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The experimental results on modulated magnetic structures and the basic regularities of phase
transitions between them are reviewed and are analyzed on the basis of the phenomenological
theory of phase transitions with the use of the Ginzburg-Landau functionals for inhomogeneous
distributions of the order parameter. Lists of presently known crystals, in which modulated
magnetic structures have been observed, are presented and for many of them the form of these
functionals, taking into account the crystalline anisotropy and the interaction with a magnetic
field, is established. For systems admitting a Lifshitz invariant which is linear with respect to the
gradient, a soliton picture of the structure of the incommensurate phase is established and the
phase transition into the commensurate phase under the action of temperature or a magnetic field
isanalyzed. It is shown that this transition is accompanied by a “locking” of the wave vector to the
commensurate value. For systems without Lifshitz invariants, which include most crystals with
modulated structures, nonlinear equations for the distribution of the order parameter are investi-
gated by asymptotic methods, and these solutions permit describing the entire complex of ob-
served phenomena: the temperature and field dependence of the wave vector, the appearance of
higher-order satellites in the neutron diffraction pattern, and the sequence of magnetic phases.
Thus a systematic and complete exposition of the present experimental and theoretical status of
long-periodic magnetic structures of crystals, such as the spiral structure, the longitudinal and
transverse spin-wave structures, the fan structure, and others, is given in this review. The review is
written so as to be accessible and of interest to a wide range of readers who are interested in both
the theoretical and experimental aspects of the study of magnetic phase transitions in crystals.
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INTRODUCTION

The first modulated magnetic structure— a simple spi-
ral (SS)}—was discovered in MnAu, more than 20 years ago.'
Following this discovery, longitudinal spin-wave (LSW) and
transverse spin-wave (TSW) structures were discovered in
other materials. All these materials, together with their var-
iants, form a special class of structures, which can be regard-
ed as a long-periodic modulation of simple magnetic struc-
tures—ferromagnetic or antiferromagnetic. The period of
the modulation often varies continuously with the tempera-
ture, assuming values which are not commensurate with the
period of the crystalline lattice, so that modulated, or long-
periodic, structures are also called incommensurate struc-
tures. All these definitions are synonymous.

Figure 1 illustrates schematically the basic types of
modulated structures, which include, in addition to those
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enumerated above, the following: the skewed (S‘Sj and ferro-
magnetic (FS) spirals and the fan (FAN) structure, which
appears in a magnetic field. The arrows indicate the orienta-
tions of the magnetic moments (spins) of the atoms, lying in
each atomic plane, perpendicular to this direction. All atom-
ic spins are collinear; their orientation changes from one
plane to another; and, in addition, in all the structures enu-
merated above, the phase difference between two neighbor-
ing planes is always constant, i.e., the spatial distribution of
the spin density contains a single harmonic.

The SS and FAN structures require some explanation.
It is convenient to characterize the spiral structure by the
vector of the spiral m, oriented perpendicular to the rota-
tional plane of the spins. If mis collinear with the direction of
modulation, then we have an SS structure; if these two vec-
tors are not collinear, then, by definition, we have an SS
structure. The fan structure appears only in a magnetic field.
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Such a structure can appear in a crystal in which the SS
structure occurs, if the field is applied in the plane of the
spins, and it can be viewed as a modulation of the paramag-
netic phase of a crystal uniformly magnetized by the field.

There are nearly 100 pure substances—metals and com-
pounds—in which some modulated magnetic structures are
observed. To them, we must add several tens of different
systems of alloys, usually obtained by alloying components
which themselves are ferro- and antiferromagnetic struc-
tures. Thus modulated magnetic structures are not exotic,
but rather are a very common type of magnetic ordering in
crystals. Although interest in them has increased apprecia-
bly in recent years in connection with the discovery of a large
number of long-periodic phases in nonmagnetic, usually fer-
roelectric, crystals. Tens of materials in which crystalline
superstructures, which are incommensurable with the peri-
od of the principal lattice and which exhibit different phase
transitions between the commensurate and incommensurate
phases, are known (see the reviews in Refs. 2 and 3). One of
the vivid manifestations of the effects of commensurability
in these materials is the appearance of the “devil’s staircase”
of phase transitions accompanying a change in, for example,
the temperature or external field. All this makes it necessary
to reexamine the problem of modulated magnetic structures
of crystals in a new way and to study the entire phenomenon
as a whole. To this end, we shall analyze first the results of
neutron-diffraction studies of modulated magnetic phases
and the basic mechanisms of the phase transitions between
them under the action of temperature or an external magnet-
ic field. Then we shall show that these mechanisms can be
well understood on the basis of Landau’s phenomenological
theory using the Ginzburg-Landau functionals for an inho-
mogeneous distribution of the order parameter.

1. MODULATED MAGNETIC PHASES OF CRYSTALS

The long-periodic structures illustrated in Fig. 1 are en-
countered in crystals with different symmetry. A quite com-
plete list of presently known pure substances with these
structures is presented in Table I. The table indicates the
space group of the crystal G and the wave vector K. We recall
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FIG. I. Basic types of modulated magnetic structures of crys-
tals.
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that the wave vector fixes the translational properties of the
structures, i.e., it permits expressing the magnetic moment
M,, of an atom in the n-th cell of the initial crystal in terms of
the vectors M; given in the zeroth cell by means of the rela-
tion

M, e LinM,, (1.1)

=
T F
where t,, is the vector of translation into the nth cell. The
summation extends over all the rays K; ofthe star formed by
the wave vector.

The existence of a modulated magnetic structure is in-
ferred from the appearance of magnetic satellites in the neu-
tron-diffraction pattern. These satellites lie near the peak of
nuclear scattering, corresponding to a mode in the recipro-
cal lattice of the crystal, or near some symmetrical point of
the reciprocal lattice, corresponding to the intial antiferro-
magnetic structure with wave vector K,,. In the general case,
the wave vector of the modulated structure can be represent-
ed in the form

K =K, + k, (1.2)

where the modulation vector k is much smaller than the reci-
procal lattice vector.

The number of rays in the star of the wave vector /, and,
correspondingly, the number of magnetic reflections are de-
termined by its symmetry. For example, if the vector K lies
along a principal axis of the crystal, then its star has two rays
Kor — K, corresponding to a pair of magnetic satellites. If K
lies along the edge of a cube, then the star consists of six rays,
corresponding to three pairs of satellites (Fig. 2). The obser-
vation of a hexad of satellites in a neutron-diffraction experi-
ment by no means indicates that the magnetic structure is
characterized by all six rays of the star. In neutron-diffrac-
tion analysis it is presumed that such a structure arises due to
the presence of three types of magnetic domains in the crys-
tal, each of which is characterized only by a pair of rays K
and — K. Thus it is always assumed that each domain con-
tains a modulation in one direction only. Possible exceptions
are the modulated structures in Nd and CeAl,, where the
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TABLE I List of pure substances with modulated magnetic structures (K is the wave vector, /, is
the number of rays in the star). The references are indicated only for structures which are not

described in the handbook of Ref. 5.

G Crystal Magnetic structure K k
1
3 CrySe, ? (v p] 4
1 -
DY, ReMn,0, S8 [—2- OpJ 2
Re: Nd, Er, Tb, Y, Ho
D, MnOOH TSW — SS [1s Otg) 4
D MnP, CrAs, FeAs, FeP SS [00u] 2
Cr;Be0, S5 [0 0] 2
KMnCly sSS (oo 2
TbMnOg, ThyGe LSW [n00] 2
Dy, Mn§0, A—SW 88 [100] 2
D%, Mn,B, A—>S5-»A [0po0] 2
DY, TbZn, TSW [0 1 0] 2
D, B—MnO,, VF, SS [00u] 2
by, see Table I11
D3 MnSn, A > (ALTSW) fp 0] 4
D Mng0, A+SS>A [0 o] 4
TbAsO, ¢ ss [00pl 2
T4 MnSi, FeG 7.8 SS [pppl 8
T MnSe, LSW [00p] 6
2)3 SrFe0,, CaFeOq SS [ ppl 8
ErCu, TmCu TSW — A [ u —;— o] 12
ErPbs, HoPb, LSW [Op.—;—:l 12
ErTe;, HoTey LSW 24
CeB, 186,15, 17 sSS [_i_iTQ] 12
N i]
[ 4 4 2
05 NpAs, NpP LSW .~ A 00 8
h ThD, LSW-+A 00u] 6
USh s SW— A 00u] 6
CeSh 48-51 CeBj 52, 53 LSw 00 p] 6
0} ZnCr,Se, 19, HgCr,S, ss 00p] 6
TbMn, 3 [wp0] 12
FeCry0,, CoCr,0,, MnCr;0, S (ppe0) 12
CeAl, 4 LsW wi 0] 2%
0} Eu ss 00 ) 6
Cr TSW — LSW 00u] 6
3, BaCoy(X0,), X-As, P S (w0 pil 8
FeCl 8s (4 p 0] 6
LaLiFeQq 18 ? {pp ol 8
D3, CrsS, A—8S 100 ) 2
D3y, Fels, MnBr, ? [ppyl 12
Mnl, S5 {10 pg} 6
-1
D3, NiBr, 11 A—SS " pT] 6
ReyFey;, Re-Ce, Lu, Tm SS—F [pppl 2
1 1 4
D3 CsCuCl, 12 S8 [—3— 5 H]
D), CrB, 1 ss (pp 0] 6
ThGe, ¢ 8s [00pu] 2
Dy, See Table I1

847

Sov.

Phys. Usp. 27 (11), November 1984

Yu. A. lzyumov

847



e

FIG. 2. Position of magnetic refiections in the case of axial {a) and cubic {b)
symmetry of the wave vector.

a) b)

existence of multiray (multi-k) structures is postulated.*
Thus, for modulated structures, the spatial distribution of
the magnetic moment is described by a particular form of the
relation (1.1), which we shall write in the continuous approx-
imation:

M (r) = MeiKr | M*e-ikr, (1.3)

It is evident that this relation describes an LSW or a
TSW type structure if M is real and a spiral structure if M is
complex.

The numerical values of the modulation parameters p
are not presented in Table I, but in all cases <1, which
corresponds to long-periodic structures. As is evident from
this table, modulation of the initial structures with K, =0
appears most often. Nevertheless, there are a number of ex-
amples (see also Table III) of crystals in which K;#0. For
example, a number of compounds with the space group O
exhibit a modulation of antiferromagnetic structures with
K, = [0 0 4] (all wave vectors are expressed in units of 27/a,
where a is the lattice constant).

The type of modulated structure is indicated in the third
column of Table I; details concerning it can be found in the
corresponding reference. For brevity, we primarily refer to
the handbook of Ref. 5, where the required references up to
1975 can be found. If a structure is not described in this
handbook, then the original sources are cited. In many cases,
as is evident from the table, the modulated structure is not
the only magnetically ordered phase of the crystal. It can be
preceded by or can be followed by a commensurate antifer-
romagnetic {4 } or ferromagnetic (F) structure. The corre-
sponding phase transitions, which arise as the temperature is

decreased, are marked in the table by arrows.

The table shows that there are numerous realizations of
the basic types of modulated structures enumerated in Fig.
1; in addition, the symmetry of the crystal does not impose
any significant restrictions on the possibility of their exis-
tence. We note that there are two large groups of isomorphic
crystals (with space groups D}, and D ¥%,), in which a large
number of modulated phases and transitions between them
is realized. Since they are very convenient for theoretical
analysis, information on the modulated structures in them is
given separately in Tables II and III, where the results of a
symmetry analysis (see below) are also presented.

The microscopic mechanisms responsible for the modu-
lation of magnetic structures have been known for a long
time. For insulators and semiconductors, exchange interac-
tions with different signs between the nearest-neighbor and
next-to-nearest-neighbor atoms are primarily responsible
for the modulation. In the case of rare-earth metals, the in-
teraction of the magnetic order with the conduction elec-
trons, leading to the rearrangement of the electronic states
near the Fermi surface, is responsible for the modulation.
For some crystals with special symmetry, the modulation is
due to the nonuniform anisotropic forces of relativistic ori-
gin. The main problem to which we wish to call attention is
the phase transitions between the incommensurate and com-
mensurate structures and the response of the phases to a
change in the temperature or the field.

2. BASIC EXPERIMENTAL REGULARITIES

We shall present four of them, concerning the behavior
of the wave vector and of the magnetic structure in response
to a change in the temperature of the field.

a) The wave vector of the modulated structure usually
depends on the temperature; in addition, as T is decreased,
the wave vector changes in a direction toward the point K,
This change can be monotonic in the range of temperatures
at which the given modulated structure exists (as, for exam-
ple, in the case of the spiral structure in Dy) or nonmono-
tonic (as in the spiral phase in Er} (Fig. 3). In the case of Er, a
remarkable fact is that when the commensurate value
u = 1/4 is attained, the wave vector does not change in a

TABLE II. Experimental data on magnetic structures of rare-earth metals’® and the results of a

symmetry analysis,’ m, = (001), m = (1 —i0), £ = »*.

OP, ; i .
Metal | swucture | ' K Ko= 0  |decter "p.fnormM,(é),m termsofl  Ryunctional
Tm LSW 57 {00p] T3 nm, 1M
Ho S8 130 [00p] Ty nm-+Em* 2M (n==6)
FS 19 +k=0 T+ T nym,+nm-+Em*
Tb S8 230 [00p] Ty
3 ] nm-Em* 2M (n=6)
F 219 k=0 Ty
Dy SS 176 [00u] Ty
{ } nm-+Em* 2M (n=86)
F 88 k=0 Ty
Er LSW 84 [00u] Ty n:mg iM
LSWSs| 52 [0op] T3-H 1, ol
FS 18 | +k=0 rs—i—rs} Mg+ m - Eme ) AMA-2M (n = 6)
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TABLE III. Experimental data on magnetic structures in DyAg, type crystals and the results of

symmetry analysis.>®

. OP,: E ion i f
Material | Structure | 7 K K Ko | the order parameter | Functional
. .
[+ 5°]
DyA TSW 15 | == 1
yage o0, i =0,426 |
11
A LI
9,5 [ = n}
DyAu, TSW 33.8 1 [uu0), p==0,411
[ m1 1 .
A 2.5 |4 nJ o qmaeioty .
) TbAu, TSW 55 | [uu0), u=0,418—| =,
0,422
1o
A 42.5 [ - 7 o]
| DyC, TSW 59 | fpuo], p=0,382 | 1,
HoA LSW 5.7 S i
& w0l p—0,413 | 7 [(mmstnamo)ettotn
R LSW4+TSW| 4,7 ‘
HoAu, TSW 9.2 | [pwp0], n=0,406 T :
ppj 1 l1 } ("Ixma‘I'TIZm'l)etKot"
TSW4A | 7.8 [7—2—0] T
ErAu TSW 6.7 0), p—0,4 e [IM--AM
2 [np 1] Pi , T3 (ﬂlma‘I‘ﬂzms)etKOt" M1
TSW-A | 4.0 [——0] Tq
23 5
ErAg, S8 5.2 | (o], p=0,407 |t3-1s
~ 1 1 s
Ss+A | 35 [770], (110] [Ta+ To|(n1my+ mamy) etKotn
- [001] -
HoC,y 55 26 [not], p=1/8 Ty nmy elfoby 1
Emy e—-iKotn 2M,
ThC, §8 66 not], p=1/8 T, E—n*
[000]
MnAu, [1] S8 370 [(jﬁ%], (})11:2(‘%, Ty nmy—+ Emy ( 2M4)
20, i
PrCo,Ge, 3| LSW 27 | [00p), p=0,058 | T, 1(001) 1M

fixed temperature interval. This phenomenon is called lock-
ing of the wave vector. Such commensurability effects are
also observed in a number of nonmagnetic modulated phases
(see the review of Ref. 3) as well as in some other magnetic
materials. The temperature at which stabilization of the
wave vector of the commensurate phase appears is the point
of the phase transition between the incommensurate (IC) and
commensurate (C) phases.

Figure 4 shows other examples of a nonmonotonic
change of the wave vector in magnetic crystals, which, possi-
bly, correspond to locking of the wave vector. For magnetic
systems, such situations are relatively rare. Nevertheless, a
simple temperature-induced change in the wave vector is a
very common phenomenon, its scale is often small (a change
in K of the order of several percent), and it often terminates
by a jump of the vector K to the value K, at the point of the
first-order phase transition from the modulated phase into
the commensurate ferro- or antiferromagnetic phase. A typi-
cal example is the phase transition TSW—A in TbAu,, in

849 Sov. Phys. Usp. 27 (11), November 1984

which a change in the wave vector of the form [uu0]—[1/
2 1/2 0] occurs (Fig. 5, Table 3).

b) Multiple harmonics. In the presence of a tempera-
ture-induced change of the wave vector, higher-order mag-
netic satellites, corresponding to multiple harmonics in the
spatial distribution of the magnetic moment, are sometimes
observed. Thus fifth- and seventh-order satellites are ob-

K K
030~ Dy 4301 Er
0.25\- a.251
4,20 2.20
1 1 1 L Il H [ 1
0 50 100 TK 7 40 80 T,K

FIG. 3. Two types of variations of the wave vector with temperature in
spiral phases of Dy and Er.
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served in the SS phase of Ho. Higher-order satellites are
especially distinct in Er, where a cascade of phase transitions
is observed:

LSW (T, =80 K) — C8 (T, = 52K)—FS (T, — 20K). (2.1)

The intermediate CS phase represents a superposition of two
LSW and SS phases with one and the same wave vector. In
the high-temperature LSW phase, the neutron-diffraction
pattern contains odd-order satellites up to 17th order,?
whose intensity increases as the phase-transition point T,,
where the modulation of the z-components of the spins is
replaced by a ferromagnetic state with a uniform spontane-
ous moment oriented along the z axis of the crystal, is ap-
proached. In addition, third- and fifth-order satellites, cor-
responding to components of spin vectors in the basal plane,
are visible in the CS phase (temperatureinterval T, > T> T;)
(Fig. 6).

Higher-order satellites can also arise when a magnetic
field is imposed on the modulated structures. Thus an SS
structure, which transforms into a FAN structure in a field
lying in the rotational plane of the spins, exists in MnP at low
temperatures. This transition is accompanied by the appear-
ance of higher-order satellites, whose intensity increases
with the field.

c) Temperature-induced phase transitions. As the tem-
perature is changed, phase transitions often appear between
the modulated and the usual magnetic phases (see Tables I-

F
4,500
a422- ,L
A TSW

1
1
]
1
7 42 55

T,X

FIG. 5. Change in the wave vector [11:0] accompanying the phase transition
TSW—A in TbA,.
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TK FIG. 4. Nonmonotonic variations with temperature of
the wave vector in crystals.

I1I). The cases of transitions between IC and C phases due to
the continuous approach of the wave vector K to the value
K, describing the commensurate phase, are of special inter-
est. Two cases quite often arise here: when a modulated
phase first appears as the temperature is decreased and then
the commensurate phase appears (the transition IC—C) and
vice versa (the transition C—IC). We present examples of
phase transitions between IC and C phases, arising when the
temperature is decreased:

HC—C:

TbAu,, DyAu,, DyAg, (DH):

TSW, (pu0l >[5 0] (22)
Th, Dy, Ho (D%h):

SS—F, [00p]—>0, (2.3)
Tm (Déy):

LSW—F, [00p]j—0, (2.4)
C— HC:
MnP (Did):

F—>8S, 0—[00p], (2.5
Cr5SG(D§d):

A—SS, [oo%]-> (00 p]. (2.6)

We shall show below that the IC and C phases here are
symmetrically related, just as the symmetry of the Lifshitz
point and its neighborhood are related. There also exist oth-
er cases of phase transitions in which there is no symmetry
relation between the IC and C phases and the phase transi-
tion between them (first-order) is'due to the trivial equality of
the free energy of the two phases at some temperature. We
shall be most interested in the phase transitions IC=C,
where the symmetry of the IC phase with the wave vector
K = K, + k and of the C phase with the wave vector K = K,
are related by the commensurability relations.

d) Field-induced phase transitions. In a magnetic field,
the modulated structure can transform into a commensurate

Yu. A. lzyumov 850




FIG. 6. Behavior of the intensity of the higher-order satellites in
Er as a function of the temperature.

structure, which corresponds to a paramagnet in an external
field (P structure with uniform magnetization along the
field). This transition proceeds via the formation of an inter-
mediate FAN structure with the magnetic moments orient-
ed predominantly along the field. Such transitions have been
studied in greatest detail in MnP and rare-earth metals. MnP
has an orthorhombic structure. Three of its axes are usually
chosen in accordance with the inequalities 2 > b > ¢ between
the lattice constants. MnP undergoes a phase transition at
T, =291 K into a ferromagnetic structure with the spins
oriented along the ¢ axis. A second phase transition into the
spiral SS phase occurs at T, = 47 K; here the wave vector is
oriented along the g axis, while the spins rotate in the b, ¢
plane. When a field is applied along the & axis, the phase
diagram shown in Fig. 7 arises. The FAN phase appears in
addition to the F and SS phases. The local magnetic moment
in this phase oscillates in the  direction, always remainingin
the b, ¢ plane. The phase transitions F—SS and SS—FAN
are first-order transition, and the triple point, where all three
phases meet, is an ordinary triple point. The other triple
point, where the F, FAN, and P phases meet, is a Lifshitz
point. Its special properties consist of the fact that as it is
approached the wave vector of the modulated phase (the
FAN structure) continuously approaches zero. It now ap-
pears that MnP is the only magnetic system when a Lifshitz
point is realized.

Neutron-diffraction studies have shown®? that in a
magnetic field, corresponding to the FAN structure, second-
order satellites are observed together with the main magnet-
ic satellites indicating the existence of the modulated phase

H,kOe
[*] 000
30 CD
SR g2
20 FAN T
o ? © °
o © [=]
Moo o = °o
o B
SS oo Q
’ > | | 3
700 200 K

FIG. 7. Phase diagram for MnP in the (4, T') plane.
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and the wave vector depends on the magnitude of the mag-
netic field. For example, at T = 77 K, the wave vector in-
creases linearly with the field for H > 10 kOe.

Another example is MnAu,, which exhibits an SS struc-
ture with the wave vector lying along the tetragonal axis.
When a field is applied in the basal plane, the intensity of the
magnetic satellites practically does not change up to fields of
~ 10 kOe, but in a field of ~12 kQOe a sharp drop in the
intensity of the satellites, which is identified with the transi-
tion into the FAN structure, occurs. A sharp increase in the
magnetization due to the rearrangement of the spiral mag-
netic structure into a fan structure is observed in the same
range of fields (Fig. 8).

The isomorphic compounds of cerium CeSb and CeBe
are unique examples of the complex behavior of the modu-
lated structure accompanying a change in the temperature
or the external field. In the paramagnetic phase, they havean
fee structure of the NaCl type. In CeSb, six different magnet-
ic phases, which exist in a temperature range of the order of 1
degree, are observed in zero magnetic field in a narrow tem-
perature interval (16K-8K). All phases are modulated with
the wave vector k = (27/a) (00k ) oriented along the edge of a
cube and with the spins aligned along the direction of the
wave vector. One would thus think of the LSW structure, but
the observation of harmonic satellites (of third-order) led in
Refs. 48-51 to the proposition that a square spin-wave type
structure, i.e., a structure with periodically arranged anti-
phase domains, is realized. The wave vector of each of the six
phases assumes commensurate values, characterized by ra-
tional values of k = 2/3,8/13,4/7,5/9, 6/11,and 1/2.5° A

Intensity

4 Magnetization

10 75 H,kOe

FIG. 8. Field dependence of the magnetization and intensity of the mag-
netic satellite in MnAuy,.
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first-order phase transition is observed at the Neel point
Ty = 16 K. A first-order phase transition into the antiferro-
magnetic structure of the IA type (fcc), which remains stable
as the temperature is further decreased, is also observed at
T'=T /2. Temperature hysteresis is observed in transitions
between intermediate phases with different k, which once
again indicates first-order phase transitions. In a magnetic
field, transitions between these phases are observed and new
phases with values of k = 2/5 and 4/9 appear.>'

Thus a complicated cascade of transitions between
commensurate, but modulated, phases occurs in CeSb. Such
a complicated behavior of this material is a result of the
strong exchange anisotropy: the exchange interaction within
(001) planes is much stronger than between planes. Each sep-
arate plane is ordered ferromagnetically (a two-dimensional
ferromagnet), but the weak coupling between planes can be
easily destroyed by the temperature or a field. A model
which takes into account the weak interplane interaction of
nearest- and next-to-nearest-neighbors explains well the
phase diagram in the (H, T) plane observed in CeSb.>*% The
proposition in Refs. 48-51 that the magnetic structure of
CeSb is formed by alternating ferromagnetic and paramag-
netic planes is unlikely to be true, since the two-dimensional
order in the planes must vanish at the same temperature. A
more accurate neutron-diffraction analysis of this magnetic
structure is therefore required.

In CeBi, only two magnetic phases with k = 1/2and 1,
describing the alternation of the magnetic moment in the
planes(+ — + —)and(+ + — — ), are observed in the
absence of a field. In a magnetic field, phases with k = 6/11,
5/8, and so on appear.52>? Some of these phases vanish when
pressure is applied.>

Phase transitions in CeSb and CeBi accompanying a
change in the temperature or the field proceed between
phases characterized by commensurate values of the wave
vector. The dependence of the vector k is thus represented by
a discontinuous function of the temperature or of the field, a
phenomenon which is called the “devil’s staircase’ (see the
reviews Refs. 3 and 56). The reasons that the commensurate
values of the wave vector are preferred energetically will be
discussed below.

Another interesting example is chromium, in which
modulated magnetic structures (of the spin-wave type) were
first discovered.’ It has now been firmly established that in
Cr a TSW structure, which at 7, = 124 K transforms into
the LSW structure, arises below 7'y, = 312 K. This orienta-
tional phase transition TSW—LSW is accompanied by the
appearance of a charge-density wave with vector 2k (k is the
vector of the small modulation of the magnetic structure
with K, = (277/a) (0 01/2)) in the LSW phase and the appear-
ance of the third harmonic of the magnetic-moment density
(see Ref. 57). A pronounced change in the magnetic structure
occurs in a magnetic field.>®

We shall now discuss the question of the magnitude of
the modulation vector, i.e., the parameter u, for the sub-
stances presented in Table 1. The typical values u<1 corre-
spond to a change in the phase on two neighboring atoms,
lying in the direction of the vector k, by an amount of the
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order of radian. Anomalously small values of u (i.e., very
long periods of modulation of the magnetic structure) are
observed in sprial structures in two isomorphic cubic com-
pounds MnSi and FeGe. In MnSi the magnetic period is
equal to 172 A. When the manganese is replaced by cobalt,
the period decreases; with a concentration of 4% Co it be-
comes equal to 106 A. Even longer periods are observed in
the alloys Fe, Co, _, Si*® (0.3<x<0.9). For x = 0.3 the pitch
of the spiral reaches a value of 2300 A. These alloys have the
same crystalline structure as the compounds MnSi and
FeGe. Their space group T* does not contain a center of
inversion, which permits the existence of strongly anisotrop-
ic inhomogeneous interactions of relativistic origin in the
crystal. As we shall see below, they lead a modulation of the
magnetic structure, whose wave vector k is proportional to
the magnitude of this interaction and is therefore small.

In the overwhelming majority of magnetically ordered
crystals, the symmetry does not permit such interactions in
the crystal and the competition between the positive and
negative exchange interactions is responsible for the modu-
lation. In this situation, there is, in general, no reason for the
very small value of the wave vector of the modulation, which
must be determined by the ratio of the exchange integrals.
Indeed, for a chain of classical spins with an exchange inte-
gral J, > O for nearest neighbors and J, <0 for the next-to-
nearest neighbors, the angle ¢ between the spins of two
neighboring atoms is determined by the obvious relation

1

GOS([)=———4|J2 Te

For the formation of the modulated phase it is sufficient that
J,/4)J,| < 1. Since J, and |J,| are of the same order of magni-
tude, the angle @ can be arbitrary, i.e., the wave vector of the
modulation is not necessarily small.

3. THE GINZBURG-LANDAU FUNCTIONAL

All the above-described phenomena, namely, the
change in the wave vector with the temperature or field, the
appearance of higher-order satellites, and the transitions
between the C and IC phases, are closely interrelated. This
can be understood based on a study of the free-energy func-
tional for an inhomogeneous distribution of the order pa-
rameter (OP).

There are two approaches to the phenomenological the-
ory of modulated phases with a wave vector K, terminating
at the unsymmetrical (non-Lifshitz) points of the Brillouin
zone. First of all, an invariant expansion can be written
down for the nonequilibrium function @ in powers of the
OP, starting from the intrinsic symmetry of the vector
K = K, + k. The number of components »n of the OP is de-
termined by the number of rays in the star of the vector K
and by the dimensionality of the irreducible representation,
characterizing the given modulated structure. This ap-
proach, which takes into account the complete set of compo-
nents of the OP, is necessary for studying the fluctuation
region in the paramagnetic phase of the crystal,?*?* for ex-
ample, in determining the critical indices of the phase transi-
tion.
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In the alternative method, & is written down starting
from the symmetry of the vector K,—of the Lifshitz point.
For it, the dimensionality of the corresponding OP of the
symmetry group of the initial phase is less than n. The inclu-
sion in @ of inhomogeneous terms, depending on the spatial
derivatives of the OP, leads to inhomogeneous solutions of
the equations of minimization for the OP. They can be classi-
fied according to the star of the wave vector K, + k, which is
what makes both approaches equivalent. The second ap-
proach is possible because the symmetry of the Lifshitz point
also determines the symmetry of its entire neighborhood.
Since the modulation vector k is usually much smaller than
the reciprocal lattice vector, we can use the second method,
i.e., we start from the functional for the Lifshitz point.

The convenience of this description is linked to the fact
that the potential at the Lifshitz point (more symmetrical
than the points in its neighborhood) is simpler and can be
obtained more easily. Next, we must choose a solution of the
equation of minimization of @ that describes the modulated
phase, guided by the following considerations. Structures
modulated in one direction arise in crystals, and in searching
for the corresponding phase only invariants with derivatives
with respect to one spatial coordinate need be included in the
functional.

In itself, this fact follows from neutron-diffraction anal-
ysis. The modulated structure is indicated by the appearance
of satellites lying near the sites of the reciprocal lattice (or
symmetrical points of the zone). The distance from the satel-
lite to the nearest site determines the modulation vector k. If
k lies along the principal axis of the crystal, then there exists
a pair of equidistant satellites, corresponding to rays of the
stark and — k (Fig. 2a). Ifk lies, for example, along the edge
of a cube, then a hexad of satellites, corresponding to a six-
ray star must appear, and so on (Fig. 2b). Each pair of satel-
lites in Fig. 2b corresponds to modulation in one of the direc-
tions x, y, or z. In neutron-diffraction studies the observation
of a hexad of satellites is taken to mean that there are three
types of domains with modulations in three independent di-
rections. Within a single domain, the magnetic structure is
described only by two rays k and — k, corresponding to a
spatial inhomogeneity in one direction. Possible exceptions
are Nd and CeAl,, where a multi-k-structure with modula-
tions in several directions simultaneously has been pro-
posed.*

Another advantage of the method of description with
the help of the Lifshitz point appears in the study of the
modulated phases in external fields, when the structure in
the external field is not known, but we want to find it. If the
external field does not transfer the structure into a different
Lifshitz point (in other words if it is not too large), then the
wanted phase can be sought amongst the solutions of the
equations of minimization of the functional taking into ac-
count the interaction with this field.

We shall examine a typical form of the potential & for a
two-component OP, which, as we shall see below, describes
many real situations in crystals:

©={ dafr (8) + 2 (0 + 2 (7" 8+ Vigpom (1. (3.1)
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We shall assume that this functional corresponds to the sym-
metry of the vector K,. Here, 7 and £ are complex conjugates
of one another; the parameters r and  satisfy the standard
contitions of Landau’s theory: 7~(7'— T, ),u >0; and the
sign of win the third term, describing the nth order anisotro-
pY, can be arbitrary. The last term in @, containing the spa-
tial derivatives of the OP, can have two forms, depending on
the symmetry of the vector Ko'

(vi-) <
Vinhom(z): d

dn 4§ 3 d%

v T n o

i.e., either it contains a Lifshitz invariant which is linear with
respect to the derivatives or it does not. In the case D (Dzya-
loshinskii?®), the appearance of the inhomogeneity is energe-
tically favorable for any sign of o, while in the case-
(Michelson®’), the appearance of the inhomogeneity is ener-
getically favorable only for ¢ <O.

The rest of the analysis of the magnetic structures and
of phase transitions will be based on the phenomenological
Landau theory. It is, however, appropriate to describe here,
even briefly, the microscopic meaning of the different terms
in the Ginzburg-Landau functional for a two-component
OP—expressions (3.1} and (3.2).

Invariants of the form

dn d
I L y>0 (D)

(3.2)

a>0 (M),

G g dn
dz dz

which are linear in the derivatives can appear from expres-
sions of the type M curl M, describing the relativistic Dzya-
loshinskii—Mori interaction.®® For a cubic crystal without a
center of inversion, the expression M curl M is an invariant.
For example, such an invariant exists in MnSi and FeGe
crystals with the space group 7°*; and, on the other hand, an
SS structure with a very long magnetic period, indicating the
weak (relativistic) nature of the inhomogeneous magnetic in-
teractions, is observed in these crystals. The inhomogeneous
terms in the functional (3.1) with even derivatives of the OP
(case M) describe the inhomogeneous parts of the exchange
energy and correspond to invariants of the form (d M/dx )
dM/3dx, and(d *M/3 *x, )3 *M/3 *x,, ,formed by thecompo-
nents of the local magnetic-moment vector. The transforma-
tion from the variables M to the components of the OP is
implemented with the help of the symmetry of the system
being described, and specific examples will be given below in
Secs. 6 and 7.

The advantage of the phenomenological description
with the help of the OP lies in the fact that it is possible to
describe in a unified manner phase transitions in crystals
with different structural complexity and thereby to clarify
the general mechanisms of the transitions. A disadvantage is
that all parameters in the Ginzburg-Landau functional are
assumed to be unknown. In reality, in deriving these func-
tionals from microscopic Hamiltonians we would see that
some of these parameters are interrelated and therefore, in
particular, the problem of the stability of the equilibrium
phases, obtained by minimizing the functional, would be
solved more definitely. The complete joining of the pheno-
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menological and microscopic approaches in the theory of
phase transitions thus consists of obtaining a microscopic
derivation of the Ginzburg-Landau functionals.

We note that functionals of the type (3.1) are introduced
in order to describe a single phase transition from the para-
magnetic phase, since an OP which transforms according to
asingle irreducible representation is included. If we are deal-
ing with a cascade of transitions, then all OP describing each
of the phases must be examined and a functional for interact-
ing order parameters must therefore be introduced. Each of
the phases has its own region of stability in the space of the
parameters of the functional (coefficients with independent
invariants) and temperature. For example, the orientational
phase transition TSW—LSW in Cr must be described by two
interacting OP: one of them (two-component) describes the
TSW phase and the other (single-component) describes the
LSW phase. The sequence of phase transitions, for example,
accompanying a change in temperature is detemined by the
parameters of the Ginzburg-Landau functional (their sign
and magnitude). It is in this spirit that the magnetic phase
transitions in Cr are explained.®’

Near a phase transition from the paramagnetic phase
into the magnetically ordered phase, the terms in the func-
tional (3.1) ~u and ~w, containing higher-order powers of
the OP, can be dropped. It is then easy to verify that the
spatial distribution of the OR is described by a single har-
monic:

n(z) = Ak, 4= l/‘_'ér[“"’VTc—Ty

and, in addition, the wave vector of the modulation
k = [00k,] is expressed in terms of the parameters describing
the term Vip,m (22527

Ly,
ko={ "/__
Vo= M),

As the temperature is decreased, the amplitude of the
OP A, increases, and the fourth- and nth order terms in the
functional (3.1) must generate multiple harmonics, which
are manifested experimentally as higher-order satellites.
The spatial distribution of the magnetic moment M(z) is ex-
pressed in terms of the OP #(z) and ¢ (z) by the general rela-
tion

(3.3)

(3.4)

M (z) = m) (z) etke? |- m*q* (z) e=tkoz, (3.5)

where m is a constant vector. If m is complex, then expres-
sion (3.5) determines a sprial structure; if m is real, then (3.5)
determines a TSW structure. The pattern of the spatial dis-
tribution of the OP #(z) will be different in the cases (D) and
(M). We shall study it for systems which admit Lifshitz in-
variants in the functional .

4. SYSTEMS ADMITTING LINEAR LIFSHITZ INVARIANTS

Phase transitions in systems with linear invariants were
first studied by Dzyaloshinskii®® in the approximation of a
constant modulus of the OP:

p == const.

(4.1)
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The modulus p and the phase @ are defined by the relations

7 =pe® and £ =pe~ .
In this approximation the functional ¢ for the case (D)
depends only on the single quantity @(z):

O= S dz [ypz (.%)z+ 20p2%ﬂ:——|—2wp" cos nq)]. (4.2)

Variation of @ leads to the following equation for the phase:
d2 (n@)

3 - Hvsin (rg)=0, (4.3)
where n is the effective anisotropy parameter:
p=n?—p"2 (4.4)

In the absence of anisotroy, Eq. (4.3) has the solution
@ = kz, which describes a one-harmonic incommensurate
structure, for example, a simple spiral. On the other hand,
Eq. (4.3) also has a uniform solution ¢ = 0, corresponding to
a commensurate structure. For finite v, Eq. (4.3) must de-
scribe some inhomogeneous distribution of the phase of the
OP, given by its exact solution, expressed in terms of the
elliptic function of the amplitude:

(4.5)

2
¢ =— am (g2, %),

where ¢ = v/, and x is the modulus of the elliptic func-
tions. The parameter x» corresponds to the constant of inte-
gration of Eq. {4.3) and must be found from the energy mini-
mum of the system. (The second constant of integration, the
initial coordinate z,, is set equal to zero.)

The energy of the state in which the distribution of the
OP was described by Eq. (4.5), is expressed in terms of the
complete elliptic integrals K and E of the first and second
kind?®;

O

-‘I'E]/Z_) v ( ? 2 2
=2l ot \5e T K

(4.6)

Minimization of this equation with respect to x leads to an
equation for x:

E _+/ 7
=V vy Te
The modulus x varies over the range 0<x < 1 as the effective
anisotropy parameter varies, correspondingly, from O to v, .
For this variation of %, the form of the amplitude function

changes drastically. As can be seen from Fig. 9, a periodic

n2nlo?
=Ty -

(4.7)

x=0
P
¥
4zl %,
(%7 >%y)
2 -
0 . z

FIG. 9. Graph of the amplitude of the elliptic function as a function of the
modulus x.
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structure with some periodic L, which evolves as the param-
eter v varies, arises. As v is increased, a section appears with-
in the period / where the phase is almost constant, but the
phase changes markedly at the ends of the period, where a
change in phase by 277/ occurs. In the limit v—u_, the rela-
tive fraction of the section of constant phase increases. Un-
der these conditions the system can be represented as a peri-
odic structure of domains of the commensurate phase (witha
constant value of @ equal to a multiple of 27/n) separated by
domain walls—solitons. The period of the function (4.5) is

SRR (4.8)

The soliton pattern described above can be easily seen from
Eq. (4.5) by making use of the asymptotic expansion of the
elliptic integrals®®:

w—0:
K:%(1+“—j}+...), E:%(i—“{+...). (4.9)
x—>1 (x'=Y1—x—0):

K=lnr+..., E=t+px2ln4. ... (410)

It follows from (4.8) and (4.10) that the period of the soliton
lattice diverges logarithmically as v—uv, . Since the wave vec-
tor of the modulation k ~ 1/L, it is clear that as v—v,_, k—0,
i.e., in this limit the wave vector of the incommensurate
phase approaches its commensurate value X,. The commen-
surate phase remains stable as the parameter v changes
further, i.e., as the temperature is decreased. Thus Dzyalo-
shinskii’s theory describes the phenomenon of locking of the
wave vector in the case of an IC—C type phase transition.

We shall illustrate the evolution, described by the solu-
tion (4.5), of the spatial distribution of the OP for the exam-
ple of the sprial structure SS. Let the wave vector of the
spiral be oriented along the principal axis of the crystal (z
axis) and let the magnetic moment lie in the basal x, y plane.
The magnetic anisotropy in this plane is described by the
invariant (M, + iM, )" + (M, —iM,)*, which in terms of
the OP was written in the form " + £” (see expression (3.1).
The nth order anisotropy distinguishes n equivalent direc-
tions in the plane along which the atomic magnetic moments
try to align themselves. If there is no anisotropy, then the
magnetic moments turn smoothly from layer to layer along
the z axis. If the anisotropy is infinitely large, then they cling
to one of the » distinguished directions. According to Fig.
10, as the temperature is decreased, the parameter v in-
creases with x—the modulus of the OP. At v = v_ the mag-
netic moments of the entire packet of planes of size L are
oriented parallel to one another in the direction of one of the
anisotropy axes; as we move along the z axis, they rapidly
rotate toward the neighboring axis and remain in this orien-
tation over the length L; then they turn toward the next axis;
and so on. The transition from one axis to a neighboring one,
accompanied by a change in phase by 27/n, corresponds to
the domain wall (soliton) (Fig. 10).

The predicted structure of the incommensurate phase
can be checked experimentally by the neutron-scattering
method. To analyze the neutron-diffraction pattern, the OP
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b)

FIG. 10. Spiral structure in the presence of anisotropy in the basal plane.
a) Side view; b) view from above.

must be expanded in a Fourier series. The structure of the
series can be understood from the well-known expansion of
the amplitude function.?® For the phase {4.5), we have

2

z) = T . S
¢ (2) = K T Zl n cli (&’ p/K)
p=1

sin (p—?(—qz), 4.11)
where K (x)and K ' = K (') arethecompleteellipticintegrals
of the first kind.

From the expression of the OP in terms of the phase ¢,
we see that the quantity

i (4.12)

‘:;;_I?

represents the wave vector of the structure. The sum over p
in expression (4.11} leads to multiple harmonics in the distri-
bution of the OP; in addition, the Fourier series for 7(z) con-
tains harmonics of the following orders:

+p=n3x1, 2n1,

3, ... (4.13)

The amplitude of the harmonics decreases rapidly with p,
since it is determined by the factor ch~! (7K 'p/K ). The
structure of the harmonic series for the OP is shown in Fig.
11. The amplitude of the harmonics and the wave vector
depend on the temperature via the parameter x. For x =0,
as follows from the asymptotic series (4.9) and (4.10), only
the fundamental harmonics e * ** remain in the series for
7(2). As x is increased, higher-order harmonics, whose am-
plitude increases, while the distance between them de-
creases, appear. As x—1 (which corresponds to v—uv, ), the
harmonics coalesce, forming a quasicontinuous spectrum.

' i
~2n -n 4 n 2n
FIG. 11. Fourier series for the order parameter, described by the Dzyalo-

shinskif solution (schematically).
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FIG. 12. Evolution of the harmonic series for the distribution of the order
parameter in the presence of a first-order anisotropy (n = 1 corresponds to
the external magnetic field).

The evolution of the harmonic series for 9(z) is shown in
Fig. 12 for the case n = 1. The first-order anisotropy corre-
sponds to the external field. The appearance of the central
harmonic, which increases sharply with the field and draws
into itself the entire intensity of the distribution at » = 1, is
characteristic for this case. Figure 12 thus describes a
smooth transition from the incommensurate phase with two
fundamental harmonics in the distribution of the OP
{p = £ 1) to the commensurate phase with the central har-
monic (p = 0). This is the phase with uniform magnetization.

The neutron-diffraction pattern can be derived from the
general expression for the elastic magnetic scattering cross
sections*:

do
P ~ Z K‘W' (Sa.'v '—'ea.e’v)
aByy’

X (8py — epey:) F5 (Q) Fp (Q),

where Q is the scattering vector and e is the unit scattering
vector; the quantity K, represents the product 0,0,
where o, is a Pauli matrix, averaged over the spins of the
neutrons in the incident beam; and F (Q) is the Fourier com-
ponent of the magnetic-moment density in the crystal.

Consider the scattering by an SS structure with the
wave vector k lying along the z axis and the spins lying in the
x, y plane. This structure is described by the relations

M,= Mysing, M,=0.

(4.14)

M, = M,cos g, (4.15)

In the absence of an external field or anisotropy, the phase
@ = kz, and the scattering of polarized neutrons is described
by the expression?®

20~ N D (44 (em)2 =t 2 (em) (epy)] 6 (Q— b = k), (4.16)

b+, -

where b is an arbitrary reciprocal lattice vector of the crystal
and the delta function determines the position of the two
Bragg magnetic peaks near each site of the reciprocal lattice
with Q = b I k. Their intensity is determined by the mutual
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-k h B4k Right SS Left SS-

FIG. 13. Magnetic satellites for a simple spiral in the presence of scatter-
ing of unpolarized {a) and polarized (b) neutrons.

orientation of the vector e, the polarization of the beam p,,
and the vector of the spiral m. The latter represents a unit
pseudovector, perpendicular to the rotational plane of the
spins. It is evident from (4.16) that for unpolarized neutrons
the intensities of both magnetic satellites are the same,
whereas for polarized neutrons they depend on the orienta-

" tion of p,, e, and m. It is easy to choose an orientation of

vectors such that one of the satellites will be completely sup-
pressed, while the intensity of the second satellite will be
doubled {for a homogeneous sample, representing a right- or
left-handed spiral) (Fig. 13).

We now take into account the nth order anisotropy in
the basal plane. The harmonics in the distribution of the OP
lead to the appearance of higher-order satellites in the dif-
fraction pattern. The scattering cross section, calculated
form Eq. (4.14) for n = 1, is given by the following expres-
sion*’:

_‘% ~ 2 JE(w) (1—~e2) 6 (Q—b)

+ 2 2 I3 () (1—ed) + T8 (%) (1—ef)
b +, - p=i

== 2J75 (%) J5 (%) (pee) €,)1 8 (Q—Db & pk). (4.17)

It describes the scattering cross section in a magnetic field
applied in the basal plane along the — x axis. The ampli-
tudes J 7(x) depend on the modulus of the elliptic function »:
JE (%) :1+2‘E"“

nik ?

(4.18)

Iz (0) = JIp (%) =

2
uskz sh(an"/K)' *ZKE ch‘(pn'x %)

while the quantity x is expressed in terms of the field 4 (more
precisely A = H /M) by means of the equation

E_v/ ke hy =12

z e - (4.19)

(this is actually Eq. (4.7) rewritten for n = 1).
In weak field x €1 and with the help of the asymptotic
expansions (4.9) we obtain

JE (x)—_—%({—)‘+..., J'{(u)=%~§-(—;‘-)‘+...,

e =T0=%(5)"" ... (p>2)

where x? = 2y/0?h. It is evident from here that the intensity
of the central peak is ~ 4 2 (the principal satellites decrease in
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FIG. 14. Dependence of the amplitudes J, (x) of
the pth order satellites and of the wave vector of
the spiral as a function of the magnetic field ap-
plied in the plane of rotation of the spins.

the same degree), while the intensities of the pth order satel-
lites are ~A%P 2.

In the other limiting case, x—1(h—h_}, the asymptotic
expansion (4.10) shows that the wave vector k approaches
zero logarithmically, and all reflections approach the central
peak, whose intensity is ~ [J3{x)]*—1. In expression (4.17)
the summation over p can be replaced by integration, as a
result of which the cross section is described by the equation

S~ (1— ‘ )(1—e§)5(Q—b)
b

In —
%
8 —b,\2
+E - (QZA z)
b n”Aln—T
b
T S =y 2¢, (pge)

X

-+ —
sh? Qszz ch2 QZZ bz sh Oz;bz_ch Qz;bz
X 8 (Qx _‘bx) b (Qy‘ by)s

where 4 = (2/m}/h /2y. We can see that against the back-
ground of the diffuse peak of width 4 (along the z axis) there
arises an intense central component, into which all scatter-
ing from the diffuse peak at A = h_ is transferred. At this
point a phase transition from the incommensurate into the
commensurate structure occurs. The central peak arises due
to the appearance of magnetization in an external field; in
addition, its magnitude is given by the expression

M.,=M, S dzcos =M JF (%).

(4.20)

The dependence of the scattering amplitudes J 5(x) for arbi-
trary values of x, calculated from Eqs. (4.18) and (4.19), is
shown in Fig. 14.

The natural crystalline anisotropy in the basal plane
must give a qualitatively analogous scattering pattern, tak-
ing into account, of course, the thinning out of the higher-
order satellites (see (4.13)). The main difference lies in the
absence of the central peak, since the corresponding scatter-
ing is extinguished by domains of the commensurate phase
with a different orientation of the anisotropy axis. (In the
case of a magnetic field there is only one such axis!) Exact
equations for the cross section can be obtained only for a
second-order anisotropy.

A change in the field or the temperature essentially
gives the same soliton picture of the phase transition and the
same diffraction pattern. What happens if the crystalline an-
isotropy is also taken into account when a field is applied? In
the approximation p = const this leads to the following
equation for the phase of the OP:

P9 1 v, sinq v, sin (gr) =0, (4.21)
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where
_H __ nwpn-2
Begp Ty

It has exact solutions which can be expressed in terms of
elliptic functions only for n = 2.3"3° Here, two uniform solu-
tions corresponding to the commensurate phases are possi-
ble:

1) cosp= —1, 2)cosg= "§g‘ 4.22)

p L
One solution corresponds to the ferromagnetic state, when
the field is applied along the easy axis, the second corre-
sponds to the spin-flop phase, when the field is applied along
the difficult axis. In accordance with this, two nonuniform
solutions arise: 1s with one type of soliton and 2s with two
types of solitons.

Figure 15 clarifies the mutual relation of the phases. In
the commensurate phase | all magnetic moments are orient-
ed along the field. In the phase 1s they rotate around the z
axis, but are most often located near the shaded sector. In
phase 2, there are two energetically equivalent orientations
of the magnetic moments (two domains). In phase 2s, they
also rotate around the z axis, but are most often located near
each of the shaded sectors. Thus there are two domain walls
(two solitons) with a change in the phase @ of less than 7 and
greater than 7.

The phase diagram in the anisotropy-field plane is
shown in Fig. 16. It represents a typical section of the volume
phase diagram at a fixed temperature (not too close to T,
where the formally obtained solutions are unstable). The
phase transitions 1s—1 and 2s—2 from the incommensurate

T
Vs i

Easy axis
z
P ! 2s
S (Y
0 - \/ \_\[_7 L\l’_’
Difficult axis

FIG. 15. Soliton picture of the incommensurate phase in the presence of a
second-order anisotropy and an external magnetic field.
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FIG. 16. Phase diagram in the presence of second-order anisotropy and an
external magnetic field.

phase into the commensurate phase are first-order transi-
tions with jumps in the OP. On the line separating the 2s and
Is phases, the states continuously transform into one an-
other. It is suggested in Ref. 31 that this boundary is not the
phase-transition line at all. On this line two systems of satel-
lites (even and odd orders) of the 2s phase transform into a
single system of satellites of the 1s phase. It would be possi-
ble to determine the boundary between the incommensurate
phases from this change in the diffraction pattern. Near the
boundaries of the transition into the commensurate 1s or 2s
phase, there arises a pattern of converging satellites with a
marked increase in the central peak.

In the case of an anisotropy of arbitrary order, the neu-
tron diffraction pattern can be obtained from perturbation
theory.*® For low fields, it can be represented in a way such
that each anisotropy-produced satellite generates its own
field-produced supersatellites; thus a comb of satellites with-
out omissions arises.

5. SYSTEMS WHICH DO NOT ADMIT LIFSHITZ INVARIANTS

The overwhelming majority of modulated magnetic
structures in crystals are obtained as a result of the modula-
tion of the initial ferro- or antiferromagnetic structure with
wave vector K, whose symmetry does not admit linear in-
variants (case M). For one- and two-component OP, it is
necessary to work with the functionals

0 Jas s 3 (4o (517,

O= | dz[ r (B u B+ w "+ E)

dn dg & 4%
YL % % aE am )’

(5.1)

(5.2)

which we shall call 1M and 2M, respectively.

In expression (5.2) the term w{n” + £") describes the
usual crystalline anisotropy, corresponding to the vector K,,.
For example, with K, = On = 4 for a tetragonal crystal and
n = 6 for a hexagonal crystal. In what follows we shall not
examine any effects of commensurability based on this func-
tional.

We shall first study the functional 1M for a single-com-
ponent OP, describing, for example, the LSW phases. The
spatial distribution of the OP satisfies a nonlinear differen-

tial equation
Ln+2ug?=0, (5.3}

where L is the fourth-order differential operator:
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A d4

2
L—al v tr (5.4)

It is hardly possible to find the exact solutions of this
equation, so that we shall study the asymptotic behavior of
the solutions near a phase transition. Near T, where the
nonlinear term ~ u7? is small, the zeroth-order approxima-
tion with respect to the parameter u gives the solution
7o ~cos kz. The nonlinear term ~ 7> generates the odd har-
monics, so that the solution of Eq. (5.3) must be sought in the
form of a series

M = A; cos kz + A, cos 3kz + Ajzcos Skz + . . ., (5.5)

where the amplitudes 4, and the wave vector £ must be
determined from the minimum of the energy @,.. The
expression for the energy is obtained after substituting (5.5)
into the functional (5.1) and integrating. Up to the first three
harmonics we have*?

®yc =5 [L (K) A3+ L (3k) A3+ L (5k) A2
b u (A A AN Su (A4 A4 A3A7)
FaudlAt o u (A2, A+ A, A345);

where L (k) is an eigenvalue of the operator L:

L (k) = ak* + vk + r. (5.6)

Minimization with respect to 4, permits expressing the am-
plitudes of all multiple harmonics in terms of the fundamen-
tal harmonic:

Ag=

3u?

As=y (3k) L (5K

— o A A (5.)

and in the lowest approximation it is given by the relation
A,:]/ —5-~VT.—T.

The wave vector is determined from the equation
0P ./3k =0,ie.,

L' (k) A+ 3L (3k) A+ 5L’ (5k) A+ ... =0,

(5.8)

(5.9)

where the prime indicates differentiation with respect to the
argument. Retaining the contribution of the first even har-
monic only, we obtain from here

2

k=i (124 j;) (5.10)
where k2 = — y/2a. Thus the appearance of multiple har-
monics leads to a temperature dependence of the wave vec-
tor, determined by the factor 4 2/4 % ~A4 3 ~(T, — T'). The
numerical coefficient here is small, so that the order of mag-
nitude of the change in the quantity 4k 2/k 2 ~ 10~2. As the
IC phase moves into the bulk (as T is decreased), other har-
monics, which make a negative contribution to the expres-
sion for k 2, grow. However, an analysis shows that £ 2cannot
vanish, i.e., a continuous transformation of the incommen-
surate phase into the commensurate one, which we saw in
the case D, cannot occur. Before k ? vanishes, a first-order
phase transition into the commensurate phase (where £ = 0)
with a jump in the wave vector will occur.

The phase diagram for the 1M functional in the (y, T')
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FIG. 17. Phase diagram for a functional without Lifshitz invariants. The
broken line is the line of second-order transitions; the solid line is the line
of first-order transitions; a and b are different thermodynamic paths.

plane was constructed by Michelson?’ in the one-harmonic
approximation for the OP. It can be shown that inclusion of
the harmonics does not change the qualitative structure of
the diagram (Fig. 17), but only sharpens its boundary. Both
lines, bounding the IC phase, remain parabolas, tangent to
the line separating the initial and the C phases. All three of
these lines converge at the Lifshitz point (T = T,y = 0).

It follows from the diagram that for ¥ <0, as the tem-
perature is decreased, a sequence of phases IC—C (thermo-
dynamic path a) appears. In many cases, the inverse se-
quence of phases C—IC is observed. It can appear for y > 0,
if the renormalization of ¥ due to the inclusion of an invar-
iant of the form — é5%(d5/dz)? in @ is taken into account.
Then the effective parameter

y=v—90n2
appears in @ instead of ¢ and for sufficiently large & in the
condensed phase, where 7 increases as 7'is decreased, ¥ will
decrease with temperature and if it becomes negative, then a

transition into the IC phase will occur. This will lead to a
temperature-dependent wave vector in the IC phase:

=
k=Y —5L ~VT.—T. (5.12)
Thus motion along the thermodynamic path & could explain
the reverse sequence of phase transitions C—IC.

We shall now study the functional (5.2) for a two-com-
ponent OP (the functional 2M), describing the SS or TSW
phases. We have a pair of complex conjugate minimization
equations:

Im + 2un2t + nwt"1=0,
e } (5.13)

tg 4+ 2uln -+ nwy* 1 =0.

In the absence of anisotropy, these equations have exact so-
lutions:

n = A", E = Aet* (5.14)
The anisotropy generates multiple harmonics, whose form
can be obtained using the Bogolyubov-Mitropol’skii meth-
0d* by studying the iterations of the equations with respect
to the parameter w. We arrive at the following form of the
harmonic series:
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M= At 5 (A PR A OTON)(5.15)
2

where the amplitudes of the multiple harmonics have the
following order of smallness:
A—Pn+1 ~ wPup= 1Az1m« 17 Apn+1 ~ wpupA€n+1 .

(5.16)

As can be seen from (5.15) and (4.13), in the case M the har-
monics have the same structure as in the case D. This is
natural, since in both cases the multiple harmonics appear
due to the anisotropy, which has the same form in both cases.
In the approximation of the firt two harmonics, the
nonequilibrium energy of the IC phase is equal to (n>4)

Dre =L (k) A2+ L((n— 1) k) Ay + L (n+ 1K) A3,
S (A A+ AL ) 20AT (A A

+(mr—NYywdAl 1A . (5.17)

Minimizing with respect to the amplitudes and the wave vec-
tor, we obtain

_ L (k) . (n—1) wAP1
A,_]/— 2u Aopur=— L((n—i)k)—;—/;uA{ ,  (5.18)
A - 2udiA_n,,
nH T T L (i) k) +AuA?
R=K[1—n(m—12(—2) _“‘T~] (5.19)
1

As in the case of the single-component OP, the wave vector
cannot vanish, since the correction term in (5.19) is small.
The type of phase diagram in the (y, T') plane remains un-
changed (Fig. 17).

Thus in systems without Lifshitz invariants the wave
vector depends on the temperature through the dependence
of the amplitudes of the multiple harmonics in the distribu-
tion of a one or two-component OP; in addition, the tem-
perature-dependent term is small. The transition into the
commensurate phase is a first-order phase transition with a
jump in the wave vector. The amplitudes of the multiple
harmonics are expressed as the corresponding power of the
fundamental harmonic and grow with the depth of penetra-
tion into the condensed phase. These theoretical results cor-
respond to the observed experimental data, and we shall ana-
lyze them in detail below.

Thus far we have assumed that the inhomogeneity of
the structure arises along one direction in the crystal, i.e., the
star of the wave vector K has two rays. The structures for
which the wave vector lies in the symmetry plane and its star
has more than two rays must be described by functionals
with derivatives along several directions. The following
functional (we shall call it 2M,) is a typical functional with a
two-component OP for such situations:

© = | dzdy[rog+uB2+wnt+2)-

H(FErE)
o (T T T )
o (G G ) ooy i )
(5.20)
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We shall study the modulated phases which it describes
in the one-harmonic approximation:

N= AR e, (5.21)
The corresponding nonequilibrium energy
Oy, = [r+y (ki + k) + oy (k2 + &)
+ (20, + ag) kiG] A+ uAd (5.22)

must be minimized with respectto k, , k,, and 4,. The equa-
tions of minimization with respect to k, and k, have two
types of solutions:

. Y1
) k=— 2a, ?

2) R -

k,=0 or k,=0, k,?,z_g;l ,

(5.23)

\
~ TamFatay (5.24)

which are stable if y<0, a,+ (@:/2)>a, and ¥ <0,
a, + (a;) < a,, respectively. The symmetry of both solutions
corresponds to a four-ray star of the wave vector. For the
phase described by solution 1, the functional 2M, trans-
forms into the functional 2M with derivatives with respect to
asingle direction. The inclusion of other second-order invar-
iants in the functional 2M,, for example,

leads to new solutions k 2k 2 with lower symmetry (see '

Sec. 7).

Relying on these typical functionals, we can analyze the
phase transitions in specific materials. Before proceeding
with the analysis, we shall complete our discussion of gen-
eral theoretical questions by studying the effects of an exter-
nal field. We shall examine, for definiteness, a system with a
two-component OP, for example the SS structure, in a field
applied perpendicular to the wave vector. The field can be
regarded as a first-order anisotropy. The addition of the
term

Vs =H(n+E) (5.25)

to the functional (5.2) will lead to the following equation for
7

dén

2
@l S g 2upt £ H =0 (5.26)

and the complex conjugate equation for £. We have not in-
cluded the natural crystalline anisotropy.

In the absence of a field, this nonlinear equation (pair of
equations) has an exact solution—with one harmonic (5.14).
In low fields, the asymptotic solution has the structure

n= 2 Apetrhz,

p=-—co

(5.27)

i.e., it contains all multiple harmonics without omissions; in
addition, the smallness of the amplitudes is determined by
the relations

Ay ~1, Ay Ay ~H, A, Ag~H, ... (528)
Using the method described above, we find the wave
vector of the IC structure in a field:

=k (1—12 j—l) (5.29)
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Its field dependence is determined by the amplitude of the
first harmonic; in addition, 43/4 7 ~H?.

Thus in low fields only some distortion of the spiral
structure, described by the appearance of multiple harmon-
ics and a decrease of the wave vector, occurs. In a very high
critical field H, the SS structure must evidently be destroyed
and a state with uniform magnetization along the field ap-
pears. For H>H_, the OP contains only the zeroth-order
harmonic 4,, determined from the cubic equation

rAg-+2uAd-+ H =0. (5.30)

In subcritical fields H < H_, an inhomogeneous state, usual-
ly called the FAN structure, appears. To find it, we shall use
the other asymptotic limit: we shall seek the solution of Eq.
{5.21) in the form of a series in powers of u, retaining the
field-dependent term in the equation of the zeroth-order ap-
proximation, which has an exact solution of the form

Mo = Ay + A6t + A_je-the, (5.31)

The nonlinear term ~ un*£ generates new harmonics, which
are found by minimizing the energy. The solution with the
symmetry

A, = —4A_, (5.32)
has the lowest energy. We shall study this solution. For it,

the amplitudes 4,, 4,, and 4, are determined by the expres-
sions

Ay =A_, Ag=—A_g ...

A, = 4uAlA, A — 4uAd}

fro LW —2u4}
- 5 L(2k) ? 37 L3k’

1 Bu s

(5.33)

and the amplitude of the zeroth-order harmonic (the magne-
tization) satisfies the cubic equation

1

[r— %L(k)]Ao+_2 w4+ H=0 (H<<H,).(5.34)

3

This equation together with the equation 4, = 0 determines
in the (T, H ) plane the line of the phase transition into the
state with uniform magnetization. It is given in an implicit
form by the pair of equations

—L(k)+2uAl=0, rd,+2udi+H=0. (5.35)

The wave vector of the IC phase near this line depends
on H and T through the amplitudes 4y, and 4,:

ke =kt — e 44

The spatial distribution of the projections of the mag-
netic-moment density is determined by the expressions

My=m+8t=24,+ 44, cos 2kz + ...
My,=1i(n—§) = —4A,sin kz — 443 sin 3kz + .. .,
(5.37)

which define a parametric relationship between the compo-
nents M, and M, (hodograph). In strong fields the hodo-
graph represents an open curve (segment of a parabola),
along which the tip of the vector M(z) moves in the case of a
uniform displacement along the z axis. (Fig. 18). This de-
scribes the FAN structure. The FAN structure was deter-
mined previously in a manner such that the tip of the vector
M(z) moves along a segment of a straight line perpendicular
to the field. This straight line is transformed into a parabola
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FIG. 18. Deformation of the spiral in an external magnetic field applied in
the y direction.

by the term with the harmonic ~4,, which must be taken
into account, since 4, and 4 are of the same order of magni-
tude. In weak fields, the hodograph is a closed curve. In an
intermediate field #*~ |L (0) — 2L (k)|4,, the topology of
the hodograph changes, and this point is probably a phase-
transition point.

Relying on the results of the phenomenological theory
presented in Secs. 4 and 5, we shall analyze below the experi-
mental data obtained by neutron-diffraction analysis of the
modulated magnetic phases in crystals as well as the phase
transitions between them. The study of the magnetic phases
in two classes of materials is of special interest: in rare-earth
metals and in tetragonal crystals of the type TbAg, with the
symmetry group D ], since each of these classes has a set of
members which have the same crystalline structure, but dif-
ferent magnetic structures.

6. ANALYSIS OF MAGNETIC PHASE TRANSITIONS IN RARE-
EARTH METALS

Rare-earth metals belonging to the heavy group have
LSW and SS structures with the wave vector [00u], where u
depends on the temperature, but remains small, assuming
values near 0.28.%>* We can therefore speak about modula-
tion of structures with the wave vector K, = 0. The observed
structures are classified according to the irreducible repre-
sentations (IR) with k = O of the group D¢, (Table II). It
turns out here that the LSW structure with the spins orient-
ed along the principal axis of the crystal is described by the
one-dimensional representation 75, and the SS structure
with spins lying in the basal plane is described by the two-
dimensional representation 7, (the nomenclature every-
where follows Kovalev*®),

In the classification of modulated structures according
to the irreducible representations of the symmetry point, the
distinction between the IC and C phases is lost, since the
LSW structure and the ferromagnetic structure F (with the
spins oriented along the hexagonal axis) are characterized by
the same IR 75, while the spiral structure SS and the struc-
ture F (with the spins oriented in the basal plane )are charac-
terized by the IR 7.

1t is not difficult to show that the phase transition into
the LSW structure is described by a functional of the type
1M, while the transition into the SS structure is described by
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the functional 2M, where the order of the anisotropy is
n = 6. In the last case, the functional describes both magnet-
ic transitions, including the transition SS—F from the Cinto
the IC phase, observed in Tb and Dy. The phase transition
SS—FS in Ho is of an entirely different type, since it occurs
between phases with different symmetry. The cascade of
phase transitions in Er must be described by two coupled
OR: a one-component or (symmetry 75) and a two-compo-
nent or (symmetry 7). If an SS structure did not occur in this
metal, then the phase transition LSW—F from the Cinto the
IC structure according to the representation 7, would occur
in a pure form. The second stage of this cascade—the transi-
tion LSW 4 SS—FS—is a transition from the IC into the C
structure (with respect to the .S, component of the spins).
Both phases are described by the same representation
T3 + To. All transitions from the IC phase into the C phase in
rare-earth metals are first-order transitions. As we can see,
they must all be described by Michelson’s phase diagram
(Fig. 17) for ¥ <0. It should be kept in mind that the param-
eter y for rare-earth metals depends on the temperature as a
result of a peculiar mechanism for the appearance of a mag-
netic inhomogeneity in them: via the interaction of the atom-
ic spins with the conduction electrons. As a result of this, the
thermodynamic path with a change in temperature is not the
straight line g in Fig. 17, but rather some complicated curve.
The wave vector of the LSW or SS structure depends on the
temperature. This dependence is determined, on the one
hand, by the intrinsic dependence of the parameter (7T") and,
on the other, by the contribution of the multiple harmonics.
It would be of great interest to separate these two contribu-
tions.

Since magnetic phase transitions in rare-earth metals
are described by the functionals 1M and 2M already studied
above, all phenomena examined theoretically in the preced-
ing section can appear in them. On of them is the appearance
of higher-order satellites, corresponding to higher-order
harmonics of the OP arising due to the anisotropy. In neu-
tron-diffraction studies of Ho in the SS phase, fifth- and se-
venth-order satellites, corresponding to spin projections in
the basal plane, are indeed observed.*? Precisely such satel-
lites should occur (see (5.15)), since in the presence of hexag-
onal symmetry the order of the anisotropy in the basal plane
is n = 6 and, therefore, n + 1 = 5 and 7. In Er in the LSW
phase, odd-order satellites are observed (Fig. 6) in accor-
dance with the theory, since the projections of the spins on
the hexagonal axis feel the second-order anisotropy (n = 2).

Third- and fifth-order satellites, arising due to the spin
projections on the basal plane, are observed in the intermedi-
ate modulated phase (CS) in Er. The third-order satellites
cannot be explained by anisotropy in this plane, but their
existence can be understood based on the functional
IM + 2M with coupled OP.%” Indeed, we shall write for Er
the energy functional in the exchange approximation taking
into account the uniaxial anisotropy:

D= 3 dz [rM2+uM4 +y(%‘)z-g—a {%)Z—KMi] .
(6.1)
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In the Er crystal, M, transforms according to the one-di-
mensional IR of the group D ¢, , while M, and M,, transform
according to the two-dimensional IR. We can thus introduce
two OP: a single-component OP § and a two-component OP
m€)

E=M; n=M.+iMy,, E=M,—iM, (6.2)
In these terms @ is written as a functional of two interacting
OP:

o- i 4]

{r €2+rz(n§)+v[( Ly g

dspy 2, deq dR
tol () ta @) 63
The quantities r, and r, differ by an amount K—the energy
of the uniaxial anisotropy, which splits the magnetic phase
transition: first the { (LSW) ordering and then the (5, £) (SS)
ordering appears.
In the LSW phase, the OP contains odd harmonics (see
(5.5)):
p=1,3,5, ...

{= 4:; Ay cos (pkz), (6.4)

In the CS phase, an ordering of the M, and M, projections,
described by the OP

n=3 (Byetr + By eniok), (6.5)

with a set of multiple harmonics whose amplitudes must be
determined by minimizing the energy, also appears. If the
anisotropy in the basal plane is neglected, then multiple har-
monics are not present in the distribution (6.5). They appear
due to the coupling with the OP ¢; in addition, their ampli-
tudes are expressed in terms of the amplitude of the funda-
mental harmonic in §:

B, ~uAd}B,, Bs~u2d4iB,, ... . (6.6)
An analysis of the exact expressions for the amplitudes B,
and B, shows that they pass through a maximum as the tem-
perature varies from T, to T,.%’

Commensurability effects are manifested in the tem-
perature dependence of the wave vector of some rare-earth
metals. Thus, for example, in Ho as the temperature is de-
creased, # varies from 0.28 and locks when the valuey = 1/
6 is reached. A commensurate FS phase appears at the corre-
sponding temperature. To describe this phenomenon, it is
necessary to construct a functional directly for the wave vec-
tor K = [0 0 1/6). The star {k} of the wave vector [0 O ] has
two rays, and the SS structure is described by a two-dimen-
sional IR 7 of the group G, . The corresponding IR for the
space group D¢, is four-dimensional. We denote the basis
functions by 7, and 7, for one of its rays k and by £, and &,
for the other ray — k. The full potential, taking into account
the sixth-order invariants for the commensurate vector K,
is equal to
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it 2 'I
O= | dz [r (& + Maky) + % (P8 + 28D + w ek s
) . . d d
+io (Th ddgz El d"; +m, El gz n )

dny dE, | dng dB
+Y(dz1 5 'ﬁ)

+w i+ + 8 +8) v’ (& + mE) +w” (i +-EE)
(03B 4 MIED + 0" (B (B2 ek, (n,E7) |
(6.7)

The appearance of a linear Lifshitz invariant should not
be surprising, since the expansion (6.7) is written not for the
symmetrical point of the Brillouin zone K, = 0 (for which
the functional @ would be 2M), but rather for the line
K, = [0 O ], where the symmetry is already different. On
this line, the form of the first five invariants does not depend
on u, but the form of the anisotropic terms (proportional to
w,w', . ..)is specific to the particular value of u = 1/6. The
functional (6.7) describes the system near the wave vector
[0 0 1/6] and contains the corresponding commensurability
effects.

The simple spiral is described by a pair of nonzero val-
ues of the OP: (n,, &,) and (7,, &,) (right- and left-handed
spirals). In the presence of all four components of the OP, the
two differently polarized spirals are superposed. Consider,
for example, the phase (77,, £,). Then the general expression
{6.7) will simplify (the indices for % and £ are omitted):

@= faz[r o)+ o 2

+io (T\ dz

dn dE]

T W (6.8)

and we therefore arrive at the functional (D) for n = 6. The
locking of the wave vector, which it describes on the value
[0 0 1/6] is well known. The typical behavior of the wave
vector is indeed observed near the second phase-transition
point in Ho. The locking of the wave vector on 4 = 2/7 in
Tm (with the help of the anisotropic term w(n'* + £ '*)) and
onu = 1/4 in Er are described analogously.

Thus the entire picture of phase transitions in rare-
earth metals and the structure of their phases can be ex-
plained within the framework of the phenomenological the-
ory. It would be interesting to obtain the effective
Ginzburg-Landau functional from microscopic models and
to express thereby the phenomenological parameters of the
functional in terms of the microscopic properties of the met-
al.

7. MAGNETIC PHASE TRANSITIONS IN CRYSTALS OF THE
TYPE TbAg,

Compounds of the type TbAg, form another extensive
class of materials with an isomorphic crystalline structure
and diverse modulated magnetic phases.

Information on the magnetic structure of these materi-
als and all the required references can be found in the hand-
book of Ref. 5. In the TbAg, crystal, the magnetic Tb atoms
occupy the 2 (a) position of the space group D }]-I4/mmm
and the nonmagnetic atoms occupy the 4 (e) position. Thus
the magnetic atoms form a body-centered tetragonal Bravais
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lattice with one atom per primitive cell.

As can be seen from Table III, the diverse magnetic
structures in crystals of this class are long-periodic modula-
tions of antiferromagnetic structures with the following
wave vectors:

K,=0, star {ki}s (7.1)

Ko= 22 [001] = o (b, + b,—by), star (k) (7.2)
2 11 1

K, — %[77 QJ:T bs, star  {k;).  (7.3)

The transition from the diffraction notation for the wave
vectors to the notation adopted in the theory of representa-
tions of space groups is made with the help of the shortest
vectors of the primitive reciprocal cell of the body-centered
tetragonal crystal:

by=2a[0++], by=2a[0%],
b3=2n[%—i—0].

In magnetic structures associated with one-ray stars
{k,4} and {k,s}, the spins lie in the basal plane and therefore
transform according to a two-dimensional representation.
The only two-dimensional representation for both stars is 7.
For the star {k,,}, all IR are one-dimensional along a ray
and two-dimensional for the entire space group. In the mag-
netic representation d %, there are three IR on the magnetic
atoms of the crystal:

dKI:T3+Tﬂ+T7 {kys}.

The atomic components of the pseudovector basis functions
of all required IR are presented in Table IV.

We begin with an analysis of the magnetic phases, cor-
responding to modulation of the structure with k = 0. For
MnAu,, the functional 2M with n» = 4 corresponds to the
two-dimensional representation 7, of the star {k,,}. For the
compound PrCo,Ge,, a functional of the form 1M corre-
sponds to the one-dimensional representation 7, of the star
(Kya)-

We now go on to compounds described by the two-ray
star {k;3}. We denote the mixing coefficients of the basis
functions for the raysk, = [1/2 1/20]and k, = [1/2 1/2 0]
by 77 and £, respectively. They are the order parameters. For
the IR 7,, we obtain

(7.4)

O= [ drir (24 8)+u @+ 8+ oml
v (i +EA+E)

+ Y; (‘]ley - Exgy) + all (ng‘x + 7]12}1/ + Eix + E;y)

+ (Z; (nxxnyy + Exxgyy)

-+ atg iy + Ey) -+ ) [+ My ) Ny — Eext Eyp) Byl

{7.5)

We shall not write out the invariants containing the deriva-
tives with respect to z, since modulation is observed only
along a direction in the basal plane. Invariants which are
linear with respect to the derivatives are absent (they are
absent for all IR contained in Table I'V). For magnetic struc-
tures in TbAu,, DyC,, DyAg,, and DyAu, with the wave
vector [u u 0], it is necessary to transform to the derivatives
with respect to / and ¢ along the [110] and [110] directions,
which is achieved with the help of the linear transformation

l:.12+y1 (7.6)

In these variables, the functional (7.5) is diagonalized
with respect to the derivatives and assumes the form

o= [ alder (e +8) +u i+ 8) - onke
(P HE) v (i B

+a, (nh+ &) - o (i -+ ER)

t=x—y.

(1.7)

whence it is evident that both directions [110] and [110] are
equivalent. In the interpretation of magnetic structures with
multiray stars, it is assumed that a single-ray structure is
realized. We shall therefore set one of the OP in (7.7), for
example £, equal to zero. If it is assumed that the constants
¥, and ¥, have different signs, then it is energetically favor-
able for structures modulated only in a single direction to
appear. Thus it must be assumed that in the compounds
TbAu,, DyC,, DyAg,, and DyAu,

§=O, ‘l’1<0v Y2>Ov

doty (Mee + Enfee) =+ o (B

(7.8)

in order for their observed magnetic structure to be realized.
Here, for these specific materials, the Ginzburg-Landau
functional becomes a one-dimensional and an effectively sin-

gle-component functional:
= S dL 2wty - e (7.9)

It essentially coincides with the 1M functional. The transi-

TABLE IV. Basis functions of irreducible representations of the group D ] for one magnetic atom

in the primitive cell of the crystal.

{k1g}
(K11} {k13) '
Ty T3 T
1 m, (1—0) k, my (110) m, (110) m, (001)
2 (1:0) ks (110) (110) (001)
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tion, observed in these compounds, into the commensurate
structure accompanying a change in the wave vector
[140]1—{1/2 1/2 0] corresponds to the thermodynamic path
a in the phase diagram (see Fig. 17).

In the two other IR 7; and 75 of {k,,}, the form of the
invariants in the approximation adopted is the same as for
the IR 7, so that the functional (4.7) corresponds to all three
IR of the star {k,,].

In the HoAg,, ErAu,, and ErAg, crystals, a mixed
phase, characterized by the pair of Ir of the star {k,,} ap-
pears. For systems of two interacting OP (,, £,) and (1,, £,)
the functional consists of three terms:

O =@, + D, + Dy, (7.10)

where &, is given by expression (5.2) for 7, and £, and by the
same expression for 77, and £,, but with different values of the
parameters 7, u, w, . . . . The mixed term for all pairs of IR
has the form

Oy, = | A1t o, (ing +EE) +vp (G -+ Y. (7.11)

Thus sequences of phase transitions in the indicated com-
pounds are described by a one-dimensional functional of two
coupled single-component OP:

= § Al (ryng Fumy v o g
+ oM + uam; + Y23+ 2and, g +omind) (7.12)

with the following conditions on the parameters ¥, and y,:
71 <0, ¥, <0HoAg,), 7, <0, 7,>0HoAu,, ErAu,). The
neutron-diffraction data for ErAg, show that the commen-
surate and incommensurate components of the same OP
coexist in the low-temperature phase. The functional (7.12)
does not admit the existence of such a phase. It is possible
that a domain magnetic structure is manifested experimen-
tally.

We now go on to the compounds HoC, and TbC,. The
symmetry 7, of {k,s} corresponds to a functional with an
inhomogeneity in the x, y plane:

®= { dzdy {r (08) + v (D)2 + w (n* + &)
F 1M+ M8 F (M +B—ny— &)
+ i3 (<N, — E:§y)
+ &g (Naabxx + NyyEyy)
+ oy (Tlxxgyy + nyygxx) ’%‘“snxygxy
+ & (Nax — Ny + Ex— Ejy)

+(Z5 [nxy (nxx+ nyy)_'gxy (Exx““gyy)]}- (713)

It contains additional inhomogeneous invariants with re-
spect to the model functional 2M, (5.20), which we examined
above. The functional (5.20) leads to symmetrical solutions
{5.24), which describe the magnetic structures in HoC, and
TbC,. Additional inhomogeneous invariants lead to non-
symmetrical solutions, for which 2 ;éki. It is easy to see
that as the temperature is decreased, the inhomogeneous
second-order anisotropy (invariants ~7, and ~ ;) lead to
the appearance of multiple harmonics of odd orders. Their

864 Sov. Phys. Usp. 27 (11), November 1984

inclusion leads to a temperature dependence of the magni-
tude and orientation of the wave vector k.

In HoC, and TbC, crystals, for which the functional
(7.13) was obtained, SS structures with the wave vector
k = (k, 0 0), corresponding to a symmetrical solution of the
type (5.23), are realized. In a number of substances, however,
modulated structures with a wave vector k lying in the com-
mon position (see Table I) appear. The mechanisms of the
inhomogeneous anisotropy of the type which we just exam-
ined are apparently responsible for this.

8.EFFECT OF EXTERNAL FIELDS ON THE WAVE VECTOR OF
INCOMMENSURATE PHASES

We have already examined the change of the wave vec-
tor of a simple spiral in a magnetic field applied in the plane
of rotation of the spins, i.e., in a direction perpendicular to
the wave vector. The magnitude of the wave vector de-
creased as the field increased (in both cases, with and with-
out Lifshitz invariants in the free energy), but the orientation
of the vector remained unchanged with a fixed geometry.
The analysis performed can be extended along two direc-
tions: for magnetic fields oriented arbitrarily with respect to
the wave vector and also for other physical actions applied to
the system, for example, deformation,91-5!

If the field is applied in an arbitrary direction with re-
spect to the wave vector of the incommensurate structure,
oriented, for example, in the z direction, then the symmetry
can sometimes admit gradient invariants along a different
direction, which will lead to an instability of the phase with
the initial orientation of the wave vector. The instability ap-
pears, for example, if invariants of the form

AHH i (n2e—g30).

iz 3z (8.1

are admitted. The appearance of the indicated invariant will
cause the wave vector to be deflected in the x direction. The
nature of this deflection depends on whether the structure is
commensurate or incommensurate. If it is commensurate,
then the functional @ contains an energy of commensurabi-
lity, described by the invariant w(n" 4 £"). In the approxi-
mation of a constant modulus p of the OP, the problem of the
equilibrium distribution of OP in the field is evidently de-
scribed by the functional

D= 5 dz [ypz (%)2—5—2le£[,92 i—‘f+2wp" COS”‘PJ ,
(8.2)

which essentially coincides with the functional (4.2) which
we have already examined. The solution of the correspond-
ing variational problem has the form*’ (see (4.5))

const, H.,H,<HE,
VEO=N2 o gz, 0, HHSH, ®.3)
where
2 _ 4 V wyptn-272 I /E (n-2)/2 8.4
e =T VP v 9= } v P . ( . )

Thus there exists a threshold value of the quantity H, H,
below which the commensurate structure is preserved (this
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could be the usual ferro- or antiferromagnetic structure or a
modulated structure with a commensurate wave vector) due
to the energy of commensurability. When the threshold is
exceeded, modulation appears in the system in the x direc-
tion, as described by Eq. (8.3). It is evident from this equation
that if the starting structure is incommensurate, then the
modulation in the x direction is induced by an obliquely ori-
ented field in a nonthreshold manner.

We shall indicate other fundamental possibilities for
magnetic-field control of the wave vector in terms of invar-
iants of the type

cosH Hgm? 4 c.cC.. (8.5)
d d
dooH o Hy S d§ (8.6)

The first of these possibilities for a modulated antiferromag-
net, in which the modulation is due to a Lifshitz invariant,
was pointed out in Ref. 26. If the field is applied in the plane
of rotation of the spins, which is perpendicular to the wave
vector of the antiferromagnet K,, then the invariant (8.5)
describes the field-induced second-order anisotropy, which,
according to the mechanism described in Sec. 4, can change
the magnitude of the wave vector K up to the commensurate
value K. An invariant of the type (8.6) leads to a direct
change in the constant y in the general functional (3.1)—3.2),
which determines the magnitude of the wave vector accord-
ing to one of the expressions (3.4). A generalized expression
of the type

on_ 0%
rzﬁ\‘bH Hﬂ oz v oz 6

(8.7)
contains the possibility of changing not only the magnitude
of the wave vector, but also its orientation. It is clear that a
field oriented obliquely with respect to the vector K, must
unavoidably rotate it, since the symmetry of the system
(crystal + field) no longer reflects the “good’ orientation of
the wave vector. For an incommensurate structure, this ro-
tation will occur in an arbitrarily weak field, while for a com-
mensurate structure it must begin at some threshold value.
Analogous effects must also arise in the presence of oth-
er external actions on the system, for example, in the pres-
ence of deformation. Their role can be demonstrated by one
good example. In the cubic crystal ZnCr,Se,, a spiral mag-
netic structure SS with the wave vector oriented along the
edge of a cube, close to the vector K, = (0 0 1/2), arises at
T = 21K." The magnetic phase transition here is a first-
order transition, and it is accompanied by the appearance of
spontaneous deformation along the wave vector. As the tem-
perature is decreased, the wave vector of the spiral changes
strictly proportionally to the change in the ratio of the lattice
constants ¢/a, characterizing the magnitude of the deforma-
tion (Fig. 19). It can be shown that this linear relationship
between K and ¢/a arises from the symmetry of the system.
ZnCr,Se, has the spinel structure and the magnetic Cr atoms
occupy the 16 (d ) positions of the space group O] . The mag-
netic modes of the antiferromagnetic structure with
K, = (00 1/2) were calculated in Ref. 4, and from a com-
parison of these modes with the observed SS structure it fol-
lows that the latter represents a weak modulation of the col-
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FIG. 19. Relationship between the wave vector of the spiral structure in
ZnCr,Se, and the spontaneous deformation of the lattice.

linear antiferromagnetic structure, described by two
two-dimensional irreducible representations 7, and 7, of the
group of the vector K,,. Denoting the components of the OP
transforming according to 7, by (77,, 77,) and those transform-
ing according to 7, by (£, §,), we can obtain a functional @
for the four-component OP. It contains a Lifshitz invariant
which includes the basis functions of both irreducible repre-
sentations:

dny, _ d& dEs dng
U(Ei az { dz M2 74, _gz )

(8.8)

There also exist two invariants which contain the compo-
nent of the strain tensor £,,

dn dn 13 dE
Bi (gi dzl 2 dzz) Ezer"Bz (le d; — Ny dzl ) €2z-

The SS structure, observed in ZnCr,Se,, is described by the
following definition of the components of the OP:

My = &y = 0.

For the full class of solutions, the problem of determining
the equilibrium structure reduces to the minimization of a
functional with a one-component OP interacting with the
deformation £,,

(8.9)

M, = 7nsin kz, & = m cos kz,

Lel, + lS'rlzf':zz +BknZe,;,
(8.10)

whence we obtain the magnitude of the wave vector k and of
the spontaneous strain £2,:

— U+B€gz
k= —-_2\7—’

(6-—7(;— ﬁ) 1%,

The relation (8.11) demonstrates the linear relationship
between k and €2, arising due to the invariants (8.8) and (8.9)
Elimination of the quantity £,, from the expression
(8.10) leads to the renormalization
1 2
as a result of which u can become negative, and this will lead
to a first-order phase transition. A first-order phase transi-
tion is observed experimentally, but no unequivocal conclu-
sion concerning the indicated mechanism can be drawn,
since in the presence of magnetostriction the magnetic fluc-
tuations, which were ignored in this calculation, also cause
the second-order phase transition to change into a first-order

transition.*?
It should be noted that the crystal ZnCr,Se, is a rare

Oss =rn® +un? -+ ok + A% +

(8.11)

1

Egz:——zf 2

(8.12)

_ﬂ"

Uu—u—
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example of a crystal in which modulations of the magnetic
structure arise due to the Lifshitz invariants. In spite of the
high symmetry of this crystal, the invariant linear with re-
spect to the gradients exists due to the participation of two
irreducible representations. As is well known, such invar-
iants describe the energy of small relativistic interactions, so
that the modulations caused by them must also be small.
Indeed, in ZnCr,Se, the angle of rotation of the spins in two
neighboring planes of the crystal is equal to 42° at 7= 4.2
K.'? If this angle were exactly equal to 45°, then this would
correspond to an antiferromagnetic structure with the wave
vector K, = (0 0 1/2), whence it is clear that the modulation
vector k is very small. Another example of modulated mag-
netic structures which arise due to Lifshitz invariants are the
two isomorphic compounds MnSi and FeGe, which have the
space group T*, which does not have a center of inversion. In
both crystals, the modulation vector is also very small.?>?
This behavior is also observed in purely structural modula-
tions of the crystals.

CONCLUSIONS

The extensive experimental data on the modulated
magnetic structures of crystals and on the phase transitions
between them can be understood on the basis of the minimi-
zation of the Ginzburg-Landau functionals for an inhomo-
geneous distribution of the order parameter. Phenomena
such as the temperature and field dependence of the wave
vector, the appearance of higher-order satellites in the neu-
tron-diffraction patterns, and the appearance of a sequence
of commensurate and incommensurate phases are manifes-
tations of the effects of nonlinearity in the system and are
described by the solutions of nonlinear differential equations
for the order parameter, minimizing the free energy. Such a
functional can be constructed for each specific magnetic
phase transition analogously to the method demonstrated
here on a number of examples.

It would be useful to make further progress in the phys-
ics of modulated phases in two directions. On the one hand,
the parameters of the phenomenological Ginzburg-Landau
functional for specific materials could be determined by
studying different properties of magnetic phases experimen-
tally and, on the other, this functional could be derived from
microscopic models, thereby leading to a microscopic inter-
pretation of these parameters. The construction of phase
diagrams of magnetic states, for example, in the tempera-
ture—magnetic-field plane, as was done recently for MnP, is
an important integral part of this program.

The other direction is to study the effects of commen-
surability, i.e., anomalies of the physical properties accom-
panying the passage of the wave vector through a commen-
surate value. Careful magnetic, acoustical, and dilatometric
measurements have shown that such anomalies do in fact
exist where neutron-diffraction experiments did not pre-
viously reveal them. An example is the latest study of hol-
mium.*? It would be interesting to check directly the solu-
tion picture of the incommensurate phase by
neutron-diffraction analysis. Possible candidates for check-
ing the corresponding theory of diffraction, developed in
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Sec. 4, are the crystals MnSi and FeGe, in which the exis-
tence of spiral structures is due to Lifshitz invariants. The
prediction of chaotic incommensurate structures must also
be checked experimentally.>**

In this review, we restricted our attention to the static
properties of modulated magnetic phases. The dynamics of
commensurate and incommensurate structures has specific
features, in which commensurability effects are once again
manifested. The spectrum of the fluctuations of modulated
structures was established analytically for systems with Lif-
shitz invariants**# in the approximation of a constant mo-
dulus of the order parameter.”’” The corresponding excita-
tions—phasons—are studied with the help of light and
neutron scattering in nonmagnetic crystals in the vicinity of
structural phase transitions.*”?> For magnetic modulated
phases, such experimental studies have not yet begun. The
problem of the theoretical analysis of the spectra of fluctu-
ations of modulated structures in systems without Lifshitz
invariants has also not been studied. We note that for the
overwhelming majority of magnetically ordered crystals
with modulated structures, the symmetry does not admit
linear Lifshitz invariants, so that the spectrum of the fluctu-
ations of such systems remains completely uninvestigated.
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