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The energy of Vavilov-Cherenkov radiation (VCR) from arbitrary linear multipoles is found for a
transparent medium with e and m differing from unity. For electric multipoles, two methods are
used. The force, which for bn > 1 retards the motion of a system of rigidly bound charges, and the
force perpendicular to the direction of motion are determined (Sec. 2). The second method con-
sists of determining the emitted energy from the superposition of the VCR fields created by the
individual charges in the moving system (Sec. 3). It is shown that both methods give identical
results. The Vavilov-Cherenkov radiation from moving elementary electric and magnetic dipoles
is examined in Sec. 4. The magnetic moment induced by a moving electric dipole and the electric
moment induced by a moving magnetic dipole are taken into account. The formula for the VCR of
an electric dipole coincides with the formula obtained in this particular case from the analysis of
Sees. 2 and 3 and thus justifies the transformations relating the electric and magnetic moments.
For the magnetic dipole (an elementary current loop), there is no simple analogy to the VCR of an
electric dipole, especially in the case when the magnetic dipole is oriented perpendicular to its
velocity. The formulas are an elementary generalization (to the case fi ̂  1) of the formulas ob-
tained by the author in 1942. The Vavilov-Cherenkov radiation of hypothetical magnetic multi-
poles consisting of magnetic charges is examined in Sec. 5. The results are based on the analogy
between the usual Maxwell equations and the equations for magnetic charges and currents. For a
medium with m = 1 and dipoles oriented parallel to the velocity, there is a deep analogy between
the properties of the field of the usual magnetic dipole (current loop) and a hypothetical dipole
consisting of magnetic charges. There is no such analogy in the general case. All formulas for
magnetic charges and systems consisting of magnetic charges, including also the analog of the
Lorentz force, are obtained, as expected, by interchanging mj, and e, E and H, and H and — E. The
Maxwell's equations for magnetic charges and currents in a medium with e and // not equal to
unity are examined in the concluding Sec. 6.
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INTRODUCTION characteristic frequency. A step in this direction was taken
in a paper on the Doppler eifect in a refracting medium,

The material included in this review is the result of published in 1942.6 Aside from the properties of the radi-
work performed by the author over a period of forty years: in ation from a harmonic oscillator moving in a refracting me-
1942, 1952, and 1982. dium, called the complex and anomalous Doppler effect, a

After the theory of Vavilov-Cherenkov radiation,1 to foundation was also laid for the subsequent analysis of a
which we shall refer below as VCR, appeared in 1937 and a number of other questions, such as threshold phenomena
more detailed discussion of a number of theoretical ques- and the characteristic length (later called the coherence
tions appeared in 1939,2 a quantum treatment of the pheno- length), and the first step was taken toward the development
menon was also given.3'4 The theory was also generalized to of the theory of transition radiation. All the questions enu-
anisotropic media.5 There naturally arose the question of the merated above fall outside the scope of the present review,
general properties of the radiation accompanying uniform One of the results of Ref. 6 is, however, directly relevant
motion of different sources of light, both with and without a to this review. The theory of VCR for an electric charge had
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been studied since 1937, and there, naturally, arose the ques-
tion of the radiation of more complex systems, primarily,
dipoles. This problem was apparently first considered in
connection with the quantum theory of VCR.4 The Vavilov-
Cherenkov radiation for electric and magnetic dipoles ori-
ented parallel and perpendicular to their velocity was stud-
ied in Ref. 6. The formulas obtained for electric and
magnetic dipoles oriented parallel to their velocity are simi-
lar, and in addition, just as for a charge, the energy of the
radiation is a function of the square of the sine of the charac-
teristic angle of VCR, i.e.,

However, for dipoles oriented perpendicular to their veloc-
ity a different picture arises. For an electric dipole, nothing
unusual happens, even in this case; but for a magnetic dipole
oriented perpendicular to its velocity the emitted energy is a
complicated function of n2 and/3 2 and does not approach 0 in
the limit fin — >• 1 . The formula appeared unexpected and
even anomalous from the very beginning. The question of
this anomaly was discussed repeatedly and continues to be
discussed even now, i.e., more than forty years later. This
question is examined here primarily in Sec. 4.

A paper containing a theory of VCR for arbitrary linear
electric and magnetic multipoles was published in 1952.7

There the magnetic multipoles were viewed as a collection of
magnetic charges. From this it follows that VCR must arise
not only for a moving charge, but for any particle or system
of particles carrying an electromagnetic field,9 because the
field can always be represented as a sum of the fields of
charges and multipoles.

Reference 7 apparently also attracted attention to the
question of the anomalies in the radiation from a magnetic
dipole. The explanation of this question, however, required
further discussion.

The choice of multipole radiation for the subject of Ref.
7 was not accidental: it was intended for a collection of arti-
cles in honor of the sixtieth birthday of S. I. Vavilov. As is
well known, S. I. Vavilov was studying the effect of the na-
ture of elementary radiators on the observed properties of
radiation8 and he was pleased that I undertook the analysis
of this question in application to VCR. It happened, how-
ever, there was insufficient time for my paper, just as for
other papers intended for the collection, to be published dur-
ing S. I. Vavilov's lifetime, and they were published posthu-
mously in a memorial volume.

I originally intended to include Ref. 7 in its entirety in
this review, since the results obtained there are correct and
apparently are still of value, and to generalize and give a new
interpretation of the results in additional sections of this re-
view. It turned out, however, to be more convenient to re-
work the paper somewhat, writing down at the outset the
equations in a more general form. In Ref. 7 it was assumed
that the magnetic permeability of the medium is/z = 1, but it
is reasonable to write all equations in the form suitable for
the case of a medium with /z ̂  1 . This elementary generaliza-
tion is of some value in itself; it is then evident when the
index of refraction «, which with/z = 1 satisfies n2=e, enters

into the equation, and when e does so. The assumption fj. ^ 1
is especially necessary when comparing the equations for the
radiation from electric and magnetic multipoles.

Sections 1-3 of this paper primarily repeat the content
of Ref. 7 with a generalization of the results to the case of a
medium with ̂  ̂  1. The remaining sections are essentially
new.

The energy emitted by a moving multipole can be found
if the force retarding the motion of the multipole is known.
Finding the force acting on a moving charge is a very simple
way to determine the energy emitted as VCR.9 The force
acting on two charges moving parallel with the same velocity
was determined in Ref. 10 for the particular case of two
charges lying in a plane perpendicular to the direction of
motion. An analogous method is used here to find the energy
emitted by an arbitrarily oriented linear electric multipole
(Sec. 2), regarded as a system of moving rigidly coupled
charges. It is shown here that, in addition to the component
of the force that retards the motion of the multipole, there is
also a force oriented perpendicular to the velocity (Sees. 2
and 3).

Another method for determining the emitted energy is
based on the fact that the wave field of an electric multipole
can be found by summing the waves emitted by the individ-
ual charges in the multipole (Sec. 3).

The theory of radiation from elementary electric and
magnetic dipoles, which represents a generalization of Refs.
6 and 7, is studied within the framework of classical electro-
dynamics in Sec. 4.

In the next two sections (Sees. 5 and 6) the field equa-
tions and the energy of the radiation from moving magnetic
charges and magnetic multipoles formed by magnetic
charges are discussed. The results presented there essentially
coincide with the results of Ref. 7. Their interpretation has,
however, changed. In contrast to Ref. 7, it is shown that on
the basis of the properties of the emitted radiation a dipole
consisting of two magnetic charges is not always equivalent
to the usual magnetic dipole created by an elementary cur-
rent loop. The difference becomes especially evident in a me-
dium with /j, ̂  1.

1. BASIC EQUATIONS OF ELECTRODYNAMICS FOR AN
ELECTRIC CHARGE MOVING IN A MEDIUM

For what follows we shall require the basic equations
used in the theory of the Vavilov-Cherenkov effect for a
moving charge,1'2 which we shall generalize to the case of a
medium with /u^l.

The Fourier components of the vector and scalar poten-
tials can be written as follows:

~

divA,,,-:-^-

(1.1)

(1.2)

(1-3)

Using (1.3), the electric field vector can be expressed in
terms of A^. Then, for E^ and H^, which satisfy Maxwell's
equations, we have
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grad div Am jcoeji 6 w e

Hu = —

(1.4)

(1.5)

where £ andfi correspond to their values at the frequency co.
We assume that the medium is transparent, so that the quan-
tities e and n and n2 = E/J, do not contain an imaginary part.

Let us trace the relationship of (!.!)-(1.5) to Maxwell's
equations. Substituting (1.5) in the equation

, „ \curlEw=-

we obtain

and we can set

In this case, using the fact that

div Dw = 43TP,

we obtain

divDm= - e div grad <pw— 7 div - - =

(1.6)

(1.7)

(1.8)

(1.9)

(I .IO)

Using Lorentz's relation (1.3), from (1.10) we indeed obtain
(1.2). Finally, from (1.8) and (1.3) we have (1.4). As a check
we verify that (1.1) is also written correctly. Substituting (1.5)
into Maxwell's equations

_iJ^ = i£LL, (l.H)

and using the fact that

curl curl AM = grad div Am — V2A0, (1.12)

as well as (1.4), we indeed obtain (1.1).
Proceeding to the solution of Eq. (1.1), we repeat the

formulas used in the examination of the theory of Vavilov-
Cherenkov radiation and we present them without a detailed
explanation."

The current density created by a charge e moving along
the z axis (its coordinates are z = vt , x = y = 0) can be set
equal to

}t = a*(x)6(y)6(z-vt). (1.13)
It is convenient to solve the problem in cylindrical coordi-
nates, placing the z axis, along which the charge moves, at
p = 0. Then, for the co component of the current density we
obtain

We shall write the solution of (1,1) withy^ equal to (1.14)
as follows:

^WI = -27-a(P, co)e-i<02/0, Aaf = Aa<f = 0. (1.15)

Then the equation for a(p,co) has the same form as in the case

da (1.16)

"The interested reader is referred to Ref. 1 and especially the 1939 paper
by I. E. Tamm.2

where
j

(U7)

and, in addition, of course, n2 = EJJ,.
For/? > 0, the function a(co) satisfies Bessel's equation

^.+Iil + S2a = 0. (1.18)

The solution of Eq. (1.18) must assume the appropriate value
at the polep = 0 and correspond to a wave outgoing from the
z axis.

Taking these boundary conditions into account leads,
as is well known, to the fact that the solution depends on the
quantity fin.1-2

In the case /?« < 1 we have

a (p, co) = iff'1'(top), a =

For what follows it is significant that a(p,co) in (1.19) does not
depend on the sign of co.

If, on the other hand, the velocity of the charge is
greater than the phase velocity of light, v > c/n, i.e., J3n>\,
then
a(p, co)= — iH^'(sp)= — i/0(sp) —y(sp) for w>0,

(1.20)
a (p, co) = + iH™ (sp) = i/0 (sp) — Y (sp) for co< 0.

(1.21)

Here H S,1' and H J,2' are zeroth-order Hankel functions of
the first and second kind. They are expressed, as is well
known, in terms of the zeroth-order Bessel/0 and Weber Y0

functions.
From (1.14), (1.4), and (1.5) we obtain the following ex-

pressions for the components of the field intensities

ff _ e da itaz/v ( i 27)
-tfoxp — — e ' , U""J

'/», (1.23)
da

e-i«>z/ve i .

The /7-component of Poyn ting's vector is equal to
+ OD + 00

5=-^ j £aze»'d(o j ff^^'dco'. (l-25)
— 00 —00

The energy W emitted by a charge e over a path of length d
can be obtained, as in the theory of VCR, by multiplying S by
the area of the lateral surface of the cylinder 2irpd and inte-
grating over time from — o> to +00.

Here, in contrast to a medium with^u = I, the quantity
EM (see ( 1 .24)) contains an additional factor ft. From here, as
is evident from (1. 25), W must be a factor of ju greater than in
the well-known case [i = I .

Thus

W = e*d \ W^dco, (1.26)

where

is the energy radiated by a unit electric charge per unit path
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length and per unit frequency, for a medium with/i^ I11'12

(see Eq. (2.13)).

2. FORCE ACTING ON A MOVING ELECTRIC MULTIPOLE

The force acting on a charge et due to the field of the
charge ek is equal to

f ( * , , f t ) = e,E(e») + -2-|i[vH(«fc)]; (2.1)

where E(ek ) and H(ek ) are the field intensities produced by
the charge ek at the location of the charge et and v is the
velocity of the charge et .

In what follows we shall study the force fa (et ,k ), deter-
mined by the sum of the field components with the frequen-
cies + a) and — co, as follows:

fco («t, *) = «t [E*, (*») e"" + E_M (eK) «-«•']

(*») e*"* - H.u (ek) <?-

in addition,
oo

!(«„*)-= J f B ( « , , f t ) d f i > .

(2.2)

(2.3)

We shall assume that the medium in which the motion
occurs does not absorb light, i.e., its index of refraction n is a
real quantity. In addition, we shall study only charges which
are rigidly coupled with one another and move in the same
direction with the same velocities (v, = vk ). Assuming that
the motion occurs along the z axis, setting

zf - zft = Ai f t (2.4)

and choosing the origin of time such that zk = vt, we have

Zi = vt + Au. (2.5)

From here, substituting into (2.2) the field components
( 1 .22)-( 1 .24) with e = ek , for the point z, defined by (2.5) and
p =pik where pik is the distance between the trajectories of
the charges et and ek , we obtain

V"], (2.6)

(2.7)

where faz is the component of the force acting on et and
oriented along the z axis and fmp is the component of the
force perpendicular to the z axis and oriented from the tra-
jectory of the k th charge to the trajectory of the rth charge
(Fig. 1).

To determine the total force acting on the system, we
must also know the effect of the force produced by the charge
ek and acting on the charge e{.

It is easy to verify that in order to obtain this force

z* Aik Zf

FIG. 1.

/„ (e* ,i), acting on the particle k, it is sufficient to change
(reverse) the sign in front of Aik in (2.6) and (2.7). Here, a
positive component of the force f^{ek,i) corresponds to the
direction from the trajectory of the /th particle to the trajec-
tory of the k th particle, i.e., the direction opposite to (2.7).

As a result, for the sum of forces acting on both parti-
cles, we obtain

X[o(p, t , +cft)-o(p,

/cop («i , k) — /up (eh , i)

i \
~~ P2n" /

ii, (2.8)

/cop («*) =

(2.9)

The sign otfap(ik} is chosen so that for positive/^(ik} the
force is oriented away from the k th trajectory to the ith tra-
jectory (see Fig. 1).

We obtain the action of the self-field on the particle by
setting in (2.6) e, =ek and setting A,-k and/?,* to their limit-
ing value of zero. Then we have2'

/<U2(ei)=-^i[a(0, +w)-o(0, -to)]. (2.10)

It is evident from (2.8)-(2.10) that the forces acting on a
system of two particles vanish identically if a(p, + a>}
= alp, — co). According to (1.19), this occurs when/fa < 1.

The force acting on a system of point charges is equal to
the sum of the retarding forces produced by the self-field
(2.10) acting on each particle and the forces due to the inter-
action of pairs of separate particles (2.8) and (2.9). It follows
from here that any system of rigidly coupled charges in uni-
form and rectilinear motion does not experience any forces
retarding its motion or deflecting it from a rectilinear trajec-
tory, if the velocity satisfies v < c/n. A different situation
occurs when the velocity is greater than the phase velocity of
light (/?«> 1). In this case, substituting the value of a(p,co]
from (1.20) and (1.21) into (2.8) and (2.9), we obtain

(2.11)

2)It is evident from (2.6) that the limiting value o f f m , corresponding to
4=0 , does not depend on whether the limit is approached from positive
or negative values of A. In contrast to this, the orientation of fap is
always associated with p. From symmetry considerations it is evident
that the force acting on the particle must be identical for all orientations
of the radius vectorp. Thus the force/^ resulting from the action of the
self-field of the particle must be set equal to zero.
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V

(2.12)

Equation (2.12) was obtained using the fact that

— /„ (sp) = — s/j (sp).

For the forces/^ (et) andfmz (ek), retarding the moving
charges e, and ek, we obtain from (1.20) and (2.10) (since
J0(sp) is equal to 1 at p = 0)

(2.13)

The minus sign means that the force is oriented opposite to
the direction of motion, i.e., that work is performed during
the motion. Here, the magnitude of the force (2.13) is nu-
merically equal to the energy emitted by the charge per unit
path length (1.27).3'

The force/^ (ik), as is evident from (2.11), can be both
positive and negative. Since, however, the absolute magni-
tudes ofJ0(spik) and cos(coAik /v) are less than or equal to 1,
the total force acting on the two moving rigidly coupled
charges satisfies

This sum, therefore, obviously cannot be positive. Otherwise
the charges would be self-accelerated, i.e., the law of conser-
vation of energy would be violated. Moreover, it is easy to
verify that for/to > 1 this sum can vanish only for particular
values of cu, but not for the integral over the frequency.4'
Therefore, for fin > 1 the total force is always negative, i.e.,
the charges are retarded and, therefore, radiation is emitted.
This result is also correct for a system consisting of any num-
ber of rigidly coupled charges moving with velocity v > c/n.

The force retarding the motion of a system of n particles
is equal to

(2.14)

where 2?= i/^ (e,-) is the sum of the forces (2.13), which
would retard each of the charges separately in the absence of
the other forces, and/^ (ik} is the force (2.11), caused by the
interaction of the charges, which is summed over all differ-
ent pairs of charges.

In what follows, we shall for simplicity restrict our at-
tention to a collection of charges lying along one straight line
and therefore equivalent to one or several linear multipoles
whose axes coincide with this straight line. We shall assume
that the line is positively oriented if it forms an acute angle
with the z axis (0<t?<7r/2). We shall assume that the positive
orientation of the component of the forces acting perpendic-
ular to v (the force Fap} lies in the plane formed by the veloc-
ity and the axis of the multipoles and forms an acute angle
3)Just as for a moving charge, this result is correct only in the case when n
is real, which is correct if the medium in which the motion occurs does
not absorb light.

""With the exception of the trivial case of total neutralization of the
charges e, = -ek,Aik =p,k =0.

with the axis of the multipoles5' (see Fig. 1).
It is evident that the projection of a positively oriented

segment of the multipole axis on the v and Faz axes will be
positive (since cos #>0 and sin t?>0). Therefore, if the direc-
tion from the k th charge to the rth charge coincides with the
positive orientation of the axis, then rlk cos i? > 0, and in ad-
dition

Ajh = Zj — zh = rih cos •&.

In this case, the positive orientation of the force/^ (ik ) (ori-
ented from the k th trajectory to the /th trajectory) coincides
with the positive orientation of Fop (see Fig. 1). If, on the
other hand, rik is negative, then A, ,k < 0 also, and the positive
orientations otfap and Fap are opposite. The force fap, ac-

The force Fmp is then

cording to Eq. (2.12), is proportional to sin (oiAik /v), i.e., its
sign changes when the sign of Aik changes. Therefore, to
make sure that the forces have the correct sign, it is sufficient
in summing the forces acting on different pairs of charges to
replace Aik in (2.12) by \Aik =A
equal to

n-l n

1=1 k=i+l

where f'ap (ik) differs fromfmp (ik) in (2.12) in that A ik is re-
placed by A 'ik.

If Aik is also replaced by A 'ik infai(ik) of Eq. (2.11)
(which does not change its magnitude, which depends on
cos(coA ik /v)), then the arguments of the functions/mz and/^2

will be spik and o>A 'ik/v. It is not difficult to express them in
terms of the absolute distances between the charges, since

Setting

<x = — cosd, 8 = —v ' v

we have

' ih i «• = •

(2.17)

(2.18)

To determine the magnitude of the force FM , retarding
the motion of the system of charges, we expand (2.11) in a
double power series in powers of \rik \a and \rik \S. Then,
after substitution into (2.14), we obtain61

^ i .=/o + /! + /. + / » + • • • , (2.19)
where

n-l n

(2.21)

TI — 1 n

= - -r1 (T a4+a262+£64) 2 2 eie*r«> <2-22)

5)The choice of the positive orientation of the axis of the multipoles and,
therefore, of Fap becomes indeterminate at»? = 0 and t? = -rr/2. This,
however, is not significant, because, as will be evident from what fol-
lows, in both cases the force F^p = 0 .

6)We recall that J0(x) is equal to the sum of the series
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2 2 (2-23)

Thus the first term of the expansion of /0 in (2.20) is
simply the force determined by the Vavilov-Cherenkov radi-
ation for the total charge of the system (see (1.18) and (1.19)).

The quantities/j ,/2, and so on, depend on the multipole
moments of the system of charges.To find any of the// one
must know the value of the double sum

;=S 2 (2.24)

If in calculating St the summation over both indices ;' and k
is performed from 1 to n, then each pair of charges will be
counted not once, as in (2.24), but twice, i.e., the sum will be
equal to 25; (the presence of terms with i = k for / > 0 does
not alter the sum, since rjk is equal to zero for / = k. Thus

l2 2 wH=42 2st = 2 2 w H = 2 wi'i-rd*; (2.25)
t=i t=l i=l fe=l

where rt and rk are the coordinates of the /th and k th
charges, measured along the axis on which the charges are
positioned from the point on this axis adopted as the center
of the system of charges.

Keeping in mind the fact that for the given collection of
charges and for the center which we have chosen

p.-S*,r? (2-26)
1=1

is the electric multipole moment of order a measured in the
laboratory system, and (using the binomial expansion), we
obtain from (2.25)

m=i-l

.- a
7n=0

For example, for the particular case / = 1, we have

£i = ftPo-PJi (2-28)
where p2 and/>, are the quadrupole and dipole moments of
the system, and the zeroth order moment p0 denotes the alge-
braic sum of the charges pQ = 2"=0e,-.

If the system of charges has only an / th order multipole
moment, then S, will contain a single term proportional to
p] . Then/, is proportional to p\ and the remaining terms in
the series (2.19) vanish, so that Faz =/, . Thus, in the case
when only/>, or/>2 or p3 differs from zero, i.e., for a dipole,
quadrupole, and octupole, we obtain from (2.27)

Substituting the values of these sums into/,,/2, and/3, re-
spectively, in Eqs. (2.21)-(2-23) and using (2.17) and (1.19),
we obtain the force retarding the motion of the multipole.

For a dipole

*z (Pt) - —

(2.29)

For a quadrupole

- cos4 & + (P2«2 — 1) cos2 •& sin2

(2.30)

For an octupole

FUI (Ps) -=-- — -4- cV>3 ( 1 — -pz^

J-. cos6 fl + 1 (p2n2 - cos4 § sin2 ft

-J (P2«2 - 1)2 cos2 ft sin4 ft

I|4-(P2/i2-l)3sin«ft]. (2.31)

For/z = 1 Eqs. (2. 29)-(2.31) coincide with the previously ob-
tained formulas in Ref. 7.

If the system has more than one multipole moment,
then interference terms, proportional to the product of these
moments,7' can arise in the radiation (see (2.27)). Thus, for
example, if the total charge and the quadrupole moment dif-
fer from zero, then, aside from the terms /0 and /2, corre-
sponding to these moments, the term/!, in which the pro-
duct p2 p0 plays the role of the dipole moment (see (2.28)),
will differ from zero. Here, in contrast to a true dipole, the
quantity/, can in this case be both negative and positive, i.e.,
it can increase or decrease the total energy of the radiation.

As already noted, the force Faz , retarding the motion of
the multipole, differs from zero only for frequencies which
satisfy the condition fin(co} > 1. We obtain the total force re-
tarding the motion of the system by integrating over these
frequencies. From here, the energy emitted by the multipole
per unit path length is equal to

(Pi) = - } : (Pi) du>. (2.32)

Thus, for example, from (2.29) we obtain the following ex-
pressions for the energy of the radiation from a dipole with
moment p, oriented parallel (9 = 0) and perpendicular
(j? = ;r/2) to the velocity:

W= ( ±!tp2(i_
J cV r \

(2.33)

(2.34)

These formulas differ from those obtained previous-
Iy5~7>8) by the presence of the coefficient//.

The force Fmp, oriented perpendicular to the velocity,
can be found entirely analogously to the manner in which
this was done for Faz, namely, by expanding/^, i.e., (2.12),
replacing Aik by A 'ik, in a series in powers of \rlk \a and

71It is evident from (2. 27) that the product of the moments />„ and/>6 will
appear in the radiation if \ a — b \ is even. In this case, to within a numeri-
cal (positive or negative) factor, it is equivalent to

81In the formula for plv, obtained in Ref. 6, as well as in the formula
presented in Ref. 9, the factor b 2 was omitted.
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\rik \S, and substituting into (2.15). In particular, for a dipole
we obtain

Ci)2ura2 , / .
3-P2(l- ' sin -9 cos ft. (2.35)

Thus, aside from the forces retarding the motion of the
system, there exists a force which does not work with recti-
linear motion, but which strives to deflect the dipole from its
direction of motion. This force for dipoles, as well as for
multipoles, vanishes only when the axis of the system is ori-
ented either parallel or perpendicular to the velocity. As will
be shown in the next section, it is directly related to the
asymmetry of the angular distribution of the radiation.

It should be kept in mind that in all the equations pre-
sented above, both the electric multipole moment p and the
angle i? are measured in a stationary coordinate system. If
we keep in mind that the length scale along the z axis is
contracted by a factor of a = V(l —/?2), then for the angle i?'
with the axis of the multipole and the distance r'f of the
charge e, from the center of the multipole, measured in a
system of coordinates fixed to the charges, we have

tgf t=£- tgf t ' , l — (l —a2) cos2ft'.

From here, by virtue of the in variance of the magnitude
of the electric charge, we find that the electric multipole
moments/),', whose radiation is being studied, are related to
pt by the expression

Pi = p/ [1 — (1 — a2) cos2 ft']'/». (2.36)

In the laboratory coordinate system, the moving system
of charges is equivalent to a collection of not only electric
multipoles/;,, but also magnetic multipoles. Thus the/?, are
not the total moments of the system, although the radiation
energy can be expressed, as done above, in terms of their
magnitude. If, at the outset, we had examined the radiation
of the multipoles p, instead of the radiation of the moving
system of charges, then we would have obtained a different
result.9'

3. RADIATION FROM AN ELECTRIC MULTIPOLE

The same relations as obtained in Sec. 2 can be obtained
by examining the magnitude of the energy emitted by a sys-
tem of moving charges. It is well known that the Vavilov-
Cherenkov radiation produced by a moving charge propa-
gates in directions forming an acute angle 6 with the
direction of the velocity (z axis), and in addition

(3.1)

The phase of the emitted wave is determined by the sur-
face of the cone, whose vertex coincides with the moving
charge and whose generatrices form an angle of (ir/2) + 6
with the z axis (Fig. 2a). If there are two moving charges,
then the vertices of the two cones are displaced relative to
one another and, therefore, the phases of the waves corre-
sponding to both charges will be different (Fig. 2b). Let us
assume that a dipole is moving, i.e., that the charges el and e2

have different signs and equal magnitudes e. We assume that

FIG. 2.

the distance r12 is much smaller than any wavelengths that
can be emitted (i.e., for frequencies satisfying the condition
0n(ci}) > 1). In this case, if the phases of the waves from both
charges are identical, then the waves will completely cancel
one another, and as the phase difference increases, Aa>4ir/2,
the total amplitude will increase. Therefore, for the case
shown in Fig. 2b, the intensity of the radiation oriented up-
wards from the z axis will be greater than that of the radi-
ation oriented downwards. Therefore, the momentum car-
ried away by the radiation will give rise to a recoil force,
striving to deflect the dipole downwards. It is not difficult to
verify that the sign of this force Fap agrees with (2.35).101

An analysis of the interference permits finding both the
angular distribution of the radiation of a linear multipole
and the magnitude of the forces acting on it. We shall deter-
mine the intensity of the field at a point far away from the
trajectory of the multipole. We assume that the component
of the field intensity with frequency a>, which would be ob-
served at time t if the multipole were replaced by a unit
charge concentrated at its center, is equal to

Aetot. (3.2)

Then the field determined by the collection of charges form-
ing the multipole is obtained as a sum of waves with ampli-
tudes proportional to

^.e-(ton/c)rjCOS(p, R) (3.3)

where rt is, as before, the absolute displacement of the
charge e, from the center of the multipole (see Sec. 2), and
cos(p, R ) is the cosine of the angle between the multipole axis
and the ray for which the waves are summed.

We denote by <p the dihedral angle formed by the fol-
lowing planes: the plane passing through the z axis and the
axis of the multipole and the plane formed by the z axis and
the direction of the ray. Keeping in mind the fact that the ray
forms an angle 9 with the z axis (see (3.1)) and the angle
between the axis of the multipole and the z axis is equal to •&,
for cos(p,/J ) we obtain

cos (p,#) = y i — -~ sin ft cos q> + -gL cos ft. (3.4)

Let us expand the quantity exp ( — (ttt>«/c)/-, cos (p,R ))
on the right side of (3.3) under the summation sign in a power
series. Keeping in mind the fact that for a multipole of order /
we have

91A particular case, namely, the transformation of dipole moments, is
examined in greater detail in Sec. 4.

0)It is evident that the orientation of the force F?p for charges with the
same signs is opposite to that for dipoles (see Fig. 2).
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V e-rl =0 s<- i
j=i ' '

since it does not have moments of order less than /, and the
fact that by definition

n
yi 1

and assuming that the r, are so small that the sums of the
products containing r{ in powers greater than / can be ne-
glected, from (3.3) we obtain the following expression for a
multipole of order /

" ~ " . (3.5)
U ct J

Thus the radiation field of the multipole differs from the
field of a moving unit charge by a factor equal in magnitude
to the expression in brackets. Therefore, the energy emitted
by a multipole differs from that of a charge by the square of
the modulus of this quantity. Since the angular distribution
of the radiation of a charge (2.27) is uniform along all genera-
trices of the cone, for an angular interval dkp in the case of a
unit charge we have

cp. (3.6)

From here, for an electric multipole, keeping in mind
(3.4), we obtain

X B. (3.7)

Equation (3.7) gives the spectral distribution, as well as
the angular distribution of radiation along different genera-
trices of the cone.

The energy emitted by the multipole can be found from
(3.7) by integrating over <p.

Using the fact that the binomial expansion of the term
in brackets in (3.7) is equal to

2!
VI (21)1

and that
Zn

•o

2«

l
Hk (i _ l )*/2 cos*-* fl cos" q> sin* f t ,

(3.8)

(3.9)

~

we obtain (setting k = 2m)
i

S 3Pl+1u.n?mp'i i 1 \
. a, ' • I 1 — -gj—)

v m + l

X cos2'-*"1 0 sin2"1 ft dco. (3.10)

For particular cases of electric multipoles of order / ori-
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ented parallel (sin# = 0) and perpendicular (cosi? = 0) to the
velocity, we have, respectively,

-~r , (3.11)

X
i+i

-~p=r) dm, PiA.V. (3.12)

For a dipole (/ = 1), a quadrupole (/ = 2), and an octu-
pole (/ = 3) Eqs. (3.10)-(3.12) coincide with Eqs. (2.29)-(2.31)
as well as Eqs. (2.33) and (3.24), obtained in Sec. 2. These
results can be compared with the results obtained by Shiro-
bokov,13 who made a quantum analysis of Vavilov-Cheren-
kov radiation for a particle with spin 2. Separate terms of the
expression obtained by him are interpreted as radiation from
a quadrupole and an octupole and the remaining terms are
interpreted as interference terms. Indeed, they differ from
(3.12) for/ = 1,2, and 3 only by numerical factors, i.e., in the
classical analysis they correspond to a transverse dipole,
quadrupole and ocupole. Equation (3.7) also makes it possi-
ble to find the magnitude of the forces acting on a multipole.

We denote by Wa<p the quantity in the integrand in Eq.
(3.7), i.e., the energy emitted per unit path for angle ip and
frequency co. The momentum carried away by the radiation
into the medium is equal to4

D — — & n ni/^C0(p „ ^COmi \ I

where Emtf = vWaip is the energy emitted per second. Thus a
recoil force given by

p = n = finW (3 14)

must act on the multipole.
The projection of the force on any axis is obtained by

multiplying (3.14) by the cosine of the angle between the
direction of the ray and this axis and integrating over (p. The
cosine of the angle between the direction of the radiation and
the z axis is equal to !//?«. Therefore, the force retarding the
multipole is equal to

(3.15)

Conversely, the correctness of (3. 15) is a simple proof of
the fact that in a refracting medium the momentum and the
energy of the radiation are related by Eq. (3.13).

The cosine of the angle between the direction of the ray
and the direction chosen as the positive orientation of the
force F^ is equal to

cos (<p, p) = — -~ cos <p. (3.16)

From here and from (3.14), and using also (3.8) and (3.9), we
obtain

ff lr,.\- _ V . (_20Im

cos<2!-2T"4l>tf sin2™-' ddw.

I. M. Frank

(3.17)
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As expected, in the particular case / = 1, i.e., for a di-
pole, Eq. (3.17) coincides with Eq. (2.35).

4. VAVILOV-CHERENKOV RADIATION FOR ELEMENTARY
ELECTRIC AND MAGNETIC DIPOLES

To study magnetic dipole and magnetic multipole
fields, we can use methods which are analogous to those used
in the preceding sections of this paper for electric multipoles.
To this end, we must write down the equation for a moving
magnetic pole and then treat a magnetic multipole as a col-
lection of magnetic poles (see Sec. 5). This is what was done
in Ref. 7, which, aside from solving the problem of Vavilov-
Cherenkov radiation for magnetic multipoles, addressed the
problem of clarifying the anomalous radiation of a magnetic
dipole, found in 1942, i.e., ten years earlier.6 It was found
that the results of Refs. 6 and 7 can be made to agree if a
relationship differing from the one used in 1942 between the
magnetic dipole and the electric dipole moment induced by
the motion of the magnetic dipole is used. The problem is
actually more complicated than assumed then and I believe
that the situation is still not completely clear. The main
point, however, becomes obvious, if as is done here (in con-
trast to Ref. 7), the analysis is performed for a medium with
fi 7^ 1. A magnetic dipole is an elementary current loop. Ref-
erence 7 contains the assumption that there exists a complete
identity between a magnetic moment created by a current
loop (we shall call it simply a magnetic moment or the usual
magnetic moment, since other types of magnetic moments
have not yet been observed in nature) and a hypothetical
dipole formed by two magnetic poles (we can conditionally
call it a true magnetic dipole).

It is known, however, that when in motion both forms
of magnetic dipoles must interact diiferently with the mag-
netic field in media with f j . ^ 1 . This makes it possible, in
particular, to prove that the magnetic moment of a neutron
is not associated with magnetic charges and has the usual
nature (for a discussion of this point, see, for example, Ref.
14).

It is therefore not obvious a priori whether or not the
properties of the VCR from the different kinds of magnetic
dipoles will be the same. A comparison of the results of this
section with those of the next one (Sec. 5) shows that this is
indeed not the case in general. At the same time, very pro-
found analogies, which are incorporated in the symmetry of
Maxwell's equations with respect to electric and magnetic
charges, which are discussed in Sec. 5, do exist here. Al-
though these analogies were clarified back in 1952,7 the dif-
ferences were not, strange as it may seem, noted and were
never discussed either then or in the following 30 years.1"

These questions are analyzed primarily in the next sec-
tion (Sec. 5). In this section, we shall show that for an electric
dipole the same results are obtained regardless of whether
the motion of two oppositely charged electric charges mov-
ing parallel to one another in a medium or the motion of an

elementary electric dipole is studied. This result is not ob-
vious beforehand, because, since different methods are used,
the polarization of the medium may not have been treated in
the same manner. The second question which is examined is
the difference between the radiation from electric and mag-
netic dipoles. For what follows, we must briefly recapitulate
the results obtained for VCR of electric and magnetic di-
poles in Ref. 6, generalizing them to the case of a medium
withn^\. The starting equations were

(4.1)

(4.2)

where P ,̂ is the component of the Hertz vector with frequen-
cy ca, M,,, is the corresponding magnetic vector, and fa and
mm are the components of the electric and magnetic dipole
moment densities.

If pffl and mm are obtained here by expanding the den-
sity of moving dipoles in a Fourier integral, then it should be
kept in mind that their values measured in a stationary coor-
dinate system, which are related to the intrinsic moments by
Eq. (2.36), are being used.

Here, by m^ we shall mean, for the time being, the den-
sity of the usual (current) magnetic moments. It would have
been more consistent to write these equations in a form con-
taining in the denominator on the right side e and//, respec-
tively; PM and Mw would then be normalized differently.
For our purposes, however, the form of Eqs. (4.1) and (4.2) is
more convenient, because of their symmetry with respect to
p^, and mffl, since the relationships between p^ and Pa and
between ma and M^ are the same in this case. To transform
from the field equations containing Am to equations written
in terms of Pa and M^, we use the equations

uopm + ccurlmw = ju, (4.3)

djv Po> = — Pa- (4-4)
Comparing (4.1) and (4.2) with (4.3), we obtain7

(4.5)

(4.6)

(4.7)

(4.8)

analogously, with the help of (4.4), we obtain

Substituting (4.5) into (1.4) and (1.5), we obtain

Hm = curl curl; Mm + —curl PM.

In what follows, we shall examine the field in the radi-
ation zone in the region where p,,, = 0 and m^, = 0.

Using the formula from vector algebra (1.12) as well as
(4.1) with/^ = 0, Eq. (4.7) can be written as follows:

EM = -̂ - curl curl Pu ——
n)V. L. Ginzburg and V. M. Tsytovich have informed me that they also

considered them in the course of their work on the book "Transition
Radiation and Transition Scattering".15 They confirmed the equations
known previously and independently obtained some of the results
which I present in this paper.

<4-9'
Comparing these equations for Hw and E ,̂ it is not diffi-

cult to verify that they cannot be obtained from one another
by replacing £ by // and Pm by MM. In what follows, for our
purposes, the magnetic moments induced by the moving
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electric dipole and the electric moments induced by a mov-
ing magnetic moment are significant. Whereas the equations
relating the moving dipole to the induced dipole are analo-
gous in both cases, the nonequivalence of fm and Mffl in Eqs.
(4.8) and (4.9) necessarily leads to the fact that different re-
sults are obtained for VCR generated by P(U and m^.

We shall assume that a point electric dipole p, whose
orientation coincides with an arbitrarily oriented unit vector
P! (the magnitude and orientation of p are measured in a
stationary coordinate system), moves with velocity v along
thez axis (z = v t ) . Analogously to the manner in which this is
done for finding the current density (see (1.13)), the compo-
nent p^ of the dipole moment density must be assigned the
value6

We shall assume below that the dipole traverses a finite path
from — z0 to + ZQ. Then

where R is the distance from the origin of coordinates z = 0
to the point of observation; in addition, we assume that
/?>z0, i.e., that the radiation is studied in the radiation zone.
Then

€'•=— - ( e-i<»<z/<>> d-Pncos9) dz = -^—g(co, 6), (4.12)
-z«

where, as done by Tamm,2 q(ca,0) denotes

ofco Q\ _ sin M W") (! — P" c°s 9) (4.13)

Thus the Hertz vector in the radiation zone has the
same form as for some stationary oscillator with an angle-
dependent amplitude q(a>,6 )P/VK>. Analogously, if a magnet-
ic dipole, whose orientation coincides with the vector m,, is
moving, then

Mmeim< = 19 (to, 9) e*» <*-««/«>. (4. 14)

For electric and magnetic vectors in the radiation zone, it
follows from (4.8) and (4.9) (tj is the unit vector along the ray
R) that

-[rlml\Ma>, (4.15). = - [r, [rtPlJ] PM -

(4.16)

Here, as it has to be,

.-[rJr.Ej]. (4.17)

If we are studying the motion of an electric dipole, then aside
from p^, responsible for the Hertz vector Pw, as already
noted, there arises a current-induced magnetic moment m^.
In this case, except for the case when p, is parallel to z, m^
does not equal zero.

The relationship between pm and m,,, follows uniquely
from the relativistic transformations of the current.6-7 If the
polarization of the medium does not affect these transforma-
tions, then p^ induces a magnetic moment

mQ = -p [ZlPJ (4.18)

(where z1 is a unit vector oriented along the velocity (the z
axis)). Analogously, the relation

Pw = +P [ZlmJ (4.19)

must hold for a moving magnetic moment. These formulas
are indeed symmetrical with respect to p^ and m^ . From
here, using Eqs. (4. 1) and (4.2), we find that in the case of a
moving electric dipole we can make the following substitu-
tion in Eq. (4.15):

[rimi] Mm = -[F! [zlPl]]p Pu. (4.20)

Then, instead of (4.15), we have

Eu = — ̂ t Pa {[r, frlPl!J -pn [r, [zlPl]]}, (4.21)

and, of course, Eq. (4. 17) for the vector H^ remains correct.
We note, and this will be proved below, that for limiting
values of P^ the intensity of the VCR of an electric dipole
obtained here coincides with (2.33) and (2.34). Let us suppose
that a magnetic dipole is in motion. Using the transforma-
tion (4.19), we obtain in an analogous manner

. = — ̂  M. { [r, [r.mj J - ~ p [r, [z.mjj} (4.22)

[rlHa]. (4.23)

In order that the quantity in the braces in (4.22) be the analog
of (4.21), the transformation (4. 19) must be replaced by

PM = + P«2 [«in»j. (4.24)

This would indicate that the transformations of Ptu and m^
would differ significantly. The proposition that (4.24) must
be used was stated in Ref. 7 (Eq. (4.29) of Ref. 7). Since a
medium with/z = 1 and £=n2=£ 1 was being studied at that
time, the idea arose (see the remark for Eq. (4.29) in Ref. 7)
that the difference between the transformations of pw and
m^ can be explained by this circumstance. From what fol-
lows it will be evident that this is not the case. An argument
in favor of (4.24) in Ref. 7 was that an analogy does indeed
exist, as it should, between an electric dipole and a dipole
formed by magnetic charges. The extension of the results to a
medium with jj, ̂  1 shows that this argument is unjustified.

V. L. Ginzburg16 presents in his supplement to my pa-
per7 support for the correctness of (4.24).12) However, inde-
pendently of whether this transformation should be adopted
or not, the electric and magnetic moments do not behave
equivalently in a medium: if (4. 19) is correct, then a formula
is obtained for the Vavilov-Cherenkov radiation that is not
at all similar to the radiation of an electric dipole; if, on the
other hand, (4.24) is assumed to be correct, then the interre-
lationship of moving electric and magnetic dipoles in the
medium turns out to be different.

Let us examine in greater detail the consequences of
Eqs. (4.21) and (4.22). We shall first complete the analysis of
12)V. L. Ginzburg has kindly informed me that he has reexamined this

question. His remark on the applicability of (4.24) refers to the particu-
lar case when the volume inside the ring current creating the magnetic
moment is filled with a medium which has the same value of n as the
space outside the volume and for an elementary dipole moment the
results following from (4. 19) are correct. This work will be published in
Izv. Vyssh. Uchebn. Zaved., Ser. Radiofiz.
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the field of a moving electric dipole. Using the well-known
formula of vector algebra

[a [bell = (ac ) b - (ab) c,

from (4.21), using (4.10) and (4.13), we obtain

(4.25)

X [cos (rlPl) (p, - pnz,) - (1 - pn cos 6) Pl]. (4.26)

It can be shown that the integral of the energy flux at a fre-
quency co over time is equal to

"V (w, 6) p2 |cos

— (1

(rt — p/iZj)

Precose)pj|2.

(4.27)

Thus

cos (r,pj) cos (1— PTI cos 6)

(4.28)

where cos (piZl) = cos 5 (see Sec. 3), and the quantity
cos (/-,/;,) = cos (pR ) is given by Eq. (3.4).

To calculate the total magnitude of the energy flux, Sm

must be multiplied in (4.28) by the solid-angle element
d/2 = R 2sin O&O&p and an integration must be carried out.
We shall first integrate over 9. For this, we must know the
integral of q2(<o,9) sin#. This integral was discussed by
Tamm for the limiting case of large z0 for the VCR of an
electric charge.2 We shall also examine the limiting case of
the integral13'

(4.29)

(4.30)

(4.31)

Making a substitution of variables and setting

we reduce (4.29) to the form
(„„+!)

C(dZ0

-(Pn-1)

As is well known, the magnitude of the integral approaches
-IT, if the limits of integration approach infinity. Therefore,
the necessary condition for passing to the limit is that the
magnitudes of the limits of integration must be large. This
excludes, even for large z0, from the analysis the region close
to the VCR threshold, where/?n — 1 is small. In the limiting
case we can write u = ZQX in the integrand and then

3)This integral, though elementary, with the exception of a limiting case is
quite cumbersome (see Eqs. (14) and (15) in Ref. 17).

In this case, x = 0 corresponds to cos 6 = \//3n. Thus, in the
limiting case, we have

<»

J ?«((o, 6) sine/ (co,

(4.32)

Applying this relation to (4.28), keeping in mind (3.4) and
referring the energy to unit path length by dividing the result
by 2z0, we obtain

W (p, Q))=-

X dtp
0

— -pi;- sin decs (p-f-p- cos •»).

(4.33)

This formula coincides with (3.7) with / = 1, and with (2.29)
after integration over tp. In the particular cases of p parallel
and perpendicular to the velocity, we obtain (2.33) and (2.34).
From here, in particular, it is evident that the transforma-
tion (4.18) for an electric dipole can be used not only for a
medium with /j, = I, but also for arbitrary £ and /z. Thus,
contrary to the assumption made in Ref. 7, the difference
between (4. 18) and (4.24) cannot be explained by the fact that
fi= 1; moreover, the validity of (4. 18) is an argument in fa-
vor of the fact that (4. 19) should be applicable to an elemen-
tary magnetic dipole.

Comparing (4.21) and (4.22) for a magnetic dipole, and
taking (4.23) into account, we obtain in an analogous man-
ner, instead of (4.27),

)s(r,, mt) (r4 — -^-z,

- ( l - JLcose jm . 2 .

From here it follows that in the formula analogous to
(4.28) p2 must be replaced by m2, an additional factor of n2

must be inserted in front of the braces, and within the braces
Pi and/?« must be replaced by m l and/5 /n. As a result, apply-
ing (4.32), we obtain

2rt

cos

x

This quite complicated formula gives the angular distribu-
tion of the radiation from a magnetic dipole.

It is not difficult to verify that for a magnetic dipole
oriented along the velocity (cos •& = 1 ), the energy flux does
not depend on the angle cp, i.e., the radiation is the same
along all generatrices of the cone. Its total magnitude is
equal to
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W(m, c o ) = ( o 3 « v l - (4.35)

This formula is similar to the one obtained for an electric
dipole (see (2.33)). Moreover, for/z = 1 it may be assumed to
be the magnetic analog of (2.33), since n2=e (see Eq. (5.18)).
For this reason, Eq. (4.35), obtained for/z = 1 in Refs. 4 and
6 and repeated in Ref. 7, did not give rise to any doubts. The
situation is different for a magnetic dipole oriented perpen-
dicular to the velocity (sim? =1).

The angular distribution, as is evident from (4.34), in
this case is a complicated function of <p, and after integration
we obtain

v.

(4.36)

If, however, Eq. (4.24) and not Eq. (4.19) is used for the rela-
tionship between the moving magnetic dipole and the elec-
tric dipole it induces, then we obtain

W(m, < B ) = - (4.37)

Several arguments in support of (4.37) with /j. = 1 and for
considering Eq. (4.36) to be erroneous are given in Ref. 7.
Indeed, Eq. (4.37) is similar to Eq. (2.34) for an electric di-
pole. Moreover, with/i = 1 it may be regarded to be its mag-
netic analog, since the extra factor of n2 in this case is equal
to e. Finally, W(co} in Eq. (4.36), in contrast to all that we
know for other cases of VCR, does not approach zero in the
limit (in — »• 1.14) To be sure, in contrast to what was said in
Ref. 7, it was commonly believed that Eq. (4.36) is neverthe-
less correct and that (4.37) corresponds to a different case of
polarization of the medium. 18 The generalization to the case
/z =£ 1 presented here invalidates the argument about the ana-
logy of (4.35) and (4.37) to a dipole consisting of magnetic
charges, for which // must be replaced by E (see the next
section). We can see that an analogy does not necessarily
exist here. There are therefore no grounds for regarding Eq.
(4.36) as incorrect.

5. RADIATION FROM A MAGNETIC CHARGE AND FROM
MAGNETIC DIPOLES AND MAGNETIC MULTIPOLES
FORMED BY MAGNETIC CHARGES

The field of a magnetic charge or a system of magnetic
charges can be analyzed in an elementary way, if we start
from the symmetry of Maxwell's equations relative to the
electric charges e and magnetic charges g. All the equations
of the preceding Sees. 1-3 are applicable to magnetic charges
with Ew replaced by Ha and HK replaced by — £„ , if e and
fi are interchanged at the same time.

However, the use of this symmetry, implicitly assumes
that either only electric charges e or only magnetic charges g
are being studied. The possibility of the coexistence of such
charges is unclear and will not be discussed in this paper.

4llt should be noted, however, that the derivation of all the formulas
presented here for dipoles, as already noted, cannot be used in the region
near the threshold {[in = 1), since the limiting value of the integral (4.31)
cannot be used in this case.

However, since the medium is characterized by only macro-
scopic quantities e and/*, it makes no difference whether it is
an ordinary medium or one made up of magnetic charges.

To obtain the field of magnetic charges, we shall use the
method used in Ref. 7. In analogy to (4.3), we can write

JO)TOO = jgo; (5.1)

where m^ = mglo is the magnetic moment formed by the
magnetic charges, so that ja =jgol is the current of the mag-
netic charges. Formally, however, we can write (5.1) for an
ordinary magnetic moment ma and then/w is some auxiliary
quantity, which can be called a pseudocurrent.

We introduce the magnetic vector potential
£<oe

(5.2)

It differs only by its normalization (additional cofactor of e)
from the one used in Ref. 7 and is the analog of the relation-
ship between Am and Pm (see Eq. (4.5)). We then obtain im-
mediately from (4.2) the equation

i«-—^-U, (5-3)

which is the magnetic analog of Eq. (1.1). We can also write
an equation for the static magnetic potential %„ • For this, we
set

div mga = —pga)

and assume that

— — divMa> = x«-

It then follows from (4.2) that

(5.4)

(5.5)

(5.6)

A consequence of (5.2) and (5.5) is that the Lorentz relation

is satisfied.
We now return to the proposition that ma is the usual

magnetic moment. In this case, M^ is uniquely related to
Aw. If/i = 1, then A^ = curl Ma (see (4.5)). Using Eq. (5.2),
we obtain

Ara=—^-curlKffi. (5.8)

Here, as already noted, it may be assumed that K^ satisfies
(5.3), if jgta is taken to mean ia>ma. If this value of K^ is
substituted into (1.4), then we obtain

(5.9)

which indeed is the magnetic analog of (1.5). Substitution of
this K^ into (1.5) gives

H_= — curl curl Km. (5.10)oeu. w ^ '

This equation can be written with the help of (1.12) and (5.3),
in the region where ma = 0, as

H» = — -^-j-grad div Km — -y- Km. (5.11)

Equations (5.9) and (5.11) can be written immediately as the
magnetic analog of (1.1), (1.4), and(l.S). Here they have been
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obtained from the representations of the usual magnetic mo-
ment, and this is an obvious consequence of the fact that the
electromagnetic field of both types of magnetic moments in a
medium with fi = 1 have a far-reaching similarity. For this
reason, in Ref. 7, where it is stated that these fields are identi-
cal, its validity was not doubted, although it was necessary to
replace arbitrarily the transformation (4.19) by (4.24), which
coincide only in vacuum.

In reality, however, in a medium differences do exist
between the fields of both types of dipoles and they are im-
mediately evident, if it is assumed that p^ 1.

Indeed, then, as follows from (4.5), Aa =fi curl MM

and, therefore, instead of (5.8) we obtain

Substituting this quantity into (1.4), we obtain for E^ a value
that is a factor of// greater than (4.9) and is therefore not the
magnetic analog of (1.5).

As already noted in Sec. 4, the quantities P^ and M^ do
not enter symmetrically in Eqs. (4.8) and (4.9) and this leads
to substantial differences in the results for the radiation from
electric and magnetic dipoles.

To obtain the analog of the electric dipole, it must be
assumed at the outset that the magnetic dipole consists of
two magnetic charges, using the analogy between the equa-
tions for electric and magnetic charges. Thus it must be as-
sumed that

= U, (5-12)

c*

(5.13)

Without repeating everything that was said in Sec. 4, we
immediately write down the analog of (4.15) and (4.16)
•»T wae t , ,, -.Lr (o2ns r , T\ tc i A\Hm= ^- [rt [r1mi]] Msa — [rjp,] Pgla, (5.14)

— G)2ra , , ,, (02rt2 . ,, « ,, „ „,
[r,mj Mga + —ji— [rj [rjpj] Pgw, (5.15)

,1. (5-16)

Using (4.19) instead of (4.21), we obtain

HQ = —£L Ms<a {[r, [r.m,] -pn [rt [i.mjl}, (5.17)

which is its analog with E^ replaced by Hm and Pffl replaced
byMw.

From here, for the VCR from a dipole formed by two
magnetic poles, equations analogous to (2.33) and (2.34)
should be obtained, namely,

= J ^-
m||T,

W
2c4

(5.18)

(5.19)

These formulas must be compared to the formulas for the
usual magnetic moment. As already noted in the discussion
of Eq. (4.35), i.e., for a dipole oriented parallel to the velocity
with/x = 1 and H2=£, it coincides with (5.18).

With regard to a magnetic dipole oriented perpendicu-

lar to the velocity, the assumption that the transformation
(4.24) with /i = 1 is valid indeed makes (4.37) agree with
(5. 19), since in this case n4==n2£.

For fj. ^ 1, agreement cannot be achieved, even with an
assumption such as (4.24).

The system of equations (5.3), (5.6), (5.7), (5.8), and
(5. 1 1 ), as already noted, is the magnetic analog of ( 1 . 1 )-( 1 . 5).
Here, if (5. 1 1 ) is viewed as the analog of ( 1 .4), then there is no
need to restrict its application to the region where/g(U vanish-
es. The agreement between these equations and Maxwell's
equations for magnetic charges and magnetic currents is
demonstrated in Sec. 6.

Using these equations, we can obtain the equations for
the VCR from a magnetic charge and from any multipole,
analogous to the analysis of Sees. 1 and 2 for an electric
charge and multipole.

We shall examine the motion of a point magnetic charge
g with velocity v, as is done in Eq. (1.13) for the electric
charge e. Comparing (1.1) and (5.3), in analogy to (1.15), we
can set

.„ = • • a (p, a) «-*«/», (5.20)

then a(o)f) satisfies Eq. (1 . 16), From here, from ( 1 .20), (5. 10),
and (5.11), analogously to how this was done in Sec. 1, we
obtain

H = — g£ — c-tov"ap o.,»s dp
 K >

(5.21)

(5.22)

«/". (5.23)

These formulas can, of course, be written immediately as the
magnetic analog of (1.22)-(1.24). In the same manner, by
virtue of the obvious analogy to (1.26)-(1.27), for the VCR
from a magnetic charge g we obtain7

to. (5.24)

As shown above (Sec. 3), knowing the radiation from a
charged particle, it is not difficult to determine the radiation
from any linear multipole by analyzing the interference of
waves emitted by separate particles. It is evident that if the
magnetic poles and electric charges are arranged in the same
manner, then the result of interference will be the same. It
follows from here that all formulas for the energy of the
radiation and the magnitude of the forces acting on the elec-
tric multipoles (3.7), (3.10)-(3.12), (3.17) are also correct for a
magnetic multipole, if in them fi is replaced by e and the
multipole moment p, is replaced by the magnetic multipole
moment m; (in Ref. 7, as already repeatedly noted, it was
assumed that/* = 1, and therefore for magnetic multipoles,
as compared to electric multipoles, an additional factor of
«2=£ has appeared).

Further, it was shown in Sec. 3 that the formulas therein
coincide with the results of Sec. 2, where the force retarding
the system of charges was examined. To determine this
force, it is necessary to know the action of the electric and
magnetic fields on each of the charges. In the case of two
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electric charges, this force is equal to (2.1). In the case of
magnetic charges, Eqs. (3.11), (3.12), and (3.17), under the
condition that (3.13) holds, must also be correct for a mag-
netic charge with p, replaced by m, and /a replaced by s.
From here it follows in an elementary way that instead of
(2.1), in the case of magnetic charges, the force acting on the
charge is equal to

» — |r ivE<»]- (5.25)

This formula is indeed the magnetic analog of (2.1) and, in
addition, the second term in this equation is the analog of the
Lorentz force for magnetic charges.

6. APPENDIX. MAXWELL'S EQUATIONS FOR MAGNETIC
CHARGES AND CURRENTS

From the symmetry of the equations presented in the
preceding section for magnetic charges pg and currents jg

with respect to the usual equations, determining the field of
electric charges/? and currentsj, it follows that Maxwell's
equations must be satisfied for nonzero pg andyg.

We shall verify this, repeating mainly the discussion
presented at the beginning of Sec. 1. If the electric current
density isy = 0 and the electric charge density is p = 0, but
magnetic charges g and magnetic currents jg exist, then
Maxwell's equations obviously have the form

(6.1)

,-r. 4rt . , 1 SB,-curlEm = —],„ + —
dt

(6.2)

(6.3)

(6.4)

div B(o;

div Du> = (

For convenience of analysis, we repeat the formulas present-
ed in the preceding section and show that they are equivalent
to(6.1)-(6.4):

(6.5)

(6.6)

(6.7)

T 1C I , , . ir JIB „
i,a = — grad div KM Km,m (0 U6 C

,. v , icodiv Km-] i

.
o H

4n

(6.8)

(6.9)

First of all, it is evident that the assumption (6.5) means that
(6.4) is satisfied. Further, from (6.1), substituting (6.5), we
have

(6.10)

Equation (6.10) is satisfied if the quantity operated on by the
curl operator is the gradient of a scalar function. As usual, it
is assumed that

(6.11)

The validity of this assumption follows from the arguments
given below. The field equation (6.6) for H^ follows from
(6. 1 1) and (6.7). It is evident that here Eq. (6.6) is not restrict-
ed to the region whereyg<u = 0, as noted in going from (5.10)
to (5. 1 1). Thus with the help of the vector potential Km , it is
possible to satisfy the field equations for Ea and Hw and the
Maxwell equations (6.1) and (6.4), if the Lorentz condition
(6.7) is adopted and the validity of (6. 1 1 ) is assumed. We must
now prove that the Maxwell equations (6.2) and (6.3) lead
under the same conditions to the wave equations (6.8) and
(6.9) for Ka, and^a, • From Eqs. (6.3) and (6. 1 1) we obtain

di v BB = - |i di v grad X. — f div -^f- = - 4nPw, . (6. 1 2)

Expressing div d Kw /dt in terms of x with the help of (6.7), we
indeed obtain Eq. (6.9) for the scalar potential. Further, from
Eqs. (6.2) and (6.5) we have

curl curlKm = grad div Ku — V2KW = — — j g a + — -^-.

Using the quantity grad div Ka , from (6.6) we arrive at Eq.
(6.8). The system of equations (6.5)-(6.9) is thus indeed equi-
valent to Maxwell's equations (6.1)-(6.4).

The author thanks V. L. Ginzburg for remarks, which
were incorporated into the review.
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