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In pure metals at low temperatures, when the mean free path of conduction electrons is very large,
the electron contribution to elastic forces becomes nonlocal. The forces that appear in the equa-
tions of motion of the lattice are then functionals of the electron distribution. The dynamics of
conduction electrons, and the influence of the external magnetic field and of the self-consistent
electric fields then become important. In this review, we examine the equations of elasticity, using
the general assumptions of the modern theory of metals, based on the model-independent macro-
scopic approach. A detailed discussion is given of the deformation potential and its symmetry
properties, and of the role of directional symmetry of the magnetic field. The effective interaction
between electrons and sound waves and the role of electric fields accompanying an elastic wave

are discussed as examples.
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INTRODUCTION

In pure metals at low temperatures, when the mean free
path of conduction electrons is very long and substantially
exceeds not only the interatomic distances but also the char-
acteristic scales of variation of elastic fields (for example, the
wavelength of an acoustic wave in a metal), the electron con-
tribution to elastic forces becomes nonlocal and requires spe-
cial examination. Slow relaxation processes in the electron
gas, which leaves the state of equilibrium when the lattice is
deformed, transform the theory of elasticity into a kinetic
theory in which one has to consider both the dynamic equa-
tion of motion of the lattice and the equation for the quasi-
particle (conduction electron) distribution function (the den-
sity matrix, in the quantum-mechanical case). The forces
that appear in the equations of motion of the lattice are
found to be functionals of the electron distribution. The dis-
persion relation, and the external magnetic field that in-
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fluences the electron dynamics, then play an essential role in
the overall picture.

Finally, Maxwell’s equations describe the self-consis-
tent electromagnetic fields that arise in the case of nonequi-
librium states of the electron subsystem and accompany the
deformation of the lattice.

Under the above conditions, mechanical properties be-
gin to depend on the resonance and relaxation parameters of
the degenerate electron gas in the metal, such as the mean
free path /, the orbital radius r in the magnetic field, the skin
depth 8, the collision frequency v, the cyclotron frequency
{2, and so on. These lengths are much greater than the intera-
tomic separations (/, r, §>a) and the frequencies are much
lower than the atomic and plasma frequencies (v, 2<€®,,,
@, ). This effect of conduction electrons was first discovered
in experiments on the absorption of ultrasonic waves, and
was successfully exploited in the diagnostics of the electron
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gas in metals.”

However, for a long time, the theory was not self-con-
sistent in the sense that absorption of ultrasonic waves was
calculated from the rate of increase of entropy in the electron
subsystem of the metal, and it was sufficient to consider the
acoustic field as given. The self-consistent approach was in-
troduced into the theory of free electrons by Steinberg,'® and
the description used in the presence of a magnetic field was
equivalent to magnetic hydrodynamics, which was used by
Alpher and Rubin'’ to examine the effect of the field on the
velocity of sound. Electromagnetic excitation of sound in
metals was considered in Ref. 18.

The transition to another range of problems (measure-
ment of the dispersion of the velocity of sound, electromag-
netic excitation of sound in metals by contactless methods,
and studies of electronic retardation of dislocations, the ef-
fective interaction of electrons with sound, electronic rota-
tion of the plane of polarization of sound, and so on) have
stimulated interest in the self-consistent description and in
the derivation and utilization of the equations of elasticity
that are valid under the quite general assumptions underly-
ing the modern theory of metals.'=*' The present review is
devoted to this range of topics.

On the other hand, such questions are related to the
general problem of the electron-phonon interaction and lead
to a relatively detailed discussion of its long-wave aspect.

The analysis of forces acting in a deformed metal has
attracted a relatively large number of publications,'®*°
which we shall consider below, confining our attention to the
model-independent macroscopic approach in the quasiclas-
sical region.

Thus, for sufficiently long electron mean free paths, the
transport equation for conduction electrons, the Maxwell
equations, and the equations of the theory of elasticity con-
stitute a closed set of equations. This set was put forward by
Silin'® (under certain restrictions on the topology of the Fer-
mi surface in the collisionless region; cf. Sec. 5) and was de-
rived by Kontorovich?® for an arbitrary topology, and taking
into account collisional momentum transfers. An analogous
set of equations was introduced by Vlasov and Filippov.?'

The structure of the present review is as follows. The
equation of elasticity is obtained in Sec. 1, using only the law
of conservation of momentum and the phenomenological

YThe absorption of ultrasonic waves in solids was first examined micro-
scopically by Landau and Rumer’ in the case of perfect dielectrics. Stud-
ies of the absorption of the ultrasonic waves in conductors were begun by
Akhiezer? and extended to the case of strong spatial dispersion by Pip-
pard® and by Akhiezer, Kaganov, and Lyubarskii.* The scale of such
studies has expanded considerably in connection with attempts to deter-
mine the energy spectrum and the associated studies (mainly by I. M.Lif-
shitz and his school) of the dynamics of quasiparticles with an arbitrary
dispersion relation.> The discovery by Bommel of magnetoacoustic os-
cillations and the possibility noted by Pippard of using them to deter-
mine the parameters of the Fermi surface have stimulated intensive stud-
ies of the absorption of ultrasonic waves in a magnetic field (cf. references
in the reviews given in Refs. 6-10}. The latter became possible as a result
of advances made in the study of galvanomagnetic and resonance phe-
nomena in metals.>!'~’? The general theory of absorption of ultrasonic
waves in metals in a magnetic field was constructed by V. L. Gurevich'*
and requries a more precise formulation of the concept of the deforma-
tion potential introduced in Refs. 2 and 15. The essential role of electric
fields excited by sound was elucidated by Gurevich.
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form of the contribution of conduction electrons. The com-
plete set of linearized equations, the derivation of which is
given later (Sections 3 and 4), is introduced in Sec. 2 for
convenience. Various ways of writing down the equations of
elasticity are compared in Sec. 5. The equations for elastic
waves with allowance for the contribution of conduction
electrons and the fields excited by them are then written
down (Sec. 7) in terms of the transport coefficients in the
deformed metal (Sec. 6). Section 8 discusses the deformation
potential and its symmetry properties (Sec. 9), including the
role of directional symmetry of the magnetic field (Sec. 10).
Sections 11-13 consider examples of the “effective’ interac-
tion between electrons and sound, and the role of electric
fields that accompany the elastic waves.

1.CONDUCTION-ELECTRON TERMS IN THE ELASTIC FORCE

Quasiparticles, i.e., conduction electrons, in a deformed
metal experience not only the Lorentz forces that include
macroscopic electromagnetic fields, but also forces due to
the electron-lattice interaction that results from the change
in the microscopic atomic electric fields. In its turn, the lat-
tice experiences the reaction of the electron gas, and this is
responsible for the appearance in the equations of elasticity
of terms that are averages over the local distribution of
quasiparticles at a given point in the metal.

Forces on conduction electrons that are due to the de-
formed lattice are electromagnetic in character, but only the
smooth macroscopic fields can be taken into account with
the aid of the Maxwell equations.

It is very important to remember that the contribution
of the microscopic atomic fields due to the lattice for defor-
mations that vary over distances much greater than the in-
teratomic separation (Fig. 1) can be taken into account in a
very general form in terms of the change in the dispersion
relation for conduction electrons®

e(r,p, t) =¢gy(p)+ 8e(r,p, ), (L.1)

so that a closed theory can thus be constructed in a purely
phenomenological manner. Conduction electrons can than
be looked upon, as before, as a perfect gas (Fermi liquid) of
quasiparticles in the self-consistent electromagnetic and
acoustic fields, and this enables us to exploit the well-estab-
lished formalism of the electron theory of metals.>'> The
most general and, probably, the simplest derivation of the
contribution of conduction electrons to the force is to utilize
the connection between the mean momentum of particles
and quasiparticles,?° first used by Landau in the theory of
the Fermi liquid®'*? to determine the connection between
the effective mass of excitations in liquid He® and the mass of
the helium atom. In our case, the quasiparticle distribution
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FIG. 1. The electron distribution is established over the mean free paths 1,
and the dispersion relation over the atomic distances a.
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function f(r, p, ¢ ) is related to the density n(r, 7 ) of free elec-
trons by the normalization condition

= [api@ o =na o). (1.2)

The integral is evaluated within the confines of the Brillouin
zone,? and summation over conduction bands is implied. As
a consequence of the equation of continuity, the quasiparti-
cle flux ({(3e/3p) f)) is equal to the particle (electron) flux.
The electric (electron) current density is therefore given by

r =e ({25, 13

and the mass flux density, i.e., the free-electron momentum
density, can be expressed in terms of the distribution func-
tion and the quasiparticle dispersion relation, as follows (e
and m are, respectively, the charge and mass of the free elec-
tron):

wt =m ((F1)). (1.4)

It is clear that the expressions for the densities j*' and
7 have the same degree of generality.

We note that crystals differ from liquid helium in that,
since p is the quasimomentum, the difference
{pf)) — m{{(3e/dp) f))isnot, in general, equal to zero, so
that (1.4) does not lead to any general consequences for the
effective mass of the excitations that would be analogous to
those found by Landau for He’.

It is convenient to express the momentum density in
terms of the current density:

(1.5)

Since, at the relatively low frequencies (w<w,.) in
which we are interested, the metal as a whole is electrically
neutral, and recalling the local character of the deforma-
tional interaction noted above, the equation of motion as-

sumes the form?°
on; 0 lat

P 7 (o bodt) -+l Hl, (1.6)
where 7 = 72 + 7! is the total momentum density of the
lattice (7'** = p,,, 0) and of the electrons, j = j* — enu is the
current density, including the ion contribution, i is the local
deformation rate, and u is the displacement vector. The last
term in this equation is obviously the average Lorentz force
acting on the electrically neutral electron-ion system. The
stress tensor contains electron terms that are averages in-
volving the electron distribution function at a given point in
the lattice at a given time (which, for reasons discussed in
Secs. 2 and 3, will be denoted by f’). We now expand the

expression to be averaged in powers of du, /9x,:
duy

o = Lhan 0+ Cinimf M) T +... (1.7)
Expressing p),, in terms of the density of the metal
P =P + mn, and using the definitions of 7, 77, and j,
we can rewrite (1.6) in the form

fi=

m el
) R €]
e ._e_] .

in 1 L, Hly— -2 St e G,
(1.8)

where the electron stress tensor o5, contains the leading term

of the expansion in u;, and the remaining terms are included

pU; =fi

21n the laboratory frame, the integration is performed over the region into
which the Brillouin zone is transformed in the course of lattice deforma-
tion; see Sec. 8.
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together with o} in o, . The term (m/e)dj/3t that contains
the free-electron mass is responsible for the Stewart-Tolman
effect. We note that, in contrast to the terms describing the
deformational interaction, this term appears in the equation
in its exact form.* It follows from the local character of the
deformational interaction (insofar as it applies to the mo-
ment of momentum}** that the tensor o5, and with it 4, (p),
are symmetric (the latter because f” is arbitrary). This is the
deformation potential tensor in terms of which (as we shall
see in Sec. 3) we can express the change in the energy of an
electron that accompanies the deformation of the lattice in
the local coordinate frame, and f” is the quasiparticle distri-
bution function in the same frame. The distribution function
will be examined in detail in the subsequent sections. To
elucidate the form of 0%}, we can (in the case of elastic scat-
tering) make use of the law of conservation of energy.>* (see
Sec. 4). In the case of arbitrary scattering, on the other hand,
we can use for the same purpose the condition that the non-
equilibrium free energy of our subsystem, which interacts
with a thermostat, should be a minimum. The derivation is
somewhat more laborious in this case, but the result is the
same.? Finally, the standard definition of the force that in-
volves the variation of internal energy with respect to dis-
placement at constant entropy>° again leads to the same re-
sult. We note that the total energy is defined in the
laboratory system (the 1 system). On the other hand, it is
convenient to perform all calculations in the comoving (lo-
cal) set of coordinates (the c-system). It is in this system that
periodicity is locally conserved and the dispersion relation
can beintroduced in a natural way for a conduction electron.

In the simplest situations, Eq. (1.8) admits of a direct
generalization to the quantum-mechanical case?”%* through
the replacement

A= | dp a7 —~ Sp 4f, (1.9)

where]”is the single-particle density matrix that satisfies the
quantum-mechanical transport equation. It is also valid in
the Fermi-liquid case (Ref. 31),* which is immediately clear
if we examine the variational derivation since, by holding
entropy constant, we also hold the distribution function con-
stant during the variation procedure and, consequently,
there cannot then be any difference as compared with the
pure gas case. We note that Eq. (1.8)" is also suitable for
investigating purely electronic nonlinear effects (for exam-
ple, those connected with the resonant trapping of electrons
by an elastic wave’®).

Equation (1.8) can also be directly generalized to noni-
deal crystals containing dislocations*® when the continuum
description is used.>*40

3This term is often small, in which case it can, of course, be omitted. The
above approach is, however, fundamentally important, since it has led to
the appearance of that term in Eq. (1.8) and, at the same time, avoids
several difficulties connected with the arbitrary nature of the electron
dispersion relation (see Sec. 5).

“The dispersion relation is then a functional of f; which, in general, can
lead, besides renormalization, to new oscillation branches at high fre-
quencies®"**!! and may influence the analytic properties of the transport
coefficients near singularities.'?

30r Eq. (1.6), if the expansion given by (1.7) is not possible (for example,
this may occur when a superstructure appears or the degeneracy of the
electron spectrum is removed by deformation).
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2. LINEAR THEORY (REFERENCE SECTION)

In this section, we summarize the equations that will be
derived later, and introduce the basic notation.

The deviation of the distribution of conduction elec-
trons in metals from the local equilibrium distribution (in-
cluding deviations due to the deformation of the crystal)
leads to the appearance of considerable forces that are exert-
ed by the electrons on the lattice. These forces can be ex-
pressed as functionals of the nonequilibrium part y of the
electron distribution function. One of these functionals is the
total current density j and another is the density of the defor-
mation force f*:

3

i=—evp, M= T (Aay). (2.1)
The closed set of equations consists of the equations of elasti-

city (including forces exerted by the electrons on the lattice)
and the transport equations. It has the form

° a
ooty Mingm a2 Dy, D = i, H]—

m 0 d
-

(ddt »J—V)X”g=_eVE Alhulh’

(Mir)
1’
(2.2)

where the currents and fields are related by the Maxwell

equations®

mu

E— Ek—[u H1— ,

A (p) =4 (p) —

4 0
¢t gt ?

curl curl E = — (2.3)

and (2.1) are, in effect, the constitutive equations.

The angle brackets in (2.1) and (2.2) represent averaging
over the undisturbed Fermi surface (FS) {dS, is an element of
the Fermi surface):

ds
) = [ ==, (2.4)

(1) is the density of states on the FS, ydf,/de({y) = O)is the
deviation of the distribution function from the local equilib-
rium function (cf. Refs. 6, 20, and 22), ¥ is the linearized
collision operator,” e < 0 and m are the charge and mass of
theelectron, A,,,,, is the elasticity tensor of the lattice, which
includes the equilibrium contribution due to conduction

electrons, and
d FZ] a a de

dtOEW+vE+5—T’ v:(?_p (25)
where

g __ e a

se=¢ v Hl—5,

and 7 is the orbital period in the magnetic field.

The deformation potential A, (p) takes into account the
change in the electron energy spectrum in the deformed lat-
tice, which, in the linear approximation in the comoving c-
system (indicated by primes), has the form
P, 1) =g (p') + Ain () (2.6)
The last term in (2.6) is connected with the noninertial nature
of the reference frame and represents the d’ Alembert force

¢’ (l_/’ Uip — muv’.

®The Maxwell equations written in this form automatically take into ac-
count the fact that the metal, as a whole, is electrically neutral. In the
dynamic case, this is equivalent to the condition div j = O{w#0).

"In contrast to (1.8), where there were no such limitations, here we assume
that the scatterers {for example, impurities) are dragged by the lattice.
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mii acting in this system, where m is the free-electron mass.*'

The transformation to the c-system [see below, Eq. (3.3)
and Sec. 8], in which the dispersion relation for conduction
electrons is formulated, is an essential step in our phenomen-
ological approach.? The idea of this transformation is due to
L. D.Landau.® In this way, we not only exclude the motion
of the deformed lattice, but also “straighten it” (locally) to
the required precision. This follows from the properties of
the transformation (see Sec. 8), in which the Brillouin zone
has a center of symmetry, and the dispersion relation is ex-
pressed in terms of the functions £,(p’) and 4,, (p’), ¥’ that are
periodic in p’, the period being equal to that of the reciprocal
lattice. On the contrary, in the laboratory l-system, the elec-
tron Hamiltonian £(r, p, ¢ ) is given by*°

£ (5 Py 1) = €9 () + (hon+ Pavi) 51 (2.7)

and is not equal to the electron energy. As expected for the
deformed lattice, the two quantities are not periodic func-
tions of the quasimomentum p. The corresponding quan-
tum-mechanical approach was developed by Gurevich,
Lang, and Pavlov,***? who obtained the microscopic expres-
sion for 4, (p).

The deformation force f¢ given by (2.1) plays an impor-
tant role in our theory. It first appeared in Silin’s paper.'® It
is similar to the current j in that it has the character of an
electron current and, as we shall show in the next section, it
makes a substantial contribution to the Onsager relations.
Because of the condition of electrical neutrality, discussed
by Akhiezer, Kaganov, and Lyubarskii,* it is convenient to
replace A, in (2.1) with the renormalized tensor A, [see
(2.2)]- Both the force terms proportional to the current and
¢ contain only that part of the force that is due to deviation
from local equilibrium. The equilibrium part is included in
the renormalization of the stress tensor o .

The force D that describes the contribution due to non-
equilibrium electrons and electromagnetic fields has a sim-
ple physical interpretation. Let us write the deformation po-
tential A (p) in the form of two terms:

riw (p) = —muwn + Ly () us, (2.8)
where the first term describes the momentum flux during the
free motion of the electron and L, (p)u,, is the work done on
the electron of quasimomentum p during the deformation of
the lattice.*® This enables us to give a simple interpretation

to the individual terms in the force. Let us write (2.2) in the
form

+ (ps—muv;) uy,

Um

0 1a1 ui:xzhlm a1y +D‘u

1. aj;
Dj=-[j, Hj;— = 2L 4

e

Hh (LihX)-
(2.9)

The first term in D’ is the momentum received by electrons
and the lattice from the external field (with allowance for the

(mv VRY) —

fact that the system as a whole is electrically neutral) and the

¥1t was put forward by Landau at a seminar at the Institute of Semicon-
ductor Physics during a discussion of the first paper.'* He subsequently
wrote down the corresponding transformation formulas, and this is re-
corded in the notebook of I. M. Khalatnikov. These expressions have
also been derived in other papers,'*?® in which Landau’s idea was em-
ployed.
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remaining terms (with the opposite sign) describe the mo-
mentum carried off by electrons, so that the difference is
equal to the momentum communicated to the lattice (per
unit time per unit volume). In fact, (m/e) (3j)/(dt) is the
change in the momentum of electrons occupying a given vol-
ume element, the term (& /dx, ){mv,v, y) is the momentum
carried off during the free motion of electrons to other vol-
ume elements, and (8 /dx, ){L, y), is, according to the re-
sults of Lang and Pavlov mentioned above, ** none other but
the momentum communicated to the lattice when work is
done upon it in the course of deformation.

The quantities A %3, , A (D) 1 (P) can be determined
by performing microscopic calculations of the elastic moduli
of the metal in the adiabatic approximation (see Refs. 45 and
46 and the reviews in Refs. 47 and 48).”

The term D in (2.2) is connected with the “nonadiaba-
tic” contribution of conduction electrons. [Here, we have in
mind the deviation from local equilibrium and not a depar-
ture from the adiabatic approximation upon which funda-
mental condition (1.1) is based, subject to obvious reserva-
tions relating to the contribution of the fields.]

Both the motion of the surface and the change in the
direction of the normal must be taken into account in the
boundary conditions for (2.2) when the conditions for the
reflection of electrons from the metal surface are written
down. These conditions assume the usual form*+>® when
they are written in the c-system in which the boundary is at
rest.

3. TRANSPORT EQUATION, ENERGY, AND THE HAMILTON
FUNCTION

The form of the transport equation for the quasiparticle
(conduction electron) distribution function f(r, p, ) in the
deformed crystal was established by Akhiezer,> Akhiezer,
Lyubarskif, and Kaganov,* Gurevich,'* and others in their
investigations of the absorption of ultrasonic waves in met-
als. The transport equation was examined in our previous
paper®” with allowance for the Stewart-Tolman effect, and
by Gurevich, Lang, and Pavlov,*? who put forward a quan-
tum-mechanical derivation. We shall follow Ref.20 and
write the transport equation in the form

A vp=0, (3.1)
where

d __ @ de 0 e\ O ,

T= 50 Eaa—r‘*'(F—a—r)a‘p (3.1)

is the Stokes operator for the field derivative with respect to
time, ¥ is the collision operator, and F represents external
forces in which we include the Lorentz force

__ e [ de :

FL_eE+7[a_p,HJ. (3.2)
The deformational interaction with the lattice is included in
the Hamiltonian for the conduction electrons.

The dispersion relation, i.e., the Hamilton function for
9This program has not as yet been implemented. Nor has the more realis-

tic program of evaluating A (p) for e = & in the spirit of the pseudopo-
tential theory and the Harrison model,* or the program of systematic
measurements of A, (p) in analogy with measurements of the di.spe:rswn
relation £o(p) on the Fermi surface.®*® The deformation potential is not

known as yet to any degree of detail for any good metal. For semimetals,
see Refs. 51-53 (and Sec. 8).
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a conduction electron in the laboratory system, in which we
have written the transport equation (3.1), can also be written
in the form of (1.1), where 8¢(r, p, ¢ ) is the local change in the
dispersion relation under deformation of the crystal. The
explicit form of §¢ is given by (2.6) and (2.7), but some of the
results can be obtained without specifying 8¢,

We shall follow Landau’s idea and the results reported
in Refs. 14 and 20 to obtain an expression for the electron
energy in the l-system. The transformation from the coordi-
nate system K ', moving together with the volume element
dV’ of the lattice, to the I-system can be performed with the
aid of the point transformation

r=r"+u(r, H, (3.3)
where u(r’, ¢ ) is the displacement of the lattice point r’ at time
t (Fig. 2). The canonical transformation with the generating

function @ = (r' + u(r’, # ))p between the old canonical varia-
bles r', p’ and the new variables r, p yields, as usual,

(', p’, &) = e (r, p, t) — up, (3.4)
p’ =p + V(p). (3.5)
We note that, since the coordinate transformation given
by (3.3) contains the time explicitly, and £’ is not a quadratic
function of p’, it turns out that, in accordance with well-
established results in mechanics,’’ the new Hamilton func-
tion £ is not in general identical with the quasiparticle ener-
gy. Nevertheless, there is a simple connection®® between its
average over the quasiparticle distribution and the average
electron energy. This relation can be obtained by multiply-
ing (3.4) by the invariant of the canonical transformation
SfdVdp =f'dV'dp’ and then integrating with respect to the
quasimomenta. From this, it follows that the energy of elec-
trons in a volume element d¥’ in the K ' system is

AE = (&' aV’ = (efyy dV —u (pf dV.  (3.6)

On the other hand, we shall use the well-known energy
identity

dE = dE' + u dP, (3.7)
where dE is the average energy of the electrons in dVin the 1-
system and dP is the electron momentum in d¥ which, ac-
cording to (1.4), is given by dP = wdV = m{({dc/3p)[f))-
Eliminating dP and dE’ from (3.7), we obtain the relation-
ship between the mean energy and the mean Hamilton func-
tion in the 1-system:>°

dE = ((ef)) dV~li<<(p—maa—:) f>> dv. (3.8)

When we derive the linearized equations, we shall take
into account the fact®?%?° that the collision integral is made
to vanish by the instantaneous equilibrium distribution

FIG. 2. Transformation from the laboratory frame K to the comoving
frame K '.
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function f(e — pi — 8u), where the Fermi distribution func-
tion is fo(€) = {exp((e — o)/kT] + 1] =" (u, is the chemical
potential for the electrons, and the resultant distribution
function will be sought in the form

f,py )=/, (80+68)+X(r7 P 1) - 65 ’ (3.9)
where
8e = de —pu — 8y, (3.10)

i.e., 8¢ includes both the change in the Hamilton function
and in the electron chemical potential.

This procedure thus takes into account the changes in
the electron density and the dispersion relation that follow
without delay (to within microscopic time intervals) the de-
formation of the lattice. In the collisional region, this proce-
dure corresponds to the complete entrainment (drag) of scat-
tering centers by the moving lattice. In many cases, for
example, in scattering by phonons, this assumption may not
be valid a priori, in which case a more detailed analysis be-
comes necessary.

It is convenient to normalize y by the condition

(x) =0, (3.11)

which signifies the normalization of both the total and the
instantaneous-equilibrium distribution function to the elec-
tron density n(r, ¢) at a given point in the lattice. It is readily
seen that the current density j in (2.1) can be expressed in
terms of y and constitutes the sum of the electron current
{1.3)and the ion current j** = — enu. The electrical neutra-
lity condition is

(3.12)

Using the equation of continuity for electrons, the explicit
form of the deformational corrections 8¢ to the dispersion
relations (2.6) and (2.7) and the normalization condition, we
obtain the expression for, 8¢ = (1, Yu, /(1), the renormal-
ization of the deformation potential (2.2), and the equation
satisfied by the quantity y given by (2.2).

divj = —e div (vy) = 0.

4. CONSERVATION LAWS

To determine the force fin the equations of the theory of
elasticity, given by (1.8), it is convenient to start with the
conservation of the resultant momentum P of the system
consisting of free electrons, the lattice, and the electromag-
netic field. This conservation law is exact if we ignore mo-
mentum transfers to phonons (since, otherwise, the phonons
would also have to be included in the system®**):

P:SdV m//——f>>+G+om u) ; (4-.1)

where the first term [cf. (1.4)] is the momentum of free elec-
trons, expressed in terms of the dispersion relation and the
quasiparticle distribution function, and G is the momentum
density of the electromagnetic field.

For an arbitrary volume V, we have

dP ajs!
l = S dV plm u +— T [Jv H]t

(9le
7o)

=\ dSy Pir,
i R (4.2)

where § is the surface bounding the volume V, T, is the
Maxwell stress tensor, and ¥, is a certain symmetric (be-
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v

cause of conservation of momentum) tensor. Since the vol-
ume is arbitrary, this yields the following expression for the

force:2%30
m (9] i

" 01){ (Tlh + lp!h) (43)
To determine ¢, for a closed system, we can use the law of
conservation of energy.?* This can be written in the form

€ =80 + Em + Ean (4.4)

where the three terms correspond, respectively, to the elec-
trons, the electromagnetic field, and the lattice. The expres-
sion is valid for elastic scattering of electrons in the c-system,
which is valid with good accuracy for scattering by impuri-
ties dragged by the moving lattice. According to the trans-
formation formulas, the electron energy &, in the l-system
can be written in terms of the spectrum and the distribution
of electrons in the c-system,'? as follows:

. :—[]v H]z

fa=Jav (i +ul{m YT )
The condition for elastic scattering is

"/ 7 af N\ I

(¥ ) ) = @esp =0 (4.6

We thus arrive at the equation (4.6}
6 . . 00;p m 0j; 1,,
= v (- Sy 2l Ly,

4 , 2
— o Gal) = [av 2B a)

and this, together with (4.3), leads to the equations of elasti-
city (1.8) and the expression for the energy flux density given
by (4.16). If we were to start with (4.7) alone, the right-hand
side of the equations of elasticity (1.8) would acquire addi-
tional terms of the form [4,®] and ¢,;, (3/0x, )it,, where @ is
an arbitrary vector function of coordinates and ¢, is a con-
stant tensor that is symmetric in the indices i/. However, the
law of conservation of momentum given by (4.2) shows that
@ =0and ¢, =0.

When the system is placed in a thermostat and its ener-
gy is not conserved, the derivation of the equations can be
based on the fact that the time derivative of the suitably de-
fined free energy F of the nonequilibrium state should be a
sign-definite (negative-definite) quantity® (Fig. 3). It is then
sufficient to take the free energy in the form F= & — TS,
where & and S are, respectively, the energy and entropy of
the nonequilibrium subsystem and T is the temperature of
the thermostat. The free energy F is a minimum in the state

nonequilibrium
subsystem

8(f} S{r}

Thermostat

] s deformed lattice
- r nelastic electromagnetic
collisions field

electron gas

FIG. 3. In a subsystem that is not in equilibrium, the averages are func-
tionals of the electron distribution £ and the fields u, E, and H.

'We emphasize particularly that only the process of the calculation is
transformed to the comoving system; the “conservation law” (or the
variational principle—see below) is formulated in the laboratory sys-
tem.
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of equilibrium, and its average time derivative dF /dt deter-
mines the power dissipation. This condition is sufficient to
define ¢, in (4.3). Indeed, isolating in dF /d¢f the sign-defi-
nite dissipative term due to collisions, and also the surface
term describing the energy flux, we must demand that the
remaining volume terms should vanish, and this will give us
the equation for ¥, . The final result is (1.8).

The expression for the momentum flux density /7, in
the conservation law

aP; , oIl

< F —(h—k——o, (4.8)
assumes the form

iy = Tip — 0 + AanX)- (4.9)

It is clear that 77, is symmetric if we suppose that the Max-
well stress tensor T, and the renormalized stress tensor o
are symmetric, in accordance with the conservation of mo-
mentum and the local nature of the deformational interac-
tion.""

The energy flux density q [see (4.7) and (6.1)] is given by

Go= (Bt )y i (B, Bl ity 0 (Chin).
(4.10)

5. ELECTRON LATTICE DRAG AND COLLISIONAL
MOMENTUM TRANSFER

The equations of elasticity can be given a different form,
depending on whether the transport equations for the mean
momentum or the mean quasimomentum of conduction
electrons is used.

The additional force acting on the lattice in metals can
be represented by the force exerted by electrons (drag force
7} and the Lorentz force acting on the ions:

.o . 1 .

O 1ac ui:%;—h—eno (E—l——c—-[v, H])i+fid . (5.1)

Comparing (5.1) with (1.8) or (2.2), we obtain an explicit
expression for the “drag force.”

We now rewrite the electron dispersion relation (2.7) in
the laboratory coordinate frame X in the form

e(r, p, 1) =gy (p) + (A +- mvwy) uyy
M all.i
+ (Pi—”wi ) (ui+ Vh%;) .

From this it is clear immediately that the limiting transition
to free electrons decoupled from the lattice corresponds to ¢,
£,—p*/2m, p—>mv and, accordingly, A, — — mv, v, ."> The
deformation force® f* thentends to V, (mwv,y),i.e., tothe
term found in Ref. 28 in the microscopic derivation of the
drag force without taking into account the deformational
interaction."”

In the microscopic approach, the collisional term ap-
pears naturally in f. It is therefore of interest to rewrite
(5.1) so that it explicitly contains the electric fields acting on
thelattice and the momentum (quasimomentum) transferred
by electrons to the lattice as a result of collisions. We start
with the quasimomentum transfer equation, which we ob-

(5.2)

UThe electron distribution y is, in turn, determined by the fields E and i
even for mean free paths /»a, which is indeed a reflection of the nonlo-
cality introduced by electrons.

12The idea of this derivation is due to V. L. Gurevich; see also Chap. 8.

13See also the discussion of this question, given in Ref. 30.
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D 2

tain by multiplying the transport equation (2.2) by p and
integrating it over the Fermi surface. This yields

[4 2 A
7t (PaXd + 5z PR 4 (PVD)
~ 1. , > 4
=eEy (p;vp) —~ [i, H): + % extmHm ﬁb dZypivy % Xe
z

(5.3)

The last term in this equation is the integral over the surface
of the Brillouin zone and, if the Fermi surface intersects its
faces, the integral will, in general, be nonzero. For closed
surfaces, it is possible to choose the fundamental cell so that
its faces are not intersected by the Fermi surface (Figs. 4 and
5). We then have ( p,v, ) = (n_ — n_ )8, , where n_ is the
electron concentration in the electron bands and n,_ is the
concentration of holes. The transport equation then assumes
the form

a A
5 PO+ 5 (PO + (PVD)

= —eE; (n.—n,) ——[j, HJ,. (5.4)

Correspondingly, for closed Fermi surfaces, the equation of
elasticity (2.2) can be rewritten in the following form with the
aid of (5.4):

. a0; ~ [4
Prac iy = ‘;;: —eE (n.—ny) _ig;h‘((xik'l‘pivh)X)

—(mw)—%((p:—mvi) x)- (5.5)
The collisional term with quasimomentum transfer (pdy) is
often the leading term in (5.5). There has been considerable
activity in this connection (“electron wind” theory; see the
bibliography in Refs. 29 and 30). Whenn . = 0, i.e., for pure-
ly electronic groups, the expression given by (5.5) for the
force acting on the lattice becomes identical with Eq. (4.1) in
Ref. 20. In the collisional region, and if we neglect the
Steward-Tolman term (d /3t ) {(p — mv)y ), the latter equa-
tion becomes identical with the expression for the force pro-
posed by Silin,'® who was the first to introduce the deforma-
tion force into the equations of elasticity:

0;p

Prac s =325 —eny (E -+ [0, H), + 50 (LD (5.6)

where n, = ((f)) is the total density of conduction elec-
trons and .7, is the deformation potential in the laboratory
frame.

For open surfaces we have

Pwn) = nobin — & dZapifa, (5.7)

where the integral in the second term is evaluated over the
surface of the Brillouin zone and n, is the total number of

N

o e

FIG. 4. Choice of a cell that does not intersect the Fermi surface by faces
of the Brillouin zone.
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FIG. 5. Electron and hole zones. Shaded areas occupied by electrons.

conduction electrons per unit volume (Fig. 6). In this case,
the last term in (5.5) is also nonzero, where the integral is
evaluated over the belt corresponding to the section of the
open Fermi surface by the faces of the Brillouin zone. The
contribution due to the surface of the Brillouin zone is con-
nected with momentum transfer to the lattice as the electron
moving in the force field crosses the face of the zone.'* The
equation of elasticity written in this form for arbitrary topol-
ogy is then found to assume a very complicated form:

90y
dxy

.. ~
Prac Uy = —e(pn) By — 2= ((hin - Pivn) 1)

— (PR — % (pi—mvy) %)

+ L i H § dZupioey L2, (5.8)
where ¢,,,, is the antisymmetric unit tensor. The effective
charge density of the lattice is then anisotropic and is repre-
sented by the tensor e{ p,v, ). For n, = n_, the latter is
found to vanish. For hole groups, the contribution to the
effective charge density is negative, which was first pointed
out by Fiks.?

When the faces of the Brillouin zone that are intersected
by the Fermi surface are parallel to a direction chosen as z,
and the latter has a sufficiently high degree of symmetry,'>
then®!

{pivr ) = 6;1 (ny — EN), (5.9)
where N is the number of states in the Brillouin zone and £ is
the number of “hole” zones in which states lying near the
faces that are not intersected by the Fermi surface are occu-
pied. For closed surfaces, the difference n, — £éN becomes
equalton_ —n_.

Instead of (5.5}, we can use the transport equation for
the electron momentum. If we use it to replace the term

&1
i
> v
T
“< K

FIG. 6. Motion in a field in the case of an open Fermi surface.

9Either by changing its energy (term including the electric field) or by
moving over an open orbit in a magnetic field (last term in (5.3)}.

'$'For example, the presence of two vertical symmetry planes will suffice.
This case occurs in the simple hexagonal lattice.
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in (2.2), we obtain®®

. . ~ a
P U= ?,Z;h —e(muwy) By — 5 ((hin -+ m008) 1)

— (mpvy) —"z‘ entjH < (aih— m%’;ﬁ) VIX> .
(5.10)

Here again, we see the emergence of the effective tensor
charge density of the lattice — e{(mv,v, ), which is sign-defi-
nite, but the tensor properties (anisotropy) appear even for
closed Fermi surfaces. Thus, the concept of the effective
charge is not invariant and has a definite meaning only in the
context of the particular transport equation (for the quasi-
momentum or momentum) that is being used.

We thus see that, despite the definite advantages of
writing equations in the form of (5.8) or (5.10), this procedure
is in general too complicated. In the presentation given be-
low, we shall use the most general and simplest form of Egs.
(1.8) and (2.2).

6. ELECTROACOUSTIC TRANSPORT COEFFICIENTS

The dynamic moduli of elasticity of a metal that will be
obtained below are conveniently expressed in terms of the
electroacoustic transport coefficients satisfying the Onsager
symmetry relations.

To derive these relations, it is convenient to transform
the mean dissipated energy, which is equal to the rate of
reduction in the free energy of the system (see Sec. 4), i.e.,

o= v+ | asq, (6.1)

by using the transport equation (2.2) to substitute for dy [the
flux through the surface, i.e., the second term in (6.1) is now
omitted]. The result is

— 2= [ av e,
where the bar represents time averaging. We have used the
fact that, in the identity

v = ey — 5 (G y —vavn— (5% ) 63

the second term vanishes when the time average is taken, the
third term drops out after integration over the volume, and
the last term is identically zero.

Substituting for g from (2.2) into (6.2), we obtain

(6.2)

aF
at

—5r = | AV GE+ 0%, (64)
where o, = (A, y) is the nonadiabatic part of the electron
stress tensor. In the present case of volume dissipation (the
flux through the surface must be taken into account when
the boundary of the metal provides an essential contribu-
tion'®), it is convenient to transform to vector quantities, in
which case, we integrate the second term by parts and omit
the surface integral:

_9F_
at
Itis clear from (6.4) and (6.5) that the change in free energy is
connected with work done per unit time on the charges by

- S av (GE— f*u). (6.5)

19'This is important for Rayleigh waves and for thin metal films.5?
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the effective field and the deformation field.

We now consider the response of the system to a period-
ic perturbation of frequency w. Since the system is in a ther-
mostat, we know®® that the average rate of change of the
energy of the system is equal to the rate of change of its free
energy. We thus arrive at Eq. (6.5), which must be used to
determine the generalized forces and the coordinates in or-
der to apply the general symmetry relations for the transport
coefficients:*>

ar

=3 S dr z, (r) f, (r),

a

2= § dr au (v, 1) £ ().
b

It follows from (6.5)—(6.6) that, if we take E(r) and u(r), as the

generalized forces, the corresponding generalized coordi-

nates will be the currents j(r)/io and — f(r):

fa(®—E (), u(),

2o ()30 _par).

(6.6)

(6.7)

The role of the index, labeling x and £, is now assumed by the
combination of the discrete index a and the continuous index
r. The symmetry relations for the transport coeflicients will
now be written for the homogeneous medium, where

g (r — 1’y HY = ap, (' — r, H), (6.8)
or, in terms of spatial Fourier components,
Qgp (kv H) = Qpgq (_k1 _H) (69)

Turning now to the constitutive equations that follow
from (2.1) and (6.7), i.e.,

ji = 0uEy+ 0,u, = cuk + byuy, (6.10)

we see that the tensors &, 3, ¢ and b must satisfy symmetry
relations that follow?° from (6.6)—(6.9):

o (k, H) = oy (—k, —H),
bil (ka H) = bli (_k1 _H)v
011 (k, H) = —iocy (—k, —H); (6.11)

where o, is the conductivity,'” d, is the “deformation con-
ductivity,” and ¢;; and b,; characterize changes in the elastic
moduli due to the nonequilibrium nature of the electron gas
(the former due to the field and the latter directly due to the
deformational interaction). In particular, the relations given
by (6.11) can be used together with the known expression for
the current (its “deformation” part, described by the tensor
d.;) to construct the “field” part of the deformation force,
determined by ¢, . The transformation for #,,, to # has ena-
bled us to avoid the introduction of constitutive tensors of
rank three. .

We now introduce Green’s operator R (p) for the trans-
port equation and its symmetric and antisymmetric parts:

A d Ay —1 A { _=a a
Rp=( 4 +v) , Re=[RE)xR(—pI (612)
The formal solution of the transport equation is

17We shall use the standard notation o both for the stress tensor and for
the conductivity, since these two quantities never appear at the same
time.
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1= 1"+ x* = Rg,
x'= ——i?sevg'—f?“./\lmu,m, = — RoevE — IA?’A,mL;,m.
{6.13)

The current and the deformation force are expressed,
respectively, in terms of the antisymmetric (y* ) and symmet-
ric (y*) parts of the distribution function. Thus, the constitu-
tive tensors are

0;; = € WR%,), 9;;, = eok; (W;R°Ayy),
Ci1 — Lek_, (A”R“vl), b“ = i(y.)kjkt (A”RSA[[ )

(6.14)
The form of the transport equation (2.2) shows that R ( — k,
p) = R (k, — p) when thecollision integral is even in p. Hence
according to (6.14), it follows that, in this case, , d, ¢ and b
are even functions of k and, correspondingly, we obtain the
symmetry relations in the form
o;; (k, H) = 0 (k, —H), b;; (k, H) = by; (k, —H),
9;; (k, H) = —iwcy; (k, —H). (6.15)

In particular, (6.15)is valid if there is a center of inversion. In
the simplest case, where H = 0 and there is strong spatial
dispersion (& represents the principal value), we have

s_ a__ . P
R=nbd(kv), R"=—iy-. (6.16)
The symmetry relations can then be readily verified directly
because R is the multiplication operator.

7. DYNAMIC ELASTIC MODULI OF A METAL

We shall now obtain the equation describing the propa-
gation of acoustic waves in metals (including the case where
an external magnetic field is present).!%-21:64-%6 We shall start
with the equations of the theory of elasticity, given by (2.2).
The force D describes the contribution due to nonequilibri-
um electrons and electromagnetic fields, and can be ex-
pressed in terms of the current and the deformation force.

If the source of the fields is the acoustic wave excited in
the crystal, then by solving Maxwell’s equations we can ex-
press the electric field E and, correspondingly, j and f* in
terms of the deformations:

B =G, ji=juun fl=fume (7.1)
The operator G,, is related to the Green’s tensor of the Max-
well equations. It is given below by (7.17).

The equation for the displacement u is

oits — hnim—= 4 D,
i iklm 0Ty 0Zm i

2 1 a\ 4 2
D; = (— Eimntln— = Sim 'a_t) Jmi+Ffae

[ e

(7.2)

In an unbounded metal, the Fourier components of the
current density j and the deformation force f¢ can be ex-
pressed in terms of the Fourier components of the field and
the displacement with the aid of the constitutive equations
(6.10) that contain the electroacoustic transport coefficients
(the subscripts k and « will be omitted):

Ey=Guupy Ji=0uGrn+0)un,  fi=(€1aGr+bu) tr-
(7.3)
The transport coefficients satisfy the symmetry rela-
tions given by (6.6), so that, in addition to ¢, it is convenient
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to introduce the quantity

Oni (k, H) = 0 (—k, —H) = —iocy; (k, H).  (7.4)
The tensor
. ¢ H
A= ';”1' (i0by; — epimom), ©° = fn—c (7.5)

can then be used to rewrite the Fourier components of D and
the effective field E, as follows:

D; = Apjn+fis
where
E=E+lp B-2U
is the effective field, and the field E satisfying Maxwell’s
equations includes the gradient of the chemical potential.
In our presentation below, we shall use the notation
a,x,=a, , where x = k/k, and a,, is an arbitrary tensor.
Let p and g be the principal axes of the contracted elas-
tic tensor of the lattice 4,,,,.. Let 7, be the eigenvalues of this
tensor in units of, psz, where s is a certain characteristic veloc-

ity of sound. We then have

A’ wGA
N58pq = %n (71.7)

The bar over an index indicates that summation is not per-
formed over the index.

In terms of the principal axes p and q and in dimension-
less variables, the equation for the Fourier components of
the displacement, given by (7.2), assumes the form

Eh:Ek—iﬁ)Ahlul; (7.6)

[(n7—0) 8 pg + dpal ug=0; (7.8)
where ) b
© i

te=(5)» du= —ar s (7.9)

i.e., £ is the dimensionless square of the phase velocity of the
wave and d,, u, is the (dimensionless) Fourier component of
the force exerted on the lattice by the conduction electrons
and the electromagnetic fields.

The expression for the (contracted) dynamic elastic
moduli d,, can be obtained by substituting the expression
for the tensor G, given by (7.17) into (7.6) and (7.3). The
result?® can be written in the compact form:*®

\2!

(7)

dpq == 2 dpi s
=1

al — bpg_  g11_ Cpulug 1 k2 Bpplpg
PeT T pstkE ? P87 petklo,, ! e — 4n pstk® ?
1
dLv ¢paPBvdy gy o (k%z 2 A
PO 7T Tps%E 0 TPYT pg?kt \dno pBPBYRves
vI ic? 131
dpq = T Znops? (Apﬂpﬂvava—apﬁPBvAvq)- (7.10)

The indices @, 3, ¥ . . . indicate projections along axes per-
pendicular to the wave vector k, x represents a projection
along the wave vector, the symbol 1 represents renormaliza-
tion that arises when longitudinal electric fields are eliminat-
ed (with the aid of the neutrality condition j, = 0), p.z are
the components of the effective transverse resistivity tensor,
T'is the unit operator, and d is defined in (7.4):

- A k2c2 -y -1 1 OaxOxp
p= (0’"‘—‘—14“0) I) N O'ag:()'aﬂ—T‘,
Oyl ¢ 0
Ody = g — 220t o gy, — SeOna (7.11)
HH HH

It is sometimes convenient to combine the terms ™ and d*
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by using the definition of 5 given by (7.11):
2

dot +dpa = — e B paPasTirAsg. (7.12)
The expressions given by (7.8)—(7.12) are a consequence of
only the phenomenological relationships given by (7.10) and
(7.3) and the Maxwell equations. In the quasiclassical case,
when the electron gas is described by the transport equation
(2.2), the transport coeflicients in (7.10) can be evaluated
with the aid of (6.14), whereas, in the quantum-mechanical
case (including quantizing magnetic fields), they can be ob-
tained from (1.9).

Let us now briefly consider®® the structure of d;,. The
individual terms in the expression for d;; differ by the trans-
port coefficients they contain, and have different physical
interpretations. The first three terms (d',d™ andd ™" )do not
contain the transverse resistivity, whereas the last three
termsd " ,d Y andd "' are proportional top,, and are due to
the transverse electric fields that arise during the propaga-
tion of sound waves. The term d' describes purely deforma-
tional effects. Neither the longitudinal nor the transverse
fields contribute to it. It corresponds to work performed by
the component of the force f* that is proportional to the
deformation alone. The corresponding power is uf?, where
f* must be interpreted as being only the second term in
(6.10). The term d™ represents the renormalization of the
deformational term due to longitudinal electric fields. The
term d™ is Hermitian and describes the variation in the ve-
locity of sound due to inductive effects in an infinitely con-
ducting medium.%® It includes inertial contributions con-
nected with the Stewart-Tolman effect. This term is
universal: it does not contain transport coefficients. Relative
tothex, y, z axes, where the field lies along the z axis, we have

(4 i 2 0
O
111 H? .o
dpq = = | i ! 0 (7.13)

W 2

Lo o ()
The termd " describes the contribution of transverse defor-
mational currents and represents the renormalization of the
deformational interaction due to transverse electric fields. It
is particularly important for transverse sound. Correspond-
ingly, d¥ describes the effect of finite conductivity on the
inductive terms, i.¢., renormalization of the term d™ due to
transverse fields. In some cases, the separation into these
terms becomes purely arbitrary. Finally, the last term (d*")
describes cross effects when either the work uf? per unit time
is performed by the component of the deformation force that
is proportional to the electric field, or the current in the
expression for the work done by the field (jE) is of deforma-
tional origin.

We shall now reproduce the tensor G, as well. It can be
found from the electrical neutrality condition j,, = 0 by ex-
pressing the longitudinal effective field in terms of the trans-
verse field:

ol Eq0ya ML

Ei=— Oux  Omx (714)
Elimination of the longitudinal field leads to the renormal-
ization of the transverse conductivity tensors (7.11). The
transverse field is found from the Maxwell equations (2.3), in
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which the inhomogeneity is the deformation current j2. It is
then convenient to introduce the quantity p, from (7.11):
, N = a1, .
Ja =6:ﬂEﬂ +]gu E,= —pa5]§+? [u, H]a-—-’:— Ug.
(7.15)
The current j° is given by
. 1 . ..
j% = 0ap (7[“, H]ﬂ—% uﬁ) + Oy (7.16)
Using the above relationships, we obtain the following
expression for the Green’s tensor?° G :

. o k2 ? 0%
Gig= — (am—b‘;,‘ gx: ) Pap (4—; Aﬂq—i-@éq) — 8 ==

’
Oiex

7.17
which was used in the derivation of (7.10). 717
The dispersion relation that follows from (7.8) deter-
mines the (dimensionless) phase velocities yZ of the elastic
waves,'® where the dynamic moduli 4, given by (7.10) in-
clude the contribution due to nonequilibrium electrons and
excited electromagnetic fields, and also the effect of the ex-
ternal magnetic field

Det ' iz — L) 8pq + dpg | = 0. (7.18)
As a rule, the interaction between electrons and the sound
waves is ineffective (in Pippard’s terminology®) because of
the large difference between the velocities which, in turn,
reflects the difference between the electron and ion masses:
m/M ~s*/v}, ~1072 — 107>, Because of this, |d,, | <1, and,
for example, in the absence of degeneracy, the eigenvalues §
are given by

L=m+d; (n+*n#n). (7.19)
[There are, however, possible situations where both an effec-
tive interaction is present (see below) and d,,; are not so small
(they have “singularities”), in which case we must solve Eq.
(7.8).] The phase velocity of the sound wave is obtained from
(@/k); = sy&;, which yields the following order-of-magni-
tude estimate:

A

—si ~Red -, (7.20)
Electronic rotation of the plane of polarization of sound oc-
cursin the degenerate case (this is investigated in detail for
k||H in Refs. 21 and 64).

Y oo _
Y Im dpp'

8. DEFORMATION POTENTIAL

The deformation potential tensor A, (p), introduced by
Akhiezer,? is an individual characteristic of a conduction
electron in the deformed crystal. The change in the energy of
an electron A (p)u,x (r,¢ ) during the deformation of the lat-
tice'® is related to this tensor [see (2.6)—(2.7) and below]. This
characteristic of the electron can be determined either from
microscopic theory or from experiment. So far, we know
very little about it, which contrasts with the unperturbed
dispersion relation at the Fermi level, which has been inves-

8This expression determines the velocity also of other, i.e., electromag-
netic and “electronic’” Bose spectral branches, which, under certain
definite conditions, can be present in the metal and appear as singulari-
ties in the moduli d,,, in the accepted form of writing them >%:67-%°

*The simplest form of modulation of the electron energy was considered
as far back as 1935 by Titeika.”®
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FIG. 7. Electron dispersion relation in the laboratory and the comoving
systems of coordinates (introduction of deformation potential).

tigated in detail for most metals.

In contrast to the universal electric charge e and the
spin, the “elastic charge” A, (p), taken together with the dis-
persion relation £,(p), is the individual identifying character-
istic of a quasiparticle that depends on its position on the
Fermi surface.

As already noted, the dispersion relation is established
over distances of the order of a few atomic distances (over
which the periodicity of the lattice can already be distin-
guished) and, correspondingly, over atomic time intervals.
Over such time and distance intervals, the lattice in the de-
formed crystal may be regarded as locally periodic, but with
somewhat modified periods (and, correspondingly, modified
symmetry), so that we may introduce the idea of the local
dispersion relation (r, p, ¢). This approach corresponds to
the adiabatic approximation, in which the electron energy is
determined for fixed positions of the ions.”’

A consistent phenomenological introduction of the dis-
persion relation for a weakly deformed lattice is possible, as
noted by Landau (see footnote 8), in the comoving coordi-
nate frame. The transformation r’ + u(r’, ) = r to the c-sys-
tem'*?° (see Fig. 2) can be used to eliminate the motion of the
given volume element d¥ and, by changing the scale, retain
the systematics of states of the undeformed crystal.

Indeed, consider the homogeneous and stationary de-
formation u,;, = const (for simplicity, assume that, initially,
there is no rotation), for which the period a, becomes
a, + 6a, where 8a; = a, u;; . The electron has a band spec-
trum both in the undeformed and the deformed crystal
(eo(P)=¢(p; 8,) and £(p)=c¢(p; a, + Sa), respectively). The dis-
persion relations £y(p) and ¢(p} differ from one another not
only by the explicit dependence on the lattice parameters a
{through the transparency of the potential barriers, and so
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on), but also by the change in the region in which the quasi-
momentum p is defined, because of the change in the size
(and shape) of the Brillouin zone. Thus, in the one-dimen-
sional case, the quasimomentum in the undeformed crystal
runs through the values

2nl N N N
p((}”:Nao; :_T’ _T‘{‘17 seen “2—’;
I F11
—Z<p<, 8.1)
whereas, in the deformed crystal, we have
2ni .t LA 8.2
= Nag (14 uxy) ! ay (1+uxx)<P<ao (14 upx)” ( )

At the same time, although the systematics of states with
respect to / remains unaltered, the systematics with respect
to the quasimomentum p undergoes a substantial change
(Fig. 5). Transformation to the c-system by substituting p(p’),
a(a’) into £(p, a) will obviously conserve the systematics of
states with respect to quasimomentum that is found in the
undeformed crystal:

, 2 ! ,
P =p(l+us), piH= =, —%<p ga—’:. (8.3)
In the c-system, the dispersion relation assumes the form

¢ (P us)=¢ T e +uzd)) . (8.4)
The unperturbed dispersion relation can also be looked upon
as given in the c-system (¢;=a’). When the relative deforma-
tion is small, the deformation potential can be defined by (in
the absence of degeneracy)

A’ik (pl) — de’ (p’; uin)

e’ (P'; ugs) =e (P (P'); a (@), FI

uih=0'
(8.5)

Asnoted in Ref. 72, the utilization of the c-system in the case
of homogeneous stationary deformation enables us to use
perturbation theory with unperturbed “boundary” condi-
tions (periodic conditions).

Let us now consider the case of arbitrary deformation.
Since a represents vectors connecting closely spaced lattice

points (@, =dx, ), we have for such points*

du; s

a; _a.+~———ah. (86)

The basis vectors of the lattice a”’ (/ = 1, 2, 3) transform in
the same way. The transformation law for the reciprocal lat-
tice vectors

’ du ’
by =bj— 61: b, (8.7)
that transform in the same way as the p;, follows from the
condition a*b = m and, hence, @,;6b, = — b, 5a, . Since en-

ergy is unaffected by the rotation of the given volume ele-
ment {as a whole), the dispersion relation is a function of
rotational invariants that consist of p and the ordinary and
reciprocal lattice vectors: p%, pa, pb, a'’ a™, b’ ™ In
contrast to the other scalar products, the product pea is then
invariant also under the general deformation (3.3) as well,
where, to within linear terms, we have

pr={(p')i— pb=p'b’ — (pibg + pkbi) us,

atlalm) — a/(z)ar(m) + (a;(ba‘{‘(m) + a‘{‘(l)a{(m)) Uspe (88)

szfpﬂuih,

Using these properties, we find that, for strong coupling and
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with the dispersion relation®”

&0 (P, {a}) =¢+a{a}+ 3 B, {a} exp - pa,, (8.9)

we have

3
1 al o _oa
2 [( i da (l) +ah Ba‘“ )

=1

€ a n
+ Z (a® aﬂ(;‘) +aff 6'3,,, ) exp £ pa, |, (8.10)
where the sum in (8.9) is evaluated over neighbors in the
nearest coordination spheres. Only the p dependent part of
A (p) is of interest because the constant cancels out in the
renormalized tensor A, (p). Thus, in the cubic lattice with
nearest-neighbor interaction, this part of 4, (p) is given by

3
n(p =3 (a2 g, pap 2 %

1=1 dagh
( 22, (8.11)

Hence, it is clear, in partlcular, that the known plane
isoenergetic surfaces, that are obtained in the strong-cou-
pling model by annulling the sum (square lattice) or the pro-
duct (bec™) of cosines, correspond to A, (p) =0

For weak coupling, well away from points of degener-
acy, for which

& (p)=£

| VyI? 2

o (p) + ) m) y Ey(p= 2—‘0"7, (8.12)
b

we find on substituting p(p'), b(b'), ¥ (¢, ) and expanding in

powers of u; :

21V, |2

plpl
A (p) = ———+ Z Eqy (p)— Eo (P hb)
Vo, 41 Pibi+ pib; + bbby
(1 Tl = R CSE)

where V, , is the derivative of the unperturbed potential
with respect to u;, and the leading term muv, v, appears as a
result of the transformation of p?/2m.

In the region of quasimomenta, where g.(p) = (p*>/2m*),
the deformation potential can be expressed in terms of the
effective mass®® and its derivatives with respect to the lattice
parameters

4oabh = _) _t
k gathr ] m*{a} ’
1

(8.14)

The expression for the tensor A, (p) in terms of the Bloch
matrix elements are given in the literature.*>*3

Thus, to obtain the deformation potential, it is suffi-
cient to examine homogeneous deformation. Both lattices
(original and deformed) are then perfectly periodic and each
has its own quasiparticle dispersion relation. The deformed
lattice corresponds to the l-system. Transformation [ac-
cording to (3.3)] to the coordinate system in which the per-
iods are undisturbed is equivalent to the transformation to
the c-system. In the dispersion relation for the deformed lat-

3
2
Aip (p) = —mFvy, ’TK‘PT 2 ( ai®
=1

0 (l)

20'The expressions given by (8.9) and (8.10) may be looked upon as quite
general if one supposes that (8.9} is the Fourier expansion of the disper-
sion relation and the sum over n in (8.9) is evaluated over all the sites of
the Bravais lattice.
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tice, this corresponds to the substitutions for p(p’} and a(a’)
given by (8.6), with the result that, in the perturbed disper-
sion relation, we then have a dependence on the components
4, and the first term in the expansion in terms of these
components determines A, (p) in (8.5).

9. SYMMETRY PROPERTIES

The deformation potential 4, (p) is a tensor function of
quasimomentum that is invariant under transformations g of
the point group G of the crystal:”!-7

ghg'p) gt =4 (), A(—p)=2(p): (9.1)
The parity A is a consequence of symmetry under time rever-
sal. In the isotropic case, it is clear that 4, (p) can be written
in the form

Mg (P) =21 (8) 81+ A (2) %. (9.2)

In the absence of a magnetic field, (9.1) relates the val-
ues of the components of the tensor A (p) at different points in
the Brillouin zone (that enter the star of the given vector p).
This does not impose any essential restrictions on the com-
ponents of 4. It is only at individual symmetric points (lines,
planes) of the Brillouin zone that the components of A (p) are
found to be related by symmetry transformations at the giv-
en point. Consider the group G, C G, whose elements g, €G,,
form an invariant vector p that occupies a symmetric posi-
tion in the zone; g, p = p. The tensor A (p) then transforms
as a constant tensor:

& (p) &' =1 (p). 93)
This means that the components of 4 (p) become related at
symmetric points, and some of the components must vanish.

Table I lists groups G, (symmetry groups that have as
an invariant the vector component along which we take the z
axis) and gives the selection rules for the components
A (p.)and A,,{p,) (clearly, 4, ( p,) is not zero). However,
in metals (as opposed to semiconductors), the individual
points do not play an essential role because whole regions of
the Fermi surface provide a contribution. Symmetry proper-
ties do not, therefore, play a dominant role. The situation is
quite different in a strong magnetic field.

We now turn to the symmetry properties of averages
evaluated over the orbital period in a magnetic field.5® In
terms of the variables g, p,, and the orbital angle ¢ = 27, we
have

}"A<p) = }A" (e, P2 (P)v (94)
and

TABLE I. Selection rule for the off-diagonal components of the deforma-

A=4(e, p,)» (9.5)
if the section (in the given zone) is simply connected. Let us
now consider the subgroup of the symmetry transformations
gy that do not affect the component of the quasimomentum
in the direction of the field: g4 p, = p, . Under the group G,
of these transformations, the quantities 4, behave as the
components of a constant tensor:

gnh (e, p) gH =1 (e, Pa). (9.6)
The only nonzero components are then those that are invar-
iants of the group Gy, . The latter is determined by the sym-
metry of the direction Oz of the magnetic field in the crystal.
Since the asymptotic behavior of the transport coefficients in
a strong field depends on averages over the orbital period in
the field, symmetry often plays a dominant role.

Let us begin by considering the case Ox|kLH|Oz.
When we determine the asymptotic behavior that governs
the absorption of transverse sound in strong fields in accor-
dance with (10.5), the leading terms are determined by
A, l@=y, z), and, for A , =0, the higher-order terms in
the expansion in 1/H contain the averages
Ux 'pxa = - m: 1pylixa » Ux ﬁa ’ %avt(a¢xa/a¢ E'Axa )'

For any symmetry, 12,v*#0, which gives rise to the
terms~d . |7/I. |? in the asymptotic behavior of d L ,. The
average v, ¥,, producestheterms ~d !, (k7)*ind L,. Letus
examine when they can be different from zero. The groups
Gy which are of interest to us are groups that admit the
existence of the invariant vector (p,): C,, Cs, C,,, C,,. The
quantity p,A,, transforms as the x, y component of an anti-
symmetric tensor (with the exception of the isotropic case,
for which A, ~p,p.). It can therefore be nonzero either
because of its symmetric part (groups C, and C,, that do not
contain the m, plane), or because of the antisymmetric part
that transforms as the z component of the angular momen-
tum (groups C,, ). The selection rules for p,A,, can be found
in an analogous manner. The results are collected together in
Table II. The selection rules for v,#?2, will be found by
recalling that d /d7 in (2.5) transforms as the z component of
angular momentum and, consequently, ¥,, transforms as
the y component of a vector, whereas ,,—as its square.
Hence, it follows that v, ¢?2, #0 for Gy = C,,. For this
symmetry of the field direction, d%, ~d L kr|r/l.| for
A, =0)

An essentially different picture arises when the sections
are multiply connected and transform one into the other un-

tion potential for symmetric directions {z axis) of quasimomentum in the Brillouin zone.

*m, (m,}—mirror plane containing the OX (OY) axis.
**m, (m,, }—mirror plane not containing the OX (and OY) axis.

G c (o) % Gov
) C,
2 1 2 my*) m, my #%) 2m m, 2mym, 3v Ceo Cep
Axy (p2) F=0|] +#0 0 0 =% 0 0 =+ 0 0 0 0
Axz(DPz) =*= 0 0] £0 0 +*+ 0 0 0 0 0 0
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TABLE II. Selection rules for the deformation potential components
averaged over the rotation angle for symmetric directions of the magnetic
field in the crystal.

CS CZD 3v
Gy — C Cs c C
H 1 2 m,, my mE memy J ZWE " 3m 3m. 40 (1]
Axy +=0] =0 0] 0 | =0 0 = 0 0 0{ o0 0
PyAay — — 20 0 — 0 — 0 =+ 0 0 0
Ars ) 0]=01 0 | =0 0 0 0| o 0
Py Aaz — | =0] — 0 — 0 o 0 ol 0 0

der the transformations of the group G . What we have said
above then applies only to the sum 3,A%. On the other
hand, each of the averages A ¢ will, in general, be different
from zero. Because of this, the leading term in the expansion
for d !, will not vanish even when the direction of the mag-

netic field in the crystal has a high degree of symmetry.
- Al )2
D) A AG o~ D Aoz

=2

[} a

For k||H||Oz, the “selection rules” for A, , which deter-
mines the leading term in the deformational interaction of
transverse sound (x is now the direction of polarization, z the
direction of propagation and of the magnetic field), are the
same as for kIH|lu (where x was the direction of propaga-
tion, z the direction of polarization and of the magnetic field;
see Table II). However, in the directions in which /_1“ =0,
the next term in the expansion for k||Hlu is determined by
the average v,¢2,, and, in contrast to the situation where
klH||u, the relative change in the velocity of transverse
sound relative to longitudinal sound in all these symmetric
directions is ~ (kr)>.

The situation where deformation leads to the removal
of degeneracy and to the splitting of bands, which occurs, in
particular, in nonlinear effects during sound propagation,®®
constitutes a special case.

(9.7)

'V*

10. TRANSPORT COEFFICIENTS IN A STRONG MAGNETIC
FIELD

In a strong magnetic field, the asymptotic behavior of
the transport coefficients can be found under quite general
assumptions about the electron spectrum.

We start with the microscopic expression given by
(6.14) for the transport coefficients in terms of the Green’s
operator R for the Fourier component of the transport equa-
tion (2.2). In the integrals over the Fermi surface (4 ), the
evaluation of the averages 4 over the orbital angle ¢ = 2rin
the magnetic field?"

2
h3

21
S dp,-2nm*4, ZE% S A () dg; (A)=(4)
o

(A) =
(10.1)

can be performed in a sufficiently general form. We now

ZUThe angle brackets also include summation over zones (the index is
omitted) and over all singly-connected sections of a given zone (index a):

(W=t > S dp, S 2am3 s, (10.1')
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introduce the relaxation time v~ !( p) by making the replace-
ment ¥y—vy in the transport equation (2.2). For an arbi-
trary periodic function g(7), the quantity Rg identically satis-
fies the equation
a—';Rg+%Rg:é—, a==i(kv—o) v, (10.2)
where the explicit expression for Rg is
P

@1
1 1
= — d 2 d .
Q (1—exp(— 2na/Q) win ®18 (¥1) exp Q :E P2 (Py)

Rg

(10.3)

We shall confine our attention to closed sections through the
Fermi surface. In a strong magnetic field, it is convenient in
the evaluation of the leading terms of the expansion in 1/H
to use the following identities that follow from (10.2) and
(10.3) for periodic 7 and g:

or 1 — == T ar — ==
<v e =g (—rg - raRg), gRa%:—;—(gr~gHra),
(10.4)
and the relation
TRg~ E40(L
rRg~ 24 0(5). (10.5)

A number of exact and approximate equations that is
useful in evaluating the average over the orbital period in a
strong magnetic field is given in Ref. 66, (B1)-(B7). They
readily yield the expansion for the transport coefficients in a
strong magnetic field.

Let us initially confine our attention to the case k1H:

_ 9Py
H(0, 0, H), k(k 0,0), ve=m5r, (10.6)
b, - — ;:%, =¥, vF—y—ie (10.7)

and consider the leading term in the expansion for the coeffi-
cients b; that determine the deformation term d % in (7.10):

by = 10k (A BN ), A PA o~ M—F 0 (i) .
v Q
(10.8)
When the z axis, which is also the direction of the magnetic
field, isnota symmetry axis of the crystal, then, according to
(9.6), we have A, #£0, which leads to the following esti-
mate?? for the matrix b,,:
by ~ iok®nge/v* (n=1) ,

(10.9)
*'We assume in making estimates that we are dealing with a good metal,
in which the number of electrons per atom is of the order of unity and,
accordingly, the only characteristic energy is the atomic energy

A ~&~mv*~Ms*, where v and m are the Fermi velocity and electron
mass, and M is the ion mass.
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where the order of the z axis is indicated in parentheses.
When H lies along a twofold axis, we have

by ~ E |~ doktng [ () 2] (n=2),
(10.10)
where r==v/12 is the twist radius and / = v/v* is the (com-
plex) mean free path. For cases where H lies along a higher
order axis, see Table I1. The asymptotic form of the conduc-
tivity tensor has frequently been calculated®'*7%° and the

low-symmetry case is examined in Ref. 66 for kiH, r/
I¢kr<l.

11. THE CONCEPT OF INEFFECTIVENESS AND SPECIAL
CASES OF EFFECTIVE INTERACTION BETWEEN
ELECTRONS AND SOUND

Because the velocity of sound is low (s~ 10° cm/s) as
compared with the velocity of electrons on the Fermi surface
(for good metals, v~ 108 cm/s, and, for semimetals, v ~ 107
108 cm/s), the electron-phonon interaction in the collision-
less region is “ineffective” (in Pippard’s terminology®). This
is the reason why, as the frequency of sound increases, pure
metals exhibit,>* at low temperatures, a transition from vis-
cous high-frequency absorption ¥/ ~w/v to collisionless
absorption ¥/e ~s/v when the mean free path / =v/v ex-
ceeds the wavelength of sound A = 27/k. The temperature
dependence then disappears, since/ (7')in theexpression for y
is replaced with 4. Collisionless absorption involves the par-
ticipation of only electrons in a narrow “belt” kv = o that
are in synchronism with the sound wave. Saturation of rela-
tive absorption 7/ at the low level s/v is connected with the
reduction in the width of the belt, and, correspondingly, in
the number of resonant electrons, as the sound frequency
increases. This can be demonstrated by considering the ex-
ample of the main effect, namely, the pure deformational
interaction [d" in (7.10)], and initially ignoring the contribu-
tion of electric fields excited by the sound waves (see Sec. 13).

Using the relaxation time approximation, and confin-
ing our attention to an elastic wave of given polarization, we
can rewrite the dispersion relation (7.18) in the form

\2 2ip ( 4Sp A?

(&)~ 1=~ | T re—ow
where A =Ajy is the component of the deformation poten-
tial, j is the polarization index, @, = ks is the undisturbed
frequency of the sound waves, and s is the sound velocity.

The right-hand side of (11.1) is small and the equation
can be solved in accordance with the concept of ineffective-
ness by replacing the frequency  with the undisturbed fre-
quency @, = ks. Hence, recalling that R* ~ 1/v for ki<1and
R* ~76(kv) for kl<1, we find in accordance with Refs. 3 and
4 and even earlier work on high-frequency absorption
(@7> 1) in the “jelly” model:”

()+i5 m<t,
()0

(11.1)

(11.2)
(11/3)

Aw As .Y T
?N?—*_ZTD—’dex’V

El>1.

In general, this result is not very sensitive to the geometry of
the Fermi surface and, in particular, the absorption contains
§/vq. ~Ym/M , so that small groups provide the same contri-
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bution as large groups.’®

However, on flat and cylindrical portions of the Fermi
surface,?® including local areas of flatness, i.e., the neighbor-
hoods of points and lines on which the Gaussian curvature
J( p) is zero (practically all metals with anisotropic Fermi
surfaces have such points), the situation is quite different
from that described above (Fig. 8). When the wave propa-
gates along a plane or the axis of a cylinder, all electrons
corresponding to these areas are simultaneously in synchro-
nism with the wave.”®~#" The number of resonance electrons
does not decrease (or does not decrease as rapidly) with in-
creasing frequency (as on the belt), and the frequency in-
crease continues up to the collision frequency renormalized
to the fraction of the flat or cylindrical segment of the Fermi
surface (Fig. 9). The individual points then provide a contri-
bution that is comparable with the contribution of the re-
mainder of the Fermi surface. We thus encounter cases of
effective interaction between electrons and sound. Thereis a
corresponding sharp angular dependence on the direction of
k: absorption and dispersion increase in critical directions
when all the electrons on a local plane or cylinder take part
in the synchronous interaction with the wave. This situation
is similar to that in a strong magnetic field H (kr<1) for k1 H
and closed Fermi-surface sections,?"*? and also corresponds
to the case of effective interaction. The strong dependence of
absorption and dispersion on the direction of propagation is
similar to the deviation effect®~#%82 jn a strong field.

This substantial contribution of isolated points and
lines is connected with a property of the partial density of
states. Let us illustrate this by considering the example of a
cylindrical segment of the Fermi surface (of length Ap).
When k is perpendicular to the axis of the cylinder (nonsing-
nular direction), the belt coincides with the generator, and
the (deformational) absorption is

Ap A3

21 @Bp (dpx po b A
© K3 pst 5 v A2 (kv — o) = 4n2h3ps v ]0vx/apxlmx:m/h'

(11.4)

It is clear that, if the cross section of the cylinder contains a
point p, at which (dv, /dp, ). =0, then (11.4) shows that
7— o when the belt approaches this point.** The condition
£,,=0dv, /dp, =0 is a special case of the vanishing of the
Gaussian curvature ¥( p) = (1/V?)(£xx €,y — €2, )- The inte-

FIG. 8. Geometry of effective interaction on a cylindrical Fermi surface
for oty < 1.

2)The role of flat and cylindrical segments of the Fermi surface in the
electron-phonon interaction and, in particular, in the Kohn singularity,
was first investigated by Afanas’ev and Kagan.”” Kaganov and Semen-
enko’® have examined the role of singularities on the Fermi surface. The
two approaches are combined here, since “‘singular” points are locally
“planes” or “cylinders”.

24The range of validity of these expressions will be established below.
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FIG. 9. Saturation of relative absorption in an arbitrary direction and its
growth in the critical direction corresponding to the effective interaction.

gral in the dispersion relation given by (11.1) has a maximum
when the pole kv = o lies in the neighborhood of a point
(line} with zero curvature. Since % = F . F , (F 1, K,
are the principal curvatures of the surface), there are possible
points of flatness at which both principal curvatures of the
surface are zero, and parabolic points, at which only one
curvature is zero (Fig. 10). Generally speaking, Fermi sur-
faces have lines of zero curvature. In the general case, for a
given critical direction of k, the anomalous contribution is
provided by one point on the line of zero curvature, i.e., the
point of its intersection with the belt kv = w.

The contribution of zero curvature points, and of finite
areas of zero curvature, differs from ordinary high-frequen-
cy absorption in that it is very dependent on the mean free

X o X o~ X
[ it aubsbls Sbnhnls St
i | | | |
.
W
| 1 'l_ } |
T TN IE

FIG. 10. Examples of Fermi surfaces with lines of flattening (dichalcogen-
ide 2H-NbSe''?), with parabolic lines (elements of the Fermi surface of
gadolinium''?), and, possibly, with areas of flattening (gallium''%).
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path and, therefore, exhibits a definite temperature depen-
dence.”®8° Fil’, Denisenko, and Bezuglyi®’ were the first to
report the discovery of these effects and the observation of
the accompanying temperature dependence (Fig. 11). This
approach also provides a natural explanation of previously
observed anomalies’***®° (Figs. 12 and 13; see also the paper
by Suslov,*® where it is shown, in particular, that the critical
directions may have a high degree of symmetry in many met-
als; Fig. 14).

In the limit as /— o, both absorption and dispersion
exhibit singularities at the zero-curvature points. Their
character, which gives us some information on the angular
dependence for finite /, is indicated below. Finite collision
frequency is taken into account in order to estimate the size
of the effect and to investigate its frequency dependence.

We note that the introduction of a relaxation time can-
not be justified®® for finite areas of zero curvature (Fig. 15).
This is possible at points of zero curvature because it is only a
narrow region of p space—the ‘‘belt”’—that provides a con-
tribution to the interaction with sound, just as in the case of
ordinary high-frequency absorption.

Let us now consider the contribution of the neighbor-
hood of the zero-curvature point (line) to the integral (11.1),
evaluated over all the Fermi surfaces:

Ao ds
(%) s = — 6 ® | s, (11.5)
where
20 A%(py)
G (Pe) = 5o Tpe
As/s-10% », heper/cm

20!— SOMry
0+ 150MMy
1 1 1
100 200 300 T8
b

FIG. 11. a—Temperature dependence of absorption and dispersion of the
velocity of longitudinal sound in pure Ga for the case of propagation along
the b axis®’; b—the function wr ~ T ~? of Ref. 87, showing little flattening
on the Fermi surface as compared with the thermal momentum of a
phonon 8719
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FIG. 12. Experimental data on the relative absorption of sound in cop-

per’*: a—[111] direction (setting in of saturation for k/~ 5 can be seen),
b—[100] direction (logarithmic rise up to k/~ 40: after Suslov.

and the slowly-varying functions A *(p) and v(p) have been
taken outside the integral sign at the zero-curvature point
|

An important point is that the expansion of kv — @ in
(11.5) near the zero-curvature point does not contain definite
linear terms. Without pausing to perform the actual calcula-
tions (see Refs. 78-80), let us briefly consider the character of
the resulting singularities (Fig. 16).

At an isolated point of flattening, any direction of k in
the tangent plane (or, more precisely, on a cone at an angle s/
v to it) will be a resonance direction. Absorption at the reso-
nance kv, = @ has a logarithmic singularity of the form

_X_~i]n
v

(0]
[ kv.—o l ?
and the velocity of sound undergoes a jump (X-type point):

LI P

or, on the contrary, absorption undergoes a discontinuity
and the velocity of sound has a logarithmic singularity (O-
type point).”>#® A special direction will, however, appear if
the point of flattening belongs to a parabolic line. When k is
parallel to the plane touching it or perpendicular to it, the
right-hand side of (11.5) and, with it, absorption and disper-
sion, may then have square-root-type singularities [see

[oog]

50
$7 o '
-] 1
N $
§ |[e-1

o-2
oL 1 1 1
legq] [1g]

FIG. 13. Angular dependence of absorption in tin®®%%. The maximum
corresponds to the critical direction (after Suslov).
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[og] fi00]

Llorg)

FIG. 14. Emergence of lines of parabolic points on to a symmetric direc-
tion in the course of an increase in interference between necks.*

(13.16)] of the form ~+w/(kv, — ), just as in the case of a
line of flattening.

A finite / will smear out the singularities but, at high
frequencies, this point alone is not sufficient. For example,
for a line of flattening, absorption and dispersion (for @ Sv)
have narrow maxima of angular width 1/kl<1, where the
maximum values (¥/@)pax » (45/5)max increase with frequen-
cy as Jw/v.

However, as w— oo, this singularity is only apparent. It
corresponds only to the intermediate asymptotic behavior
vs/uv€w<€v . The dispersion relation (11.1) itself restricts
this growth, which is replaced by a fall in absorption and by
saturation of dispersion (Fig. 17). Equations (11.2)—{11.4),
which correspond to perturbation theory in terms of [dw/
w| <1 at high frequencies in the region of the angular reso-
nance, are not valid. In this case, the difference kv — @ in the
denominator of (11.5) cannot be regarded as given, and we
must find it from the dispersion relation which, in this case,
has the following form in the resonance approxima-

tion(C = 7G APpV2S/|€ 1xx | ~5/V):

o i, €xex<<O,
®— 0= -—C(Do “m 1’ e :>0Y (116)
or *
(@ — 03)? (kv, sinp — 0 — iv) = = C2pd. (11.6")

It is clear that this is similar to the equation that de-
scribes the interaction between the sound wave (@ = wy=ks)

4.7
s @

o
lse

7/

y, Vo, v
b
FIG. 15. Departures from the r-approximation in the case of effective

interaction for different ratios of frequencies of arrivals and departures
(the region —O is excluded).

V. M. Kontorovich 150




z
A
Y, Ve
K
k k4
¥
P T T
K =g K=0 K (@)=0 Ky (Q)=0 K (0)=0
Ho=g Koo Homyg Ko (Q)=0 Ko (0)*G
A B Ve ——1— Suwlg-g |
75 = e o
a \/S" 7"0 b % %g (Sb"%)

FIG. 16. Form of singularity for different local geometries.

and the “electron’ wave (w = kv, — iv). The latter is lightly
damped for w7 1. It represents (for the 1/x singularity) a
perturbation of the electron distribution (electron density)
transported by an “electron beam’” moving with velocity v, .
Such waves are well known in the case of electron beams in
vacuum and in plasma. Here, however, the separation of the
“beam” from the entire ensemble of conduction electrons is
due to the Fermi character of the distribution, and corre-
sponds to flattening on the Fermi surface, which ensures
that an appreciable number of conduction electrons (~+/s/v)
has velocities approaching v, . The properties of the electron
“wave” depend on the type of singularity.®” By virtue of cen-
tral symmetry, there are always two “opposing” beams with
velocities + v, but, for w7> 1, the sound wave is in reso-
nance with only one of them.

The coupling between the electron wave and sound is
dueto either direct deformational interaction [as in (11.6)] or
electric fields (see Sec. 13). For large w7, the sound waves are,
in turn, coupled to the electron beam waves, which leads to
the cessation of the viscous growth of absorption with fre-
quency. We note that electron waves arise in the gas system
and do not require any interaction between electrons.

The correction to the root w =w, for Cs1 and
we>Ver = vC ~2'* is shown by (11.6) to be (factors of the
order of unity are omitted)

Vo

s
© )1 "Pmax"’?

(11.7)

It is clear from (11.6) and (11.7) that absorption and the
change in the velocity of sound reach the value ~(s/v)"/* at
the frequency w ~v s ~v(v/5)'/? and then, for w>v,s, ab-
sorption decreases, whereas dispersion becomes saturated
(see Fig. 17).

FIG. 17. Frequency and angular dependence of absorption and dispersion
of the velocity of sound in the case of effective interaction for @74 ~ 1.
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12. ABSORPTION AND DISPERSION OF LONGITUDINAL
AND TRANSVERSE SOUND WAVES IN METALS IN A
STRONG MAGNETIC FIELD

The role of the deformational interaction and of electric
fields may be essentially different for purely longitudinal and
purely transverse sound waves.

The interaction between transverse sound and electrons
differs from longitudinal sound in a number of respects.
They include the substantial contribution of transverse elec-
tric fields that arise during the propagation of (transverse)
sound waves in metals (cf. Refs. 14-20), which is much
greater than for longitudinal sound. Another feature is sensi-
tivity to the anisotropy of the electron spectrum. The latter
effect is connected with the fact that the deformational inter-
action between transverse sound and electrons includes a
contribution due to the shear moduli of the electron gas (and
not the compression moduli, as in the case of longitudinal
sound), which vanish in the case of an isotropic spectrum.
This effect is particularly well defined in the presence of a
strong magnetic field, since the absorption of transverse
sound is very dependent on the direction of this field in the
crystal ®%56

The difference between the deformational interaction
of electrons with longitudinal and transverse sound is for-
mally reflected in the fact that, in the former case, it is deter-
mined by the diagonal and, in the latter, by the off-diagonal
components of the deformation potential tensor A ; (p) (one
of the indices indicates the direction of propagation and the
other the polarization of the wave). Their averages over the
orbital period® (which are responsible for the interaction
with transverse sound in a strong field) may be equal to zero
for a symmetric field direction (see Sec. 9), and this has an
important effect on the frequency and field dependence of
absorption (and dispersion) of transverse sound as compared
with longitudinal sound.

In a strong magnetic field H and for k7«1, the complex
change in the frequency of sound for closed, simply connect-
ed sections of the Fermi surface can be expressed in terms of
the averages over the orbital period in the magnetic field5¢-2°
as follows:

Ao © 47 * A2
—_— - o5 \ m¥dp,———————
® ps® h kv, sin Y —o—iv

) (12.1)
where m* is the cyclotron mass and (7/2) = ¢ is the angle
between K and H.

When KLH, this yields the estimate dw/w~iw/
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(v — iw) for any k/ and wr (assuming that A ~ & ~mv® ~ Ms?:
) wv As w?

VTR s T Ve (12.2)
from which a possible dimensionless factor has been omit-
ted; its order of magnitude will be indicated by &.

1t is clear that, for @ 2 v, there will be a substantial re-
normalization of the velocity of the longitudinal sound,
which was considered by Kulik®' and found by Bezuglyf and
Burma in gallium®? [(Fig. 18), £~10~!]. Absorption for
ki» 1, oT«1 is much greater than collisionless absorption®
and is of the same order of magnitude as for weak dispersion
in the absence of the field /@ ~@/v. When o ~v, it reaches
amaximum (of the order of § in very approximate estimates),
i.e., we are dealing with the effective interaction between all
the Fermi-surface electrons and sound. These results have a
simple physical interpretation. The behavior of both absorp-
tion and dispersion corresponds to the contribution of sec-
ond viscosity because of the presence of a slow process (colli-
sions) in the electron subsystem, and is described by the
Leontovich-Mandel’shtam-Knezer general theory (see Ref.
94). Indeed, the kinematic viscosity of the electron gas is
77(el ~nmvl and, since the corresponding viscous force ap-
pears in the equation of motion of the lattice, the absorption
coefficient is ¥ ~ 7., k */p. Since Ms* ~ £, we arrive at the esti-
mate given by (12.2).

Although the magnetic field does not appear in (12.2), it
does play a very important role. As H— «, we have r— 0
and the electron moves only in the direction of H.lk. Colli-
sionless absorption connected with Landau damping is then
impossible, however high the frequency.?® Absorption is of
collisional nature, also for k/> 1 (in contrast to the situation
for H = 0). As it moves along the magnetic field, the electron
is also moving relative to the phase wave fronts of the acous-
tic field because of the propagation of the latter. Work is
therefore done in the longitudinal sound wave against forces
due to the electron pressure (averaged in the magnetic field),
which is described by the component A,, #0. Collisions
lead to viscous absorption, and the average work done by the
sound field on electrons becomes nonzero. For a purely de-
formational interaction in a strong field, the work done by
the sound field on electrons is proportional to A %, where i is

A8/8,%
(A5/ )oFmt————— o e
. 2
| e
L
’/Z(A‘s/a)ilf-oo :1'
51

9772 4 6 8 et

FIG. 18. Dispersion of sound velocity for k{H in gallium for kr<1 and
H|[001]**.

25'This point was apparently first noted by V. L. Gurevich;' see also Ref.
93.

26'We note, in this connection, that the condition k1H is very critical
because, even for deflections by an angle ~s/v, the electrons are in

resonance with the waves for 7> 1 (deflection effect®>**) (Fig. 19).
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the direction of displacement and x is the direction of propa-
gation of sound, Thus,

| io pr "
dpg X — o _.V__‘1f> (n=1).

(12.3)
However, whereas for longitudinal sound the quantity 3.,
that plays the role of partial electron pressure is always non-
zero as H— «, the quantities A,, and A,,, that describe the
momentum flux as H— oo in the case of transverse sound,
are both zero, provided only that H is parallel to the symme-
try axis of order greater than three for simply-connected sec-
tions of the Fermi surface (for further details, see Sec. 8 and
Table II). If, on the other hand, the axis is a two-fold axis,
then y-polarized transverse sound will behave as if it were
longitudinal sound, whereas the absorption and dispersion
of z-polarized transverse sound will exhibit spatial disper-
sion effects, i.e., the finite size of the twist radius over one
wavelength will have an effect. When &/% 1, the asymptotic
behavior of absorption and dispersion in such directions will
have the form

iw
=g (k) (n=2). (12.4)
This effect of appreciable variation in the shear modulus was
cofirmed experimentally in gallium by Bezuglyi et al.
(Figs. 20 and 21).

For a symmetric direction of the magnetic field in a
crystal (see Table II), the electron shear moduli are connect-
ed with the finiteness of H and are due to incomplete averag-
ing, i.e., the finiteness of the orbital period in the magnetic
field as compared with the wavelength of the sound wave,
the mean free time, and the displacement of the electron in
one field period: kr, |r/l.|<]1.

A totally different result is obtained for multiply con-
nected sections, when individual singly-connected portions
are transformed into one another under symmetry transfor-
mations. The averages A 2, over each of the regions will, in
general, be nonzero even for a high degree of symmetry of
the direction of the magnetic field, and the asymptotic form
ofd . [cf. (9.7)] will be of the same order as d L_. The result
given by (12.4) is also sensitive to magnetic breakdown.

Let us now turn to the deflection effect that follows
from (12.1) for 1 |siny| 0. As already noted,*® the angular
singularities examined in Sec. 11 are its analogs in many
respects. For a Fermi surface of general form, when the
neighborhood of a reference point provides a contribution,
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FIG. 19. Deflection effect in gallium for wr = 1.2 and w7 10.4%2,
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FIG. 20 Variation of the transverse sound velocity As/s as a function of
the direction of H in the (1,0,0) plane in pure gallium for different polariza-
tions. H = 15 Oe, w/2m = 50 MHz, T = 1.7 K, kL H*.

the singularity in the deflection effect is logarithmic®*** and,

if dv, /dp, vanishes (for p, = p,),>” the singularity is of the
root type.®¢ Perturbation theory is not valid (for @7 1) and,
in the resonance approximation, the result for not too low
values of singy>A4 /kl is described (for the root-type singular-
ity) by (11.6) and (11.7), in which the following substitutions
must be introduced:

vV,

kve— kv, (Pzo) SIn ),
C ol 1. & _,@
=Ly y Exax apt Prp (125)

The qualitative conclusions of Sec. 11 (see Fig. 14) can be
correspondingly extended to this case. There are also differ-
ences that are reflected in the size of the effect (C; ~ 1)and in
the dependence of Cj, on the angle of deflection, which leads
to asymmetry, and also in the role that can be played by
electric fields (see below—Sec. 13).

13. CONTRIBUTION OF ELECTRIC FIELDS TO THE
INTERACTION OF ELECTRONS WITH SOUND

Gurevich'* and Silin'? drew attention to the fact that
electric fields excited by a sound wave may provide a sub-

As
L%
Ju,H=2

2,0¢

o

45
O(mo-ho—*—d_
r 7°
M
1 1
2 4 &

N U S T S SO N '

g 8 H 2402 kOe2

FIG. 21. The variation of As/s for transverse sound with polarization
u||[001] as a function of H for different angles between u and H(k1H).%*
Considerable variation in the contribution of electrons to the elastic shear
moduli can be seen.

?"For example, for surfaces of revolution with H parallel to the axis, the
orbit p, = p, is a (parabolic) line of zero curvature on which dv,/
dp, = 0 for any @. Hence, it follows that d5,/dp, = 0 (the curvature
averaged over the orbital period is zero).
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stantial contribution to the deformational electron absorp-
tion. It follows from the expression for the electron moduli
(7.10) that the deformational interaction (just as the induc-
tive interaction) is renormalized both by longitudinal and by
transverse electric fields.>*®® The contribution of transverse
fields depends on the ratio of the wavelength of sound to the
length of the electromagnetic wave (skin depth § in the met-
al®®), which is determined by the parameter (k).

Self-consistent electric fields may act as the mechanism
restricting the growth with frequency of absorption or dis-
persion at high frequencies in the case of effective interac-
tion. The corresponding compensation of the deformational
interaction by longitudinal electric fields was considered in
Ref. 91 for a flat part of the Fermi surface with wr> 1. The
compensating role of induced electric fields in the deflection
effect was discussed in Ref. 96 for longitudinal sound.
Screening of the resonance interaction by induced fields was
found for transverse sound in Ref. 44.

We note that, for a local flattening of the Fermi surface,
the contribution of electric fields in the case of longitudinal
sound is usually unimportant up to very high and currently
unattainable (or totally unrealistic) frequencies (see below)
that are much higher (by a factor of v/s or s/v exp v/s) than
the collision frequencies.

Let us begin by considering the region of strong spatial
dispersion k/> 1 with H = 0. Estimates of the transport coef-
ficients for the usual ineffective interaction depend essential-
ly on the quantity

N
(R0)* = 5 (13.1)
which appears in the effective resistivity tensor
o =[o+ | io (k8)2I] . (13.2)

By definition, k6 = A, /A, where A, = 2mc/\4mow
is the wavelength of the electromagnetic wave in the medium
(with allowance for spatial dispersion) and A, = 27s/w is the
wavelength of the sound wave. When these two lengths are
very different, we obtain the well known estimate (11.3):

dpq~§(z+§), ki 1. (13.3)

When k6> 1, the contribution of electric fields to ab-
sorption can be neglected and, when k6«1, the fields provide
an important contribution'* to absorption, which is compar-
able with the deformation contribution. Accordingly, for
k&~1 (i.e., for A, ~A,, which corresponds to frequencies
@~ 10° c™1), there is a transition from the linear frequency
dependence of absorption for k5«1 to a linear dependence
(but with a different factor)'* for k6> 1. Dispersion of the
velocity of sound also should occur in this region, and the
change in the velocity of sound should be of the same order
as absorption.

Indeed, when k8~ 1, we have

Pap~ 0 (1+1),  Gy~okv(1+1i). (13.4)
This alone shows that, for K6~ 1, electric fields provide a

28 Because of the nondissipative nature of the Hall current, and because of
the presence of anomalous dispersion, which leads to positive permittiv-
ity near resonance transition frequencies, weakly-attenuated electro-
magnetic®”*® and quantum-mechanical®>%® waves can be present in
metals in magnetic fields, and may strongly interact with sound.*%!"
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contribution of the same order to both absorption and dis-
persion.?®

These estimates can be used to show that d,, includes a
contribution of only the deformation force d, and the con-
tribution to it of longitudinal electric fields can be neglected,
i.e., the important terms are d” and d'V:

1
dpq: _p_ka_sz(bpq_cpapaﬁaBQ)' (135)
At these frequencies, the estimate for d,,; is different from
that given by (13.3):

dpq~%(1+i) (kl>>1, k6 ~1). (13.6)

Simple formulas can be obtained for the velocity of
sound and absorption in a broad range of frequencies, in-
cluding the transition region corresponding to k8~ 1.

As . ¥

STy ~d;

In the transverse resistivity, p.z, it is sufficient to retain only
Re 0.5 = Re 0,4. The final answer can be conveniently re-

ferred to the principal axes u,v of the tensor:

— Suy _
Puv =G oo’ 1€ Tuv =03y, (137)
20, ,~Spo V/ Spt6—4Det 6, 6 —Re(0,).
According to (13.5), (13.7), and (6.14), we then have
e Ay g 9 (Bplton) (ReAG)
dpq = —F [<A&pxR qu) e? ug; Opt il;k%:/énm;]
(13.8)

Substituting the values of R*, R® and 0, = we’k ~" (V25 (v,))
into (13.8), we obtain the frequency dependence of absorp-
tion and dispersion?® (Fig. 22).

According to (13.8), the variation in the velocity of
transverse sound passes through a maximum at

02 = o, = (2ne)2s3¢ 2 (V16 (V). (13.9)

We now turn to the role of fields in the case of effective
interaction,?® when the fraction of electrons on the Fermi
surface that interacts synchronously with the sound wave
(Sec. 11)is not relatively small (or is generally finite). Accord-
ing to (7.10), the dispersion relation for longitudinal sound
with allowance for the renormalization of the deformational
contribution by longitudinal fields (d' +d"™ =d)is

() = 1= s (b —222%).

Oxx

(13.10)

When H = 0, and if we introduce a relaxation time, we ob-

I~ AsVn N2
®\2 1 ® Arn kv—(o—iv>
((D_o) T T e kv—o—iv > va :
m> _

(13.11)

29'This part of our review was written in collaboration with N. S. Stepan-
ova.
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Kl

FIG. 22. Absorption'* and dispersion?® of transverse sound in the case of

s A’em .

The contribution of fields in the region of the resonance
kv = o depends in an essential manner on the local geometry
of the resonance region on the Fermi surface.””%! At low
frequencies @ <€v, this contribution is small, the viscous rise
in absorption and dispersion takes place, and, as we have
seen above, there is no transition to the collisionless case for
ki~ 1under the conditions of effective interaction: the rise in
absorption and dispersion due to the electron viscosity is
found to continue.

However, at high frequencies, and provided only that
the numerators in the integrals vary sufficiently slowly in the
region of resonance and can be taken outside the integral
sign, it is clear from (13.11) that the leading field and non-
field terms that increase with frequencies on the right-hand
side of (13.11) will mutually cancel out. The rise in absorp-
tion with frequency is then replaced by a reduction, and the
velocity of sound becomes saturated.

This compensation has a simple physical interpreta-
tion: it is connected with the electrical neutrality of the metal
as a whole, which imposes the restriction on the current giv-
en by (3.10) (j, = 0). Under the conditions we are consider-
ing here, when the currents are determined by the contribu-
tion due to electrons on a small segment of the Fermi surface
with similar velocities, the longitudinal current can only
vanish as a result of the mutual compensation of the field and
deformational terms.?” In essence, a “single-point singular-
ity” will not produce an appreciable deflection of electrons
from the state of equilibrium without violating the electrical
neutrality of the metal as a whole. However, this can be as-
sured by the above cancellation but, since the singularity in
the longitudinal conductivity o,,,, is strongly suppressed by
the factor v2, the cancellation sets in only for very large wr.

For the longitudinal conductivity, we have (with
v = const):

Do ‘I‘f—:<1)+ ("’—I:)2<R), o*=otiv. (13.12)
The predominance of the singular part (R ), which is neces-
sary for the cancelation of the deformational terms by the

field terms, occurs when
*(R\e
[B]>1, R= “’<j)> (13.13)
We now reproduce estimates of the singular part for differ-
ent local geometries with kv, = @, wrd 1 (to within phase
factors and the angular dependence):

30The infinities can cancel out as a result of the Fermi-liquid interaction
(see Ref. 120).
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( oT— plane,
| V ot — cylinder,
{

A~ ZVEl-- line of flattening’"),

1 — In kI — point of flattening, parabolic point.

(13.14)

In the case of the plane and the cylinder, & will also contain
the factor £ that is equal to the ratio of the area of the singu-
lar portion to the area of the entire Fermi surface. In princi-
ple, cancellation can be important for finite flat (or cylindri-
cal) portions of the Fermi surface®’ for w7 2 1/£ but, even in
this case, if £ <1, the resonance with the electron wave that
leads to the above sound absorption maximum becomes im-
portant at much lower frequecies w7~ 1€, while the contri-
bution of fields in the neighborhood of this maximum is still
unimportant (Refs.. 78, 91, 47). (The contribution of fields
that is less important for longitudinal waves becomes the
determining factor for weakly-attenuated electron and elec-
tromagnetic waves near singular directions.®’)

For an arbitrary critial direction k, and if we take out
the velocity v¢ and the deformation potential ¢ at the singu-
lar point, we obtain the following expressions for the trans-
port coefficients (6.14) and (7.11) near the singularity:

w*f ol
B0 TRy, TS S (R, B AG A (RY
e

: et
(13.15)
%, eAT (RYTE, TS ueAS, (RYLS,
ewk 1 iek
1¥=1— ! ! (13.16)

T—i(Do*(R)Y) — 1+iz:

Relative to axes 1, 2, where 1 lies in the k, v¢ plane and 2 is
perpendicular to it, we have (v; = 0).

~ g, O - (0 + ik%c? J4nm)~1 0
ot~ (01 0) ’ p—+( ' 0 ——4:I'Liu)/k202) ?
o =e® (V)2 (R) 1%,
(13.17)
Hence, ford =d' +d"™ + d'v, i.e., with allowance for the

renormalization of the deformational interaction by both
longitudinal and transverse fields, we have

dpg=> 0 A Al (RF1#11, (13.18)
where
. 1 _ i -1
t =1 = (1 ) (13.19)
Here,
) ‘ (13.20)

TV inwet (5 (Rye1*

lays the role of the characteristic scale of the transverse elec-
tromagnetic field near the singularity.

*YFor a transport line, when the expansion of kv in the neighborhood of a
zero-curvature point is one dimensional if the dependence on the se-
condcoordinate appears in the order n, then % ~ (s/v)(kl )/?~%/" In
Ref. 97, n = 3 and R ~(s/v)(kI)"/S.
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It is clear from (3.18) that 1*— 0 as (R )°*— o0, which
corresponds to the above cancellation connected with longi-
tudinal fields. At the same time, (R )¢ 1*— — i(1)/w* and

1
>

c c ()] 1
pq ps? APKA!I‘M

“o* o 1 ?
w* (kb,)?

d (13.21)

8 = o
177 4re? (vf)'z )’

(13.22)
where §, ~ 1077 c¢m is the limiting value of &, .

In general, as (R )°— o0, the cancellation is assured by
the longitudinal fields. However, cancellation due to trans-
verse fields is possible and corresponds to the condition

k8> 0, 1% -1 (k8)2—0, (13.23)

which may correspond to the intermediate asymptotic be-
havior

k8,)* €1 21 €1 Lot (13.24)

(The condition w73 1 is connected with the single-point na-
ture of the singularity.) In this case,

A AS

dpq g pgszq.M (1)([;61)2' (1325)
The conditions given by (13.24) require sufficiently high
quality specimens with a mean free path of I>8,/5~ 1072
cm.

We have assumed so far that the antipodal point ( — p,)
lies outside resonance, and that there are no other resonance
points for given k (“‘arbitrary” critical direction).

We shall now consider symmetric critical directions.
The presence of point-symmetry elements on the Fermi sur-
face ensures that points of zero curvature on the Fermi sur-
face form a “star,” i.e., a discrete or continuous (the latter for
figures of revolution) set of points related by transformations
g of the point group G of the Fermi surface (crystal):

& (pe) =0, % (gp,) =0 (gpe quc)a (13.26)
so that, for symmetric or nearly symmetric crystal direc-
tions, we must simultaneously take into account several
points of zero curvature. It is shown in Ref. 90 that such
situations are admissible; at any rate, the conditions
kev, =0 can correspond to symmetric critical directions k.
From the experimental point of view, symmetric directions
are definitely preferable because, among other things, they
enable us to operate with purely longitudinal or purely trans-
vere sound.

The possible groups G, (that leave the vector k invar-
iant) are listed in Table I, in which p must be replaced with k
and x, y with 1, 2 [see (13.17)].

The singular parts of the transport coefficients now
contain sums over the equivalent points ¢’ in (13.12) and
(13.15). Taking (R )¢ outside the summation sign, we see
that o, ~ 2 v, will vanish for an axially symmetric direc-
tion k and, hence, the tensors 0,4, dg,, ¢,, Will not be renor-
malized in such cases (this is also clear from independent
considerations).

For longitudinal sound, we obtain the same result as
before, i.e., (13.18) but, instead of (R )¢, we now have
2. (R ) = N (R )°,whereNisthenumber ofequivalent (for
a given k) zero-curvature points:
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A= — i N (RY® (AS)1*. (13.27)

Relative to the axes u, v that diagonalize d,;, we have the
following expression for transverse sound:

O
<
k2c?

2O i Ry

e

(13.28)

—L R S (A —

duﬁ = ps®

The quantities (A 5, )%, v;A 5, and (v)? can be transferred
with the aid of (9.1) to one singular point. They then trans-
form in the same way (as the square of the z-component of a
vector), so that

2 (AP = (AN, 2 vl A= VAN,

3 (52— e (13.29)
Hence,
dup= — o N (R (Ajw)?11, (13.30)

where, in 1* [see (13.19)] and in & 2 (13.20), we must replace
(R )¢ 1* with (R ) N'.Itis clear that, in longitudinal sound,
renormalization is possible only by longitudinal fields, and,
in transverse sound, it is only possible by transverse fields.

We note that, for the deflection effect in a strong mag-
netic field (k7 < 1), the contribution of electric fields that cor-
responds to (13.15)—(13.25) is obtained by replacing the var-
ious quantities in these expressions with averages over the
orbital period [in accordance with (10.5)]: A° —A€, v —¥°,
{R )*—(1/@)°. Hence, relative to the axes 1, 21k such that
21k, H(5, =0, 5, =v, cos ¢, b, =7, sin¢ in the case of
closed sections), we obtain the following expression for the
“single-point” singularity (@075 1):

i "AC AL 1 \e+ =
P‘I_’_;—(:zApx §u<§> 11y, (13.31)
where

=, D=t a=i(kv—0"
—1+i‘%H’ 1= 1—|-i(kt§c)2y = N

L/?HE-%<£>~{ In ot — reference poin.t 84,85 N
N a V @t— extremum point v,=08,
{13.32)

Longitudinal fields can lead to the cancellation of the singu-
larity (cf. Ref. 71). We note, by the way, that when #, con-
tains the small factor £ €1, the resonance between longitudi-
nal sound and the electron wave [see (11.7), (12.5)] sets in at
suchwr{~& ~3/21for v, = 0), for which longitudinal fields
are still unimportant. The role of transverse fields for
w7— w that lead to cancellation for (k5)*<1 is discussed in
Ref. 96 for longitudinal sound in an isotropic metal. Another
consequence of (13.31) is that the deflection effect for trans-
verse sound is very dependent on the orientation of the mag-
netic field relative to the symmetry elements of the crystal
(see Table II).
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CONCLUSIONS

The examples considered above, which are largely con-
cerned with the dispersion of the velocity of sound*? under
the conditions of effective interaction with electrons, illus-
trate the convenience and efficacy of using the equations of
elasticity for metals. We have not touched upon other natu-
ral applications of the equations in relation to the electro-
magnetic excitation of sound (the first papers in this field are
those of Refs. 98 and 99 and a review is given in Ref. 100), the
propagation of electron precursors of sound waves,!01-13
the analysis of the possibilities of electron-inertia experi-
ments and measurements of electrical fields excited by sound
in metals,'®!%5 the computation of fields that appear near
the boundaries of a deformed (for example, by gravitation)
metal,'® the equations of elasticity for superconduc-
tors,'®’~1%° and so on.

Our approach can be extended to ferromagnetic metals
by taking into account the magnetization of conduction elec-
trons by d-electrons (for the present state of this problem,
and for references to it, see Ref. 119).

Equations (1.8) are also valid in the case of magnetic
breakdown. However, the transport coefficients then con-
tain weighted averages over segments of classical orbits with
weights that are functions of the breakdown probability.''¢
The form of the probability depends on the type of break-
down, i.e., whether it is stochastic''®!!? or coherent.!'® In
the latter case, quantum interference between states on these
segments becomes important and requires the density ma-
trix for its description. Breakdown should influence the
magnetoacoustic effects in a strong field discussed above,
including the transverse propagation of sound, the deflec-
tion effect,!'® the behavior of the electron shear moduli, and
so on. We particularly emphasize that the effects of the de-
formational interaction (discussed above and in Refs. 96 and
111) are fully within the range of applicability of the Born-
Oppenheimer adiabatic approximation, which is not at all in
conflict with the major electron renormalizations of the ve-
locity of sound in metals that were obtained in individual
cases.>

Actually, the energy of £, + 8¢ of an electron in a de-
formed metal, given by (1.1), is determined for fixed posi-
tions of the ions (8.5): £ = £(p, u, (r, ¢ )). The average electron
energy, calculated with the nonequilibrium distribution
function for the electron gas, appears in the equation of mo-
tion of the ions (equation of elasticity). Because the electron
subsystem is not in equlibrium, this energy depends on the
“slow” time (the frequency of elastic fields in the Fourier
representation), on the magnetic field, and so on. It is not at

32)These examples do not, of course, amount to a review of the dispersion
and absorption of light in metals {see Refs. 6-10). In particular, refer-
ences to experimental work are largely illustrative in character.

33We also note that the attempt made in Ref. 25 to simplify the derivation
of the equations of the theory of elasticity in metals by varying the
energy in the c-system cannot be regarded as successful because, actual-
ly, the authors of Ref. 25 varied the energy in the c-system with a fixed
distribution function in the c-system and a fixed vector potential in the 1-
system, for which there is, of course, no a priori justification. The reason
why their result was the same as the generally accepted result can be
found in Ref. 20 (second paper).
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all small in comparison with the pure lattice contribution, as
is usually the case, and appears in the leading order of the
adiabatic approximation. (For example, the ‘“adiabatic”
electron energy compensates the Coulomb repulsion
between ions in a molecule.) It follows that the adiabatic
contribution of conduction electrons to the velocity of sound
in a metal also does not have to be small. It depends on the
wave vector and frequency (dispersion) because the electron
gas is not in a state of equilibrium. This leads to the necessity
for a self-consistent description of elastic deformations with
allowance for changes that occur in the electron gas in the
metal. On the other hand, departures from the adiabatic ap-
proximation in the deformational interaction constitute cor-
rections of the order of ‘}W, and so on, and their role in the

phenomena that we are investigating is quite minor. Thus,
cases of the effective interaction of electrons with sound fit
completely into the framework of the adiabatic approxima-
tion, which corresponds to the introduction of the deforma-
tion potential and the validity of the equations of elasticity in
metals {(1.8) and (2.2)].

During his work on the equations of elasticity in metals,
the author had access to the good counsel of his valued
teacher, I. M. Lifshitz. Discussions of the results with M. A.
Leontovich, who suggested that this review be written, were
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support of M. I. Kaganov, The author is also grateful to N.
A. Stepanova for assistance and to K. B. Vlasov, V. L. Gure-
vich, V. P. Silin, V. S. EdeI’'man, and many colleagues and
friends in Khar’kov for useful suggestions.
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