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Possible types of liquid-crystalline order in systems consisting of rod-shaped or diskotic, as well as
structurally more complicated, molecules are examined. Special attention is devoted to new
liquid-crystalline phases. Their basic physical properties are analyzed. The phase diagrams and
the peculiarities of the critical behavior are investigated in each case. Analogies to some well-
known problems in the physics of the condensed state are discussed.

CONTENTS

1. Introduction 42
2. Systems of rod-shaped molecules 42

a)Nematic-isotropic-liquid phase transitions, b) Nematic-smectic-A transitions, c)
C and B smectics.

3. Systems of diskotic molecules 51
ajPhase diagram, b) Phase transitions, c) Dimensionality effects.

4. Cubic liquid crystals 57 '
5. Conclusions 59
References 59

1. INTRODUCTION

Research on the physics of liquid crystals progressed
rapidly in the last two decades. Reviews, monographs, and
numerous original scientific papers were published, and in-
ternational conferences were held. In the early years of this
"boom" reviews and conferences were dedicated primarily
to general problems involving the physics and chemistry of
liquid crystals (structural classification, phase diagrams,
synthesis, etc.), but boundaries between separate areas of the
science of liquid crystals gradually appeared. This general
trend in the development of all sciences can be simply illus-
trated by bibliographic citations of reviews and mono-
graphs.

The first review in Russian by I. G. Chistyakov1 ap-
peared in Uspekhi Fizicheskikh Nauk in 1966 and was de-
voted to the general subject of liquid crystals. The well-
known monograph by de Gennes entitled "The Physics of
Liquid Crystals"2 (1974, translation into Russian 1977), for
example, is of the same nature. On the other hand, Pikin's
monograph3 published in 1981 examines primarily the the-
ory of different types of instabilities in liquid crystals, and
the book by Belyakov and Sonin4 (1982) concerns only the
optics of cholesteric liquid crystals.

Such a separation into separate specialties already oc-
curred a long time ago in, for example, solid-state physics. A
review entitled "Solids" in Uspekhi Fizicheskikh Nauk
would now appear very peculiar. This probably has to do
with the fact that the general problems of solid-state physics
have now been solved. For example, all possible symmetry
groups of solid crystals have been classified.

An entirely different situation exists in the physics of
liquid crystals. All possible types of intermediate (falling
between solid crystals and an isotropic liquid) phases have
not yet been discovered. Their properties have by no means
been investigated completely, even theoretically. Five years

has already passed since the time that the "last" monograph
of a general nature was published (1977, translation into
Russian 1980).5 During the course of these years, new types
of ordering have been discovered in liquid crystals (so-called
diskotic and cubic phases, new types of smectics, etc.). Ap-
preciable progress has also been made in understanding the
nature of liquid-crystalline ordering, characteristic of phase
transitions, relation between purely "liquid-crystalline"
problems and general problems in the physics of the con-
densed state, theory of critical phenomena, etc. The entire
scope of such problems is not reflected in the review litera-
ture, either in this country or abroad. On the other hand,
there is a considerable literature on this subject (especially in
the last two years) dispersed over different (often inaccessi-
ble) publications (papers on the physics of liquid crystals are
occasionally published in mathematical, physical, chemical,
biological, technical, and even medical journals.

These circumstances justify the publication of a review
in Uspekhi Fizicheskikh Nauk on general progress in the
physics of liquid crystals.

2. SYSTEMS OF ROD-SHAPED MOLECULES

a) Nematic-isotropic-liquid phase transitions

We shall examine a system of rod-shaped molecules. At
sufficiently high temperature the molecules move freely and
rotate relative to one another. We have actually an ordinary
isotropic liquid (I) with full rotational and translational sym-
metry:

0(3)xr(3).

The thermal motion partially "freezes" as the temperature
decreases. The rod-shaped form of the molecules leads to the
fact that in some temperature range the molecules can no
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longer rotate freely relative to one another, but their centers
of mass can move freely relative to one another. In this tem-
perature range, full translational symmetry T(3) remains
(the centers of mass of the molecules are distributed uni-
formly, as in an isotropic liquid), but rotational O (3) symme-
try is broken. In the simplest form of rod-shaped molecules,
the group O (3) is replaced by one of the uniaxial symmetry
groups/)^ orD^,, (depending on the presence of a center of
symmetry). Thus, in this temperature range,the ordinary un-
iaxial nematic phase N with symmetry

is stable. All presently known thermotropic nematic liquid
crystals (i.e., liquid crystals in which a phase transition oc-
curs with a change in temperature) have precisely such un-
iaxial symmetry. There are two examples6 of a more compli-
cated biaxial breaking of rotational symmetry in lyotropic
liquid crystals (i.e., liquid crystals in which the phase transi-
tion occurs with a change in concentration). This phase cor-
responds to the so-called biaxial nematic liquid crystals N2.
In the case of biaxial nematics, different symmetry groups,
which are subgroups of O (3), are in principle admissible:
orthorhomibic, triclinic, hexagonal, or cubic. Groups,
which are forbidden in solids by the presence of the crystal
lattice, are also possible. Generally speaking, there are no
grounds for excluding the subgroups of O (3) with a fifth or
seventh order, etc., axis. The symmetry of actually existing
N2 phases has not yet been established.

The physical order parameter that distinguishes N- or
N2-phases from an isotropic liquid I is a symmetrical trace-
less tensor of rank two Qa/3 , related linearly to the anisotrop-
ic part of the dielectric or magnetic susceptibility. Within the
framework of Landau's theory, the N (or N2)-I phase transi-
tion is described by a corresponding expansion of the free
energy density/ 2:

/ = /o

/o =

A,

1 C «%p)2 -f . (1)

The presence of a cubic invariant in (1) makes the I-N phase
transition a first-order transition. The characteristic feature
of practically all known thermotropic nematics (and several
thousand of them are currently known) is that the I-N tran-
sition is very nearly a second-order phase transition. This
closeness is characterized numerically by the parameter
S =(TC — T*)/TC <1 (Tc is the temperature of the true first-
order phase transition and T * is the temperature at which
A (T *) = 0, i.e., at which a second-order transition would oc-
cur). In most liquid crystals that have been studied, the pa-
rameter£~ 10~3.7 In any mean-field theory with an interac-
tion described by a single coupling constant, we have 8 ~ 1.

Several possible explanations of this fact have been pro-
posed, but none of them agrees with the experimental data as
a whole. The problem is that on the one hand, scattering of
light in the isotropic phase8 is described well by Curie's law
(and, therefore, in agreement with the mean-field theory, we
must have S ~ 1), while on the other, calorimetric data9 indi-

cate some transitional behavior (so-called cross-over) from
critical and tricritical to "mean-field" behavior.

It could be that fluctuations of the smectic order param-
eter which interact with the orientational order parameter,
are always present.

X-ray diffraction studies show1'2-5 that as a result of
fluctuation, "virtual" smectic clusters (so-called cybotactic
clusters) can form in the nematic phase. Other degrees of
freedom, related with, for example, the conformation of mo-
lecular chains, etc., could be important. However, no model
of this kind agrees quantitatively with the experimental data
(and, in particular, such models do not explain the smallness
of the parameter S ) .

The question as to why the nematic-isotropic-liquid
phase transition is always precisely a weak first-order transi-
tion can be approached somewhat differently.

It could be that fluctuations are not at all small, while in
the isotropic phase, Curie's law involves an analysis of ex-
perimental data over a too-wide temperature interval.
Strongly developed fluctuations could alter the character of
the I-N transition and make it a very weak first-order phase
transition. This was first pointed out by Nelson and Pelco-
vits.10 Indeed, the Hamiltonian corresponding to the free
energy (1) can be rewritten in a simplified form. We shall take
into account the fact that the order parameter in the N phase
is uniaxial:

(2)

where n is the director and s is the modulus of the order
parameter. We shall assume further that the coefficients of
elasticity in (1) are equal Z,, = L2, and we shall neglect fluc-
tuations of the modulus. Then, instead of (1) we obtain

- J ' 2 J I '

where

K = 2Ls2.

In this approximation, the nematic is equivalent to the mod-
el of interacting three-component spins with fixed length.

In the two-dimensional case d = 2, for model (3), there
exists a continuous phase transition at zero temperature
Tc = 0 (i.e., fluctuations with d = 2 are so strong that they
completely suppress the phase transition into the isotropic
liquid at finite temperature). In a space with d = 2 + E, the
transition temperature differs from zero and Tc ~(rf — 2).
The fluctuations are strong as before, and the transition re-
mains a second-order phase transition. Of course, this is all
valid if fluctuations of the modulus can be neglected. Fluctu-
ations of the modulus can be included in model (3) using
perturbation theory,10 and they are indeed insignificant. The
second remark is related with the fact that the transition to
d = 3 does not correspond to small values off. For this rea-
sion, with d = 3 the cubic invariant, which is absent in the
three-component spin model could become important. The
phase transition becomes a first-order transition. However,
the reason noted above (strong fluctuations with d = 2, mak-
ing Tc = 0 and leading to a continuous transition) indicates a
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tendency for such a transition to be close to a second-order
phase transition.

An analogous argument also works for biaxial nema-
tics. In the simplest single-constant approximation with the
same assumptions as above concerning the fluctuations of
the modulus, the Hamiltonian (3) is equivalent to the model
of five-component spins of fixed length. With an obvious
relabelling of the components, we obtain

>^)2, (4)

where// = 1,2,3,4,5; y = 1 ,2 , . . . , d (D is the dimensiona-
lity of the space);

<?33=-

The uniform part of the free energy (not containing gradi-
ents) determines Sp Q1^ and, therefore, the "spin length,"
since

Qh = yl
Thus fluctuations with d = 2 make the biaxial-nematic-iso-
tropic-liquid phase transition a second-order phase transi-
tion, and the temperature of the transition (Tc) equals zero in
this case. With d = 2 + e, as long as fluctuations of the mo-
dulus can be neglected, the transition remains a continuous
one and the temperature of the transition is low. It therefore
appears that the transition with d = 3 will be a second-order
phase transition or close to it. Of course, the critical indices
depend on the number « of spin components. For this rea-
son, phase transitions from the uniaxial nematic into the iso-
tropic liquid (n = 3) or from a biaxial nematic into an iso-
tropic liquid (« = 5) belong to different universality classes
(for a more detailed discussion see, for example, Ref. 11).

We have examined isolated N-I or N2-I transitions. A
combined N2-I-N phase diagram can also be constructed. If
higher (fifth and sixth) order terms are included in Landau's
expansion (1), then the phase diagram in, for example, the P-
T plane will look schematically like the diagram shown in
Fig. 1.

There exists another factor, characteristic for phase
transitions from a uniaxial or biaxial nematic into an iso-
tropic liquid, which was pointed out by Pokrovskii et al.'2 As
already mentioned, the order parameter for such transitions
is a symmetrical tensor of rank two with vanishing trace.

N

ff

This tensor is characterized in three-dimensional space by
two invariants (since Sp Qa/3 = 0). These invariants can be
chosen, for example, as the diagonal elements of the tensor:
A i, A2, and /13, which are interrelated by the' condition
A i + A2 + A3 = 0. However, it is more convenient to choose
a different system of invariants: Sp Q2

a/3 and Sp Q^. The
point is that within Landau's theory, for example, the free
energy is a complicated algebraic function of the invariants
/I,, A2, and A3 and a simple power-law function of the invar-
iants x = Sp Ql, and y=Sp Qle.

These systems of invariants are interrelated in an ob-
vious manner:

x=*»-*.;+>,», y = x ; + x j + x j (A1+x2 + ̂  = 0)- (5)
The thermodynamic potential of the system is in general
some function of the variables X and Y: <t> (X, Y).

Let the function <P (X, Y) have an absolute minimum at
some point X0, Y0. Then X0, Y0 determines the equilibrium
value of the order of the nematic liquid crystal. Equations (5)
also determine the characteristic values of the order param-
eter in this equilibrium state. In addition, in general,
^i 7^27^3' which corresponds to a biaxial nematic liquid
crystal. It is, of course, possible that at some special points
two of the characteristic values will be equal, in which case a
uniaxial nematic liquid crystal is obtained.

Exactly the opposite situation exists experimentally.
Several thousand thermotropic nematic liquid crystals are
now known (i.e., liquid crystals in which the phase transition
occurs with a change in temperature), and they all are uniax-
ial. It is clear that this fact cannot be related with random
circumstances. On a microscopic level, the uniaxial nature of
nematic liquid crystals is a result of the plate-like elongated
form of the molecules and their almost free rotation around
the long axis. In the macroscopic language, the uniaxiality of
liquid crystals imposes some restrictions on the form of the
function <P (X, Y}. The point is that the function <P (X, Y} does
not necessarily have an absolute minimum. In addition, even
when such a minimum does exist, it may be inaccessible
among the permissible values of the parameters X and Y,
which are interrelated by a Cauchy-Bunyakovskii type ine-
quality following from (5):

m< * x3'2. (6)
1/6

In these two cases (i.e., when 0 (X, Y) does not have an abso-
lute minimum or inequality (6) is not satisfied at the mini-
mum), both partial derivatives d<P /dX and d&/dY differ
from zero. It is easy to see (see Eqs. (7)-(9) below) that at the
saddle point in which only one of the derivatives 30 /dX or
d<P /dY differs from zero, the eigenvalues of the tensor Qa0,
which minimize the thermodynamic potential, equal zero or
are complex, which does not correspond to real liquid crys-
tals. To determine the equilibrium form of the order param-
eter Qap, it is necessary to minimize the function <P(X,Y):

a©
=0-

FIG. 1. Smectic form of the state diagram N2-I-N.
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It is easy to verify with a simple substitution that the uniaxial
tensor of the form Qs =s(nlnj — -^<5,y), where n is a unit
vector, satisfied Eqs. (7). In addition, the modulus of the
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order parameter 5 must obey the condition

2 __ _ ] o _ — C\
<i ir \~ " -ITT- ~~~ V« (8)

It can be shown that Eqs. (7) do not have other solutions. To
do so, we rewrite (7) in a system of coordinates in which the
tensor Qa0 is diagonal. Since in this case /13 = — (/I, + A2),
we obtain from (7)

(9)
dY

Dividing the first of these equations by the second (this can
always be done since by definition d<P /3X ^0 amd d<P /
dY 7^0) and transforming to the variablez = A ,//l2, we arrive
at a cubic equation for z, which does not depend on the de-
rivatives d<P /4>X and d<t> /dY. Inasmuch as z = 1 is the root
of this equation (A, = A2 = — 5/3), it is easy to find the re-
maining roots z = — 2 and z = — 1/2, which likewise cor-
respond to the uniaxial tensor Qy (A, = 25/3, A.2 = — s/3 or
/I, = —5/3, A2 = 25/3). Equation (7) has no other roots.
Thus, in this situation (d4> /d X ̂  0 and d<P /dY / 0), the or-
der parameter can only be uniaxial.

As follows from Landau's expansion (1), the isotropic-
liquid-nematic phase transition is a first-order phase transi-
tion:

Such an expansion is admissible if the moduli of the eigenval-
ues 1/1,1 and |A2| are sufficiently small. The coefficient A
vanishes at some point T *, close to the transition point Tc. It
follows from the experimental data1'5'7 that the jump in the
modulus of the order parameter at the transition point is
5-0.4 and the ratio (Tc - T*)/T*~10~3, i.e., the coeffi-
cient B in the expansion (1) is relatively small, but remains
finite in a comparatively narrow temperature interval of ex-
istence of the nematic phase. For this reason, we can con-
clude that in the entire region of existence of the nematic, the
derivative d<P /dY = B ^0 and, therefore, the order param-
eter Qv is uniaxial (according to Eq. (8) and d<P /dX ^0).
Thus, in the microscopic language, the uniaxiality of all ne-
matic liquid crystals is related with the smallness of the coe-
ficient B in Landau's expansion (1). Experimental data13

likewise show that the coefficient B is virtually independent
of pressure and, for this reason, it is unlikely that an isolated
point where 5 = 0 will be observed.

Summarizing, we can say that the nature of the isotrop-
ic-liquid-nematic phase transitions is still not completely
understood. In addition, even general fundamental ques-
tions (reason for the weak "first-order nature" of the transi-
tion, etc.), not to mention the detailed description of the tem-
perature dependences of the heat capacity, scattering cross
section, and other critical effects, are not understood. The
construction of a theory of this transition is a task for the
future. Systematic experiments on a homologous series of
liquid crystals, which would permit establishing, for exam-
ple, the dependence of the thermodynamic parameters, criti-
cal indices, etc., on the length and conformation of the flexi-

FIG. 2. Structure of a smectic-A liquid crystal.

ble chains or on the width of the temperature interval of
existence of the nematic and smectic phases, are also re-
quired.

b) Nematic-smectic-A transition

Above, we examined the behavior as the temperature
decreases of an isotropic liquid consisting of rod-shaped par-
ticles. A natural consequence of the shape of the molecules is
that in such a system, first of all, the rotational group is
broken, i.e., a transition into the nematic phase occurs.

Rod-shaped molecules which make up liquid crystals
are usually constructed in such a way that they have a rigid
central core to which one or two flexible terminal chains are
connected. In addition, the interaction of molecules via the
terminal groups is much stronger than via the "lateral sur-
faces," i.e., central cores. This circumstance leads to a series
of important consequences. First of all, as the temperature
decreases further, an entire range of parameters can exist in
the nematic phase in which the interaction of the lateral sur-
faces is still too small to produce quasicrystalline ordering in
a plane perpendicular to the long axes of the molecules, but
the interaction of the terminal groups is now strong enough
for one-dimensional crystalline ordering to appear along the
long axes of the molecules. The situation described above
corresponds to partial breakdown of translational invar-
iance. The phase which is being formed here is called a smec-
tic-A liquid crystal (or, more briefly smectic-A). The symme-
try of smectic-A in the system of centrosymmetrical
molecules (i.e., achiral) is

Several models of the smectic-A phase exist (see, for
example, Refs. 2, 3, 5, and 7). In any case, a smectic-A differs
from a nematic by the presence of a density of mass centers of
molecules modulated along the director.

Po + -7= hp (r) exp (i?0nr) + c.c. ] ) ;
y z )

Here 2ir/q0 is the distance between smectic layers. The com-
plex modulation amplitude ^(r) is the order parameter for
the nematic-smectic-A transition in De Gennes' model,2 in
which higher order harmonics of the density are neglected.

In what follows, we shall examine precisely this model
because, first, the experimental data5 indicate that higher
order harmonics are not significant and, second, inclusion of
higher order harmonics (and their interaction with the fun-
damental harmonic) reduces to a renormalization of the co-
efficients of the Hamiltonian in de Gennes' model. Landau's
expansion of the free energy in powers of ̂  and V^ must also
include the invariance of the system under a simultaneous
rotation of the director n and the direction of modulation of
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the density (i.e., the system of smectic layers). We thus ob-
tain

B.=

Here ,4 ° = a(T-Tc0 )/Tc0 and Tc0 is the temperature of the
nematic-smectic-A transition in the mean-field approxima-
tion; U°, C °, and C° are the coefficients in Landau's expan-
sion and, in addition, the form of the last term takes into
account the local, i.e., gauge, invariance mentioned above.

The complete Hamiltonian must also include the con-
tribution from the energy of deformation of the director, the
so-called Frank elastic energy:

dr Ki (div n) -K2 (n rot n)«

where K, are the start-up values of Frank's moduli (i.e., neg-
lecting fluctuations of the smectic order parameter if>).

The complete Hamiltonian Hs + HN is similar to the
Ginzburg-Landau Hamiltonian for the superconductor-
normal-metal phase transition. The start-up anisotropy of
the correlation lengths can be eliminated with the help of a
scale transformation, after which we have

(10)

where
AQ 770 / r\ \ 2/1
•̂  __ ^ js 0 IS I y (( \ ^'J

= q (CD*.

The Ginzburg-Landau Hamiltonian for the suprconductor-
normal-metal transition has the form

#s + Y# J S (VA'-V^)2dr, (11)

where we must make the substitution q0 = 2e (e is the elec-
tron charge) in H, , and K = fif/^ir \fi0 is the Bohr magne-
ton). The vector potential A has two independent compo-
nents, since changes of A are restricted by the condition of
gauge invariance. Analogous restrictions exist on the devi-
ation of the director <5n, but they are related with the condi-
tion of orthogonality <5n-n0 = 0.

The Hamiltonians (10) and (11) would coincide exactly
if K ° =0 and K I = K ° . In general, for liquid crystals this
is, of course, not the case. The term K° (div n)2 destroys the
gauge invariance of superconductors:

There is also another very important difference between
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the Hamiltonians (10) and (11). The point is that according to
the well-known assertion by Landau and Peierls (see Ref.
(14)), true long-range order cannot in general exist in smectic
liquid crystals, i.e., <^> = 0, while in superconductors
(if>) / 0. The absence of long-range order in smectics is relat-
ed with the fact that in these crystals (as in any three-dimen-
sional system with one-dimensional modulation of the den-
sity), fluctuations of the displacements (phases of the order
parameter) diverge. These divergences lead to many difficul-
ties (including fundamental difficulties) in calculations per-
formed using the Hamiltonian (10). Dunn and Lubensky15

proposed an artificial technique involving the introduction
of a continuous gauge, parameterized by the angle 9:

The real function Le (r) is determined by the choice of gauge:

v(9, p )A e (p) = 0,

v(6, p) = e( cos 9 + tp sin9,

where Ae (p) are the Fourier components of Ae (r); e, is a unit
vector along n0; and p = p/|p|.

For 6 = 0, the vector Aeln0 and the condition of ortho-
gonality is satisfied. For 0 = ir/2, v = ip and A^/2 (p) are
transverse relative to p. True long-range order exists in this
gauge and the divergences characteristic for smectic liquid
crystals do not occur. All calculations in the gauge with
6 = -rr/2 are analogous to those for the superconductor-nor-
mal-metal transition. In this sense, this gauge can be called a
superconducting gauge.

The problem lies in the fact that the gauge 6 = ir/2 does
not satisfy the orthogonality condition <5n-n0 = 0, i.e., Aw/2

does not have the significance of a director.
Thermodynamic characteristics such as, for example,

the heat capacity do not depend on the gauge. For this rea-
son, they can be calculated in any convenient gauge. On the
other hand, some important quantities (the correlation func-
tion, for example) depend explicitly on the gauge. It is also
interesting to note the distinguishing feature of the super-
conducting gauge. Long-range order is conserved only with
6 = IT/I. Dunn and Lubensky15 showed that (ipv/2 ) > (if>e )
for all e.

The most difficult problem is the transition from the
gauge Q = ir/2, which is convenient for performing calcula-
tions, to the physical gauge & = 0. The difficulty lies in the
fact that at 0 = 0 the conditions of applicability of the ap-
proximations usually used in calculations of the critical in-
dices and other characteristics of the transition are no longer
satisfied. In addition, even in the gauge 8 = -rr/2, the univer-
sality class depends on the start-up values of elastic modu-
li.15 In all cases, the relations between indices, known from
the theory of similarity, are satisfied:

Ye=Ji/2 = V|| (2 — Tm) = vj.(2 — TU),
where the symbols || and i refer to the direction parallel or
perpendicular to the director. The index of the heat capacity
does not depend on the gauge and satisfies the general rela-
tion of the theory of similarity:

2 — a = v,| + (d — l )vA.
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The susceptibility Xo(l'T] m an arbitrary gauge is related
with the susceptibility in the superconducting gauge. There
are, however, no reliable analytical results for 9 = 0. It is
interesting16 that already in the nematic phase (i.e. , for r > 0),
the correlation lengths |"|f and £f, measured from x-ray
scattering, differ from J" y and £x found from the change in
gauge-independent characterisitcs (for example, from
Frank's moduli). As T—+ + 0 independently of the values of
Vy and vi we have £*~£ *2An£ *• This unusual behavior is
a precursor of the fact that there is no long-range transla-
tional order in the smectic phase (i.e., for T < 0). In addition,
this fact could indicate that the critical point for the nema-
tic-smectic-A transition is isotropic (vy = VL }, in spite of the
fact that experimentally vf <vjf. At an isotropic critical
point with d = 3 and 6 = 0, the correlation function G0(r,
r = 0) decreases as a function of distance more rapidly than
any power of r (for large r|), so that the susceptibility
XO(T = 0) is finite. The susceptibility diverges as r = r, <0,
while the heat capacity and elastic moduli have singularities
at r = 0> — r,.

The situation, of course, changes if V| ^ VL , If the smec-
tic-A-nematic transition occurs due to the formation of dis-
location loops (so-called topological melting), then, as Nel-
son and Toner17 showed, v\\ =2vi. In this case,18 for
example, ^ (T = 0}/T7y(r = — 0) and i]L (r = 0) ̂  77+
(T = — 0), i.e., the critical point does not coincide with the
endpoint on the line of stationary points of the smectic-A
phase (while for Vy = VL :i)\\ (T = — 0) = 77 y (0) and
rjL(r = — 0) = rjL(Q)). In the liquid-crystalline gauge Kl is
always a real variable. The renormalization group equation
for AT, has the following stationary points: Kf = Q, Kf = oo
or 0 < K f < oo , but V|| = (5 — d )v± (d is the dimensionality
of the space). In the first case, there is a superconducting
analogy; in the second, there is an anisotropic scaling with
the nonuniversal relation Vy > VL ; and, in the third, we al-
ways have Vy = (5 — d }VL .

In general, from the point of view of the power-law fall-
ing off of the correlations and the absence of long-range
translational order, smectic-A liquid crystals appear to be
similar to two-dimensional systems. There is, however, a
very important difference, related with the role of anhar-
monic terms.19'20 In a two-dimensional degenerate system
(for example, an isotropic Heisenberg magnetic material),
the Hamiltonian in the harmonic approximation has the fol-
lowing form:

Anharmonic terms are proportional to higher order
powers of the gradient and are not dangerous in the long-
wavelength limit. Indeed, the first anharmonic contribution
to the correlation function ~ j" d 2q/q2q*—* 0 as g— »• 0. The
gradient part of the free energy of the smectic-A phase (i.e.,
the elastic energy of smectic-A), however, is anisotropic. For
this reason, in this case, there are "dangerous" anharmonic
terms, leading to significant corrections to the correlation
function. We shall discuss this question in greater detail,
following primarily Ref. 20.

Let us separate out in the Hamiltonian ( 10) of the smec-
tic-A liquid crystal the modulus and phase of the order pa-

rameter, and let us fix the modulus. For r < 0, the phase of
the order parameter is related with the displacement of the
smectic layers (4). Using this relation, we obtain from ( 10) in
the harmonic appproximation

„ f r 1 „ / du \ 2 1 / a*u , dhi \ 2 1 ,,Ht== } L75 (IF) +-*' (IP-+IF) J d r'
where B is the modulus of elasticity, related with the com-
pressibility of the system of smectic layers.

In terms of Fourier components

The Hamiltonian H0 describes the so-called Lifshitz critical
point.21 It can be shown that the entire region of existence of
the smectic-A phase is a Lifshitz point with parameters
m = 2 and « = 1 (m is the number of the components of the
soft mode, i.e., m shows how many coefficients in front of the
components (V,u)2 vanish, and n is the number of compo-
nents of the order parameter).

At a true Lifshitz point the Gaussian approximation,
for which the correlation function is given by

, if qi = o,
if 9 1 = 0,

is unstable. The interaction ~ u(q)\4 leads in three-dimen-
sional space to a change in the indices of the correlation
function g(q^ , qj, i.e., to a different (non-Gaussian) stable
stationary point.

In contrast to an ordinary Lifshitz point, an interaction
of fluctuations of the displacement which does not vanish as
q— >• 0 does not exist in a smectic liquid crystal. A dangerous
interaction in this case is, for example,

There are also dangerous third-order anharmonic terms

which always arise when the symmetry of the smectic rela-
tive to the simultaneous rotation of layers and of the director
is taken into account. For example, the simplest diagrams
for the self-energy part of the Green's function g(q\\, qx) (Fig.
3) give

, In a

Analogously, the vertex function r(p,,p2,p3,p4), describing
renormalization of the interaction (Fig. 4) is given by:

Here a is a dimensionless cutoff parameter in the diverging
integrals.

FIG. 3. Anharmonic corrections to the correlation function of displace-
ments of layers in smectic-A.
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FIG. 4. Renormalization of interaction in the smectic-A phase.

The problem of summing all diagrams of this type for
Yo hi o> 1 is well known (the so-called parquet approxima-
tion). We present the final expressions for the correlation
functions:

2/5
(13)

(14)

In terms of the harmonic part of the elastic energy of the
smectic-A phase, Eqs. (13) and (14) indicate a nonanalytic,
with respect to the wave vector renormalization of the mod-
uli B and K} :

Thus the gradient expansion does not, strictly speaking,
make any sense. For small wave vectors, the renormalized
value of the modulus of elasticity B *— »• 0, while Frank's con-
stant K f — »• oo . Rough estimates19"20 show that for realistic
values of the parameters for A smectics, the logarithmic cor-
rections to the moduli lie at the limits of accuracy of present
optical methods.

It is more promising, in this sense, to measure the de-
pendence on the magnetic field.20 For calculations, it is con-
venient to introduce into the harmonic Hamiltonian H0,
aside from the magnetic field, an additional contribution to
the elastic energy:

These terms are usually not included because they are signif-
icant only for z-dependent displacements of the layers and
are therefore small compared with the "solid-state" term
(du/dzf. However, such terms arise with renormalization of
the start-up harmonic Hamiltonian and, in addition, are re-
quired in order to restore the symmetry of the system.

Thus the complete Hamiltonian of the smectic-A phase
s

H = 4- J

jf. Ji f

(5<?i| + K'q\ q\ + X0fcVi

id3g2d3gr3d3g46 (q4 + q2 + q3 + q

X (q3J.q4i) " («Ii)

u (q) |2

It is convenient to introduce instead of the scalar field
w(q) a two-component vector field:

I = q± u (q).
With the help of this vector field, the start-up function is
given by

In a large range of angles x< 1 (x = cos 6, where 6 is the
polar angle), the problem has become equivalent to the prob-
lem of a phase transition in four dimensions. The role of
"mass" (or proximity to the transition point) is played by the
magnetic field Xa h 2- The logarithmic corrections (13) and
(14) correspond to the well-known results for a phase transi-
tion with d = 4 and n = 2. Instead of the wave-vector depen-
dences found above, we now have magnetic-field depen-
dences (of the susceptibility, heat-capacity, structure factor,
intensity of light scattering, effective elastic moduli, etc.),
which can in principle be checked more simply experimen-
tally.

Of course, the analogy to the problem of a phase transi-
tion cannot be complete because of the presence of triple
vertices, which are small for x< 1.

Thus, we have described in this section the smectic-A
phase and its transition into a nematic liquid crystal. It
should be noted that here the situation is clearer from the
theoretical point of view than for the nematic-isotropic-liq-
uid transition. In particular, within the framework of the de
Gennes' model, all possible stationary points describing the
nematic-smectic-A transition have been established. The
experimental situation is more confused. Data obtained by
different groups often contradict one another. This could be
related in part with the use of unsuccessful or inadequate
methods of investigation (for example, differential scanning
calorimetry). The reason could be more profound and it is
necessary to take into account the narrowness of the region
of existence of the smectic-A phase and, therefore, of the
interaction of the smectic-A, nematic, and other order pa-
rameters. This work has not yet been performed. A some-
what more detailed discussion of this will be given in the next
section.

c) C and B smectics

As the temperature decreases further, smectic-A liquid
crystals transform into a modification with even lower sym-
metry. Now even theD^h X T(2) group is broken. The break-
ing of uniaxial symmetry />„,, corresponds physically to the
appearance of tilting of molecules relative to the smectic lay-
ers. Such liquid crystals are called C smectics. Their symme-
try is now biaxial. For example:

C2h X T (2).

Another possibility is related with breaking of two-dimen-
sional translational symmetry T(2). In the simplest case
complete crystallization occurs. The symmetry of the molec-
ular crystal formed is described by one of 230 Fedorov
groups.

FIG. 5. Structure of smectic-C liquid crystal.
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There is, however, in many cases a less trivial breaking
of T(2). Based on an analysis of experimental data, Birgenau
and Litster22 proposed the possibility of a transition from the
smectic-A phase into a liquid crystal, which is a three-di-
mensional analog of the hexatic phase, i.e., into a layered
system such that in each layer there is long-range orienta-
tional order of bonds between nearest-neighbor particles.

We shall describe this sitution in somewhat greater de-
tail. Crystalline order, as is well known, is described by the
Fourier components of the mass density pK, where g is a
reciprocal lattice vector. In the presence of true long-range
order (pg ) ̂ 0. In an ordinary liquid, (ps ) = 0, while the
correlation function (/3g(r)^og(0)) decreases exponentially
with distance:

<Pg(r)Ps(0)>~e-r /-, r->oo,

where £ is of the order of several angstroms.
True long-range order does not exist in two-dimension-

al systems due to strong fluctuations. However, at sufficient-
ly low temperatures the correlation function decreases in a
power-law fashion and not exponentially:

<pg( r )p g (0 )>~r -X (15)

where the index ?7g depends on the temperature and on the
elastic moduli. Together with the power-law falling off of
correlations (quasi-long-range order), there is a real long-
range order in the orientation of bonds. We introduce the
angle 0 between an arbitrary axis in the plane and the direc-
tion of the bond between neighboring particles. If we are
talking about hexagonal symmetry (and we are discussing
precisely this type of smectic-B), then it is convenient to
choose ip = e6'8 as the orientational order parameter. Thus
the following sequence of phases occurs in two-dimensional
systems: 1) a solid crystalline phase with quasi-long-range
translational order and long-range orientational order of
bonds; 2) an intermediate phase with short-range transla-
tional order and quasi-long-range orientational order of
bonds (this phase is called a hexatic liquid crystal; the solid-
state shear moduli vanish in this phase, but anisotropy and
the concommitant contribution to the elastic energy, similar
to the Frank energy in nematics, are present); 3) a liquid
phase with short-range translational and orientational or-
der.

Order in a layer is very important in the formation of a
smectic-B layered system. If the layers are solid, then due to
the interaction between them, quasi-long-range transla-
tional order becomes true long-range order (since the suscep-
tibility in the phase with a power-law falling-off of correla-

FIG. 6. Two-dimensional hexatic liquid crystal (system with short-range
translational order and quasi-long-range orientational order of bonds).

tions is infinite). Crystalline B smectics are obtained in this
manner. If the layers are hexatic liquid crystals, then a hexa-
tic smectic-B is obtained with short-range translational or-
der (the susceptibility of the phase with short-range order is
finite) and long-range orientational order of the bonds. Fin-
ally, the packing of the liquid layers corresponds to a smec-
tic-A.

Traditionally, systems which result from both types of
breaking of the J(2) group are called smectic liquid crystals
of type B (smectic-B), although the first type of B crystals are
true anisotropic three-dimensional crystals. The existence of
both types of B smectics may be considered to be firmly es-
tablished.23'24

The smectic-A-smectic-C transition has been studied
quite well theoretically and experimentally (see, for exam-
ple, Pikin's monograph3). For this reason, we shall limit our-
selves only to a brief description of existing models, drawing
attention to only some new (not reflected in Ref. 3) questions.

We first note that the A-C transition must be examined
more systematically, taking into account the presence of a
nematic phase. Two models have been proposed, which de-
scribe in a unified manner the N-, A-, and C-phases. Chu and
McMillan's model25 works with different order parameters
for smectic modulation of the density and of the tilt angle.
The form of the phase diagram is determined by the nature of
the interaction of the order parameters. In the simplest case
of a quadratic interaction, such that the tilt angle necessarily
equals zero in the absence of a smectic order parameter, the
phase diagram contains a triple point at which the N-A-C
phases coexist. The N-C transition is a second-order phase
transition. In this transition, all three Frank's moduli di-
verge: 8Kj ~g {£ is the correlation length, while in de
Gennes' simplfied model,2 which examines this transition as
an isolated transition, 8K, ~|"2/3).

Another type of model was proposed by Chen and Lu-
bensky.26 In this case, a single order parameter describing
the modulation of the density is used. However, for the N-A
transition, the free energy minimum corresponds to a den-
sity modulation with wave vector + q0n (n is the director,
q0 = 2-ir/l, I is the distance between the smectic layers), and
additional modulation in a direction perpendicular to the
director appears for the C phase. This additional modulation
is mathematically related with the change in the sign of the
coefficient in front of V2 (the index 1 indicates directions
orthogonal to the director). For this reason, the point of co-
existence of all three phases is a Lifshitz critical point, since
this coefficient vanishes at this point. All three Frank moduli
diverge on the line of the N-C transition 8Kt ~|'2, and at the
Lifshitz point 8K ,_2 ~ln J", 8K3 ~|".

Recent experimental data27 on the topology of the
phase diagram in the neighborhood of a N-A-C point and
on the critical indices do not agree with any of the models
described above. In any case, for the substances investigated
in Ref. 27 it may be viewed as firmly established that the
triple N-A-C point is not a Lifshitz point.

It is possible that in order to give an adequate descrip-
tion of the situation, it is necessary to use a tensor order
parameter of the following form28:
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(16)

where p0 is the average molecular density, i/> is the smectic
modulation of the density, a0 and aa are the isotropic and
anisotropic parts of the polarizability, and Qtj is a symmetri-
cal tensor with zero trace. It is very important that the tensor
Qif can be biaxial even for cylindrical molecules, if the nor-
mal to the smectic layers is not parallel to the director. This
is the degree of biaxiality 77 and describes the transition into
the C phase, while the amplitude of the density modulation
^0 is the order parameter of the A phase. The expansion of
the free energy, taking into account this circumstance and
the form of the tensor (16), has the following form:

b^-^l <17)

where^ =A0(T— T*),AQ,B, D, a,b, c>0. Expansion (17),
in accordance with the experimental data,17 gives a tricriti-
cal point on the A-C line near the N-A-C point and correct-
ly describes the phase diagram found experimentally.

It is also impossible to exclude the possibility that dif-
ferent types of N-A-C phases, described by the different
models discussed above, exist. Another characteristic of A
and C phases, which was pointed out by Anisimov,29 should
also be taken into account in the interpretation of experi-
mental data. The point is that the N-A and A-C transitions
are very weak in the sense that the order parameter in them is
small. Indeed, the amplitude of modulation of the density in
the A phase is small compared to the average density. Analo-
gously, the tilt angle of molecules in the C phase is also small.
This weakness of the transition most likely indicates the
smallness of the coefficient in front of the square of the order
parameter in Landau's expansion. For this reason, for weak
transitions the singularities of thermodynamic quantities
such as the heat capactiy should be weakly manifested, and
often they are not observed at all.

We shall now consider B smectics. As already noted
above, the existence of at least two types of B smectics has
been clearly established: real three-dimensional crystals and
systems formed by a stack of hexatic liquid crystals.

Smectic-B liquid crystals of the first type are distin-
guished from "ordinary" molecular crystals by the presence
of a strong anisotropy of elastic moduli with and between
layers. If the elastic energy of this type of smectic-B is writ-
ten in the usual manner, then we obtain, for example for
hexagonal symmetry

where ua is the displacement vector within a layer, xa is the
coordinate within a layer, and v is the displacement and z is
the coordinate perpendicular to a layer. The elastic moduli y
and £ are small compared with the remaining moduli A, fi,
and v.

The anisotropy of the elastic moduli leads to the very
unique character of the diffraction of x-rays by films consist-
ing of this type of smectic-B liquid crystals30: for sufficiently

thin films with N layers, roughly speaking less than the an-
isotropy of the elastic moduli, the scattering has a "two-
dimensional" character. In particular, the Debye-Waller
factor drops off in a power-law fashion. For a larger number
of layers the scattering is "three-dimensional." We note the
reasons for this behavior without presenting the detailed cal-
culations. The point is that for films of finite thickness, the
integrals over the wave vector entering into the expression
for the structure factor are replaced by a sum over the wave
numbers corresponding to the finite size:

, 2nn

(n = , 1, 2 , [N/2] and d is the thickness of the film).
Separation of the two-dimensional contribution to the struc-
ture factor corresponds to the possibility of the existence of
synchronous oscillations of all layers (i.e., n = 0).

The situation with the second type of smectic-B is more
confused. As already mentioned above, according to current
concepts, such mesophases are formed by a system of layers,
each of which is a hexatic liquid crystal (i.e., translational
order is absent, but there is an orientational order of the
bonds between particles). Usually, one is dealing with hexag-
onal orientational order, this is the origin of the term hexa-
tic. Disappearance of hexatic order in layers, i.e., a transition
to liquid layers, corresponds to a phase transition in a smec-
tic-A liquid crystal. When the tilting of molecules relative to
the layer is included, a smectic-C liquid crystal also appears
in the phase diagram.

It is convenient to introduce the following parameters,
which characterize the symmetry breaking leading to the
second type of B and C smectics31:

where Pg fixes the orientational (hexagonal) order of the
bonds and <pt fixes the tilting of the molecules.

In terms of these order parameters, Pg = 0 and <pt = 0
in a smectic-A and Pg^=0 and cpt = 0 in a smectic-B of the
second kind. In the simplest model proposed by Bruinsma
and Nelson,31 the hexatic-liquid-crystal-isotropic-liquid
phase transition is described by a classical .¥-7 model:

i, i
(19)

where the modulus of the angle 0, is ir/3, and the summation
extends over the nearest neighbors. The angle #,• is the angle
between the bond connecting the nearest neighbors and
some fixed axis. Analogously, the transition between smec-
tic-A and -C liquid crystals is likewise described by the X-Y
model:

#t = AScostf,-^). (20)
i, i

The principal assumption of the model31 is related with the
form of the interaction:

flP
lnt=-AScos(66I-6#,). (21)

In the mean-field approximation, the solution found in Ref.
31 gives the phase diagram illustrated in Fig. 7.

It is important to note that although formally the "usu-
al" smectic-C phase (i.e., Pg = 0, <p^ ^0) does not occur in
this model, hexatic order rapidity decreases with distance to
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FIG. 7. State diagram with smectic-A, -B, and -C liquid crystals.

the right of the dashed line and is actually extremely small in
the entire region J ~ ' > w/2. It is still not known where real
C smectics fall with respect to Pg. It is for this reason that in
Fig. 7 we designated as C the entire region J ~ ' < w/2.

The second type of B smectics can be identified experi-
mentally by the hexagonal modulation of the structure fac-
tor or by the unusual features of melting, i.e., transition into
the A phase. These unusual features are related with the fact
that with a B-A transition it is the hexagonal order within a
layer, and not the three-dimensional translational order,
that melts. The results obtained by Calder et a/.32 and by
Stishov et al.33 are an indication of this unusual melting of B
smectics.

It is also important to note that the identifcation of B
smectics of the second kind by the hexagonal modulation of
the structure factor requires perfect liquid-crystal speci-
mens. The problem is that diffuse scattering by different
types of defects can imitate modulation of scattering with
angular scanning. As is well known, the structure factor of
diffuse scattering by defects does not become infinite at
nodes of the reciprocal lattice; it usually has the bell shape as
a function of the momentum, and it is in general anisotropic,
which is what makes this contribution similar to the struc-
ture factor of hexatic liquid crystals.

3. SYSTEMS OF DISKOTIC MOLECULES

a) Phase diagram

Liquid crystals, formed by diskotic molecules, the so-
called diskotics recently discovered by Chandrasekhar et
al.,34 are increasingly attracting the attention of researchers.
This is due, on the one hand, to the potential importance of
such systems in applications and, on the other, to the very
interesting physics of the mesophases themselves. A unique
situation, predicted by Landau and Peierls (see Ref. 14), oc-
curs in diskotics. In one dimension the system has the prop-
erties of a liquid, and in the other two it is a solid. Of course,
the analogy to a liquid should not be understood literally as
the possibility of free one-dimensional flow. For example, in
attempts to realize Poiseuille flow in a capillary, due to the
ordering effect of the surface, a boundary layer arises with a
rigid two-dimensional lattice, preventing flow and leading to
anomalously high viscosities. This is completely analogous
to the well-known permeation phenomenon in smectics.2

The fact that the system is a one-dimensional liquid indicates
only the absence of correlations in the arrangement of the
centers of mass of the molecules along a straight line. From
the point of view of the hydrodynamic manifestations of

such a liquid, the crystal is similar (although, of course, not
identical (see Refs. 35-37)) to an anisotropic solid.

On the other hand, for purposes of structural classifica-
tion as well as for investigations of phase transformations in
such liquid crystals, the absence or presence of correlations
in the arrangement and orientation of diskotic particles is
very important.

Let us examine the condensed system formed by disko-
tic molecules. At sufficiently high temperatures the centers
of mass of the molecules as well as their orientation under
the action of thermal motion vary chaotically in time and
space. This state is reminiscent of an ordinary isotropic liq-
uid, which has full translational and rotational symmetry:

T(3)XO(3).
As the temperature decreases, the thermal motion slows
down and full symmetry is partially destroyed. Due to the
anisotropic diskotic shape of the molecules, a situation can
arise in which the translational symmetry is conserved while
the rotational group is broken going over into one of the
uniaxial groups, for example D^H . Figuratively, we can say
that as the temperature decreases, diskotic molecules slip
freely relative to one another, but can no longer rotate freely.

Such a phase, having the symmetry, for example,

is the analog of the ordinary nematic phase. It is distin-
guished from nematic liquid crystals (nematics) formed by
rod-shaped molecules only by other indications of the an-
isotropy of the dielectric permittivity and other tensor char-
acteristics. However, although the global symmetry of ne-
matic phases consisting of diskotic and rod-shaped
molecules is identical, their local symmetry relative to hy-
drodynamic transformation r— > r + u is different. The point
is38 that in ordinary nematics the role of the director is
played by the average orientation of the long axes of mole-
cules, i.e., a contravariant vector, while in nematics consist-
ing of diskotic molecules the director is the normal to the
plane of the predominant orientation of molecules, i.e., a
covariant vector.

As the temperature decreases still further, translational
symmetry is also broken. Diskotic molecules are usually
constructed in such a way that they contain a rigid central
core and flexible hydrocarbon chains, lying primarily in a
plane determined by the rigid core. This structure of the
molecules leads to the possibility of a partial breakdown of
translational in variance: the interaction of molecular tails in
the plane of the disks is much stronger than between differ-
ent disks. Such an interaction can therefore, in principle,
lead to the formation of one of the two-dimensional crystal
lattices, while one-dimensional translational invariance is
conserved in the orthogonal direction. We shall call such a
phase a strictly diskotic phase. Its symmetry group is repre-
sented in the form

T (1) x L x R, (22)

where L is the symmetry group of one of the admisssible two-
dimensional lattices, and R is a subgroup of the O(3) group:
the symmetry group of the director n. The group R includes
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FIG. 8. Structure of a diskotic liquid crystal.

transformations belonging to the group Z2:n—»• — n, relative
to which the physical characteristics of diskotic and nematic
phases are invariant. For example, if we have a hexagonal
lattice, then R forms the group D6h (in contrast to the nema-
tic phase, for which the corresponding group is Dmh).

We can say pictorially that a diskotic liquid crystal has
a two-dimensional lattice consisting of liquid columns (while
A smectics, for example, have a one-dimensional lattice con-
sisting of liquid layers).

The above discussion concerned the orthogonal disko-
tic phase, when the director n, oriented along the liquid co-
lumns, is simultaneoulsy perpendicular to the planes of the
two-dimensional lattice. In the case of tilted structures,
when the director forms some fixed angle 6 with the normal,
the symmetry of the system is lowered. For tilted diskotic
phases

A

R = C2h •
We introduce the following notation for phases arising in
systems of diskotic molecules: Cr refers to the crystalline
phase, D, to the tilted diskotic phase; D0 to the orthogonal
diskotic phase; ND to the nematic phase; and I to the iso-
tropic phase.

If pretransitional fluctuations are neglected, then Cr is
an ordinary molecular crystal and I is an ordinary isotropic
liquid. As noted, ND is a nematic liquid crystal, differing
from the usual nematic crystal by the signs of the anisotropy
coefficients. In particular, in the ND phase we have the usual
Frank expansion of the elastic energy, related with the defor-
mations of the director field. However, in the ordinary ne-
matics the Frank moduli are Kl x.K3>K2. In the ND phase
the relations K^ ^K2 > K3 are expected since only a longitu-
dinal bending deformation ~(l/2)K3[n curl n]2 is permissi-
ble in D0 and D, phases.

The energy of distortion of the D0 phase is given by the
elastic deformation of a two-dimensional lattice and, in addi-
tion, the longitudinal bending deformation of the director
field (l/2)K3[n curl n]2 (the remaining deformations (I/
2)A",(divn)2 and (l/2)A:2(ncurln)2 are "forbidden" by the
rigid two-dimensional lattice of liquid columns).

In the D, phase, intermolecular forces determine only
the polar angle of inclination of the liquid columns (or of the
director) relative to the plane of the lattice. However, this
does not lead to corrections to the elastic energy of the D,
phase. The point is that the presence of a lattice of liquid
columns, just as in the D0 phase, forbids twisting (~K2) and

transverse bending (—ATJ deformations, related with the
"free" components Snx and Sny. The component Snz, on the
other hand, is determined by the tilt angle. This is what dis-
tinguishes the situation in the D, phase from the case of C
smectics, where all three contributions to the Frank energy
are present from the components 8n2 and Sny, which do not
determine the tilt angle.

b) Phase transitions

It is convenient to combine the phases occurring in a
system of diskotic molecules into groups, which can be ex-
amined together using a single order parameter. The Cr, D,,
and DO phases form the first group. The D, and D0 phases
differ from the molecular crystal Cr primarily by transla-
tional in variance T(\) along the liquid columns. In the Cr
phase crystalline order arises in this direction, in connection
with which the density becomes a periodic function:

(23)

where i/>x is the complex amplitude of modulation of the
density, while x is a vector in the reciprocal lattice oriented
in a direction perpendicular to the plane of the lattice (z axis).
The amplitude is a slowly varying function of the coordi-
nates: |V^|<|^|. It is natural to choose the quantity Spl as
the order parameter for the group of phases being studied.

The D0, D,, and ND phases form the other group. In
contrast to the ND phases, the D0 and Dt phases have a two-
dimensional lattice of liquid columns. For this reason, the
density is a two-dimensional periodic function:

Here the vectors p lie in the plane of the two-dimensional
lattice (for the D0 phase, p-n = 0 and for the D, phase,
p-n^O). The quantity Sp2 plays the role of the order param-
eter.

The group formed by the Cr, D0, and Dt phases is ea-
siest to examine. On crystallization, the tilt of the liquid co-
lumns relative to the lattice does not change at all in the first
approximation. In addition, the transition is related with the
fundamental period x, while the larger reciprocal lattice vec-
tors 2x, 3x, etc., can be viewed as a perturbation. Terms
proportional to ifax, $\x as well as an interaction of the type
^L $?$? arise in the free energy. After i/>2x is eliminated, the
coefficient in front of $J is effectively decreased. If the sign
of this coefficient changes, then a first-order phase transition
will occur. In the opposite case, the interaction of the ampli-
tudes of the density with different vectors of the reciprocal
lattice can be neglected (taking it into account simply as a
renormalization of the coefficients in Landau's expansion).
In this case, we have the following expansion of the free ener-
gy in powers of Spt or, which is the same thing, ifrx :
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where F0 is the elastic energy of the D0 or D, phase; a, c, y\\.
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and YI are the coefficients in Landau's expansion; and Fel is
the Frank energy related with the admissible deformations
of the director in the D0 and D, phases. The gradient terms
in (25) originate from the two possible quadratic invariants:

| (nV) Pl I2 , | [nvl Pl I2.

We shall examine the phase Dt making the assumption that
the tilting of the columns is small 04. 1 . In this case, the entire
effect of tilting reduces to an angle-dependent renormaliza-
tion of the coefficient

a = a» + Y|J (1 - 92) x2 (26)

where a0 = a0(T — T*) is the start-up expansion coefficient
and, as usual, a = a(T — Tc ), where Tc is the transition tem-
perature.

Expansion (25) is formally analogous to the free energy
functional for the nematic-smectic phase transition or the
Ginzberg-Landau functional for the superconductor-nor-
mal metal transition. Just as in these cases, the transition is
described by a two-component order parameter (complex
amplitude if>K }. For this reason, the free energy does not con-
tain terms that are cubic in the order parameter, and from
the point of view of Landau's theory, such a transition could
be a second-order transition. (This is determined by the ratio
between the coefficients in the expansion in front of ^K and
if>2K-} Striction effects, i.e., interaction with the gauge field
Sn, do not change this result. As first noted by Pikin,3 exclu-
sion of fluctuations 5n from (25) leads to a term ~^£ (and
not i[>3

x , as for A smectics and superconductors) and, for this
reason, does not change the character of the transition. Ac-
tually, the Cr-D0 or Cr-Dt transitions are first-order phase
transitions. However, although the correspoding jumps are
not very small, they are still an order of magnitude
smaller34'39 than with complete melting of ordinary molecu-
lar crystals. The reasons for this are not completely under-
stood. The effect of fluctuations in this case cannot be too
large. The point is that the degeneracy along the directions
of the vector x is absent for the D0 and D, phases since a two-
dimensional lattice is already present (in contast to the case
of a transition from the isotropic phase, where only the mo-
dulus of the vector x is fixed and its orientation can be arbi-
trary, which is what leads to the large phase volume for fluc-
tuations, which in their turn can change the character of the
transition). The first type of phase transition is apparently
related with the interaction of the order parameter i/>x and
noncritical modulations of the density i/>2x > etc-

The angle 0 is an independent order parameter. A sepa-
rate Landau expansion of the free energy must be written for
it. Minimization determines the temperature dependence of
9 and, for example, the dependence of 0 on the concentration
or pressure/9. The temperature of the D0-Cr or D,-Cr tran-
sitions, on the other hand, is determined from (16) with the
condition 9 = 0 or 6 ̂  0, respectively. In this case, depend-
ing on the ratios between the coefficients in Landau's expan-
sion, diverse types of phase diagrams are possible. As an
illustration, Fig. 9 shows the simplest example of D0, D, ,
and Cr phase diagrams.

We shall now proceed to the group of phases ND , D0,
D, . We shall examine a hexagonal lattice and, just as above,

FIG. 9. Schematic illustration of the possible form of a D0-D, -Cr phase
diagram.

we shall retain only the amplitudes of the fundamental peri-
od p0. Then, instead of (24), we have

c.c. ) ,

where

With a ND-D0 or ND-D, transition, in the ND phase the
fluctuation lattice of liquid columns can be oriented arbitrar-
ily in a plane perpendicular to n. The corresponding degen-
eracy indicates the arbitrariness of the angle 13, formed, for
example, by the vector p, and one of the axes of the coordi-
nate system.

We shall include the degeneracy explicitly:
Jl/3

Jl/3

J Xp.
o

It/3

+ J XP. (P) «P (*p, (p) r) ̂ -+ c.c. ]. (27)
o

The Landau expansion of the free energy in powers ofSp2 or
Xvi can be easily written down with the help of symmetry
considerations. In this case, we have an invariant of third
order

Jl/3

= j Xp,(P)Xp.(P)Xp.(P)-^-

and two independent fourth-order invariants

(28)

3 Jl/3

:=2 j hMP)!4-?-.

(29)

The gradient terms must include two types of symmetry:
gauge symmetry, related with simultaneous rotation of the
director and the plane of the lattice, and an in variance origi-
nating from the degeneracy with respect to the angle ft. We
thus obtain
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3 It/3

i=l 0

+ *(n0) (nxp , )« )xp f

= 2 J -?-|[Vi-*(On)(nxp,(P))
3 Jl/3

(30)

i=l 0

+ i6n1(nPj)]Xpi(p')l2,

where the parameter f l reflects the rotational freedom of
clusters in the lattice of liquid columns relative to the direc-
tor in the ND phase, while the term p,- (ft )Sn is related with
the gauge invariance. We shall present the derivation of Eq.
(30). The invariant gradient terms for the symmetry of the
ND phase D^h X T(5) evidently have the following form40:

3 it/3

/'. = 21
i=l 0

3 It/3

—dz

t=l o

The z axis is determined by the equilibrium value of the di-
rector n0. However, we also have local invariance, men-
tioned above. For example, when all vectors p, are rotated by
some angle /2, the displacements u(r) transform according to
the law u = [fir]. In the ordered phase (for T<TC), the dis-
placements u(r) are related with the phase of the order pa-
rameter:

<p, = —PJ [Qr] = r [Qpj].

Therefore,
V<PJ = [Qpj],

from where we obtain

VXPJ = i [&PJ] XPJ-

Here, the rotation of the director changes by

6n = - [n0fl].

From here we can write the expansion
Q = (Qn0) n0 + [n06n].

Analogously,

Q X Pi = (Qn0) [n0pil — (Pi6n) n0,

i.e.,

4r to, = -«' (P«6n) XP; + * K«) [n.p,l,

Expressions (30) follow from here.
The lattice is already fixed below the transition point

Tc. In this case we must set (nil) = 0 in Eqs. (27)-(30) and, in
addition, we have

FIG. 10. ND-D0-D, phase diagram.

tilt angle 9 is independent of the order parameter. The phase
diagram of the system changes depending on the powers of 8
and Xft included in the Landau expansion. The situation
where the interaction of the order parameters is ~% JL is
illustrated in Fig. 10.

The other possibility does not require the introductions
of an additional order parameter. If, while varying the pres-
sure (or some other external parameter), the sign of the coef-
ficient in front of I|| from (30) changes, then configurations
with np^O will correspond to a minimum of the energy. In
this case, higher-order gradient terms of the type

[(nv)2 6p2]2 and I(n x V)2 6p2P

must, of course, also be included. The point of coexistence of
ND, D0, and D, phases, in which the coefficient in front of Iy
vanishes, will be a Lifshitz critical point. The corresponding
phase diagram is schematically illustrated in Fig. 11.

Finally, the ND -I phase transition is analogous to the
transition from an ordinary nematic liquid crystal into an
isotropic liquid.

If the transitions examined above are close to second-
order phase transitions, then they are accompanied by fluc-
tuation phenomena, which can be observed, for example, in
the scattering of light. The critical growth of the elastic mod-
uli is a more specific result for liquid crystals with orienta-
tional degrees of freedom. Thus, with a D-Cr phase transi-
tion, the only Frank modulus admissible in the diskotic
phase K3 increases:

K»~l\,
where £ u is the correlation length in a direction perpendicu-
lar to the lattice for the D-Cr transition. The situation is less
trivial for a ND-D phase transition. The formation of clus-
ters of the diskotic phase in the nematic phase, which do not
transfer the torsional and transverse bending deformations,
leads to an effective critical growth of the corresponding
Frank moduli Kl and K2. The real dependence of K1 and K2

In order to describe the complete phase diagram of ND-D0-
D, systems, it is also necessary to include an expansion with
respect to the tilt angle. The simplest assumption is that the FIG. 11. ND-D0-D, phase diagram with a Lifshitz critical point.
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on the correlation lengths (or, which is the same thing, on the
proximity to the transition point) is determined by the model
of the transition used. If the degeneracy in a plane perpendic-
ular to the director is unimportant due to the interaction
with tensor fluctuations of the orientational order param-
eter,36'40 then the growth of A", and -K"2 is proportional to the
correlation length:

If I? £A j ~ A 2 ~ g|| .

In the opposite limiting case, when orientational fluctu-
ations are insignificant, the rotational degeneracy of the two-
dimensional lattice must be included.41 The corresponding
part of the Hamiltonian now depends only on the modulus of
the wave vector in the plane of the lattice ~ (q\ — p\ )2. Such
an increase of the phase volume of fluctuations leads to
stronger dependences

K\ ~ K2 ~ 5 n ii-
Analogous results can also be obtained for the fluctuation
growth of the coefficients of viscosity.41

We note finally that in the terminology used in Sec. 1, a
diskotic is a Lifshitz point with m = 1 and « = 2. However,
in this case, dangerous anharmonicities do not exist in three-
dimensional space. Nevertheless, near a transition into the
nematic phase, the situation is close to a Lifshitz point with
m = 3 and n = 2. Near this point, the indices of the correla-
tion function change (see Ref. 20 for a more detailed discus-
sion).

c) Dimensionality effects42

As is well known, the most important parameter of con-
densed systems is the static structure factor S (q). The depen-
dence S (q) determines the integral scattering characteristics
of, for example, neutron or x-ray scattering. In ordinary
three-dimensional crystals, 5(q) represents a collection of
Bragg peaks, whose position is determined by the reciprocal
lattice vectors, and a diffuse background. This separation of
the scattered radiation into regular reflections and a diffuse
background is strictly speaking possible only in infinite crys-
tals. In this case, the terms proportional to S functions in
expressions for the scattering intensity describe regular re-
flections and terms that do not contain a (5-function factor
describe the smooth distribution of diffuse scattering. Ther-
mal vibrations in three-dimensional systems attenuate the
intensity of regular reflections due to the Debye-Waller fac-
tor, but they do not give rise to line broadening. In crystals
with finite sizes ~R, the 5-functions are replaced by some
peaks with finite width ~R ~l and, in this case, are indistin-
guishable from a diffuse background. Actually, however, the
characteristic widths of the diffuse background for wave
vectors near Bragg peaks greatly exceed the width of 5-func-
tion peaks, related with the dimensions of the specimen. In-
deed, in an isotropic three-dimensional system, the charac-
teristic nonuniformity of the diffuse background is of the
order of £ /riT (where E is the elastic modulus, r is the reci-
procal lattice constant, and T is the temperature). For typi-
cal values of the parameters (E~lOn erg/cm3, r~108

cm"1, r~10~14 erg), this quantity ~109 cm~l, which

greatly exceeds the R 1 width of Bragg peaks for all admis-
sable sizes of specimens.

A different situation occurs in systems with partial
translational ordering, whose great diversity gives us differ-
ent types of liquid crystals. For example, if we are concerned
with one-dimensional translational order (smectic liquid
crystal), then in an infinite specimen 5-function Bragg peaks
are completely absent because the Debye- Waller factor di-
verges. However, near reciprocal lattice sites the structure
factor is singular, which reflects the slow (power-law) fall-
ing-off of correlations in such systems. For a finite system
with smectic order, the anomalous part of the diffuse back-
ground dominates the quasi-Bragg scattering as well (since
the Debye- Waller factor does not diverge in finite-dimen-
sional systems). And, depending on the parameters of the
system, a finite specimen of a smectic liquid crystal behaves,
in the sense of x-ray and neutron scattering, either analo-
gously to an ordinary crystal (i.e., it has relatively narrow
Bragg peaks) or analogously to an infinite smectic (i.e., the
singular diffuse background dominates).

The principal method for determining the structure of
diskotics is x-ray scattering. In addition, it is most conven-
ient to use a geometry in which scattering occurs in the plane
of the two-dimensional lattice of the diskotic phase. In this
case, the most important question from the experimental
point of view is the method for distinguishing Bragg peaks of
the two-dimensional lattice formed by liquid columns of the
diskotic phase from the corresponding Bragg peaks of the
ordinary three-dimensional crystalline structure. By defini-
tion of the structure factor S, we have

(q, x) exp (iqa)

a, a'

(a is a vector in the two-dimensional lattice of liquid co-
lumns). The first term corresponds to coherent Bragg scat-
tering and the second describes the diffuse background (non-
coherent scattering). We begin with the coherent scattering

The first sum in an infinite crystal gives, in the usual manner,
5-function Bragg peaks, and the second factor is the Debye-
Waller factor:

2exp(zqa) 6 (q — r),

\ _ g-ZW-

where y0 is the area of an elementary cell in the two-dimen-
sional lattice; TV is the number of cells; and, T is a reciprocal
lattice vector. In a finite crystal, the 5-functiuons are re-
placed by some (depending on the shape of the specimen) <5-
like functions with width R~l.

Less trivial dimensionality effects can appear in the De-
bye- Waller factor. In the harmonic approximation we have

Substituting here the expression for the correlation func-
tions, we obtain
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(31)

Different types of dimensionality effects are, in princi-
ple, possible. In the simplest case, it may be assumed that the
properties of the finite system are the same as those of an
infinite system. In other words, we can examine an infinite
system, but the scattering is realized in some small part of it.
In this case, all dimensionality effects are related simply with
restrictions on the range of integration. We shall examine a
system with dimensions L'XL = XL (L is the direction
along the liquid columns).

The problem contains a characteristic parameter with
the dimensions of length:

,Far from a transition into the nematic phase, A is of the
order of the molecular size d, but near the transition point
E—* 0 and A—>• oo. The second term in (31), which occurs if
K =£ 0, describes scattering by liquid columns, the dimension-
ality dependences of the corresponding contribution to the
Debye-Waller factor are trivial:

(a is the period of the lattice of liquid columns).
We note, however, that the "liquid" contribution 2 Wf

is practically independent of the dimension L .
We shall now examine the case x = 0. The scattering is

determined by the lattice of liquid columns. LetL '—>• 0 (actu-
ally, it is required that AL >L2). We then have

Tq* f d2p dif &P_
} pa

The first term describes the contribution of a single lattice
layer and the second describes the contribution of the three-
dimensional system. We thus obtain

2W = 2nEL

(32)
where

ln-

arctg -^—

x -
x

The asymptotic behavior of this function is given by

,p (x) = • — 4a; In x as

<p (x) = 2-3/2n as

To observe dimensionality effects in this case, the following
inequality must be satisfied:

) _ ,
~~ c2'

The separation of the Debye- Waller factor into two- and
three-dimensional contributions has the following signifi-
cance. In reality, we have a sum over integer-valued vectors
t = 2trn/L. Equation (32) corresponds to singling out the

term n = 0 and replacing the remaining terms in the sum by
an integral over /. Such a replacement is justified because in
our system there is a mode with T = 0, in which the crystal-
line layers move as a whole. Such a mode is admissible only
at the free boundaries of the diskotic liquid crystal layer. On
the other hand, since the dependences are quite weak (loga-
rithmic), it is possible to single out accurately only the term
with n = 0. As L2 ~L 'A—* oo, the two-dimensional contri-
bution to the Debye-Waller factor approaches zero and a
transition into the "three-dimensional" case thus occurs.

The other situation occurs when L 2>L 'A. Here, we
must replace the sum by an integral over the transverse mo-
menta:

2W--

The terms m = n = 0, however, cannot be singled out. The
point is that such a mode would correspond to synchronous
bending of all liquid chains, and therefore, simply to bending
of the entire specimen as a whole. A cylindrical specimen of a
diskotic liquid crystal is in itself unstable relative to such
bending; bending of the entire specimen as a whole is, how-
ever, forbidden by the boundary conditions (simply speak-
ing, by the presence of rigid lateral walls of the vessel bound-
ing the liquid crystal). A simple but cumbersome calculation
gives

2W-.
L'

We note that in the given geometry, dimensionality ef-
fects are much more significant in diskotic liquid crystals
than in ordinary three-dimensional crystals because ^Ja/L'
>a/L'.

In three-dimensional crystals with chain-like anisotro-
py dimensionality effects also have a different character. The
point is that we now can single out a one-dimensional mode
related with synchronous compression of all chains. This
mode includes displacement of v atoms:

oR7_ ™ f dt TV f
2nEL'* } «2 T (2n)s E J t

dtd*p

Such a separation is justified analogously to the one present-
ed above. The three-dimensional integral is proportional to
~(Tx2)/(Ea), and the one-dimensional integral to (Tx2L )/
(EL>2). Dimensionality effects are appreciable for L' < ^La
A chain-type anisotropy only improves this inequality.
Thus, in diskotic liquid crystals with a geometry AL ' <L2,
the largest dimensionality effects occur when K = 0 and
q=£Q, while in three-dimensional chain-like crystals, they
are more strongly manifested when x ̂ 0 and q = 0.

Diffuse scattering can be examined in an analogous
manner.

Comparing the expressions for the "two-" and "three-
dimensional" contributions to diffuse scattering, we find
that dimensionality effects are manifested in diffuse scatter-
ing when L 2 <AL ' with thicknesses L much less than some
critical value L d2:

8,/Ar
In (22/Ar) L'

56 Sov. Phys. Usp. 27 (1), January 1984 E. I. Kats 56



(r and z are the coordinates of the scattering region).
We shall not present the expressions for the structure

factor of diffuse scattering bcause they are very cumber-
some. We shall only describe the results qualitatively. If the
dimensions of the scattering region satisfy the condition
AL ' > L2, then we have two characteristic lengths Lc2 and
Id2. The quantity Lc2 is determined only by the structural
parameters of the diskotic liquid crystal, temperature, elas-
tic moduli, and dimensions. The parameter!, d2 depends also
on the region of scattering being examined, i.e., on the wave
vectors p. It is easy to see that when the following inequal-
ities are satisfied.

A*2

we always obtain

^d2 > ^C2-

We thus have in this case:
1) For L<Lc2 <Ld2, diffuse and coherent scattering

are determined by two-dimensional fluctuations. The struc-
ture factor has the form

S ( p , 0)~A-*r+S(

where the index x = Tq2/4irE.
2) In the region Lc2 <L<Ld2, coherent scattering is

now three-dimensional, while the diffuse scattering still has
a singular two-dimensional character.

3) Finally, for L>Ld2, both types of scattering are de-
termined by three-dimensional fluctuations.

In a geometry AL ' <L 2, such a separation of scattering
into one-dimensional (chain-like) and three-dimensional
contributions is impossible for reasons already discussed
above. The one-dimensional contribution to the structure
factor occurs only for diffuse scattering and is related with
displacements v of particles along the liquid columns. For
x =£ 0, this contribution competes with the three-dimension-
al scattering by displacements of the two-dimensional lattice
of these columns.

Let us summarize. The structure factor of diskotic sys-
tems has an entire series of singularities. We should first
indicate that diffuse scattering plays a much more important
role in diskotic liquid crystals than in three-dimensional sys-
tems. The point is that in diskotic liquid crystals the Debye-
Waller factor is large and coherent scattering is correspond-
ingly weakened. The ratio of the intensities of both types of
scattering is larger in diskotic liquid crystals than in ordi-
nary three-dimensional crystals by the following factor :

•102,

where f(x) = x ln(l + x2) + 2 arctg x — 2x In x, 8 is the an-
isotropy parameter of the three-dimensional system, B ~ 109

erg/cm3 is the modulus of elasticity of the diskotic liquid
crystal, and E~\Q" erg/cm3 is Young's modulus of the
three-dimensional crystal.

The second distinguishing feature of diskotic systems is
manifested in the presence of strong dimensionality effects

FIG. 12. Hypothetical structure of cubic liquid crystals (the centers of
mass of the "molecules" are distributed randomly, but there is a cubic
orientational symmetry).

for thicknesses for which there are no dimensionality effects
in the corresponding three-dimensional system. Indeed, in
an isotropic three-dimensional system dimensionality ef-
fects are manifested for sizes R ~a. In an anisotropic system,
dimensionality effects extend up to large sizes L~d/8 or
L ' ~a/8. Dimensionality effects are even stronger in disko-
tic liquid crystals, and they extend up even larger thicknesses
due to the factor In L /JaA or In -JL 'A /d.

4. CUBIC LIQUID CRYSTALS

Up to now we have been examining liquid crystals cor-
responding primarily to uniaxial breaking of complete rota-
tional symmetry 0(3). This is related primarily with the
shape of the molecule and the symmetry of intramolecular
interaction. Molecular shapes even more complicated than
rod-shaped or diskotic are, in principle, possible. Pata-
shinskii and Mitus'43 and, independently, Nelson and
Toner'7 examined breaking of 0 (3) symmetry corresponding
to cubic symmetry. The molecules forming such a liquid
crystal can be represented pictorially in the form of "jacks"
with a number of arms (Fig. 12). At sufficiently high tem-
peratures the jacks move freely and rotate relative to one
another. We have the isotropic phase

0 (3) X T (3). (32)

However, as the temperature decreases, a situation can in
principle arise when these jacks, continuing to move freely,
no longer can rotate relative to one another because such
rotation is prohibited by the interaction of the long arms. In
this case, 0(3) symmetry is broken, and in particular, cubic
symmetry of such a liquid crystal is possible. For example,

Oh X T (3).

It is convenient to describe these "jacks" by a distribution of
bonds-arms, emanating from a given point r:

(f(r,n),
where f i is the solid angle.

This function/(r,/2 ) can be expanded in spherical har-
monics

f(r, Q) =

;

s (33)

where Y,m (/2 ) are the spherical harmonics. In an isotropic
liquid f(r,n ) averaged over a physically infinitely small vol-
ume is a constant

/ 0 =</ ( r ,Q) ) = L = const.
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In uniaxial liquid-crystals, only the second harmonic in (33)
need be retained. Finally, in the cubic liquid crystals dis-
cussed here, the first non vanishing term of the expansion in
(33) corresponds to / = 4:

, Q)>==</(r, > — /„= 2 «?4
m=-4

In real cubic crystals (Q4m (r)) ^0. However, they also have
the group of finite translations of a three-dimensional crys-
tal.

Actually, not all nine components of the order param-
eter Q4m of a cubic liquid crystal are independent. It is al-
ways possible to transform to a system of coordinates in
which only the components (Q40), (Q^) = (Q4_ _4 ) differ
from zero. Another characteristic of the cubic symmetry is
the equality

«?40>

Instead of the order parameter Q4m, it is possible to use a
tensor of rank four of a special form, called a nonor, to de-
scribe cubic liquid crystals:

where e is a unit vector related with the solid angle f l . A
tensor Qijkl of this type can be expressed in terms of the
components of a triplet of orthogonal vectors /, m, and n:

— 5-

where Q0 is the modulus of the order parameter.
In cubic liquid crystals, all tensors of rank two reduce to

scalars Sy . However, their optical properties differ from the
properties of an isotropic liquid. For example, in an isotropic
liquid birefringence in an electric field is proportional to
~E,Ej , and in a cubic liquid crystal invariant combinations
with a more complicated structure: Qijk,EkE,. The order
parameter of a cubic liquid crystal is manifested directly in
the characteristics determined by tensors of rank four, for
example, in the viscosity tensor. There are experimental in-
dications of the existence of such liquid crystals.44 Possible
candidates are the so-called smectic D, which give isotropic
textures.

In conclusion, we shall describe phase transitions from
a cubic liquid crystal into a true solid crystal and into the
isotropic liquid. Just as we did for the diskotic liquid crys-
tals, we shall choose as the order parameter for the cubic-
liquid-crystal-solid transition the Fourier harmonics of the
density, corresponding to reciprocal lattice vectors of the
solid crystal,

i f x W = Ux(r ) kixu<r) ,
where u(r) are the displacement vectors. The elasticity of the
cubic liquid crystal is determined by the gradients of the
vector triplet /, m, and n, or, which is the same thing, the set
of three rotational angles 0. An obvious symmetry exists:

e (r) -> e (r) + e0,
i|>x (r) -»• tx W exp (ix [60r]).

Taking this symmetry into account, the expansion of
the free energy for the cubic-liquid-crystal-solid-crystal
transition has the following form:

F=-A'Z I* (v-*

where a depends linearly on the temperature, b is a constant.
A and B correspond to the elastic moduli of the solid body
that forms below the transition point, and Kt and K^^ are the
elastic moduli of the cubic liquid crystal (analogous to
Frank's coefficients in nematics).

Within the framework of Landau theory, the transition
being discussed is a phase transition of the first kind (a non-
vanishing third-order invariant exists). There are no grounds
for expecting large fluctuations and changes in the type of
transition due to them.

The transition from the cubic crystal into the isotropic
liquid is described by the expansion of the free energy

From the point of view of Landau theory, this transition
must also be a first-order phase transition. However, in this
case, there is justification for expecting that the fluctuations
will be strong enough to make this transition a second-order
phase transition or close to it.

Indeed, if the fluctuations of the modulus are neglected
(the analysis by Nelson and Toner17 shows that this approxi-
mation is justified), then we have the following form of the
free energy:

where K — 4Q %K', and d is the dimensionality of the space.
Each orthogonal triplet of vectors 1, m, and n can be put

into correspondence with three complex 2x2 matrices. In
this case

F = 4- (4/H \ ddr Sp (VU+ VU).L J

This equality is actually related with a homomorphism
between the rotational group and SU(2). Each SU(2) matrix
can be expanded as follows:

U (r) = *„ W + tax (r),

where a are the Pauli matrices and, in addition, XQ +x2 = 1.
We can now write down the free energy of a cubic liquid
crystal in terms of the unit four-vector:

All results on the critical behavior of four-spins are well
known.'' With d = 2, the fluctuation are so strong that they
make a phase transition at a finite temperature impossible.
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However, for d = 2 + e, a continuous phase transition oc-
curs at the temperature

Tc = 8nK (d — 2).

For this reason, it appears that in three-dimensional space
(i.e., E = 1) the cubic-liquid-crystal-isotropic-liquid phase
transition will also be a second-order transition or close to it.

5. CONCLUSIONS

Thus, above we examined some new types of ordering in
liquid crystals. In most case, there are no reliable (and, some-
times, none at all) experimental data on these new systems.
For this reason, the experimental aspects have practically
not been discussed in this review. In view of the limited scope
of the review, a whole set of problems related with dipole
ordering in liquid crystals, as well as with chiral systems,
was deliberately not considered here. In recent years, ferro-
or antiferroelectric liquid crystals have been studied active-
ly. There are reasons for assuming that the characteristics of
some of the new smectic phases (I, F, etc.) are related precise-
ly with some form of dipole ordering. According to the pure-
ly structural; classification used in this review, however, all
these mesophases must be placed among the different types
of B smectics. The interaction of the ferroelectric, smectic,
and nematic order parameters leads to a large variety of
phases and phase transitions between them. In particular,
commensurate or incommensurate smectics, smectics with
modulation of layers, etc., are possible in such systems.
However, the analysis of these very specific problems can be
a subject for a separate review. The same applies to chiral
systems as well, which include cholesteric liquid crystals
which have been studied for a long time, the relatively re-
cently discovered chiral C* smectics, and the blue phase of
cholesterics, which is being studied once again. The absence
of a center of inversion is characteristic for all these systems.
For this reason, in these systems, there is usually a nonvan-
ishing so-called Lifshitz invariant, which leads to the in-
homogeneity of the ground state. For example, a cholesteric
is a helically twisted nematic, the C* phase is a helically
twisted smectic-C, and the blue phase has a cubic lattice in a
field of orientations (i.e., according to the terminology of this
section, it is a chiral cubic liquid crystal). This, as a rule,
small (on a molecular level) right/left asymmetry (~ 10~3)
leads to a radical difference in almost all properties of chiral
and achiral systems. The monograph by Belyakov and
Sonin4 examines these problems in detail. Finally, we have
not discussed at all the new aspects of the dynamics of liquid
crystals, which also could be a subject of a separate review.

In conclusion, it is my pleasant duty to thank V. L.
Ginzburg for stimulating my interest in the subject of this
review and for discussing its content during my participation
at a seminar at FIAN SSSR, as well as D. I. Khomskii for
many useful remarks.
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