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1. The Landau-Lifshitz equation

] - a - [ M , [M, H]] (1)

was introduced1 in order to describe the change in the mag-
netization M of a single-domain ferromagnetic sample as a
function of time. It was obtained from simple phenomenolo-
gical considerations. The first term on the right side of the
equation describes the precession of the vector M in a uni-
formly magnetized sample in a magnetic field H. The second
(relaxation) term determines its approach to equilibrium. It
represents the simplest nonlinear combination with the cor-
rect tensor dimensionality which can be formed from the
axial vectors M and H.

In molecular-field theory the effective field H is deter-
mined from the free-energy density F

H = dF
(2)

whose dependence on the components of the vector M is
known for samples of definite shape and with a fixed magnet-
ic anisotropy.2

Equation (1) forms the foundation of the theory of mag-
netic resonance in ferromagnetic dielectrics3 and has found
numerous and diverse applications in the phenomenological
theory of dynamic processes in ferromagnets.3"5 It provides
not only a qualitative but also an entirely satisfactory quanti-
tative description of the evolution of the electronic magneti-
zation of ferromagnetic samples with different shapes in an
appropriately selected effective magnetic field. The factor v
in this case is negative and is very close to the gyromagnetic
ratio of free electrons. The dimensionless constant a > 0,
characterizing the relaxation rate of the magnetization vec-
tor, is determined by the spin-spin and spin-orbital interac-
tions.

Together with the canonical form of Eq. (1), a different,
equivalent form is also used:

dM dM
(3)

where y-f( 1 + a2). The equivalence of (3) and (1) can be easi-
ly verified by eliminated dM/dt from the relaxation term3

and taking into account the fact that the length of the vector
M remains constant as it evolves: (MdM/df) = 0. In terms of
the unit vector m = M./M, Eq. (1) can be written in the form

m r - , r- = [m, <a ]—a[m[m,

where <o =

In a spherical coordinate system

mx = sin 0 cos cp, my = sin & sin cp, mz = cos

the vector equation (1) decomposes into two equations7:

dtp . n- - sin •& — (00 = ao>,p, dft
At -CO,, = 0(00, (5)

which determine the instantaneous position of the vector m
in terms of the independent angles of precession <p and nuta-
tion t?. Here

0)0 = Wj. cos •& cos tp + co,, cos d sin cp — co z sin
to, = — co.,. sin cp + coy cos <p. (6)

It is especially convenient to write the Landau-Lifshitz equa-
tion in the form (5) because the free energy of ferromagnetic
samples can usually be expressed explicitly in terms of the
angles i? and p.2'5

We note that in the simplest case F = — (M • H), when
the spherically shaped ferromagnetic sample is in a constant
magnetic field Hz = H0, a>v =Q, a)# = — co0 sin t?, and
<y0 = yH0, Eqs. (5) assume the form

dq>
~dT

dfl
dt

-T-= — ao>0 sin ' (7)

2. The constancy of the length of the vector M of a
ferromagnetic sample magnetized up to saturation expresses
one of the basic properties of ferromagnetism. The position
of the vector m is determined uniquely by any two of its
components. It can be determined with the help of the single
complex function J"6:

_ mx—im,i _

\ ' ~ ~ 1 — mz ~~

Indeed, it follows from (8) that

(8)

* | |2 |+1 » " " I g P + l > "*z- | | | 2+ l -

(9)
The complex variable J" ( f ) uniquely determines the position
of a point on the surface of a unit sphere.

The vector equation (4) for the three real variables mx,
my, and mz can be reduced with the help of (9) to a single
equation for the scalar complex function |" (t). Using (8), we
obtain

dm*
(4) -df-

dm*
dt

dt
*H;

dt

., .
~ 1 * At
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Now, according to (9), after simple algebraic transfor-
mations we find the equation1'

_

=75 "57 (10)

where co12 = o>x + icoy.
The variable g ( t ) , determined by relations (8), was first

introduced by Darboux8 for the solution of a system of equa-
tions of the form (4) (without the relaxation term). The Lan-
dau-Lifshitz equation (1) for the variable g ( t ) was reduced
with the help of the substitution (8) to a single first-order
linear differential equation with, generally speaking, time-
dependent coefficients.9

Remarkably, taking into account the relaxation of the
magnetization in the form (1) or (3) merely adds the factor
(1 — ia)~l in Eq. (10) in front of the derivative dJYdf, i.e., it
leads to the substitution t—*r = (1 — ia)t. The form of Eq.
(10) does not change if the relaxation is ignored, i.e., if a = 0.

By substitutions the nonlinear Riccati equation (10) can
be transformed into a second-order linear equation with
time-dependent coefficients.7'9

Having found the solution of Eq. (10), using (9) we find
the components of the vector m(t) as a function of time. Thus,
in the simplest case of a spherically shaped magnetic sample
in a quite strong, uniform, magnetic field H0 = Hz, we have

(11)

Equations (7) and (11), of course, are equivalent, since
they describe the same situation in different coordinate sys-
tems. Their solutions

<p= _ and

(12)

reduce to one another, since according to (8) we have

l-mz 2 sin2 (0/2)

where &0 = & (0) and £0 = £ (0).
It is easy to see that

sin fl0tg d (t) =

If mz (0) = 0 at t = 0, i.e., the populations of the spin states in
the field H0 are the same, i?0

 = f/2, then

(13)

In this case, according to (8) and (12) or (13) the solutions of
the Landau-Lifshitz equations have the form

cos ay sh acogi
m*=Sh^M- (14)

"Equation (3) in terms of the variable g (t) assumes the form

where to = yH.
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These solutions describe the free precession of the mag-
netic moment of a uniformly magnetized ferromagnetic
sample in a constant external magnetic field H0. As is evi-
dent from (14), the damping of the transverse components of
the magnetic field, which determine the shape of the absorp-
tion lines, follows the law

At the beginning of the process t <(acu0) * this dependence is
far from being a simple exponential and the line shape is far
from being Lorentzian.

These are the well-known, not so much in the theory of
electronic spin magnetic resonance as in the theory of super-
radiance, solutions for the free precession of a pseudospin
electric dipole moment interacting with the intrinsic field of
the radiation.10-11 They describe the decay of the coherent
state of the dipole moments induced by the external (optical)
field.12'13 They lie at the foundation of the semiclassical the-
ory of radiation which is widely used to describe the photon
echo, induced transparency, and other fast transient pro-
cesses.13'14 These same dependences describe the damped
precession of the polarization vector of a beam of slow neu-
trons, passing through the pseudomagnetic field formed by
an oriented nuclear target.15'16 The equations (1) describe
nuclear magnetic resonance in nuclear ferromagnets.

3. The examples listed above suggest that the Landau-
Lifshitz equations describe a much wider range of phenom-
ena than usually presumed. It appears that they describe the
behavior of an ensemble of arbitrary two-level systems
which interact in some prescribed manner. We shall try to
clarify the form that this interaction must assume. To this
end, we set g(t)=al(t )/a2(t). The expressions (9) will then
assume the form

_ !«; — ai«2
L l 2 + | a 2 | < »

(15)

If we now let the column matrix (£) = \a) denote the
state of a two-level quantum system, then the expressions (7)
determine the average values of the Pauli spin vector-opera-
tor17 a = (ax, (Ty, az \.

(16)

4. Equation (10) in the variables a^(t) and a2(t) decom-
poses into two Pauli equations

da2

~dT

(17)

which describe the behavior of a two-level system in an ex-
ternal field. This is easily verified by noting that
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a2 dT «2 df 0-2 a, (t) = cos - - • e~ ' V0"0"', «2 (t) = sin -- • e 2e

We write (17) in the form of the Schrodinger equation

ih\a)=M\a), (18)

where a) = d|a)/dr, and

Thus the relaxation term in the Landau-Lifshitz equa-
tion appears as the result of the simple multiplication of the
Hamiltonian of a two-level system of noninteracting spins

(20)

by the complex factor 1 — ia.
Equation (18) describes the behavior of an arbitrary spin

(or pseudospin) moment. The coefficients a>l2 and a>z in (17)
represent the transition matrix elements. The diagonal ele-
ments + 6)z are proportional to the energy of the levels
between which these transitions occur.

It would appear to be more reasonable and more consis-
tent not to multiply all terms of the Hamiltonian matrix by
1 — ia but only the diagonal terms:

<D 0 (1—je t ) U112 i

-to0(l-ia)J (21)

i.e., to regard only the energy of the levels as a complex quan-
tity. A transverse alternating field a> 12(t) in this case gives rise
only to transitions between sublevels, without affecting their
width. The equations (1) and (3) are now no longer equiva-
lent. The transverse components of the field will no longer
appear in the relaxation term of Eq. (1). It contains in this
case only the component of the field or pseudofield that
splits the levels.

In the notation adopted, the density matrix of the spin
system is expressed in a simple manner in terms of the vari-
able

._ I a ) ( a l ^
r — /., i f,\

and in addition

Pi2 + P2i

/ l e i 2 6\
U* ih (22)

p2i — Pi2 =

(23)

The coefficients a^t) and a2(t) are expressed in terms of the
angles •& and op and, as should be expected, are equal to

The nonhermitean nature of the Hamiltonian does not per-
mit normalizing the coefficients z, and a2 in the usual man-
ner a,|2 + \a2

 2 = 1. Therefore

d(g) _ (a | I tr
(a I a)

(a | a) + (a | a) ,2A\
(a I a> ' (Z '

Eliminating |a) and (a\ with the help of the equation of
motion (18) and its conjugate and separating the Hamilton-
ian (19) into hermitean and antihermitean parts, we once
again obtain the Landau-Lifshitz equation (4) for (a) = m.

Thus the Landau-Lifshitz equations of the form (1) or
(4) describe the superposition of the states of an arbitrary
two-level system, whose levels have the constant width aa>0,
as a function of time. This procedure can be satisfactorily
justified for the case when a(y0<<y0.

18 This was essentially
stated in words in the classical work1 and demonstrated for
an ensemble of two-level systems interacting via the general
radiation field.lo
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