
to the results of Refs. 35,39,40 the resistive state appears at a
current below the critical value

•v 7J (3) HD
(7.18)

This result, however, suffers from the same shortcoming as
does the entire static model of the resistive state: The un-
avoidable oscillations of the order parameter in the regions
where nuclei overlap are ignored. The static equation for the
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modulus of the order parameter, used in deriving (7.18), is
therefore violated, and the result in (7.18) does not solve the
problem of determining the upper boundary for the resistive
state.

As is clear from the results of Section 3, the resistive
state must appear and disappear through a transition which
is of the nature of a first-order phase transition. As the cur-
rent is raised above a certain critical j'2, the dynamic state
described in Subsection 7a should be suddenly disrupted,
and the sample should go into the normal state. Let us find
the upper boundary of this dynamic state.16 According to
(7.7) and (7.13), at high currents the period of the structure
along the coordinate decreases and is of order L ~£4jc/jr.
At a current j~ jc/T the distance between phase slippage
centers is of order £. The order parameter A must be small at
phase slippage centers and must reach values of order unity
halfway between centers. Clearly, a solution of this type
must disappear if the distance between phase slippage
centers is considerably smaller than £. We thus conclude
that a resistive state of this type will disappear at currents
above

Tph
,,3/2 (7-19)

This estimate of the upper critical current is of the order of
the result found for the upper critical current j2 associated
with the formation of superconducting nuclei against the
background of the normal state of the channel.4 Although
the functional dependences in (3.2) and (7.19) are the same,
the corresponding numerical coefficients may differ. The
reason, as already mentioned, is that the resistive state ap-
pears from the normal state, and the transition from the re-
sistive state to the normal state occurs through a first-order
phase transition. In this situation there can be a hysteresis,
which will be manifested by different values of the currents
in (3.2) and (7. 19).

The heating which results from the power dissipated by
the current plays an important role in the destruction of su-
perconductivity in the resistive state. This heating intensifies
with distance from the critical temperature, as the critical
currents increase, and it depends strongly on the cooling
conditions for the sample. Even with an ideal heat removal,
which keeps the temperature of the crystal lattice of the sam-
ple equal to the temperature of the surrounding medium,
however, the electron system will still be overheated with
respect to phonons. As a result, there will be an effective
lowering of Tc , and the superconductivity will disappear al-
together at sufficiently high currents. The corresponding
current can be evaluated by considering in Eq. (2.1), along
with the term A 3, a correction to the distribution function for
the overheating of electrons. In the r approximation, this
correction is proportional to rpbDe2E 2d f/de2, where/(f) is
the equilibrium distribution function. As a result, a term

T*

also appears in Eq. (2.1). The critical field is found by equat-
ing it to the term A (Tc — T)/T; as a result we find

This result, derived in Refs. 39 and 40, is valid at ft/
TcTptl<l—(T/Tc). At higher temperatures, \—(T/
Tc )<#/Tcrph, heating becomes less important, and the cur-
rent j2 is determined by (7.19).

We should point out that these results ony'2 are basically
just estimates, and the problem of the upper critical current
still awaits solution.

d) Voltage jumps on the voltage-current characteristics of
superconducting channels of finite length

As was mentioned in Section 4, the voltage-current
characteristics of superconducting channels which are not
very long exhibit voltage jumps. These jumps are related to
the appearance of new phase slippage centers in the channel;
these new centers appear as the current is raised. A qualita-
tive picture of the voltage jumps, based on the Skocpol-Beas-
ley-Tinkham model,26'52 was drawn in Subsection 5b. At this
point we approach the subject more systematically, working
from the microscopic theory. The voltage-jump problem
was first solved by Bezuglyi et a/.,41 and it is their results that
we will be discussing here.

Here, as in the derivation of the voltage-current charac-
teristics of long channels in Subsection 7b, we can use the
static equations since the dynamic region is narrow. We as-
sume that a superconducting channel of length £,„ is con-
nected to a current source by means of normal contacts (Fig.
21). At currents/ <f1\ where/1' corresponds to the appear-
ance of the first phase slippage center, the voltage across the
channel is determined by the penetration of the electric field
from the normal contacts into the channel (see Refs. 10 and
58, for example). This state is shown in Fig. 21a. Near the SN
interface the order parameter drops sharply from equilibri-
um value to zero over a distance of order g. With distance
from this interface, 0 and jn decrease; js increases; and A
falls off over distances of order /E. As the current is raised
above/1', the first phase slippage center appears at the center
of the channel (Fig. 21b). This state prevails over the current

i'-J^I/'.
>*~ e V 7£(3)TphZ> (7.20)

FIG. 21. Behavior of A and the currents in a superconducting channel
with normal contacts, a—A current./ <_/", no phase slippage centers; b—
/" </ <y'2, with a single phase slippage center at the center of the channel.

224 Sov. Phys. Usp. 27 (3), March 1984 B. I. Ivlev and N. B. Kopnin 224



interval 7°' <j <f2}; then a second phase slippage center ap-
pears, etc. The conditions near the boundary with the nor-
mal metal,58 i.e., at distances large in comparison with £ but
small in comparison with /E, are identical to those at the
boundary of the static region near a phase slippage center
(Subsection 7a):/s = 0, A = 1. The voltage across the chan-
nel can thus be found by using Eq. (7.7) directly. If we assume
that there are n slippage centers in the channel, the potential
formed at one center is

L\

^^- J
dA (/ — A2 /I —A2)(3A2-2)

(7.21)

here A On is the value of A halfway between neighboring
phase slippage centers (or halfway between the SN boundary
and the nearest center). The parameter A On is now related to
the current and to the total length of the channel, L0, by

dA 3 A2 —2

I — A a <5(A)
(7.22)

The total voltage drop across the channel is

V = 2 (n + 1) <Dn (A = 1). (7.23)

Expressions (7.21)-(7.23) give a complete description of
the voltage-current characteristic of a channel of length L0.
These expressions are extremely cumbersome, however, so
we will restrict the discussion to the case in which the cur-
rent is just slightly above the critical current, j —jc <jc,
n~\, and we will assume Z,0>.T~1/2 (i.e., L0>/E). From
(7.21)-)7.22) we then find

^ir=l/irlnA' (7-24)

where c~ 1, and/s"' = A ̂ ^l — A ̂  is the superconducting
current halfway between slippage centers. If the external
current j is increased at a fixed number of centers in the
channel (« = const), then the current y^"1 must also increase,
according to (7.24). Wheny^1 reaches the valuey'c, a solution
with « slippage centers becomes impossible, and the (n + li-
st center appears. The current/"1, at which the «-th center
forms—i.e., the current corresponding to the n-th voltage
jump— is found from (7.24):

(uT)i/2L0
2n

(7.25)

The magnitude of the jump is essentially independent of n at
small n and equal to the voltage 2<P0 across a single slippage
center, where

<D;=—u\ J (7.;
V 2/3

The dependence of the voltage <Pn across one slippage center
on the current between the w-th and (« + l)-st jumps is

dA 3 A2 —2 (7.27)
/2/3

voltage-current characteristic thus has a constant slope with
a differential resistance

(W\ =^±llp2(l, -i/l) «2,06^±L. (7.28)
\ d] / n ur<t>0

 e \ V 3 / uT v '

This voltage-current characteristic is shown in Fig. 22.
In ordinary units, the differential resistance is

+ 1)-1T» (7.29)

where /E is determined by (2.8). There is an extremely inter-
esting circumstance here: The numerical value of the differ-
ential resistance introduced by a single isolated phase slip-
page center according to the exact microscopic theory, 2.06
/E/<r, agrees surprisingly well with the phenomenological
Skocpol-Beasley-Tinkham result,26 2/EAr (Subsection 5b).

The initial part of the voltage-current characteristic,
from j = 0 to j =y(1), corresponds to the superconducting
state of the channel and is determined exclusively by the
penetration of the field from the normal contacts. In general,
this part of the voltage-current characteristic is described by
the dependence derived in Ref. 58. If the channel is connect-
ed to supeconducting contacts, then no voltage will be ob-
served in the initial region, and n + 1 must be replaced by n
in Eqs. (7.22)-(7.28).

8. CONCLUSION

In general, the basic features of the voltage-current
characteristics of narrow superconducting channels are de-
scribed by the theory as it exists today. It would apparently
be premature, however, to speak in terms of numerical
agreement. The theoretical results have been derived under
extremely restrictive conditions on the parameters, e.g., on
the distance from the critical temperature, the width of the
sample, and the heat-removal conditions. All these condi-
tions can be met in practice, but only at the cost of taking
special measures which have not yet been taken experimen-
tally. Furthermore, such an important parameter of the the-
ory as the characteristic time for the inelastic electron-
phonon relaxation has not yet been derived reliably (the data
in Table I are correct only in order of magnitude). This quan-
tity must therefore be regarded as an adjustable parameter in
a comparison of theory and experiment. Nevertheless.it is
undoubtedly true that the theory gives a correct description
of the basic qualitative features of the resistive state: primar-
ily, the general form of the voltage-current characteristic
and the voltage jumps on it. That this is true can be seen from
a comparison of the experimental curves in Fig. 8 with the
theoretical predictions in Figs. 20 and 22. The voltage jumps

In the interval between the «-th and (n + l)-st jumps, the
FIG. 22. Sketch of the voltage-current characteristic of a channel of finite
length.
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on the voltage-current characteristics are the most conven-
ient entities for a comparison. It was shown in Ref. 27 that
the differential resistance in the regions between neighbor-
ing jumps satisfies d V/dj = RgN, where R0 is a constant and
N is an integer. This result agrees with expression (7.18).
From the differential resistance we can also extract informa-
tion on the behavior of/E and compare it with theoretical
expressions (2.7) and (2.8). Experiments confirm the basic
tendencies in the dependence of/E on the temperature27'60

and the magnetic field.60 Experiments also cofirm the spatial
profiles of the potentials //p and //e near phase slippage
centers.51 The time-dependent Josephson effect observed ex-
perimentally26 is undoubtedly related to the oscillations of
phase slippage centers which occur at the Josephson fre-
quency.59 The generation of lower frequencies,28'30 on the
other hand, has yet to find a reliable explanation. This expla-
nation can apparently be sought in the motion of the entire
structure of phase slippage centers as a whole,28 although it
is difficult to draw a definite conclusion at this point. We also
lack the data required for testing the temperature depen-
dence of the upper critical current y2- The only experimental
data on this question are from Ref. 28, where a linear depen-
dence j2 °c Tc -T was found; this dependence agrees with
neither (7.19) nor (7.20).

Despite these and other open questions, we can assert
that the general picture of the resistive state as a structure of
phase slippage centers has been established quite reliably.

The ideas dealing with phase slippage in resistive states
of various types have proved extremely fruitful. The motion
of vortices in a type II superconductor (and in a superfluid
liquid) and the motion of flux tubes in type I superconduc-
tors are also phase-slippage mechanisms. The very term
"phase slippage" was introduced61 to describe these other
processes. In narrow superconducting channels, however,
we find a qualitatively new type of phase slippage: In super-
conductors of massive dimensions, phase slippage occurs as
a result of the motion of defects of the superconducting
structure; such defects exist in the system even in the absence
of dissipation. In the case of superconducting channels, in
contrast, the slippage centers exist for only a short time in-
terval and only if there is dissipation. A system with phase
slippage centers is definitely a dissipative system, and the
methods based on a thermodynamic approach cannot be
used.

The concept of phase slippage has also proved extreme-
ly useful for describing the two-dimensional mixed state and
the intermediate state of a current-carrying superconduct-
ing wire (see the review by Landau and Dolgopolov62). It has
been shown 63>64 that again in these states the existence of an
electric field against the background of superconductivity
results from a phase slippage mechanism similar to that
which operates in the resistive state of narrow superconduct-
ing channels. The inhomogeneous distribution of the order
parameter and of the chemical potential of Cooper pairs
along a superconducting channel in the resistive state can
also be used to explain the results found by Iguchi et a I.65 on
tunneling injection. They observed an inhomogeneous state
at a superconducting tunnel contact, which they interpreted

as a state with several values of the gap over the length of the
contact. An inhomogeneous state of this type can be ex-
plained as follows66: The tunneling current flowing through
the contact then flows along a superconducting film, in-
creasing along the coordinate. In an actual experimental sit-
uation, the average current density along the film can exceed
the Ginzburg-Landau critical current, giving rise to a resis-
tive state characterized by jumps in the chemical potential of
Cooper pairs. As a result of these jumps, the origin for the
threshold voltage on the voltage-current characteristic of
the detector shifts, giving rise to a picture similar to that
observed experimentally. The mechanism for this effect may
be the formation of phase slippage centers, if the film is nar-
row, or the motion of eddies, if the film is wide.
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