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The present state of the theory and the main experimental results are reviewed for systems in
which the antiferromagnetic ordering is directly due to a peculiar topology of the Fermi surface,
i.e., to the presence of nested electron and hole sheets. A familiar example of such a system is
chromium, which supports a spin-density wave (SOW) that is incommensurate with the lattice.
For this reason much of the experimental material discussed in this review is for chromium and its
alloys with transition and nontransition metals. The theoretical description of SDWs of this type
is based on the excitonic insulator model, which is discussed in detail not only in connection with
the phase diagrams and SDW structure but also in regard to the electronic properties of systems of
this type (measurements of the de Haas-van Alphen effect, optical measurements, band-structure
calculations from first principles, etc.). The review concludes with a discussion of less-studied
transition-metal compounds which apparently also support a SDW state due to a peculiar topol-
ogy of the Fermi surface.
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1. INTRODUCTION

The concept of spin-density waves (SDWs) and charge-
density waves (CDWs) has become very popular in recent
years in the study of electronic, magnetic, and structural
phase transitions. Here we attempt to elucidate the most in-
teresting experimental and theoretical results of the past
decade which have contributed to our understanding of the
properties of itinerant antiferromagnets which undergo a
transition to a SDW state. Specifically, we discuss three-
dimensional metals whose Fermi surfaces have nearly nested
(coincident upon translation by some wave vector Q) elec-
tron and hole portions. Such a topology of the Fermi surface
makes it possible to have triple electron-hole pairing with the
onset of an antiferromagnetic structure with wave vector Q
close to Q.

It is well known that the theory of itinerant magnetism
contains an approximate criterion for instability of the para-
magnetic ground state with respect to some sort of magnetic
ordering (the generalized Hubbard-Stoner criterion). In par-
ticular, for the simplest antiferromagnetic-transition model
with an effective electron-electron interaction potential /
this criterion is

1 = /x (Q), (1)
whereof (Q) is the magnetic susceptibility of noninteracting
quasiparticles in the Hartree-Fock approximation and Q is
the characteristic wave vector of the antiferromagnetic

structure. Whether this criterion is satisfied or not depends
not only on the value of/itself but also on the dependence of
the susceptibility % (q) on the wave vector q. If, because of
some topological feature of the Fermi surface, x (Q) has a
pronounced maximum at q = Q, the instability criterion can
be satisfied even at small values of / (/<JV (0) ~', where N (0) is
the density of electronic states of the nested portions at the
Fermi energy). The presence of a small interaction param-
eter IN(Q)<1 enables one to construct a successful theoreti-
cal model having an asymptotically exact solution in the
mean field approximation (the "excitonic insulator" model).
This model, as can be seen from a comparison with experi-
ment, works rather well for describing an important class of
real metallic antiferromagnets.

The self-consistent theory of spin fluctuations that was
proposed by Moriya and coworkers (reviewed in Ref. 51)
ignores the topological features of the Fermi surface of itin-
erant antiferromagnets and postulates a choice of wave vec-
tor Q of the antiferromagnetic structure in accordance with
a particular experimental situation. Here the antiferromag-
netism criterion should be satisfied for comparatively large
values of the interaction potential / (IN(Q)x 1), i.e., outside
the applicability region of mean field theory. The lack of a
small interaction parameter makes it difficult to control the
approximations in the self-consistent theory of spin fluctu-
ations.

In the case of a rather large interaction potential
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(IN(0) > 1) the magnetic moments cannot be handled by the
orthodox treatments of itinerant magnetism (i.e., as com-
pletely delocalized) and one must take an approach which
combines features of the itinerant and Heisenberg models of
magnetic ordering. Many authors have constructed versions
of interpolation theories based on some technique of evaluat-
ing the local spin fluctuations (a history of this problem is
given by Moriya9). The method proposed by Moriya and
Usami5' has yielded a connection between the local and self-
consistent spin-fluctuation theories: the first theory reduces
to the second for IN (0) - 1 < 1.

For antiferromagnets the theory of local spin fluctu-
ations was developed by Hasegawa52 (see also Grebennikov
et a/.56). In the limit IN (0)> 1 this theory reduces to that of a
Heisenberg antiferromagnet with an Anderson superex-
change interaction. Furthermore, the results of this theory
for the ground state at T= 0 and arbitrary values of IN(0)
agree with the results of the Hartree-Fock approximation for
the Hubbard model.

In all the theoretical schemes mentioned, the descrip-
tion of the system of interacting electrons is based on the
one-vertex Hubbard model. For describing "strong" itiner-
ant magnets with more or less definite local moments these
schemes are fully justified, and there is no doubt that the
local spin fluctuations play the governing role. In the case of
antiferromagnetic ordering, however, the weak point of the-
ories of the local-spin-fluctuation type is that it is impossible
to determine the type of magnetic lattice in a self-consistent
manner. The magnetic superstructure must be put in artifi-
cially—for example, by dividing the lattice into two types of
sites in the Hasegawa method.52 This actually comes about
because to describe the features of the band structure in the
site representation one must keep a large number of off-diag-
onal (in the site indices) overlap integrals. This requires a
detailed allowance for the intersite electron-electron corre-
lations, a problem which is impractically complex in the lo-
cal spin-fluctuation-theory.

We believe that the magnetic properties of almost all the
known itinerant antiferromagnets are intimately related to
features in their band structure. Specifically, the peculiar
topology of the Fermi surface (the presence of nearly nested
electron and hole portions) is responsible for the anomaly in
X (q)- We realize the importance of taking collective excita-
tions into account in general and in itinerant antiferromag-
nets in particular. However, analysis of the results of elec-
tronic-structure calculations for real itinerant antiferro-
magnets convince us that the aforementioned topological
features of the Fermi surface are almost always an important
factor in the formation of the antiferromagnetic ordering
and must be taken into account to the same extent as spin-
fluctuation effects.

In this review we shall not discuss "strong" antiferro-
magnets like y-Fe and Mn, in which it is quite possible that
well-defined local moments exist above the Neel point. It is
for just such magnets that effects due to local spin fluctu-
ations can be assumed to be most important, while an itiner-
ant-magnetism approach in the spirit of SDWs does not ap-
ply at all. We will be talking about metals in which local

moments are practically absent above the Neel point, i.e., the
spin fluctuations are almost completely delocalized. These
systems are "true" itinerant magnets, which are convenient-
ly described in terms of the usual notions of an energy band
structure. In many cases, no doubt, effects due to features of
the band structure and effects due to spin fluctuations play
equally important roles, but the theoretical description of
this intermediate case has yet to be worked out.

The only pure metal that is an itinerant antiferromagnet
in the sense described above is chromium, whose unique
magnetic properties have traditionally aroused both theo-
retical and experimental interest. More than 500 papers have
been written on this metal, and we must therefore limit our
discussion mainly to the papers which have appeared in the
last decade (and by no means all of these). The results of
earlier studies are partially reflected in a number of reviews
and quasi-reviews (see, e.g., Refs. 1 and 2) on the electronic
structure and magnetic properties of chromium.

Neutron-diffraction measurements in single crystals
have shown that the antiferromagnetic ordering in chromi-
um differs substantially from the ordering in ordinary anti-
ferromagnets. First, in pure chromium the antiferromagnet-
ic structure is incommensurate with the body-centered cubic
crystal lattice.3 The wave vector of this structure is directed
along one of the (100) axes, but its value is given by

Q=[——) (l-^. 0. 0) (a is the lattice constant and

8 = 0.048-0.054) and is weakly temperature dependent
(S = 0.037 at Tx TN, where TN is the Neel temperature).
Second, these same measurements5 have demonstrated that
there are no localized magnetic moments whatsoever above
the Neel temperature). The average magnetic moment per
Cr atom is OA6/j,B ,6 with the maximum magnetic moment
being 0.59^B." The Neel temperature of pure Cr is 312 K,
but below 120 K the transverse modulation of the magnetic
moments gives way to a longitudinal modulation (a spin-flip
transition). At the present time the nature of the spin-flip
transition is not definitely decided; this effect is specific to Cr
and does not occur in other systems discussed in this review,
and so we shall not dwell on this question any further.

Interpretation of the magnetic properties of chromium
(and its many alloys) from the standpoint of SOW theory has
proved extremely fruitful. In this review we attempt to sys-
tematize all the results obtained in this area, most of which
are based on the "excitonic insulator" model. This model is
discussed in detail in Sec. 2. It must be noted that most of the
experimental results—the concentration phase diagrams of
chromium aloys, the transition from incommensurate to
commensurate structure, the change in the magnetic struc-
ture and properties under pressure, the anomalies in the op-
tical properties, kinetic effects, the behavior of the magnetic
susceptibility, etc.—find a good qualitative, and in some
cases semiquantitative (see, e.g., Sec. 3) description in terms
of this theoretical model.

Table I gives some experimental results from Ref. 7
which show the influence of different transition-metal im-

"An isolated chromium ion can have a moment as high as 3fiB.
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TABLE I. Properties of alloys of Cr with d transition metals7

Impurity

Xe

I A<? \ 2*
V Ac ) a 1

^d

I1!
4TN (in K) at 0.5%— exper-
iment
-4TN (in K) at 0.5%— rigid-
band

V

—1

15

—1
0

-62

-70

Mo

0

0

0
0

-7

0

w

0

0

0
0

—10,5

0

Mn

1

15

1
0

77

70

Fe

2

7

0.5
1,5

-12

35

Co

3

K)

0.7
2.0

—18

49

Ni

4

g

— 0.6
0

—75

-52

N, is the number of excess d electrons, Na is the number of d electrons entering the
d band of Cr per impurity atom; ̂  is the local moment per impurity atom; c is the
concentration of the impurity.

purities on the vector Q and the Neel temperature. A de-
tailed survey of the phase diagrams of dilute alloys of chro-
mium with transition metals has been given by Butylenko
and Kobzenko.8 Also given in Table I are the results of a
calculation of the change in TN in the rigid-band approxima-
tion. It is seen that the rigid-band approximation is entirely
satisfactory for alloys with V and Mn and somewhat satis-
factory for Ni and that effects due to scattering by isoelec-
tronic impurities are relatively small (alloys with Mo and
W), but also that the rigid-band model is absolutely unsuita-
ble for alloys with ferromagnetic 3d metals having local
magnetic moments (Fe and Co). This approximation also
fails to describe alloys with nontransition metals (Al, Ge, Si,
Ga, Sb).

The completely unusual form of the phase diagrams of
alloys of chromium with nontransition metals (CrSi and
CrAl, for example) and the anomalies of the kinetic effects
and magnetic properties of the alloy CrFe do not fit into the
existing theoretical concepts (or, possibly, these results have
been interpreted incorrectly). The problem of interpreting
certain neutron-diffraction measurements in incommensu-
rate structures is also far from solved, for the reason that no
theory has been developed to describe the collective excita-
tions in structures of this kind.

Although the material reviewed mainly illustrates the
application of the theory of the SDW instability to the phys-
ical properties of chromium and its dilute alloys, there are
also other metallic systems which exhibit a transition to a
SDW state. Such substances include vanadium sulfides and
selenides (V3S4, V3Se4, V5S8, V5Se8), chromium diboride
(CrB2), an intermetallic compound from the group of the
Laves phases of TiBe2, the helical magnet MnSi, and a num-
ber of other metals. However, the physical properties of
these substances are not as well studied, and one of our goals
in this review is to call these systems to the attention of re-
searchers.

2. THE "EXCITONIC INSULATOR" MODEL—THE BASIS FOR
THE THEORETICAL DESCRIPTION OF THE SPIN-DENSITY-
WAVE STATE

In 1962, Overhauser10 showed that the paramagnetic
ground state of a homogeneous electron gas in the Hartree-
Fock approximation is unstable with respect to the forma-

tion of a SDW. Generally speaking, the instability vanishes
when the screening of the exchange and Coulomb interac-
tions is taken into account.11 However, band-structure ef-
fects can stabilize the SDW state,12'13 as happens in chromi-
um, for example.

The most suitable model for quantitative description of
the transition to the SDW state is the "excitonic insulator"
model proposed by Keldysh and Kopaev14 (see also Halperin
and Rice,15 de Cloizeaux,16 and Kozlov and Maksimov17). In
this model one considers interacting electrons and holes
whose dispersion relation has the property

). (2)

Equation (2) is satisfied for a rather large number of vectors k
lying near the Fermi surface. In a three-dimensional system
such a situation is possible, for example, if the electron and
hole Fermi surfaces are spherical or have nested portions.

In the excitonic insulator model there are four possible
types of phase transitions15'18: transitions to SDW and CDW
states characterized by real order parameters, and transi-
tions to two states with imaginary order parameters. The
Hamiltonian of the excitonic insulator model is of the form19

ff= 2 e,(k)ak(k)a/0(k)
i, k, a

+ 2 (g,afa(k)<4o'(k>2a'(k' + q)
k, k', q, a, o'

Xa10(k — q)]

+ g2 [at0 (k) af „. (k') o2o. (k' + q) aza (k - q) + c.c. ]

+ 82 Ka (k) a\a. (k') a10. (k' + q) a20 (k - q) +c.c.]

^H
,jj I

:,'o, q
aza (k — q) + c.c. ] +

(3)

hereof anda,,2 are the creation and annihilation operators
for electrons and holes in bands 1 and 2, respectively, g1 is
the constant for the interband screened Coulomb interaction
of the density-density type, g2 is the interaction constant de-
scribing the interband transition of a pair of particles, /1,2 is
the interband electron-phonon interaction constant, <a, is
the bare phonon frequency, and «q is the displacement oper-
ator for the ion. For simplicity, all the constants in the exci-
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tonic insulator model are assumed to be independent of the
momenta (we assume an effective averaging over angles on
the Fermi surface), i.e., the interactions are assumed to be of
short range.

The transition to the SOW state is characterized by an
effective constant g, = gl + g2, the transition to the CDW
state by the constant

For a weak electron-phonon interaction /12
2/6>Q <g2 the

SDW state (for g2 > 0) is the most favorable, since it corre-
sponds to a larger interaction constant and a higher transi-
tion temperature 7"N. It is this case which we shall consider
below. The states with imaginary order parameters are less
favorable than the SDW state, since they correspond to an
effective constant glm = gl — g2- We shall not consider these
states below. A detailed analysis of the interaction constants
in the excitonic insulator model was recently given by
Buker.20

The excitonic insulator model admits an asymptotically
exact solution forg./V(0)<l (A^O) is the reduced density of
states at the Fermi surface). This solution is obtained in
mean field theory,19 and the corresponding mathematical
apparatus is analogous to Gor'kov's method in the theory of
superconductivity.21 We shall consider in detail the case of
the so-called commensurate (doubled) antiferromagnetic
structure, for which Q = + G/2, where G is a reciprocal
lattice vector of the crystal.

In the mean field approximation one can go over from
Hamiltonian (3) to an effective Hamiltonian for electrons
moving in an exchange field A, with components

a, p, k, q, j, i

V (4)
q, a,

The self-consistency equation for T = 0 can be obtained by
variation of (Heff) with respect to the parameter A ?%. At a
finite temperature one should vary not the energy but the
free energy F corresponding to (4). The self-consistency
equation in this case is expressed in terms of a sum over
imaginary frequencies

(on = nT (2n + 1), «=0, ±1, ..., (5)

A?£q=£f?' 2 ^"2 (&i <Ii wn)i (6)
n, k

where G "f (k, q, an} are the temperature Green functions.
One can show that in the case of a linearly polarized

sinusoidal antiferromagnetic structure the choice q = + Q
exactly satisfies the self-consistency equation. In this case

Ay?±Q ^ — Ay"iQa = At, ±Qaz (7)

and the direction of the local magnetization vector m (r) (or,
equivalently, AtQ) is chosen along the quantization axis z.

We note that Eq. (7) is by no means the only possible
magnetic structure described by Hamiltonian (3).

Right now we are interested only in a sinusoidal linearly

polarized SDW with q = + G/2, in which case for
At ± Q /O there is a doubling of the magnetic period of the
crystal in the direction of the vector G.

Let us now return to the problem of calculating A,.
Keeping in mind that we shall be applying the result to real
metals with a SDW, we must allow for the possibility that the
electron and hole surfaces may not coincide, as is actually
always the case. The simplest way to do this is to introduce
the momentum-independent quantity fj,0, which has a clear
physical meaning. Suppose for simplicity that the dispersion
relations of electrons in bands 1 and 2 are isotropic, i.e.,

where m* is the effective mass, mf = wj = m*, but we can
also consider a more general situation. Introducing the
quantities 2/z0 = £F| — £Fj and 2eF = £FI + £FZ , we arrive
at the following notation:

e (k) = £v u (10)

82(k-Q)=-?k-n0, Sk=2^-eF, (11)

i.e., //0 plays the role of a chemical potential.
We shall not go through the derivation of the BCS-type

equation for the order parameter A t but shall refer the read-
er to the detailed paper of Kopaev.19 This equation is of the
form

-o2ek
(12)

(13)

The quantity// in (12) is generally not equal to//0, since the
chemical potential of the system changes because of the
change in the electron spectrum (in proportion to A 2)in such
a way that the total number of particles is conserved and
does not depend on A,. The effective cutoff energy W of the
Coulomb interaction is a parameter of the model. It is more
convenient, however, to transform to the universal energy-
scale characteristic

(14)

which is the solution of ( 12) for T = 0, /u = 0. It is also con-
venient to introduce the universal temperature characteris-
tic

= 0.57A0 (15)

which is the temperature of the transition to the SDW state
when the Fermi surfaces are perfectly coincident (fj, = 0).

Assuming that the phase transition to the SDW state is
second order, we obtain from (12) an equation for the Neel
temperature TN . Dividing both sides of the equation by A t

and setting A , = 0 and// = //„ in the resulting expression, we
get

where 9 (x) is the digamma function.
Solution (16) was obtained by Rice22 and Kopaev.23
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FIG. 1. Phase diagram of the excitonic insulator model. 1) the line of the
transition to the I phase in Rice's model22; 2) the line of the transition to
the I phase in the octahedral model90; 3) the line of the I-C transition in the
octahedral model90; 4) the line of the transition from the P phase to the C
phase.

This solution is represented graphically in Fig. 1. The line
TK (//o) bounds the region of the commensurate (C) phase.
One notices that the curve !TN(/z0) is double-valued for
fj.0>Ao/2. Rice22 has shown that at sufficiently large
flo>tlo (/"*~0.604 A0] there is in fact an incommensurate
SDW structure whose wave vector does not coincide with
G/2. The TK (jU0) phase diagram exhibits a tricritical point
(rj=;0.31 A0, p% zzO.QM A0) at which the lines of transi-
tions between the paramagnetic (P) phase and the antiferro-
magnetic C and antiferromagnetic incommensurate (I)
phases and the line of transitions between the C and I phases
all come together.

The incommensurate SDW structure and the phase dia-
gram in various models of the spectrum will be analyzed in a
separate section of this review. The line shown in Fig. 1 for
the transition from the P to the I phase was found by Rice
under the assumption that the P-I transition is second order.
Although this assumption has turned out to be incorrect, the
P-I transition line in Fig. 1 nevertheless gives a tentative idea
of the existence region of the I phase. The C-I transition line
was not found by Rice and apparently cannot be obtained
correctly in his model.

We should say a few words about the chemical potential
fi in (13). The chemical potential is defined by the condition
that the total number of particles in the system is conserved.
We assume that in addition to the nested portions of the
spectum, ejfk) and £2(k), there are also other bands which are
not anomalous and do not participate in the formation of the
SDW wave; the average density of states for these bands at
the Fermi surface is NT(Q). In this case22 the condition of
conservation of the number of particles can be written

6n (,i) + JVr (0) (ji - m) = 0, (17)

where
oo

fin (|i) = 2N (0) j d?k {[i» (ek - |i) + n (-7k - ji)]

-M?k-m) + "(-?k-Ho)]} (18)

and n(x) is the Fermi function.
If Nr(Q)<2N(0), then the chemical potential// can be

strongly affected by the appearance of the SDW (At^0), and
Eq. (17) must be solved jointly with (13). If, on the other
hand, Nr (0)>2N (0), then the difference between// and/<0 can

be neglected [it is of relative order jff ', where f) = NT (O)/
2^(0)]; in Rice's terminology22 P is called the "capacity of
the electron reservoir". In real SDW systems the parameter
P can have any value (for example, in chromium P~ 1), but
all the qualitative results of the excitonic insulator model can
be obtained in the limiting cases /? = 0 and P = oo (i.e.,
f i = f * 0 ) .

The assumption P = oo usually leads to results which
are closer to reality than in the opposite limit /3 = 0. This
circumstance is due to allowance for the influence of that
portion of the Fermi surface of the metal which is not in-
volved in the formation of the SDW; this portion of the Fer-
mi surface is generally large.

Still another complication which must be introduced
into the simple excitonic insulator model is scattering by
impurities. In the case of an alloy there are two effects that
must be taken into account: scattering by impurities, and the
change in the chemical potential fi0 (the latter is always pres-
ent except in the case of isoelectronic impurities such as Mo
and W in Cr). The effect of nonmagnetic-impurity scattering
on the phase transitions in the excitonic insulator model was
studied by Zittartz24 and Kopaev et al.25

To Hamiltonian (3) we must add the term

flmp = 2 i
k, q, i, 3,0.

Uli (q) = 2 j <P?k (r) £/ (r - RJ % k+q (r) dr,

(19)

(20)

where m is the number of the site at which the impurity is
located and U(r — Rm ) is the impurity potential. One usually
considers only intraband components C/'-'lq) and thereby
simplifies the problem, but in general the interband compo-
nents of the type U 12(q) do not contain a small factor.25

Taking into account only the intraband scattering by a
nonmagnetic impurity in the Born approximation, one can
obtain the following equation for the temperature of the
transition to the C phase:

~ *AT ) J »

(21)

where l/2r = cirN(0){(U")2) is the reciprocal relaxation
time of the momentum in the scattering of an electron by the
impurity (for simplicity U11 = U22). One can also include
phonon scattering in T and thereby allow for temperature
dependence of i\T}. In the limit of very low impurity concen-
trations c<l and for/40 = 0 one can easily obtain25

(22)

i.e., in the simplest approximation impurity scattering de-
creases the transition temperature in comparison with the
case of the pure metal. The influence of impurity scattering
on the transition to the I phase is of approximately the same
order of magnitude as estimate (22).

There are a number of rather subtle effects due to the
appearance of local impurity states in the excitonic insulator
model. In essence, these effects are intimately related to fun-
damental questions pertaining to the metal-insulator transi-
tion in disordered systems. Here there are still many un-
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solved problems concerning, in particular, the gapless
regime, resonant localized states near a defect, local rearr-
rangement of the charge and spin densities, etc. Unfortu-
nately, a detailed discussion of these questions is beyond the
scope of this review.

An interesting problem is to allow for the temperature
dependence of r. Since the actual temperature TN in certain
SDW systems is not small compared to the Debye tempera-
ture (e.g., in chromium 90 ^630K, TN ~ 312 K), allowance
for phonon scattering can appreciably alter TN. Fenton and
Leavens26 have attempted to incorporate this effect in the
framework of the Eliashberg method, which was originally
developed for semiconductors (see Ref. 27). In Ref. 28 the
present authors questioned the radical change (by about a
factor of five) that was obtained numerically in Ref. 26: anal-
ysis of the corresponding terms in the Eliashberg equation
showed that in the two-band model the electron-phonon
scattering processes considered in Refs. 26 and 28 could not
change TN by very much for a reasonable choice of electron-
phonon interaction constants. However, this does not rule
out the possibility of an appreciable change in TN, since the
function r(T] in (21) is determined by all the electrons near
the Fermi surface and, to a considerable degree, by the elec-
trons of the reservoir. We believe that it is entirely sufficient
to include this dependence directly in (21), as was done, for
example, in Ref. 29.

3. ANTIFERROMAGNETISM IN CHROMIUM AND ITS ALLOYS:
EXPERIMENT

Dilute alloys of chromium with various metals are
promising objects for comparison of experiment with the
theory of the excitonic insulator. Alloys with nonmagnetic
transition metals can be described qualitatively by the rigid-
band model, and the change in concentration can thus be
modeled by a change in the parameter fi0 (e.g., alloys of chro-
mium with Mn, V, Re, Os, etc.). On the other hand, as we
have mentioned, scattering by impurities also affects the an-
tiferromagnetic structure and Neel temperature. However,
for nonmagnetic impurities which are nonisoelectronic this
effect is rather small in comparison with the effect of the
change in the position of the chemical potential. At the same
time, for Mo and W, which are isoelectronic with Cr, impuri-
ty scattering is solely responsible for the changes in the SDW
parameters.

The chromium alloys which are adequately described in
the rigid-band model can be divided into two types, accord-
ing to whether the impurity metal stands to the right or left
of Cr in the periodic table. In the first case the position of the
chemical potential rises with increasing impurity concentra-
tion on account of the increase in the electron density. This
tends to equalize the volumes of the Fermi surfaces for the
electrons and holes (see Sec. 4 below), increases Q, i.e., de-
creases 6, so that at a certain impurity concentration a per-
fect antiferromagnetic structure arises in the alloy, with a
magnetic superlattice of the CsCl type. In such alloys the
SDW is commensurate with the crystal lattice and has a
wave vector Q = (2-rr/a} (1,0,0).

For example, in the alloy CrRe it is found30 that as the

at.%

0.2 0 DA 0.8 at.%

0 OA 0 0.2 0,40 0,1 OJO OA at.%

FIG. 2. Portions of the phase diagrams of alloys of chromium with transi-
tion metals.31 There are no data for CrTc.

Re concentration is increased from 0 to 0.8 at. % the wave
vector Q increases with temperature and concentration up
to a critical value 0.97 • 2-rr/a and then abruptly jumps to
2-ir/a. Here the transition between the commensurate and
incommensurate phases occurs in a certain interval of con-
centrations, i.e., it has a temperature boundary such that the
high-temperature phase which arises from the paramagnetic
state is commensurate, while the low-temperature phase is
incommensurate. Since the transition in pure chromium oc-
curs directly between the P and I phases, the phase diagram
of the alloy should have a tricritical point. Figure 2 gives
examples of phase diagrams of dilute alloys of Cr with var-
ious transition metals.31

It is seen from Fig. 2 that all diagrams of group-I alloys
(nonmagnetic metals of high valence) have a triple point and
at sufficiently high impurity concentrations exhibit a com-
mensurate antiferromagnetic phase. On the other hand,
srou-II alloys (metals of lower valence) have phase diagrams
characterized by the presence of only the I phase, whose
Neel temperature falls off rapidly with increasing impurity
concentration. The isoelectronic alloys CrMo and CrW be-
have in a similar manner, but the rate of decrease of TN here
is much slower, since the decrease is due solely to scattering
effects.

The most detailed neutron-diffraction study of chromi-
um alloys with nonmagnetic transition metals was carried
out by Koehler etal.32 It was found that the average magnet-
ic moment per atom for group-II alloys falls off with increas-
ing impurity concentration at almost the same rate as does
the Neel temperature, while for group-I alloys it increases,
passes through a maximum, and then remains practically
constant (Fig. 3). Accordingly, in group-II alloys the magni-
tude of Q also decreases with increasing concentration. Fig-
ure 4 shows the dependence of Q on the composition of the
alloy for two temperatures (T^TN and T-^TN). It is seen
that Q also falls off in isoelectronic alloys, but at a much
slower rate than in CrV alloys.

It is now well established that in pure Cr the transition
at TN is of first order. This fact has been made clear by
measurements of the coefficient of thermal expansion, the
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FIG. 3. Transition temperature and spontaneous moment for chromium
alloys, according to the data of Ref. 32. Also plotted are the temperature
7*SF of the spin-flip transition and the temperature TIC of the transition
between the incommensurate and commensurate phases.

compressibility, the specific heat, and other thermodynamic
characteristics (see the literature cited in Ref. 33). However,
it must be stressed that this transition is extremely close to
second order. For example, the entropy of transition is only
0.19 cal/mole, and the relative change in volume at the tran-
sition is between 5 • 10~4 and 3 • 10~4. Such quantities are
usually considered negligible in identifying the order of the
transition.

In very dilute alloys of chromium with group-I metals
and in alloys with group-II metals the transition remains
first order.33 For example, in CrRe alloys it has been found30

that at very low Re concentrations the transition is first or-
der, but at higher concentrations (~0.7 at. %), at which the
transition is from the P phase to the C phase, the order of the
transition is unclear, but it is extremely close to second or-
der.

The most detailed study of the order of the transition
between the I and C phases was recently carried out33 for
CrMn alloys, in which this transition is observed at concen-
trations between 0.3 and 1.1 at. % Mn. Studies have been
done at compositions in this range by the methods of neutron
diffraction,32"35 magnetic susceptibility,34 thermal expan-

0.90

FIG. 4. SDW wave vector as a function of the composition for chromium
alloys.32 The value Q = Itr/a corresponds to a commensurate structure.
The upper curves refer to measurements made near TN; the lower curves
are for low temperatures.

sion,33-36 electrical resistance,33'38 and specific heat.33'37 The
presence of a large hysteresis indicates that the transition is
of first order. However, the transition at JIC is in itself not
very sharp, and in certain cases the width of the transition is
greater than the hysteresis. This can be interpreted in two
ways: 1) as evidence of coexistence of the C and I phases in a
certain temperature interval,34'36 and 2) as evidence of in-
homogeneity in the Mn distribution over the sample.39

A study of CrMn samples of homogeneous and inhomo-
geneous composition has led to the conclusion33 that the
model which assumes coexistence of the I and C phases is not
supported by experiment. Measurements were made of neu-
tron diffraction, thermal expansion, resistance, and specific
heat. A latent heat of transition was found, i.e., it was clearly
established that the transition at Tlc is of first order.

Thus we see that alloys of Cr with metals of groups I and
II have phase diagrams which are described completely by
the excitonic insulator model. An important test of the appli-
cability of the theory is the behavior of these alloys under
pressure. The first measurements of TN under pressure in
pure Cr were done by neutron-diffraction43 and ultrasonic44

methods. It was found that TN decreases under pressure at
an enormous rate ( — 6.0 K/kbar in Ref. 43 and — 5.6 K/
kbar in Ref. 44) which is not proportional to the compress-
ibility. In another study45 done at almost the same time the
pressure was varied up to 8 kbar, and TN was found to de-
crease at a rate of — 5.1 K/kbar.

By now the behavior of TN under pressure has been
studied in almost all dilute alloys of chromium. Group-I al-
loys (CrRe, CrMn, CrRu) were studied in Ref. 46, where it
was shown that in the I phase TN also has a slope close to
— 5 K/kbar, while in the C phase the change in TN under

pressure is even faster. It was also shown that a transition
from the C phase to the I phase occurs under pressure. In
Ref. 38 it was also found that pressure inhibits the formation
of the C phase (at least at concentrations up to 4 at. % Mn).
An analogous effect of pressure has been found47 for CrOs
alloys, and a study48 of the isoelectronic alloy CrMo at pres-
sures up to 3 kbar has also revealed a weak decrease in drN /
dP with increasing Mo concentration.

The effect of pressure in alloys of Cr with group-II met-
als (CrV) was investigated in Ref. 49. Here it was shown that
dTN /d P is a universal linear function of TN (in the I phase).
This means that measurements of dTN /dP in CrV as a func-
tion of the concentration lie on the same straight line as do
measurements50 of dT^/dPin pure Cr at pressures up to 85
kbar (Fig. 5). McWhan and Rice50 have demonstrated that
the experimental pressure dependence TN (P) is described
well by the formula

In -
(0)'

(23)

where C = (5</rN (0))(rfrN/dP )0 = - 26.5, (dTN/dP0)
= - 5.1 K/kbar, and TN(0) = 3.12 K. These results are

shown in Fig. 6. The rate of decrease of T^ under pressure
thus slows substantially with increasing pressure.

If it is assumed that TN is described by the formula from
the excitonic insulator theory in the limit /u = 0, i.e., (16),
while the change of the effective constant with pressure is

960 Sov. Phys. Usp. 27 (12), December 1984 N. I. Kulikov and V. V. Tugushev 960



-B

al\oy,f>-=o Tc,r,PK T LTN ,TN ,K JN

i i i i i ir
=312

100 200 300

FIG. 5. Pressure derivative dTN d P as a function of TN for CrV alloys in
the limit P—>0. The straight line shows the results of measurement under
pressure50 for pure chromium, while the points are experimental data 49

for CrV with different impurity concentrations. Also shown are the values
of dTN dP obtained for pure Cr in the limit P—»0.

proportional to the volume change A V / V0, then dependence
(23) is obtained immediately.

Thus the excitonic insulator theory exactly predicts the
functional dependence of the Neel temperature on pressure.
The larger absolute value of dTN/dP in the C phase is evi-
dently due not only to a decrease in the effective interaction
constant but also to an increase in^0 with pressure [the influ-
ence of/z0 is not taken into account in (23)]. This factor stabi-
lizes the I phase under pressure, in accordance with the
equation of state of the excitonic insulator model.

There is considerable interest in the unusual phase dia-
grams of alloys of chromium with nontransition elements;
these diagrams cannot be described in terms of the simple
excitonic insulator model used above. At the present time
there is no consistent theoretical interpretation of the prop-
erties of these alloys. Let us briefly discuss the main experi-
mental facts.

One of the most interesting alloys of this group is CrAl.
The unusual phase diagram of this alloy is shown in Fig. 7.54

Recent precision measurements of the electrical resistance
R (T] and the magnetic susceptibility^ (7")53~55withchanging
temperature, concentration, and pressure have shown that
for x < 1.1 % the temperature TN (x) falls off at a rate d TN /
dx~ -60K/at.%, for !.!<*< 3% it falls at - 120K/at.
%, and for x > 3% it rises at a rate of 300 K/at. %. In mea-
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FIG. 7. Curve of TN (x) for the alloy CrAl.54

surements under pressure there is a sharp increase in the
pressurederivativedrN/dPforx> 1.2%(from — 7K/kbar
at x = 1.2% to — 25 K/kbar at x = 2%), whereas in the
interval 0 <x < 1.2% the pressure derivative changes very
little. In this same concentration region the vector Q of the
SOW remains practically unchanged, but at the transition to
the C phase it goes practically discontinuously to ITT/a. In
addition, for x> 1.2% there are flat but readily noticeable
minima on the static magnetic susceptibility^ ( T } in the para-
magnetic region (rmin ^600 K).

The isoelectronic phase diagram of the alloy CrGa57 is
extremely similar to the diagram of CrAl, but here the mini-
mum of TN is less sharp. At the same time the phase diagram
of the alloy CrSi (Fig. 8) differs from the diagrams consid-
ered earlier in that here all the phase transitions are first
order. The first order character of the transition from the P
phase to the C phase for x > 1 at. % Si is demonstrated not
only by measurements of the electrical resistance, suscepti-
bility61, and thermoelectromotive force,62 but also by direct
measurements of the latent heat of transformation.58 Very
complex behavior is observed for CrSi under pressure. Neu-
tron diffraction66'67 has revealed that for x< 1.0% and at
pressures up to 5 kbar the' I phase of the SDW remains stable,
although there is a slight decrease in TN that can be attribut-
ed to an increase in^0 with pressure. For* > 1.0%, however,
there is initially (in the C-phase region) a decrease in TN, and
at pressures/; > 1 kbar (x = 1.4%) there is a rapid increase in
the complexity of the phase diagram, with a succession of
transitions (on decreasing temperature) first to the I phase

FIG. 6. Neel temperature of chromium versus the atomic volume. The
experimental points50 are described well by an exponential curve.

1,0
.T, at.% Si

FIG. 8. Phase diagram for the alloy CrSi.64 The transition at TPC is first
order.
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and then to a mixed phase I + C, and, when the pressure is
increased to 2-3 kbar, to the C phase as well. The behavior of
the vector Q of the SOW in this concentration region is also
very complex. In the I-phase region (x< 1%) Q increases
with increasing x, i.e., there is a tendency toward transition
to the C phase. Jayaraman et a/.60 conjectured that this is
evidence that silicon has a donor character in chromium,
under the assumption that silicon is an interstitial impurity.

The decrease in TN here should be due solely to the
effect of scattering, since there would be a decrease in/Li0 that
should increase rN. Recent neutron-diffraction studies65

have shown that the Si atoms (like Al) are located at chromi-
um lattice sites, and therefore the donor behavior of Si can-
not be attributed to its interstitial location.

It is clear that the simple two-band model cannot ex-
plain all the features of the unusual diagrams shown in Figs.
7 and 8. While in the case of CrSi the assumption of a donor
character of the impurity and the use of the excitonic insula-
tor model with allowance for scattering by impurities and
phonons and the presence of a reservoir102 enabled Bene-
diktsson et a/.58 to link the first-order character of the P-C
phase transition to the influence of magnetostriction, in the
case of Cr Al there is a clear indication of a change in the
electronic state of the impurity at the transition from the I
phase to the C phase. It can be assumed that a local bound
state forms near the Al atom in the Cr lattice, and at low
concentrations the Al atoms act like uncharged impurities
on the state of the I phase. If it is assumed that the level
becomes quasiresonant upon an increase in x, the sharp in-
crease in scattering would cause TN to fall off rapidly, and
the SDW state could vanish entirely. With further increase
in x the local level would rise above the Fermi energy, i.e.,
the Al would become a donor impurity and the resonant
character of the scattering would vanish. These two factors
would tend to increase 7"N and to stabilize the C phase of the
SDW.

In the case of the alloy CrGe the phase diagram is analo-
gous to that of CrMn (Fig. 9).68>69 In the I-phase region the
vector Q increases with increasing x, and on the I-C transi-
tion line it jumps abruptly to 2ir/a.10 In the C-phase region
the magnetic moment (as for Al, but unlike the case of Si)
increases slightly with increasing x. From this it can be con-
jectured that the local level in CrGe is above the Fermi level
right from the start, and that Ge is a donor in this alloy. This

conjecture is confirmed by neutron-diffraction measure-
ments under pressure.71 A completely analogous situation
exists in CrSb.72

In CrBe73 the C phase is not observed at all, and TN falls
off slowly with increasing AC; this is evidently due to ordinary
scattering of the SDW by defects. We note that Be, unlike the
nontransition elements discussed earlier, does not have p-
type valence electrons. It is possible that the p orbitals are
responsible for the formation of the local level.

A still more complex situation arises in the dilute
(x < 5%) alloys CrCo and CrFe, in which the impurity atoms
clearly have an intrinsic local magnetic moment. At the
present time we do not have a consistent theory explaining
all the unusual properties of these alloys. We believe that the
features of the phase diagrams of CrCo and CRFe (see Fig. 2)
are not in themselves due to the characteristic magnetic
properties of the Co and Fe impurities. We are convinced of
this by a comparison with the systems considered earlier
(CrAl, CrSi, CrGe, etc.), which have no moments but never-
theless exhibit similar anomalies. The characteristics of the
magnetic impurities are manifested in anomalies in the mag-
netic susceptibility, electrical resistance, and, possibly, ther-
mal expansion (the Invar effect). Unfortunately, a discussion
of the results of the many experimental studies that have
been done on these interesting systems in recent years is be-
yond the scope of this review.

4. PECULIAR TOPOLOGY OF THE FERMI SURFACE OF
CHROMIUM

The transition to the excitonic insulator state and the
appearance of the SDW occur only in the case of a peculiar
geometry of the bands near the Fermi energy; specifically,
condition (2) must be satisfied. But do such bands exist in
chromium? That is, are we justified in using the excitonic
insulator model to describe the properties of chromium?

The topology of the Fermi surface of the paramagnetic
phase of Cr was first studied by Lomer,'2 who used the rigid-
band approximation for a bcc transition metal. In other
words, Lomer shifted the Fermi energy in the band structure
of paramagnetic bcc iron to a level corresponding to the
number of electrons in chromium. As a result he obtained a
Fermi surface which agrees qualitatively with the results of
later self-consistent calculations of the band structure of the
paramagnetic phase.74"77 In Fig. 10 this surface is represent-

o

FIG. 9. Phase diagram for the alloy Cr Ge.68-69
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FIG. 10. Fermi surface of the paramagnetic phase of chromium, accord-
ing to the calculation of Ref. 76. The arrow shows the wave vector q = Q
which nests the electron and hole portions.
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ed in cross-sectional form by a plane passing through the
center of the Brillouin zone. It has two nested portions, viz.,
a hole octahedron centered at the H point of the Brillouin
zone, and an electron quasioctahedron centered at the F
point. The octahedral faces are perpendicular to the (111)
direction, and the electron octahedron is smaller than the
hole octahedron.

A large portion of these two sheets of the Fermi surface
can be nested through translation by a vector Q = (2ir/
a) (1 — 8, 0, 0). Then the total volumes of the electron and
hole portions become approximately equal, and in the anti-
ferromagnetic phase these portions vanish, being covered by
a gap in the spectrum. The ellipsoids centered at the N point
of the Brillouin zone and the spheres on the A lines (in Fig. 10
the cross section of these spheres is centered approximately
midway between the F and H points) are superposed on each
other in the reduced Brillouin zone and in the incommensu-
rate phase form chain-link sheets of Fermi surface (this is
shown in Fig. 11 for the hole ellipsoids). To construct the
Fermi surface in the antiferromagnetic phase, because Q is
incommensurate with the reciprocal lattice vector it is neces-
sary to perform translations by vectors + nQ (n = 1, 2, 3,
. . . ) . The presence of chains of ellipsoids and spheres is a
peculiar feature of the Fermi surface of chromium in the
antiferromagnetic phase. (It is these portions of the Fermi
surface, which are not covered by the insulator gap, that
form the "reservoir" in the terminology of the excitonic in-
sulator model).

The above model of the Fermi surface of chromium was
first considered78 for interpreting the frequency spectrum of
the de Haas-van Alphen (dHvA) effect, and has subsequent-
ly been used by many investigators.79"82 The main types of
extremal cross sections for the chains of hole ellipsoids are
shown in Fig. 11. The chains of orbitals consisting of cross
sections of spheres have not been observed experimentally in
view of the large effective masses associated with this portion
of the Fermi surface. Data on the dHvA spectrum can be
used to calculate 8 and Q.

The value of 8 obtained in Refs. 80 and 81 (8 = 0.49) is
in good agreement with the value determined by neutron-

'001]

diffraction measurements.24 We stress that here we are talk-
ing about the same quantity S, i.e., a measure of the deviation
of the wave vector from G/2 for the SDW itself, and not a
measure of the noncoincidence of the electron and hole octa-
hedra.

One must also note the following. All these orbitals are
magnetic-breakdown orbitals, because when the ellipsoids
are superposed on one another an energy gap arises at the
points of intersection. This problem was first considered by
Falikov and Zuckerman,83 who used a perturbation theory
in the potential causing the SDW and a simple model of the
spectrum (free electrons and strongly coupled S-electrons) to
obtain the values of the magnetic-field strength at which the
magnetic breakdown occurs:

a ~ iC
-" 71 ' ' ~ or

eh Ep
(24)

FIG. 11. Some extremal cross sections, associated with the hole ellipsoids
at the TV point of the Brillouin zone, for chain-link sheets of the Fermi
surface.

here E ss (111) is the overlap integral of the S functions of the
nearest neighbors in the bcc lattice, A „ is the width of the
energy gap arising in the nth order of overlap. In perturba-
tion theory this quantity falls off a the nth power.

The fields Hn can be measured by observing the elec-
tronic interference, which leads to periodic oscillations of
the transverse magnetoresistance for a current perpendicu-
lar to the open orbitals arising as a result of the magnetic
breakdown. Arko and coworkers84 demonstrated the exis-
tence of such orbitals in chromium and observed oscillations
of the magnetoresistance. Recently these oscillations were
again measured85 and it was shown that their frequency cor-
responds to the area J formed by a chain of N ellipsoids. It
should be stressed that / is the interference area and not the
area of the orbitals in the dHvA sense, since the contribu-
tions to this area from different segments of the overlapping
N ellipsoids effectively cancel. Measurement of the ampli-
tudes of the interference oscillations yields an estimate of Hn

and, accordingly, of An. For example, Hl turns out to be 5-
10 T (A, = 0.05-0.07 eV), #2 = 0.5-1.5 T (A2 = 0.015-0.27
eV), but H3 is found to have the unexpectedly large value of
10 T.85

The chain-link model of the Fermi surface makes it pos-
sible to evaluate the change in Q under pressure. In Ref. 80
the results of measurements of the dHv A effect under pres-
sure were used to obtain an estimate of the pressure deriva-
tive d In Q 7dP = ( - 0.45 - 0.47) • 10~3 kbar~1

(Q' = Q • a/2-rr). This result is in good agreement with the
neutron-diffraction results ( — 0.5 • I0~3).86 The chain-link
model also yields the change in Q due to an impurity from
the results of dHv A measurements. For the alloys CrMn and
CrV it was estimated87 that d In Q '/dxx 0.022 per atomic
percent impurity, a value in good agreement with the neu-
tron-diffraction data (0.02).88 This confirms the applicability
of the rigid-band model for these alloys.

Measurements79 of the dHv A effect under conditions of
uniaxial strain (magnetostriction oscillations) show that
when rescaled for hydrostatic compression the derivative
d In Q VdP is almost zero. Therefore, Venema and cowork-
ers82 made a more detailed study of the effect of pressure on
the dHvA frequency and calculated the pressure derivatives
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of Q. The results supported those of Ref. 80 but cast doubt
on the results of Ref. 79. The contradiction was resolved in
an unexpected and very interesting way. In Ref. 89 measure-
ments were made of the dHvA effect under low pressures (up
to 140 bar), at which it is possible to change the pressure
continuously without heating the chamber. It was shown
that the dHvA frequencies are shifted under pressure by an
amount corresponding to d In Q VdP = — 0.55-10"3

kbar"1, in good agreement with the data obtained in the
high-pressure80'82 and neutron-diffraction experiments, but
the shift was irreversible. In other words, after the pressure is
removed the vector Q does not return to its original value but
remains the same as it was under pressure. If pressure is
reapplied, Q does not change at first, but after the pressure
has exceeded its maximum value in the first cycle one ob-
serves a further irreversible change in Q, at the same rate as
at the start of the experiment. If, after the pressure is re-
lieved, the temperature is reduced to 50-200 K, the sample is
"annealed" and the vector Q returns to its original value,
i.e., to the value it had in the initial unstrained state. Thus an
effect is observed which is completely analogous to ordinary
metallurgical quenching.

These measurements explain why the pressure deriva-
tive of Q is found to be zero in the magnetostriction measure-
ments,79 where the sample was continually cycled, i.e.,
where the stress oscillated from zero to its maximum value
many times during the measurement of the shift of the
dHvA-effect frequencies.

Comparison of the results of band calculations and the
dHvA experiments shows that despite the good quantitative
agreement between the measured and calculated75'76 value of
Q, the pressure derivative d In Q VdP obtained in the corre-
sponding band-structure calculations is completely at odds
with the experimental value. For example, the calculated
values of dlnQVdP are -0.1 • lO"3 kbar"1 (Ref. 76),
+ 0.05 • 10-3 kbar-1 (Ref. 90), and + 0.2 • 10~3 kbar~'

(Ref. 91). All these values are considerably smaller in magni-
tude than the experimental value, and in the last two
cases90'91 have a different sign. We stress once again that
both the dHvA measurements and the neutron-diffraction
experiment measure the vector Q, while the band calcula-
tion gives the vector Q, i.e., a characteristic of the paramag-
netic Fermi surface. The pressure dependence of Q should be
compared with the experimental results for the dHvA effect
in Mo,92 where the value d In Q VdP is estimated as
+ 0.07 • 10~3 kbar-1, or in W,93 where it is + 0.1 • 10~3

kbar-1.
Fenton94 has shown that in the excitonic insulator mod-

el the vector Q can change with pressure and temperature
even when the vector Q does not. Suppose that Q does not
coincide with G/2; then the optimum value of the wave vec-
tor of the SDW is determined by the extremum of the equa-
tion for the Neel temperature with respect to S (q0) [see Eq.
(25) in Sec. 5]. The results of a numerical calculation of S /S
as a function offio/irk B TN are shown in Fig. 12. Since band-
structure calculations show that 8 is a slow function of pres-
sure while fi0 is a rapid function of pressure, S changes rapid-
ly in the relevant interval of the argument /j-o/irk B TN.
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FIG. 12. Ratio of the value of S for the SDW wave vector to the geometric
value S as a function of /J0 (calculation of Ref. 95).

5. INCOMMENSURATE SPIN-DENSITY-WAVE STRUCTURE IN
CHROMIUM AND ITS ALLOYS

In pure chromium the nesting discrepancy/*„ is greater
than/zj (see Fig. 1), and therefore for further analysis we
must generalize the excitonic insulator theory to the case of
incommensurate structures. This is the subject of the present
Section.

In Rice's model22 the electron and hole Fermi surfaces
are spheres of different radius, and therefore this model is
degenerate with respect to the direction of the vector
q = Q — (G/2). If it is assumed that the transition to the I
phase is second order, the Neel temperature TN [fi0, q) can be
found for structures with different wave vectors | q by gener-
alizing the gap equation (16); one should then find the value
<7o at which the temperature !TN is maximum. We ultimately
get the system of equations

(Ho, q)
dq

= 0. (25)

The line TN (^0) of the second-order transition to the I
phase is shown in Fig. 1. It begins at the point (//?, 7$ ), at
which q0—*Q, and ends on the abscissa at the point //£
= 0.755 A0, TN = 0. The result does not depend on the res-

ervoir capacity f). However, attempts at a further study of
the transition from the P to the I phase in Rice's model have
encountered a number of difficulties.

It has been shown95 that for fj, = fi0 = const, i.e., at an
infinite reservoir capacity, the transition is first order, not
second order. But in this case the line of transitions from the
P phase to the I phase can be found only by a variational
method, since the exact solution for the SDW structure in
Rice's model is not known. Near the Lifshitz point (//J, T $ ),
where the first-order character of the P-I transition is very
weakly expressed and the Ginzburg-Landau expansion can
be used, the thermodynamic potential fi has been calculat-
ed95 for two types of SDW structures — a sinusoidal linearly
polarized structure and a helical structure. It was found that
the sinusoidal structure is favored in the validity region of
the expansion.

The calculation in Ref. 95 shows that as one moves
away from the Lifshitz point (^uj, T£ ) toward greater values
of fi0, there is a sharp increase in the parameter i>F q$/k B 7"N

which characterizes the validity of the Ginzburg-Landau ex-
pansion. Consequently, in the case of a second-order transi-
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tion the higher harmonics of the SDW (the Fourier compo-
nents of the magnetization with wave vectors which are
multiples of q0] become more important, and one cannot say
anything about the true transition line TN (//„) or the true
SDW structure. Strictly speaking, the same problem arises
as in the case of superconductors in an exchange field (the
Larkin-Ovchinnikov-Fulde-Ferell state96'97), where the line
of transitions to the I phase cannot be found either.

The case of a fixed number of particles (/? = 0) has also
been considered.98 Here the transition is actually second or-
der. It was shown that of the two variational solutions (the
sinusoidal and helical), the first is favored everywhere below
7"N. In the case of an arbitrary reservoir capacity 0 one can
obtain the conditions under which the order of the transition
changes (from second to first), but we shall not go into the
details of this problem since in the case of Cr the exact value
of the reservoir capacity has not been conclusively estab-
lished.

We also note that because of the variational character of
the calculations, the fact that the sinusoidal solution is fa-
vored over the helical solution still does not guarantee that it
is absolutely favored. More complicated SDW structures
can be proposed, and there is no basis for excluding them
from the analysis. In fact, a more complete variational analy-
sis of the incommensurate SDW has recently been carried
out20 for structures which do not contain high harmonics.
The variational procedure for finding the most favorable
magnetic structure is as follows. Starting from the model
Hamiltonian (7), one evaluates the Gibbs potential

(26)

where the averaging is over the ground state of Hamiltonian
HcS. The set of vectors q is specified in such a way as to
satisfy the symmetry requirements of the high-temperature
phase. Specifically, for a model with a single wave vector of
length q one can construct a star of vectors, + q,, ± q2,
+ q3, directed along the axes (100), (010), and (001), respec-
tively. For such a choice of star {q, j the Fourier components
Afq of the vectors transform according to the space group Im
3m of the cubic bcc lattice of chromium. There are 18 real
parameters {Afq j in all.

The expansion of the thermodynamic potential fl in in-
variant combinations of vectors (Afq } easily written down
purely on considerations of symmetry.20 The coefficients of
these combinations can be evaluated from the specific micro-
scopic model. It was shown in Ref. 20 that a configuration
which is favored over the sinusoidal and helical magnetic
configurations is one having three vectors q, of equal modu-
lus: (Afq = {M*± 1t, M*± 9i, M

x
± fe j , i.e., the magnetization

is of the form

M (r) = xM0 [cos (qx + (fx) + cos (qy + cp^)

+ cos (qz + cpz)], (27)

where <pXwyiZ are constant phases which do not depend on the
coordinates. We thus see that Rice's model in the above vari-
ational approach does not describe the real SDW in chromi-
um, which has a one-dimensional SDW with a single vector

q.2) We stress, however, that the question of which particular
SDW structure is favored cannot be finally resolved without
taking the higher harmonics into account, and it is practical-
ly impossible to do this in Rice's model.

Another model of an incommensurate SDW (the octa-
hedral model) was proposed by Kotani and coworkers.99'100

In this model the Fermi surface of the electrons and holes are
modeled by octahedra of different volumes; the octahedra
have pairs of plane-parallel faces. This model is obviously
close to the actual shape of the Fermi surface as discussed in
the previous Section.

Considering each pair of parallel faces independently,
one can assume that the Fermi-velocity vector is strictly per-
pendicular to the surface of the face, i.e., the problem re-
duces to one-dimensional. It must be noted, however, that at
small values of At and vfq, an arbitrary slight transverse
ripple rj will become important (A 5 1771), and this is a natural
criterion for the applicability of the octahedral model for
describing the SDW in chromium, which has a thoroughly
finite rippling of the Fermi surface (see Fig. 10). The phase
diagram of this model is calculated in Ref. 101 by the same
method as was used for Rice's model.

The transition from the P phase to the C phase, as in
Rice's model, is second order; the transition between the P
and I phases is also second order at any reservoir capacity P,
but the P-I transition line TN {jj,0) is entirely different. It be-
gins at the Lifshitz point ((/u*, Tf,) and falls off smoothly,
asymptotically approaching zero, and the transition is possi-
ble in a formal sense at any value of/z0 (line 2 in Fig. 1).

One can do a variational calculation for magnetic struc-
tures with wave vector q in the octahedral model as well. It
was shown in Refs. 13 and 94 that the sinusoidal solution
M(r) = xM0 cos(q • r), where the vector q is directed along
one of the (100) axes, is the most favorable in the class of
magnetic structures considered. This is an important indica-
tion that the octahedral model gives a good description in the
case of chromium.

The octahedral model also bears a strong mathematical
resemblance to the so-called continuum model of Peierls,
which is widely used to describe the CDW transition in qua-
si-one-dimensional systems. This generality, as will become
clear, enables one to construct the exact SDW ground state,
which is of the form of a soliton lattice, and to obtain the
correct phase diagram, at least for the case of a fixed chemi-
cal potential.

Scattering by impurities and phonons was incorporated
in the octahedral model in Ref. 102. The method used was
analogous to that described in Sec. 2 for he spherical model.
The phase diagram from Ref. 102 gives a rather good de-
scription of all the qualitative features of the actual phase
diagram of alloys of Cr with nonmagnetic ̂ -metals. Accord-
ing to Ref. 102, the phonons play the major role in scattering
in dilute alloys of chromium. The best agreement with exper-

2'A real crystal can contain domains within which the vector q is directed
along one of the three crystallographically equivalent direcions (100),
(010), (001). The application of a weak external magnetic field can create
a preferred orientation of the SDW vector along one of these directions
(cooling in an external field). In the antiferromagnetic state this orienta-
tion persists after the field is removed.

965 Sov. Phys. Usp. 27 (12), December 1984 N. I. Kulikov and V. V. Tugushev 965



iment for pure Cr is achieved at rph
l = 0.24 irkBT^. In this

case //£r = 0,55 A0, rN=312 K = 0.321 rN, where
A0 = 0.15 eV, TN = 972 K. With these parameters the co-
ordinates of the Lifshitz point are duj, T%) = (0.504 A0,0.38
(rN).

It should be mentioned that there is one "hidden reef
on the way to constructing the correct magnetic structure
below TN (jU0). The appearance of an incommensurate SDW
is accompanied by a modulation of the charge density. The
Coulomb forces which thus arise tend to restore electrical
neutrality over the scale of the long-period structure.
Allowance for the direct Coulomb interaction strongly al-
ters the coefficients of the higher terms in the Landau expan-
sion of the free energy.

According to Ref. 103, near the line of transitions to the
antiferromagnetic phase we have

r d r , (28)

/ (r) = otAJ +1 p,A{ +17,A? + o, (grad At)
2

+ a2 (divgrad A,)2 + fc,A| (grad At)
2. (29)

The coefficients in (19) are written out explicitly in Ref. 103.
If a, < 0, as is the case for/*0 > /j, J, then the equilibrium order
parameter A, (r) becomes inhomogeneous (this corresponds
to a transition to the I phase of the SDW. This causes a
redistribution of the electron density n(r), giving rise to a
slowly varying potential <p(r] in the system:

(30)

where n = <n(r)> is the average value of the electron density

)), (31)

and Nr is the density of states in the reservoir.
It is in principle important to take the long-range part of

the potential £>(r) into account [Eq. (30) is simply Poisson's
equation]. If one formally sets e2 = 0, the Landau expansion
of the free energy F acquires nonlocal terms of the type
(A 2 (r))2 (here {. . .) denotes a volume average). Because of
the Coulomb character of the interaction tp(r], even at arbi-
trarily small nonzero values of e2 the nonlocal contributions
completely vanish, giving way to local expressions of the

Similar nonlocal contributions also arise in the one-di-
mensional octahedral model. One can show that in this case
correct allowance for the Coulomb interaction restores the
local nature of the functional.104

Below the temperature TN(fj.0) an incommensurate
transverse structure with a SDW contains a number of subtle
and interesting effects. One of these is the appearance of a
strain wave, which was detected experimentally by Tsunoda
et a/.105 using x-ray diffraction and later by Eagen and
Werner106 using neutron diffraction. The third harmonic of
the SDW was obtained by Pynn et a/.107 using neutron dif-
fraction. At the same time the second harmonic of the SDW
has not been observed in spite of careful search. The ampli-
tude a of the strain wave in the alloys CrMn and CrV is

proportional to the square of the amplitude of the first har-
monic of the SDW,108 just as in pure Cr.

A careful study of the higher harmonics of the spin-
density and strain waves has recently been carried out109 for
Cr and its alloys with Mn and V by the neutron-diffraction
method. The amplitude of the third harmonic A3Q of the
SDW is extremely small [with a ratio A3Q/At ss(1.3-
1.6) • 10~2], and the higher harmonics have not been ob-
served in neutron-diffraction experiments; this apparently
indicates that they are extremely weak. The displacement CT
of the atoms relative to their position in the ideal lattice of
the paramagnetic phase, A R, = R, — R, = CT sin(2Q • R),
where the vector CT is parallel to Q, amounts to
(0.89 ± - 0.16) • 10~3 a. The third harmonic grows with
increasing Mn concentration and falls off with increasing V
concentration (but in the commensurate SDW phase of
CrMn the higher harmonics are absent altogether). The am-
plitude of the strain wave varies extremely slowly in the al-
loys CrMn and CrV in comparison with pure chromium.
The higher harmonics of the strain wave have not been de-
tected either. Figure 13 shows a schematic illustration of the
model for two possible phase relationships between the first
and third harmonics of the SDW.110 It should be noted that
everywhere here we are discussing the region above the spin-
flip transition.

As we have mentioned, in the excitonic insulator model,
in addition to the anomalous averages A, which describe a
SDW (the triplet order parameter), there are also anomalous
averages which describe a charge-density wave.] ] l One can
easily see from the Hamiltonian (2) that the appearance of an
incommensurate SDW with wave vector Q = (G/2) ± q au-
tomatically gives rise to a CDW with q, = ± 2q. The com-
ponent with QI = ± 2q, which is proportional to
Ati±qA£±q, leads to a period-doubled (in comparison with
the SDW) modulation of the electron density. The presence
of an electron-phonon interaction gives rise to a periodic
strain with wave vector 2q.

All these arguments are valid if the problem is solved in
perturbation theory and the terms of lowest order in the
SDW amplitude are kept. Generally speaking, the higher
harmonics that can arise are the even harmonics of the
charge-density and strain waves with wave vectors 2nq and
the odd harmonics of the SDW with wave vector (2« + 1 )q.

If A t~T,/j,0 there are no grounds for assuming that the

FIG. 13. Possible phase relationships (a and b ) between the first (S,) and
third (S3) harmonics of the SDW.110
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amplitudes of the higher harmonics of the SDW and CD W
are small compared to A r. The electron spectrum of chromi-
um below TN should therefore contain a set of microgaps,
which should be manifested in the optical absorption. Actu-
ally, however, no series of peaks has been detected in optical
experiments. We shall return to this question shortly.

The higher harmonics of the spin-density, charge-den-
sity, and strain waves have been taken into account in a sys-
tematic manner in a series of papers by Kotani.101'112 All the
experimental results are reproduced fairly well in the nu-
merical calculations,[ 12 but on the basis of this fact alone it is
difficult to say with certainty that the octahedral model can
be used for quantitative description of the SDW in chromi-
um. The introduction of many complications (spin polariza-
tion of the reservoir electrons in the field of the SDW, imper-
fect nesting, interactions with phonons) essentially vitiates
the original advantages of the octahedral model, viz., its one-
dimensionality and the possibility of obtaining analytical re-
sults.

However, the description of incommensurate struc-
tures by the usual methods of band theory is practically im-
possible, and therefore the octahedral model with compli-
cating modifications is an intermediate link between
numerical calculations from first principles and an analyti-
cal theory.

It must be said, however, that the question of the order
of the phase transition between the C phase and I phase es-
sentially remains unresolved in the models we have dis-
"ussed. The reason for this is that as one approaches the line
of this transition a larger and larger number of harmonics
come into play; in other words, the number of relevant har-
monics increases without bound. Nevertheless, Buzdin and
Tugushev113 recently succeeded in obtaining the exact phase
diagram of the octahedral model and constructed the exact
line of the C-I phase transition. They did this using the exact
solution of the one-dimensional Peierls model, as obtained
by Brazovskii and coauthors114 and by Horovitz.'15 The ex-
act solution for the triplet order parameter has the form of a
soliton lattice:

(32)

where sn f is the Jacobi elliptic function and the parameter y
takes on values 0 < y < 1. The quantities A , and y are func-
tions of temperature and the chemical potential /J.0. In the
case of a fixed chemical potential the C-I transition is first
order, while in the case of a fixed number of particles it is
second order. Thus the octahedral model is completely inte-
grable at any temperatures. On the P-I transition line the
parameters y and A, go to zero in such a way that solution
(32) goes over to a purely sinusoidal solution with wave vec-
tor q0 = A t /Up y = const.

On the I-C transition line at fixed fj,0 the commensurate
structure arises discontinuously at any temperatures except
at the isolated point T = 0 (//„ = 24</7T and T=T^, where
the transition is second order. In a recent paper116 Kotani
also obtained the I-C transition line (or more precisely, the
line of absolute instability of the commensurate phase, since
it was assumed that the transition is second order) for the

FIG. 14. One-electron spectrum in the soliton-lattice model."4

spin-Peierls transition in the XY model in a magnetic field.
From a mathematical standpoint this system is completely
identical to the octahedral model with fixed //<,. The results
of analytical113 and numerical calculations have turned out
very similar. The corresponding line T1C Ijn0) is given in Fig.
1.

We also note that analysis of the neutron-diffraction
data on the strain-wave and SDW amplitudes in Cr and in
the alloys CrMn and CrV has led 117 completely indepen-
dently to the empirical conclusion that the relationships of
the amplitudes and wave vectors are best satisfied when the
spatial dependence of the magnetization is of the form (32),
i.e., a soliton lattice.

The spectrum of the soliton structure has only two gaps
(Fig. 14) and a narrow allowed band which vanishes at the
transition to the commensurate structure. Curiously, all the
optical absorption measurements in the I phase have re-
vealed only two peaks,118 which have been interpreted in a
rather artificial way.26 It is clear that in the case of the soliton
lattice the frequencies of these peaks are 2e+ and (E+ — £_);
here

In pure chromium the frequencies of the absorption peaks
are 0.15 and 0.45 eV, giving y~ 1/2. In CrMn there is only
one absorption peak, at ~0.4 eV; this circumstance can be
interpreted as the vanishing of the narrow soliton band at the
I-C transition, where y—>l, £—»0.

Let us now return to the effects of an interaction
between the incommensurate SDW and the crystal lattice,
considering the phenomenological description of this inter-
action in more detail.

Because there is no linear coupling between the triplet
order parameter A, and the strain tensor 77,.,, the lattice dis-
tortion will be only of order A 2. A temperatures close to TN

one can use the Ginzburg-Landau functional. In a recent
paper119 Walker constructed a two-parameter Ginzburg-
Landau functional with allowance for the spatial symmetry
of the bcc cell of chromium. No specific model of the chromi-
um band structure was used in that paper, and the coeffi-
cients in the free energy were treated simply as phenomeno-
logical parameters. When the elastic properties of the lattice
are taken into account, the transition to the I phase of the
SDW turns out to be first order, but close to second order,
and at the Neel point there is a discontinuity in the elastic
modulus Ci! [along the (100) direction]. The transition to the
SDW state under pressure was investigated by this same
scheme.119'120
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At temperatures r<rN the situation is considerably
more complex, and we do not yet have a consistent theory of
an incommensurate SDW interacting with the lattice. This
problem is extremely interesting, however, particularly in
regard to the aforementioned quenching of the wave vector
of the SDW89 (see Sec. 4). Fenton121 attempted to explain
this effect by analogy with the Back-Timonen42 model for
the incommensurate charge-density wave, using the results
of Ref. 122.

The Back-Timonen model, which is based on an idea
due to McMillan,41 describes a system in which the CDW is
coupled to the lattice through the interaction of fluctuations
in the phase of the CDW with fluctuations in the phase of the
lattice with respect to the stable positions in the commensur-
ate structure. In the phase-soliton (CDW domain-wall) re-
gion, lattice domain walls (dislocations) form. The energy of
these dislocations is negative, and with increasing pressure
they multiply on account of the increasingly incommensu-
rate structure. At low temperature the excess lattice disloca-
tions do not have time to be "reabsorbed" after the pressure
is removed, and for practical purposes the SDW is pinned at
these dislocations. The system thus remains in a metastable
state, and an annealing is needed in order to return it to a
truly equilibrium state.

An alternative explanation for the quenching of the
wave vector of the SDW (by analogy with the CDW) was
proposed by Littlewood and Rice.123 They attributed this
effect to the pinning of phase solitons (excited metastable
states of the SDW) at random defects. They believed123 that
it was just such metastable states of the SDW that were ob-
served in the low-temperature experiments.89 A Monte
Carlo calculation for the case of a one-dimensional CDW in
the chain model with 200 randomly distributed impurities
(the average distance between impurities was taken to be 100
wavelengths of the SDW) did in fact reveal the presence of
hysteresis in the q dependence of {V<p) [here q is the change
in the wave vector of the lattice, simulating the effect of pres-
sure, (V<p) is the average gradient of the CDW phase,
As (x) = A0 cos(0x + <p (x)), and Q is the wave vector of the
CDW in the ground state (at zero pressure)]. With increasing
q the value of (Vq>) grows with a certain slope, and with
decreasing q it falls off with a different slope. The presence of
hysteresis indicates that the excited states of the CDW (and
SDW) are separated from the ground state by an energy bar-
rier, and after a rapid removal of the external influence the
system is unable to return to the ground state.

6. GROUND-STATE PROPERTIES AND MAGNETIC
EXCITATIONS IN CHROMIUM

The direct connection between the topology of the Fer-
mi surface and the antiferromagnetic ordering in chromium
has stimulated a large number of calculations of the band
structure of this metal in the paramagnetic state. Calculation
of the antiferromagnetic phase, however, is a practically un-
solvable problem since it is impossible to calculate the in-
commensurate SDW structure in the ordinary band ap-
proach. Therefore, it is important to estimate the degree of
applicability of the excitonic insulator model for describing

the commensurate case by making direct calculations of the
ground-state energy and other characteristics; the corre-
sponding band calculations will provide the necessary nu-
merical parameters which, if the program is successful,
might be used in the excitonic insulator model to describe
the incommensurate phase.

Calculations of the commensurate antiferromagnetic
phase of Cr, which has a magnetic structure of the CsCl type,
have recently been done using three different methods of
evaluating the one-electron spectrum,90'91'125 with different
approximations for the effective exchange-correlation inter-
action (in the density-functional formalism). It must be
stressed that the density-functional formalism in principle
guarantees the correctness of the description of the proper-
ties of the ground state (but not quasiparticle states) in terms
of the solution of the single-particle problem if the form of
the exchange-correlation potential is known.

Calculations90'91'125 using this method have yielded the
value of the spontaneous magnetization: 0.59 HB at a lattice
constant a = 5.483 a.u.,91 0.48 //B at a = 5.442 a.u.,90 and
0.29 fiB at a = 5.397 a.u.125 (the experimental value is 0.59
//B at a = 5.397 a.u.). The binding energy comes out rather
well (4.61 eV,91 compared with an experimental value of 4.09
eV), as does the modulus of hydrostatic compression (1.62
Mbar91 and 2.36 Mbar,125 compared with an experimental
value of 1.9-2.1 Mbar).

We believe that one of the most important results from
these calculations is Kiibler's evaluation91 of the difference
AE = EAPM — EPM between the total energies of the anti-
ferromagnetic and paramagnetic states; this difference is
written as a sum of five terms:

where the first and second terms are the sums of the one-
electron energies for the ionic-core and valence electrons,
respectively, the third and fourth terms are due to the double
counting of the direct Coulomb and exchange-correlation
interactions, and the last term is the difference between the
exchange-correlation energies. The first four terms in (33)
give a value + 0.06 eV, i.e., a disadvantage in total energy
upon formation of the antiferromagnetic state, but
AE^. = — 0.12 eV, and so the antiferromagnetic state is sta-
ble. The system of valence electrons has an energy advan-
tage, equal to — 0.03 eV, that is completely outstripped by
the large values of the other four contributions. However,
these contributions compensate one another, and the net val-
ue AE = — 0.06 eV is close to the contribution from the
valence electrons. In Ref. 90 the parameters obtained in the
band calculation [g, N(0), p,, A ] were used to estimate the
energy advantage for the valence electrons with the aid of the
formula from the excitonic insulator model. The result,
— 0.02 eV, agrees satisfactorily with the results of direct

numerical calculations.
All the band calculations give a value for the antiferro-

magnetic gap that is larger than the value obtained from an
elementary excitonic-insulator model of the BCS type. In
particular, values of 0.51 and 0.48 were obtained for the
commensurate phase in Refs. 90 and 91, respectively. These
values are in reasonable agreement with the experimental
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values of the gaps118 in commensurate CrMn and CrRe al-
loys (0.36-0.40 eV). The somewhat smaller experimental
value of the gap is easily explained by the additional influ-
ence of impurity scattering, which was not taken into ac-
count in the band calculations of the commensurate phase.
In addition, it can be shown126 that an excitonic insulator
model incorporating impurity scattering, in which case the
parameter T~I in (21) is of the form r~l=F0 + aT,
F0 = 7.8 meV, a = 0.13 meV/K, can yield a value 0.3 eV,
rather close to the experimental and band-calculation re-
sults. The value of the effective interaction constant
U= 0.43 was adjusted to give TN = 515 K, corresponding
to the experimentally measured value for an alloy with 2%
Mn. Band calculations91'90 give a similar value for the effec-
tive constant: U= 0.4-0.55.

The effect of pressure on the antiferromagnetic gap and
spontaneous moment is a good illustration of the need for the
excitonic insulator model in order to interpret correctly the
results not only of experiments but also of numerical calcula-
tions. The authors of Refs. 90 and 91 gave incorrect esti-
mates of the pressure derivatives of the gap and moment.
The error lay in the customary assumption that the proper-
ties of transition metals have a linear pressure dependence.
Therefore, the numerical calculation, which levels out the
exponential pressure dependence of the parameters of the
ground state, gives a value which differs from the experimen-
tal by an order of magnitude. The pressure derivative of the
gap satisfies the relation

d i n A _. d l n E F d _ / J _ \ JJ -
<\P ~~ dp [dp \ u I ' u ~ (34)

where the effective electron-electron interaction g = 0.547
Ry is calculated in the density-functional formalism and has
a pressure derivative d In g/d p = 5 • 10~4 kbar"1. This
leads to a value d In,4 /dp = — 1 1 . 5 - 10~3 kbar~', in satis-
factory agreement with experiment ( — 18 • 10~3). We note
that the first term in (34) is negligibly small, and the negative
sign of the pressure derivative is due to the decrease with
pressure of the density of states for the nested portions of the
Fermi surface.

Using the relation A = gM, one can also evaluate the
pressure derivative of the magnetic moment, d In M /
dp= — 1.1 • 10~2 kbar"1. This value is also in reasonable
agreement with the experimentally measured value
( - 2 - lO^kbar-1).

An important measurable quantity which can be calcu-
lated both in band theory and in the excitonic insulator mod-
el is the magnetic susceptibility^ (q, ca). The static suscepti-
bility^ (q, 0) in the limit 9—>-0 gives the response to a uniform
magnetic field, and x (Q' 0) should have a sharp peak at
q = Q. The poles of the dynamic susceptibility^ (q, a] deter-
mine the magnon spectrum of the system.

An expression for x (0,0) in the excitonic insulator mod-
el was first obtained by Maki and Sakurai,124 who considered
the C phase with allowance for scattering by impurities.

The temperature dependence of the static magnetic sus-
ceptibility has been considered29'127 in the framework of
Rice's model with allowance for scattering by noninteract-
ing impurities and phonons. The most complete treatment of
the problem of evaluating x (<?> 0)« with allowance for the

imperfect superposition of the electron and hole pockets and
the interaction of the SDW with the magnetic moment of the
impurity, was recently given in Ref. 128.

In the directions perpendicular to the polarization di-
rection of the SDW the magnetic susceptibility tensor is the
same as in the paramagnetic case, i.e., it is of the form of the
ordinary Pauli contribution^ =yu| N(0) = %0, but in the
direction parallel to the polarization of the SDW it has the
more complicated temperature dependence

where &>„ and An are solutions of the system of equations

2t if~ — '

1
"2T

(37)

(38)

In expression (35) %o was chosen29 such that the theo-
retical value coincides with the experimental value at a cer-
tain temperature, and/z was varied to give the best fit for the
temperature dependence. Above the temperature of the
spin-flip transition a good agreement could be obtained29

between the calculation and experiment (Fig. 15), but the
value of the gap A0 here is in poor agreement with experi-
ment. This is not surprising, since to single out the spin-
susceptibility contribution from the experimental curve is a
difficult and ambiguous undertaking. The orbital (specifica-
ly, the Van Vleck) paramagnetic susceptibility was not taken
into account directly in the model but was given in terms of
the experimental value of the susceptibility at a certain tem-
perature. Such a fitting to experiment should distort the oth-
er physical characteristics of the system, which were not
checked during the fitting.

The problem of evaluating the total susceptibility of the
paramagnetic phase from first principles was solved in Ref.
129. Calculations were done not only for the static bulk sus-
ceptibility but also for the total magnetic form factory (G) of
the induced magnetization. The calculation of the spectrum

3.3

3,2

3.1

— theory
"-experiment

too
T,K

ZOO 300

FIG. 15. Calculated29 susceptibility x as a function of temperature in the
excitonic insulator model.
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and wave functions were calculated by the linearized aug-
mented-plane-waves method. The total theoretical form fac-
tor was obtained by combining the Van Vleck orbital, Pauli
spin, and diamagnetic form factors. The calculation showed
that the Van Vleck susceptibility is 130 • 10~6 emu/mole,
the Pauli susceptibility is 18.8 • 10 ~6 emu/mole, and the dia-
magnetic susceptibility is 43.7 • 10~6 emu/mole. It must be
stressed, however, that the Pauli susceptibility was calculat-
ed without the exchange enhancement, which can be consid-
erable (a factor of ~ 2.5), but this does not alter the fact that
the main contribution to Xo is the paramagnetic Van Vleck
orbital susceptibility. We note that the experimental value of
X (0, 0) for the paramagnetic phase is 140 • 10~6 emu/mole
and that a more exact calculation130 gives 106 • 10~6 emu/
mole.

There is considerable interest in calculating the general-
ized static susceptibility x (l> 0) fr°m nrst principles, since
the presence of an anomaly in this function at q = Q is an
important justification for using the excitonic insulator
model. Such a calculation was done for the case of Cr in Ref.
131. We note the following circumstances. First, in calculat-
ing^- (q, 0) in the excitonic insulator model one usually uses
only the geometry of the energy bands in the calculation; this
is equivalent to using the approximation of constant matrix
elements in the calculation of x (Q> 0) and neglecting the ef-
fects of the local field. The value x °(Q> 0) calculated for Cr
under these approximations does in fact exhibit the highest
peak at q = Q, i.e., for the nesting vector of the octahedral
electron and hole surfaces (see Fig. 10). Second, the calcula-
tions of Ref. 131 have demonstrated the necessity of simulta-
neously taking into account both the different probabilities
for transitions between bands at different points of the Bril-
louin zone (a nonconstant matrix element) and the effects of
the local field, i.e., the presence of Umklapp processes char-
acterized by the reciprocal lattice vector G. In this case crite-
rion (1) for instability of the paramagnetic phase becomes131

1 =/2G^'(q + G,q + Q,0), i.e., the instability is determined
not by the function^ (q, 0) itself, but by the sum of interband
susceptibilities with different reciprocal lattice vectors. Fur-
thermore, since the function x (Q» 0) has an anomaly due to
the topology of the Fermi surface not only for the vector
Q = (2rr/a)(\ - 8, 0, 0), but also for the vector Q' = (2ir/
a) (1 + 8,0,0), upon summation these anomalies add. At the
same time for random peaks x (4> 0) such an enhancement
does not occur, and consequently, as can be seen in Fig. 16,
the highest peak in fact arises at q = Q. We stress that the
function shown in Fig. 16 is very similar to the susceptibility
X °(q, 0) of the excitonic insulator model at large values of q.
Moreover, there is even semiquantitative agreement, to
within 20-25%. At small q the curves are qualitatively dif-
ferent because at q—»€ the matrix elements for the interband
transitions also go to zero.

While numerical calculations of x (Q. 0) are verv time-
consuming, it is an even more complicated problem to evalu-
ate the dynamic susceptibility function^ (q, co], even without
allowance for electron-hole pairing or impurity scattering.
To this day there have been no such calculations using the
actual band structure, although the dynamic susceptibility

206 -

FIG. 16. The function 2cx (Q + G, Q + G) in units of states/ RyXa-
tom).131

function has been calculated in the excitonic insulator model
for systems with a SDW instability. The first such calcula-
tion of x (Q> °>) was apparently done in the random-phase
approximation (RPA) by Liu,126 who used the octahedral
model for the single-particle spectrum and considered the
commensurate case 5 = 0.

Liu's calculation126 of the imaginary part of the suscep-
tibility of chromium yielded the line shapes for magnons in
the antiferromagnetic phase and for paramagnons (Fig. 17),
and also for the single-particle excitations. In this regard we
note that spin fluctuations or paramagnons have recently
been observed in chromium at T> TN ,138 A relatively slight
smearing of the peak near 001 on the neutron-diffraction
patterns as the temperature is raised is evidence of short-
range order in chromium at T> T^, The results of a calcula-
tion of the ground state of chromium in self-consistent fluc-
tuation theory59 indicate that there is no well-defined local
magnetic moment in Cr. At the same time, experiments on
diffuse neutron scattering63 in pure chromium, like the ex-
periments on the thermal expansion of alloys,173 indicate
that paramagnons with small wave vectors are long-lived.
These effects cannot be explained in terms of the excitonic
insulator model, since this model does not incorporate the
effects of short-range magnetic order, and the paramagnons
(see Fig. 17) are damped out much faster than in experiment.

Liu's calculation126 also yielded the spin-wave velocity
in chromium, c = 2.5 • 10~7 cm/sec, a value which is almost
twice as large as the measured133'134 value (1.3-1.5) • 107cm/
sec. A similar result was also obtained in Refs. 13 and 132.

A complete derivation of the equations giving the dy-
namic susceptibility function in the random-phase approxi-
mation with allowance for impurity scattering and the inter-
action of the SDW with the magnetic moments of the
impurities was recently carried out by Ami and Young.135

Attempts have been made136'137 to improve the agreement
between theory and experiment for the spin-wave velocity by
going beyond the RPA. In the "frozen magnon" method135

an attempt is made to put the scattering by static spin fluctu-
ations effectively on a self-consistent footing (a "frozen mag-
non" is simply an excitation which corresponds to static de-
viations of the spins from the equilibrium position). In Ref.
137 Liu used Rice's model for the electron spectrum and
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FIG. 17. Magnon line shapes below the Neel tempera-
ture (a) and close to TN (b), and the paramagnon line
shape above TN (c). The calculations in the excitonic
insulator model were done in Ref. 126.
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calculated the change in energy upon a change in the orienta-
tion of the spins. The resulting value of the spin-wave veloc-
ity in chromium, c = (1.6-1.1) • 107 cm/sec, is in much bet-
ter agreement with experiment.

This approach effectively incorporates not only the in-
terband spin-spin interaction but also the intraband interac-
tion, which had not been taken into account previously. The
fact that an interaction of this kind decreases the spin-wave
velocity also follows immediately from Ref. 136, in which a
direct calculation was made of the spin-spin interaction
between the electrons of the peculiar bands and the electrons
of the reservoir. The results of the two calculations136'137 are
practically the same.

7. OTHER SYSTEMS WITH SPIN-DENSITY-WAVE
INSTABILITY

Until now we have been discussing mainly the proper-
ties of the SOW state in chromium and its dilute alloys.
However, there are a number of indications that a similar
situation also arises in certain other systems which undergo
an antiferromagnetic transition.

This class of systems includes the intermetallic com-
pound TiBe2, a Laves phase with the CIS structure. In 1978,
on the basis of magnetic susceptibility measurements, Mat-
thias and coauthors139 announced that TiBe2 is the first
"true" itinerant antiferromagnet, with TN = 10 K. In stat-
ing this the authors had in mind that neither of the elements
in the intermetallide was ever suspected of having a local
magnetic moment.

However, the situation has turned out to be more com-
plicated than was first assumed. Subsequent measure-
ments140'141 have definitely shown that TiBe2 is a paramag-
net with a strong exchange enhancement and can even
become an itinerant metamagnet in a magnetic field. More-
over, the low-temperature (~2 K) measurements remain
poorly understood. In particular, there are anomalies in the
specific heat142 and resistance140 at this temperature.

For an explanation of these anomalies Enz143 looked to
the excitonic insulator model, whose application here is jus-
tified by the results of a calculation of the band struc-
ture144'145 of the paramagnetic phase of this intermetallide.
The calculated Fermi surface has parallel flat parts of the
electron and hole types (the F-K direction). Moreover, esti-
mates of the parameters of the excitonic insulator model
from the experimental data and the results of band structure
calculations reveal an important discrepancy between calcu-

lation and experiment: Specific-heat measurements yield the
density of states of the nested portions as N(Q) = 49 states/
(Ry unit cell), but this is close to one-third of the total density
of states at the Fermi energy.31 Enz arbitrarily took143

N(0) = 10 states/(Ry unit cell).
This discrepancy between the experimental estimate of

the "bare" (band) density of states and the value required for
the model is most likely due to the anomalously large ex-
change enhancement that has been noted in this system. Re-
placing part of the Be atoms by Cu atoms in this alloy will
give rise to ferromagnetism,146 whereas alloying with Ga
will destroy the anomalous paramagnetism.147 To explain
the properties of TiBe2 it is apparently every bit as necessary
to take spin fluctuations into account in the spirit of self-
consistent fluctuation theory as it is to take into account the
topology of the Fermi surface.

Enz's estimate143 of the critical field Hc for destruction
of the SOW state in TiBe2 is extremely small: Hc = 610 Oe.
Therefore, the results of Ref. 141, where magnetic fields
above this value were used in the measurments, cannot be
taken as direct evidence against the existence of antiferro-
magnetic ordering in TiBe2.

A quite similar situation also arises in the intermetallide
CrB2, where the antiferromagnetic ordering occurs at
TN = 85 K.148 It was also observed that in this compound
the susceptibility is an order of magnitude larger than in
other diborides (ScB2, TiB2, VB2), and the electronic specific
heat is also anomalously large.149'150 This is a clear indica-
tion of anomalous exchange enhancement, i.e., of the prox-
imity of the electronic system to the boundary of ferromag-
netic instability. In addition, neutron-diffraction measure-
ments at liquid-helium temperature reveal the existence of
weak satellites which are probably of magnetic origin.

The band-structure calculation of Ref. 151 demon-
strates the presence of flat parts of the Fermi surface. Liu
and coauthors151 have attempted to explain the antiferro-
magnetic ordering in CrB2 on the basis of the excitonic insu-
lator model. Their estimates are consistent with one another
and give a value of the spontaneous magnetization M = 0.01
fj,B that agrees with the experimental value.

A general feature of the compounds considered above is
the presence of susceptibility anomalies not only at q = Q

3The transition temperature corresponding to this density of states in the
excitonic insulator model would be an order of magnitude higher than
the experimentally observed value.
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(the anomalies responsible for the antiferromagnetic transi-
tion) but also at q = 0. The g = 0 anomaly, although it does
not give rise to a ferromagnetic instability, nevertheless
causes an anomalously large electron-paramagnon interac-
tion. Such an interaction can clearly lower the Neel tempera-
ture by an appreciable amount.

Other interesting systems are the vanadium chalcogen-
ides: VX, V3X4, V5X8, VX2, X = S, Se. These phases have a
metallic conductivity, and their crystal structure varies from
the NiAs type to the CdI2 type as the chalcogen concentra-
tion is increased from VX to VX2. At the intermediate com-
positions they have ordered structures with completely and
partially filled hexagonal layers of vanadium atoms.152

It is stated in a handbook153 that there is an antiferro-
magnetic transition in VS at rN = 1040 K, and according to
Ref. 154 the magnetic susceptibility at T> TN obeys the Cu-
rie-Weiss law. No other data on the magnetic properties of
VS are to be found in the literature, but it is known that the
hexagonal structure of VS is unstable against small ortho-
rhombic distortions. A band-structure calculation made in
Ref. 155 showed that the Fermi surface has nested electron
and hole pockets centered around the U and A directions.
According to Liu,156 it is these pockets that are responsible
for the structural transition from the NiAs to the MnP lat-
tice, i.e., the orthorhombic distortion is explained by the on-
set of a CDW in the system. The existence of an antiferro-
magnetic transition was ignored in this paper.

For dichalcogenides of vanadium (and niobium) the
early studies also assumed the existence of an antiferromag-
netic transformation, but it is now known that these sub-
stances have complex structural transitions (commensurate
and incommensurate) which are not accompanied by mag-
netic ordering. It has not been ruled out that the transition in
VS was simply identified incorrectly, and so additional neu-
tron-diffraction and Mossbauer studies are needed.

The experimental situation is much clearer in chalco-
genides of intermediate composition, which exhibit an or-
dering of vacancies in the partially filled vanadium layers.

V3S4. According to Ref. 157, the Neel temperature de-
termined from the spin-echo spectra is 9 K and the effective
magnetic moment below 7"N for V atoms in vacancy layers is
0.06//B. Measurments of the magnetic susceptibility158 have
revealed a slight bend at the Neel point, and the effective
moment determined from the paramagnetic susceptibility
(according to the Curie-Weiss law) is 0.2fj,B. Both above and
below TN the conductivity is metallic.

V3Se4. The properties of this compound are generally
analogous to those of V3S4,

157 but the Neel temperature is
higher: TN = 16 K.

V5S8. Magnetic-susceptibility and NMR measure-
ments159 in this compound give TN = 29 K. The magnetic
moments at the V atoms are different, i.e., they depend on
the layers to which the atoms belong (0.15^B -0.22,uB). This
makes it hard to interpret the NMR data. The effective mag-
netic moment determined from measurements of the para-
magnetic susceptibility is from 1.1 to 2.5/uB per V atom de-
pending on whether the atom belongs to a vacancy layer or a
completely filled layer. One notices a relatively strong tem-

perature dependence^- (T) near the transition. The conduc-
tivity of V5S8 is metallic at all temperatures.

V5Se8. For this compound it has been found160 that
rN = 35 K, that the temperature dependence^- (T) is rather
complex, and that the relaxation rate of the nuclear spin is
temperature dependent. The temperature dependences are
hard to interpret in the Heisenberg model, although the ma-
terial does follow the general tendency for substances of this
class to exhibit an increase in% (T) with decreasing tempera-
ture (in the paramagnetic phase). On the basis of simulta-
neous measurements of the NMR and magnetic susceptibil-
ity, it was concluded160 that the growth of% (T)is not due to
local magnetic moments. This effect is most likely due to
spin fluctuations in the vanadium vacancy layers. An unusu-
ally strong effect of magnetic field on JN was also noted:

•i-l-ff-
where #c =75.6kOe.

Analysis of the experimental situation leaves no doubt
as to the itinerant nature of the antiferromagnetism of V3X4

and V5Xg. Band-structure calculations have not been done
for any of these materials, but results of a calculation for the
isoelectronic and isostructural niobium compounds Nb3X4

have recently been published.161 The Fermi surface of these
substances consists of a system of rippled (to varying de-
grees) sheets parallel to the basal plane of the hexagonal Bril-
louin zone. One pair of these sheets is separated by a vector
G2, so that in the antiferromagnetic phase there should be a
doubling of the period along the hexagonal axis. It was just
such a magnetic structure that was assumed in the experi-
mental papers discussed above.

Thus there is every reason to assume that the antiferro-
magnetism of V3X4 can be described in the excitonic insula-
tor model. In the case of V5X8 the situation is more compli-
cated, since in this case there are three nonequivalent layers
of vanadium atoms (a completely filled layer and two types
of vacancy layers), whereas in V3X4 there is only one type of
vacancy layer. The band structure of V5Xg is unknown. Nev-
ertheless, it can be assumed that the antiferromagnetism
here is of the same nature as in V3X4.

Magnetic-susceptibility and neutron-diffraction mea-
surements of the hexagonal modification of nickel monosul-
fide (NiS) have revealed a transition to an antiferromagnetic
phase below TN = 265 K.162 This transition is accompanied
by a jump in the resistance by almost two orders of magni-
tude, by thermal hysteresis, and by a specific-heat anoma-
ly,162 i.e., the transition to the antiferromagnetic phase is
simultaneously a metal-insulator transition. A detailed dis-
cussion of the metal-insulator transition in NiS is given in
Ref. 163.

At the present time there is no consistent theoretical
interpretation of the properties of NiS, but several circum-
stances permit the assumption that the antiferromagnetism
in this material is due to a spin-density wave. First of all,
above JN it has been found162 that there is no magnetic dif-
fractive scattering of neutrons, and the temperature depen-
dence of the magnetic susceptibility is typical for ordinary
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Pauli itinerant paramagnets. Furthermore, below TN a mag-
netic moment of 1^B per Ni atom arises discontinuously and
grows to 1.66/zB at T= 4.2 K. Finally, the band-structure
calculations of Ref. 164 have shown that the paramagnetic
phase has nearly nested portions of the electron and hole
Fermi surface (the /VM direction). _

It is interesting to note that the nesting wave vector Q
for these portions is equal to zero. According to the band
calculation,164 in the antiferromagnetic phase the nested
portions (and all the other parts of the Fermi surface that
exist in the paramagnetic phase) vanish completely, and an
insulator gap arises. If it is assumed that these are the parts
responsible for the formation of the SDW, then we encoun-
ter a situation in which a one-dimensional triplet order pa-
rameter appears. Kozlov and Maksimov17 discuss just such a
situation; it corresponds to itinerant antiferromagnetism
without a period doubling. The average moment of the unit
cell is equal to zero, but within the cell there is an antiferro-
magnetic redistribution of the spin density.

The main obstacle to the direct application of the exci-
tonic insulator model to NiS is the strong first-order charac-
ter of the transition. This property may be due to a strong
spin polarization of the electron reservoir, i.e., of the nonsin-
gular parts of the Fermi surface, in the field of the SDW or to
the spin-lattice interaction. Howeve, there have been no de-
tailed calculations for NiS (only a qualitative discussion164 of
the two-band excitonic insulator model). On the other hand,
the large value of the local moment per Ni atom indicates
that single-site electron correlations play an important role.
For this reason it may be necessary to incorporate spin-fluc-
tuation effects, in the spirit of local-spin-fluctuation theory.

An extremely interesting object of study is the helical
magnet MnSi, for which TN = 20 K (Ref. 165) and the mag-
netic moment in the ordered state is 0.4/jB at T = 4.2 K. The
wave vector of the helical structure is directed along the
(111) axis of the cubic lattice, and the wavelength is extraor-
dinarily large: 180 A.

According to measurements of the NMR, resistance,
and entropy change at the transition point, MnSi is classified
as a weak intinerant magnet. However, the temperature de-
pendence of the susceptibility166 obeys the Curie-Weiss law
above TN all the way up to 300 K, after which it increases
with temperature. Recent inelastic-neutron-scattering mea-
surements have revealed the presence of strong spin fluctu-
ations both above and below TN, while in an earlier paper by
the same authors168 it was found that the magnetic moment
per Mn atom increases(l) with increasing temperature in the
paramagnetic phase. This situation may be due, on the one
hand, to a disorientation of the moments at the Mn atoms
and, on the other, to a change in the spin density of the d-
electrons with temperature. The nature of this change could
be different (see, e.g., the mechanism proposed by Ed-
wards172).

The cause of the helical magnetism in MnSi, whose lat-
tice lacks a center of inversion, has been linked in a purely
qualitative way169 to relativistically small interactions
which give rise to invariants of the Dzyaloshinskii-Moriya
type in the expansion of the free energy.

The available band-structure calculation170 for MnSi
indicates that there are no nested portions of the Fermi sur-
face at the wave vector of the helical structure. At first
glance this would seem to be an important argument against
the use of the excitonic insulator model. However, because
of the small size of the wave vector of the magnetic structure
one can propose an original mechanism for the onset of the
helical ordering.171 This mechanism, which is related to the
"excitonic-ferromagnetism" model proposed by Volkov and
Kopaev,18 can be represented (as it applies to MnSi) in the
following way.

In the hypothetical high-temperature protophase of
MnSi, which has the Nad structure, the Fermi surface has
nested portions which cause a structural instability. The ac-
tual crystal structure of MnSi is obtained from the NaCl
protophase by displacing the Mn and Si atoms in such a way
that the fee unit cell with two atoms in the basis is trans-
formed into a simple cubic cell with eight atoms. With re-
spect to the protophase such a structural transition can be
treated as the onset of a CDW. If against the background of
the CDW there now arises a helical SDW with a period
slightly different from that of the CDW, then with respect to
the actual MnSi structure this will look like the onset of a
long-period magnetic structure with a wave vector deter-
mined by the difference between the wave vectors of the
CDW and SDW. In the observed crystal structure of MnSi
the nested portions of the protophase are covered by the gap
and, naturally, cannot determine the topology of the Fermi
surface. It is pertinent to note that it was a study of the gene-
sis of the actual crystal structure of IV-VI semiconductors
from a protophase with nested portions that enabled Volkov
and Pankratov177 to explain the structural phase transitions
in these systems.177

There is a large class of magnets for which it has been
established that the magnetic ordering is due to both the
SDW-instability mechanism and the presence of local mag-
netic moments. For example, in the case of alloys of Cr and Y
with heavy rare earth metals the local magnetic moments are
due to the/electrons of the inner shell of the rare earth ion.
In the case of transition metals the "localization" of the
magnetic moment is due to the spatial dependence of the spin
density of the band electrons, m(r) =pt(r) — pi(r). Strictly
speaking, here one cannot divide the electrons into band
electrons and localized electrons, and it is necessary to con-
struct a theoretical model combining the properties of the
excitonic insulator model, which incorporates the topologi-
cal features of the Fermi surface, and the properties of some
spin-fluctuation model. In addition to the previously dis-
cussed alloys of Cr with Fe and Co, substances of this type
include, in particular, alloys of iron with rhodium (FeRh)
and platinum (Pt3Fe)174-17s and an alloy of nickel and manga-
nese (NiMn].176

MagnelPhases, \n O2n + ,. Kopaev and coauthors178'179

have proposed a mechanism for the structural and antiferro-
magnetic transitions in these compounds on the basis of the
excitonic insulator model. The excitonic insulator model ap-
plies in this case because the Fermi surface of the compound
VO2 has nested portions separated by a wave vector Q = (I/
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2, 0, 1/2) along the FR direction.180 The idea has been ex-
pressed178 that Magnel phases with n =£ oo have a narrow
band formed by oxygen vacancies. This band lies below the
Fermi level, and therefore the excess electrons supplied by
the oxygen vacancies do not change the position of the Fermi
level, and the band remains nested.

The experimental situation in Magnel phases is as fol-
lows: in VO2 there is a metal-insulator transition with a
change in the crystal symmetry at Tc = 340 K; in the series
VB O2n +i (2 < n < 9) at temperatures JN < Tc there is an an-
tiferromagnetic transition; in V2O3 the Neel temperature TN

equals Tc, and the antiferromagnetic transition occurs with
a change in the crystal symmetry.

A phenomenological model giving a qualitative expla-
nation of these features of the Magnel phases was considered
in Ref. 179. This model is based on a two-parameter Landau
expansion for the free energy (the singlet and triplet order
parameters which, in the excitonic insulator model, are re-
sponsible for the structural and antiferromagnetic transi-
tions, respectively). An important role is played by the Cou-
lomb interaction of the CDW with vacancies (which,
according to Ref. 178, form chains along the C2 axis) and by
the Coulomb interaction of charges on neighboring chains.
The latter gives rise to an ordering of vacancies both along
the chains and in the transverse direction (it is advantageous
to have a positive charge on one chain located across from
the center of negative charge on the neighboring chain). The
qualitative phase diagram of Ref. 179 is reproduced in Fig.
18. The solid line Tc(\/n) is the theoretical line of the first
order transition to the insulating phase, while the solid line
TN (l/n) is the theoretical line of the second order transition
to the antiferromagnetic phase. The dashed line shows the
experimental curve of Tc(l/n). The sharp drop in 7c(l/n)
observed in experiment [around n = 6-8 we have Tc < 7"N,
and for n = 1 we have rc(l/7) = 0] was attributed in Ref.
179 to the strong scattering of the CDW by incompletely
ordered oxygen vacancies (at large values l/n > 1/4 the va-
cancies are ordered, while at small values of l/n the vacancy
concentration is small and vacancy scattering is unimpor-
tant).

8. CONCLUSION

In summing up this review, we can say that the active
theoretical and experimental research in recent years has
yielded substantial progress in our understanding of the na-
ture of the antiferromagnetism of chromium and its dilute

0 1/B //4 3/8 I/Z
l/n

FIG. 18. Phase diagram for the phases of Magnel V. O2n _ ,.l79
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alloys. However, several unresolved questions remain.
1. Collective excitations in the incommensurate SDW

structure. It was recently reported63 that a new low-frequen-
cy mode of excitations has been observed in highly pure Cr
samples. These excitations can be interpreted as oscillations
of domain walls (oscillations of the SDW soliton lattice). No
theoretical calculation of the spectrum of excitations of this
type has been done for Cr.

2. The role of the lattice in the formation of an incom-
mensurate SDW and in the transition between the I and C
phases. Experiment shows that the I-C transition in Cr al-
loys has a much more pronounced first-order character than
is implied by model calculations113 which ignore the elec-
tron-phonon interaction, and the corresponding experimen-
tal line TK (M) agrees poorly with experiment.

3. Anomalies (mentioned previously) in alloys of chro-
mium with nontransition elements and magnetic 3d metals.
In the first case it is necessary to introduce an internal struc-
ture of the impurity (in particular, possible resonance levels).
In the second case we are evidently up against the complex
problem of the formation of a local magnetic moment in the
presence of a peculiar topology of the Fermi surface.

In other systems with a SDW instability there has been
no substantial progress. The reason for this is, on the one
hand, that there has been insufficient experimental interest
in these systems and, on the other, that even the existing data
have not been subjected to a consistent theoretical interpre-
tation. In this situation the excitonic insulator model should
be regarded as more of a fundamental conceptual basis than
a method for quantitative calculation. Actual systems re-
quire many complications and modifications of the theory,
and the existing results obtained in the excitonic insulator
model for systems with a SDW instability cannot be trans-
ferred mechanically to these new systems. We hope that the
present review will in some measure stimulate greater re-
search activity in these interesting systems.

We wish to thank L. V. Keldysh for interest in this arti-
cle and for a number of valuable comments made during a
discussion of it. We are also indebted to Yu. V. Kopaev and
D. I. Khomskii for many helpful comments and friendly
criticism, and to B. A. Volkov and B. G. Idlis for discussion
of individual questions.
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