
METHODOLOGICAL NOTES

Collision integral for elastic scattering of electrons and phonons
B. I. Sturman

Institute of Automation and Electrometry, Siberian Branch of the Academy of Sciences of the USSR,
Novosibirsk
Usp. Fiz. Nauk 144, 497-503 (November 1984)

The form of the collision integral describing elastic scattering of electrons and phonons by crystal
defects is discussed once again. It is shown that in the absence of detailed balance for the transition
probability ( Wkk, 7^ Wk,k ), the collision integral does not contain Fermi or Bose factors ( 1 + nk )
contrary to the point of view widespread in the literature. It turns out to be independent of the
type of particle statistics and to be linear in occupation numbers, 7k = 2k, , « , — fF , «k

A proof is given of the .//-theorem on the increase in entropy of a system of elastically scattered
electrons and phonons.

A system of electrons or phonons scattered elastically
by randomly situtated static crystal defects is one of the sim-
plest objects in kinetics. However, paradoxical though this
may be, in the majority of textbooks and monographs (for
example cf. Refs. 1-10) the description of this object is not
quite correct. Historically a conviction has arisen that the
collision integral in the kinetic equation

describing elastic scattering has the form

I\s. = 2 I W'kk'Wk' (1 + «k) — WVk^k (1 + «k')l i (2)
k'

where «k is the distribution function, and Wkk,, a character-
istic of the scattering centers, is the probability of a transi-
tion per unit time from a state with momentum k' into a state
with momentum k. The upper sign refers to fermions, and
the lower one to bosons; for the sake of definiteness we shall
refer to the former as electrons and to the latter as phonons.
It is accepted that (2) expresses the balance between arrivals
and departures taking into account the type of particle statis-
tics. Having written down (2) many authors1"6 take the fol-
lowing step—they appeal to the principle of detailed balance

and reduce the collision integral to the form

(4)

At the same time it is asserted that (3) is a universal law
stemming from the principle of microreversability (i.e., from
the invariance of the equations of motion under time rever-
sal). As an additional argument frequent use is made of the
consideration that (3) guarantees the vanishing of the colli-
sion integral in the case of an equilibrium distribution of the
particles.

In this note we first of all want to call attention to the
fact that the principle of detailed balance does not have the
general nature ascribed to it and is fulfilled only under some
specific assumptions concerning the properties of the medi-

um. Our second and principal aim is to convince the readers
that in the absence of detailed balance expression (2) is erro-
neous, to give a correct expression for the collision integral
and to investigate its principal properties.

The question of the range of applicability of relation (3),
generally speaking, has been discussed in the literature.11"13

It is known both from quantum and from classical mechan-
ics that the invariance of the equations of motion under time
reversal leads not to the relation (3) but to the equation

^-k'.-k, (5)

often referred to as the reciprocity theorem.14 Detailed ba-
lance holds in the case when (5) is supplemented by the very
specific assumption of invariance under spatial inversion
W^, = W k _ k,. For crystals without a center of symme-
try this assumption does not hold and the principle of de-
tailed balance is not valid1'. The violation of the principle of
detailed balance and the validity of relation (5) can be easily
understood from the pictorial considerations of Fig. 1.

The probability of elastic scattering W^, satisfies the
integral relation

2j ' kk' Zj "k'ki (O)
k' k'

established by Stukelberg and stemming from the unitarity
of the S-matrix.16 This condition is sufficient to prove the
vanishing of 7fc in thermodynamic equilibrium.

Observable phenomena associated with the absence of
detailed balance are now known. Such phenomena are the
photogalvanic effect,15 the anomalous Hall effect,17 the ki-
netics of gases with rotational degrees of freedom.18 There-
fore the question of the form of the kinetic equation in the
absence of detailed balance is not only of academic, but also
of practical interest.2'

The erroneous nature of relation (2) is directly shown by

"The absence of detailed balance can be associated also with magnetic
effects which violate relation (5).15

2)In the well-known textbook of Ref. 19 only those physical situations are
discussed for which W, = W , .
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FIG. 1.

the nonphysical nature of its consequences. In order to see
this we consider the case of a classical wave field, i.e., the
case of Bose-statistics in the limit «>•!. In the classical limit
(2) gives

= n* 2
k'

(7)

Contrary to common sense the scattering turns out to be
completely asymmetric and nonlinear. In fact (7) admits that
it is possible to obtain a nonlinear equation for the intensities
from classical equations of motion that are linear in the wave
amplitudes. It can be easily shown that collisions described
by (7) do not increase the entropy of the system of waves;
they should lead to the formation of singularities in the dis-
tribution of waves in k-space and to sharp anomalies in the
optical and thermal properties of crystals.

The error made in writing (2) consists in the unjustified
generalization of results obtained in the first Born approxi-
mation to higher orders of perturbation theory in the defect
potential. In the first Born approximation one has indepen-
dently of the symmetry properties of the scattering center
W^, = Wk,k

 12>14 so that the nonlinear contributions to (2)
cancel automatically. In higher orders of perturbation the-
ory for W^, , when detailed balance is absent summations
over intermediate states arise. Thus, in the second Born ap-
proximation we have

2 ̂
(8)

where N0 is the defect concentration, Fj^, = F*,k is the ma-
trix element of the perturbation for an individual center, <ak

is the dispersion law (energy) of the quasiparticles.3' The
Born series for W^. does not contain occupation numbers
for intermediate states. However, it is quite clear that in in-
vestigating the kinetic properties of a many-particle system
it is just as necessary to take them into account as to take into
account the occupation numbers for the initial and final
states. Consequently, use of expression (2) outside the frame-
work of the first Born approximation is not correct. In order
to obtain the collision integral in the absence of detailed ba-
lance it is necessary to use the consistent procedure of the
derivation of the kinetic equation which is explicitly based
on the apparatus of second quantization.

It is remarkable that the final result turns out to be uni-
versal and simple. Both for the electrons and for the phonons
the collision integral is of the form (4) where W^, ̂  Wk,k is
the exact probability of scattering. It coincides with the colli-
sion integral for a classical gas of particles or a nondegener-
ate electron gas. It can be said that the cancellation of the
contributions to 7k nonlinear in nk associated with the "arri-
val" and "departure" occurs not only in the first Born ap-
proximation, but also in the higher orders of perturbation
theory. Taking (6) into account the kinetic equation for the
elastic scattering can be written finally in the form

dnt

(9)
k'

Apparently the first to give the correct expression for the
collision integral were Kohn and Luttinger.20 Their method
of derivation was quite cumbersome. But in fact the final
result (9) is very transparent; it can be discerned already from
the form of the initial dynamic equations of motion. Let us
consider the Hamiltonian of the interaction responsible for
elastic scattering. In the representation of second quantiza-
tion we have

2 T
kik»

(10)

where ak
+ andak are particle creation and annihilation oper-

ators. It can be easily seen that independently of the type of
particle statistics (i.e., of the type of commutation relations
for a + and a) we have the commutators

[V, (11)

Thus, in agreement with the rules of quantum mechanics,14

the equations of motion for the averages <ak
+ ak,> turn out

to be the same for electrons and for phonons and are linear;

-Jj- + i (cok. — cok)]

= i 2
ki

(12)

The relation (12) also describes the evolution of a classical
wave field if we interpret ak as the normal amplitude of a
wave satisfying the Hamiltonian equation of motion21

67 (a*, a}

K
(13)

3)We are using the system of units in which ft = 1.

(the notation ( ... ) here denotes averaging over the ensem-
ble of waves).

The subsequent procedure of obtaining from (12) the
kinetic equation for the distribution function «k = (aj~ ak

generally does not contain any elements which depend on
the type of particle statistics, it is completely analogous to
the procedure used in Ref. 19 to obtain the classical kinetic
equation. We must write the Bogolyubov chain of equations
for the averages (in the classical case the ensemble averages).
The first equation of this chain relates «k to the average Fkki

(aj~ ak i ) , the second expresses this average in terms of a
quantity of a higher order in V, etc. At the last step the num-
ber of which depends on the required accuracy of taking the
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interaction into account we break the chain by neglecting the
correlations and assuming (a£ akj } = <5k k «k . From (12)
it is abundantly clear that the kinetic equation that is ob-
tained must be linear in nk; consequently it coincides with
equation (9) the validity of which for describing the kinetic
property of a nondegenerate gas of particles is obvious. The
probability W^, is the usual Born series in powers of V^,.
The criterion for the applicability of the kinetic equation is
the usual inequality a>k >^k, where yk is the frequency of
electron-impurity or phonon-impurity collisions.

It should be said that in the second Born approximation
it is not difficult to obtain equation (9) by the traditional
method based on representing the collision integral in the
form of the difference between the rates of arrival of particles
into the state |k) and departure from it.4> It is of interest to
trace how in this case the cancellation of nonlinear terms
occurs. For the sake of simplicity we restrict ourselves to the
case of Bose statistics. The contribution to 7k associated
with arrival processes can be written with an accuracy to
terms of order V3 in the form

-l |V|n ' , n)

2 („'_!, n + \\V\s)(s\V\n', n) 2 (14)

This formula can be derived rigorously in scattering the-
ory,23 according to which the probability of a transition per
unit time from the state a to the state b can be expressed in
terms of the square of the modulus of the matrix element of
the 7" operator which can be represented in the form of a
series in powers of V:

(15)

here770 = ;k wk ak
+ ak is the unperturbed Hamiltonian for

the system.
Two types of intermediate states \s) are possible. The

states of the first kind \s} = \n" + !,«' — 1), correspond to
the graph a) in Fig. 2. For them we have E — Es = a> — at".
The states of the second type, \s) = \n" — 1, n + 1), corre-
spond to the graph b) in Fig. 2 and to the energy difference
E — Es = a>" — a>. Using the explicit expression (10) for V
we transform the square of the modulus appearing (14) to the
form

«'(«+!){| Fkk. - iO

(16)

41 And also with the aid of Keldysh's diagram technique for nonequilibri-
um processes.19

Taking into account the Hermitian nature of Fand the well-
known identity (x + iO)'1 = (P/x) — iirS(x), where P is the
symbol for the principal value, one can easily demonstrate
the cancellation of the contributions to 7k" cubic in «k. Fin-
ally we obtain

K
k k ' i (17)

where W^. is given by formula (8).
The rate of departure of particles 7 k

ep can be calculated
in a similar manner. As is quite evident it is described by (14)
if we interchange the subscripts k and k' in the square of the
modulus (16) appearing in it. The final expression for 7k

ep is
the following:

k'

it does not coincide with the expression for 7k
ep given by

formula (2).
In the end the terms quadratic in «k also cancel and we

again arrive at equations (4) and (9). The fact that 7k
ep con-

tains the probability W^., and not f^k,k, is associated with
the presence in the figure brackets (16) of contributions con-
taining 8 (at — a>"). On the one hand these contributions de-
termine the antisymmetric probability of scattering W^, n;
and on the other hand they change sign when the replace-
ment k«=ik' is made. If there is a center of symmetry then
V , = V , , , and these contributions vanish.

kk — k— k

It is useful to note that dividing the collision integral (9)
into an incoming and outgoing terms (17), (18) is for «k S 1
quite arbitrary, and the nonlinearity of the quantities 7 k

r-dep

in terms of the occupation numbers can not be manifested in
any kinetic effect.

We make two generalizations. If inelasticity of scatter-
ing (scattering of electrons by phonons) is taken into account
the conclusion that in 7k there are no terms nonlinear nk is
no longer valid. However, also in this case formula (2) re-
mains valid only in the first Born approximation. In higher
orders of perturbation theory contributions appear in 7k

containing «3, «4, etc. A similar conclusion can be drawn
also in the case of pair interaction of particles described by a
Hamiltonian of the form af a2

+ a3<z4 and here the well-
known expression for the collision integral

/ _ V w- * k — j/j ' 'kk ; kika

n) »')n,»2— (

is valid, generally speaking, only in the first Born approxi-
mation, when ^kk,.k k = Wk k kk, .

We consider some general properties of the kinetic
equation (9). Using the relation (6) it can be easily shown that
it guarantees the evolution of the electron distribution func-
tions nk which is compatible with the Pauli principle — if at
t = 0 the inequality nk^l holds, then it remains valid also at
all subsequent instants of time.

We now prove for equation (9) the Boltzmann 77-
theorem on the increase of the entropy of the system of elec-
trons and phonons. The entropy of nonequilibrium Fermi
and Bose gases is defined by the formulas24
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(19)

In the classical limit, i.e., for « k <l for electrons and for
nk > 1 for phonons, these expressions reduce to

= — 2 rek In rak,

= ̂ j In «k.
k

We now show that (9) leads to such an evolution of the sys-
tem for which 5>0, with the equality holding only when the
equilibrium distribution n(o>k ) = «k (t = 0) is attained; the
bar means averaging over the equal frequency surface. We
begin the proof starting with the case of a nondegenerate
electron gas. According to (9) and (20), we have

= 4- 2 In (21)
kk'

In the absence of detailed balance some of the terms in the
sum can be negative, and therefore the //-theorem is not
obvious. We carry out in (21) the replacement

~ •*• (22)— n

Since W^, ~5 (<y — ca'}, equilibrium corresponds to xk = 0.
Taking (6) into account we first of all show that Sp
X (x = 0) = 0, while for small deviations from equilibrium
we have (\xk \ -< 1) S F > 0. Then we show that the identity

SlS—^F (23)

holds. From this it follows that the extrema of S?(xk) can be
attained only at those points where S p = 0. However, if we
admit the possibility that the function SF(x) can change
sign, then it follows that if it is positive in the neighborhood
of zero then an extremum (saddle point) exists for which SF

> 0. We have arrived at a contradiction. Consequently, S p
> 0 for any deviation from equilibrium.

As can be seen from (9), (19) and (20), the quantity 5F

can be written in the form 5F(nk)+ SF(1 — nk). Since
above we have shown that Sp is formally nonnegative for
any «k, then the fact that the //-theorem holds for Fermi
particles becomes obvious.

We now go to Bose particles. We consider

=S
kk'

(24)

The validity of the //-theorem for small deviations from
equilibrium can again be verified directly. In order to prove
it for finite deviations we take into account the identity

- = 0. (25)

We introduce the function /? (x) = S£ — ASF, where A < 1
is a positive parameter. For xk = 0 R = 0, and for
|jek \<IR > 0. Taking (23) and (25) into account we have

(26)

Consequently R (x) does not have any extrema other than a
minimum at zero, and is a non-negative quantity. From this
follows the fact that Sg(x) is positive.

For arbitrary occupation numbers we can formally rep-
resent SB (nk ) in the form

(27)

(28)

Taking into account the identity

in which g is an arbitrary parameter, we have Sy(
Thus, the //-theorem has been proved for all cases of elastic
scattering.

The author is grateful to V. I. Belinicher, V. L. Gure-
vich, and L. P. Pitaevskii for discussions and useful remarks.
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