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This review examines the localization of one-dimensional nonlinear waves in an inhomogeneous
multiphase medium. Particular attention is devoted to the localization of two types of waves,
namely, solitary waves (domains) and switching waves that are the separation boundaries between
the corresponding phases (domain walls). The localized state of such waves on both point and
slowly-varying (in space) inhomogeneities is investigated. It is shown that several types of waves
can become localized on inhomogeneities, and variation of external parameters may be accompa-
nied by abrupt transitions between different types of localized waves. The stability of waves
localized on inhomogeneities is examined together with various hysteresis phenomena that may
occur in an inhomogeneous medium. The general results presented in the first part of the review
are illustrated by examples of different physical systems, including superconductors, normal
metals, semiconductors, plasmas, and chemical-reaction waves.
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1. INTRODUCTION

The properties of various types of nonlinear waves are
being intensively investigated at present. Such waves usually
constitute the reaction of a medium to a sufficiently strong
external influence, or they arise spontaneously as a result of
some instability, for example, in active media that are re-
mote from the state of thermodynamic equilibrium.!~® Un-
der certain conditions, this instability may give rise to self-
organization, ie., to the appearance of spatially-inho-
mogeneous stationary structures.*-

Considerable advances have been achieved in recent
years in our understanding of the properties of nonlinear
waves in homogeneous media and, in particular, solitary
waves, i.e., domains” (Fig. 1a), ‘“domain wall”-type waves
(Fig. 1b), and so on. Very powerful mathematical methods
have been developed that can often be used to describe not
only the static properties of nonlinear waves, but also the
dynamics of their interaction with one another (see, for ex-
ample, Refs. 9 and 10).

Less attention has been devoted to the question of the
behavior of nonlinear waves in inhomogeneous media (see,

YSuch waves are customarily referred to as solitons if, after a sufficient
time following their interaction with one another, they retain the shape
and velocity they had prior to interaction {see, for example, Refs. 7 and
8).
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for example, Ref. 11), their localization and stability, and the
dependence of the properties of a wave localized on an in-
homogeneity on the parameters of the medium, external
fields, and so on. It is usually more or less obvious that a
traveling nonlinear wave can be trapped by a sufficiently
strong inhomogeneity (see, for example, Refs. 8 and 12). This
localization (pinning) can result in a substantial change in
the properties of the medium. For example, this applies to
the change in the current-voltage characteristic (CVC) on
pinning, vortices in wide Josephson contacts,'*"!¢ slow
Gunn domains that arise, for example, during recombina-
tional instability in semiconductors,'"'8 resistive domains in
superconductors,'*** charge-density waves in quasi-one-di-
mensional compounds,*>2° and so on.

Usually considerably more attention is devoted to the
phenomenon itself of localization of a wave on an inhomoge-
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FIG. 1. The distribution #{x) for a domain {a) and a “domain wal)” (b).
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neity and the conditions necessary for its appearance than to
the properties of the localized wave as such. On the other
hand, even a relatively weak inhomogeneity can give rise to
an appreciable change in the parameters of a wave localized
upon it and, in particular, to the stabilization of a wave that
is unstable in a homogeneous medium, and also to the ap-
pearance of qualitatively new types of localized waves. The
possibility of localization of nonlinear waves on inhomo-
geneities may give rise to a great variety of hysteresis phe-
nomena in superconductors,'>'%2>7227.28 in semiconduc-
tors (see, for example, Refs. 18 and 19) and semiconductor
structures,®® in low-temperature plasmas,*! and in many
biological systems.>>* It may also give rise to characteristic
anomalies during phase transitions,’*** and so on. The pres-
ent review is devoted to the presentation, from a unified
point of view, of the theory of nonlinear waves localized on
inhomogeneities.

We shall consider systems in which these waves can be
described by the single nonlinear equation

a oy oy 8 _ oy &y
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(1.1)
where u, v, x, g, and f are functions of the variable ¢ (and of
the coordinate x in an inhomogeneous medium). When the
functions u, v, %, ¢ and f are suitably chosen, this equation
describes nonlinear waves encountered in many physical
systems, such as Gunn domains in semiconductors'”'® (¢ is
the electric field), various types of thermal waves (¢ is the
temperature) in superconductors,**>® in normal metals,***
in semiconductors,'”'82%%* ip liquid helium,** in low-tem-
perature plasmas,®"**™*® in combustion in gaseous mix-
tures,***° in chemical reactions occurring on the surface of a
solid catalyst,’">? in concentration waves (¢ is the concen-
tration of atoms or active centers), in alloys** and autocata-
lytic chemical reactions,**-3*%* in vortices in Josephson junc-
tions,"> in antiphase domains in quasi-one-dimensional
compounds®® and systems with electron-hole pairing**-*® (¢
is the phase of the order parameter), in local oscillations near
crystal-lattice defects,’’ in systems of interacting atoms
on a periodic substrate®™®' (¢ is the displacement of an
atom), in nonlinear waves occurring in nonequilibrium su-
perconductors®” (¢ is the modulus of the order parameter, or
the concentration of quasiparticles), in metal-dielectric tran-
sitions,®? and so on.

It is thus clear that we shall be considering a fairly wide
range of physical phenomena described by an equation of the
same form. This similarity of description leads to a number
of specific features that are characteristic for waves localized
on inhomogeneities, independently of their specific nature.
We shall concentrate on these general features and consider
the localization of domains (Fig. 1a} and domain walls (Fig.
1b) on isolated inhomogeneities. Our main interest will be in
the physical consequences that ensue from this. The most
important relationships will therefore be illustrated by var-
ious examples and analogies at the “physical level of rigor.”
The justifications of these analogies can be found in the var-
ious publications to which reference is made throughout this

review.
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FIG. 2. The function f = f () for different values of 5: 1) 8 < 5y, 2) B = B,
3)B=8,>b:

2. NONLINEAR QUASISTATIONARY WAVES
A. Waves in a homogeneous medium

In this section, we shall reproduce the results of the
theory of stationary self-preserving waves ¢ = {x — vt),
propagating in a homogeneous medium with constant speed
v, which we shall use in the ensuing account. For simplicity,
we shall confine our attention to the nonlinear diffusion
equation ( = 0), in which case (1.1) will assume the follow-
ing form in the coordinate frame moving together with the
wave:

d dyp

a8 g P f =0 2.1)

In most of the cases mentioned in the Introduction, the
dependence on ¢ is N-shaped, as illustrated in Fig. 2 (exam-
ples are: semiconductors with negative differential conduc-
tivity,"”!8 superconductors with transport current,'2%37-38
chemical chain reactions in “cold” combustion,**° plas-
mas,>"***~8 and so on).

The function f(¢) depends on external parameters.
These parameters can be, for example, current, illumination
intensity, initial concentration of chemical reagents, rate of
plastic deformation, and so on. We shall confine our atten-
tion to the simplest case, where the totality of external condi-
tions can be described by introducing the single parameter 3,
which will thus characterize the strength of external in-
fluences on the system. A typical shapeof f = f(¢,5 }is shown
inFig. 2. When 8 < 8,, the equation f (1,3 ) = O has the single
root ¥ = ¥, whereas, for 5> f,, it has three roots: ¥ = ¢,
¥ =9, ¥ = ¢,. Consequently, when 8> f3,, the system can
be in one of three homogeneous states. When x > 0, v > 0, the
states for which df/dy¢ > O (Fig. 2) are stable under small
perturbations 8¢ ~ exp(A? + ikx), and the maximum growth
rate § = Re A (k }occurs for k£ = Osee, for example, Ref. 17).
Thus, when 8> 5, the states ¢ = ¢, and ¢ = ¢/, are stable
and can coexist, at least in principle, in the form of two
phases with the boundaries {domain walls) between them ei-
ther at rest or moving.

To describe inhomogeneous distributions ¢ = ¢(x,t}
corresponding to the two-phase region (Fig. 1), we must exa-
mine the corresponding solutions of (2.1). This problem has
been solved in many papers for different physical, chemical,
and biological systems.'7'8-4%.50.65-68 Here we shall employ
a qualitative classification of inhomogeneous solutions
¥ = ¥(x), which provides a graphic description of the pheno-
menon and is based on the formal analogy between (2.1} and
the equation of motion of a particle of mass x, where, in

A. V. Gurevich and R. G. Mints 20




FIG. 3. The “potential energy” U = U{(¢) for different values of 8: 1)
B<B, 2B <B<B,.3)B=F,.48>8,.

general, this mass depends on the coordinate # in the pres-
ence of potential energy U = — S(¢) and frictional force
(vv — q)dy¢/dx, and x plays the role of time. If we multiply
(2.1) by xdy/dx and integrate with respect to x, we obtain
¥
S (p) = | #f d,
o
Figure 3 shows the potential “‘energy” U = U (¢) corre-
sponding to the “force” f (i) of Fig. 2. Bounded solutions (x)
correspond to finite particle trajectories in the potential
“well” U = U (¢). Clearly, such trajectories arise only for
B>pB, and the corresponding solution ¥ = #{x) describes
self-preserving waves of finite amplitude. The following
types of such waves are possible:

(2.2)

1)Domain wall (Fig. 1b). This solution correspondstoa
“trajectory” ¢ = ¢(x), on which the particle leaves one max-
imum of the potential U = U () with zero initial velocity,
and then enters another maximum of U = U (¢), again with
zero velocity. The necessary condition for such solutions is
that the energy difference AU = S (¥y) — S (¢,) must be com-
pensated by the work done by friction (vv — ¢)d¥/dx, and
this determines the velocity v of the domain wall:
[ o—gn () dz=S1p () = S[w (— o)1,
where (and henceforth) we assume, to be specific, that
Y(— =) = 9, and P(e0) = Y, (Fig. 1b).

There is a large number of systems for which ¢ is small
[qL<x, (L~{x~'3f/3¢], '"* is the characteristic spatial
scale of variation in #(x); cf. Fig. 1]; in particular, they in-
clude a great majority of the examples enumerated in the
Introduction. As a rule, the fact that ¢ is small does not
modify the qualitative aspects of the phenomena under con-
sideration, but enables us to simplify quite substantially our
presentation. For this reason, we shall always assume that
q = 0 unless the finite size of ¢ leads to essentially new ef-
fects.

It is clear from Fig. 3 and (2.3) (¢ = 0) that v>0 for
B> B,,andv <0 whenf < B,. The quantity 5, is determined
from the equations that constitute the so-called ‘“theorem of
equal areas” (see, for example, Refs. 17, 18, 37, 48):

f(ﬁp’ 1Pz) =0, § (ﬁpa 1132) =0 (2-4)

(when x = const, we have the case where the two shaded
areas in Fig. 2 are equal).

(2.3)
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For |8 — B, |<B,, for which v is small, the derivative
di/dx in (2.3) can be calculated by using the solution
¥ = tf(x) describing the static domain wall. We then

haVe'7"8'37
o B—B
v= =S (V2] vV Bdy) " ov, -2, 25)
Po 5p
where

S (4 ~ (B—By) 25 S B ¥ Iy,

and
L

Vg ~ T
have the dimensions of velocity and consist of the scales of
length L and time 7~vL */x that are characteristic for this
problem.

Thus, the domain wall is a switching wave that takes the
system from one stable state i = ¢/, to another ¥ = ¢, or
vice versa (depending on the magnitude of £). A change in
the sign of the velocity of this wave for # = B, is an indica-
tion of the metastability of homogeneous states with ¢ = ¥,
for 8, < B < B, and with ¢ = ¢, for 8> ,. In point of fact,
when a strong external perturbation produces in the speci-
men a sufficiently large region in which ~,, then, in ac-
cordance with the foregoing, this region will expand for
B> B, and collapse for B <, . Similarly, a large enough re-
gion with y~1, imbedded in the “phase” ¢ = ¢, will ex-
pand for B, < B < B, and collapse for 8> B,.

2) Soliton wave-domain (Fig. 1a). This solution may be
looked upon as two domain walls separated by a distance 2D
from one another (see Fig. 1a). The domain corresponds to a
trajectory ¢ = ¢(x) in the potential U (¢) (see Fig. 3) on which
the particle leaves the point ¢ = ¥, with zero initial velocity,
then approaches the point ¥ = ¢,,, turns around, and re-
turns with zero velocity. This solution describes a “strong
field”’ domain (the term is borrowed from the theory of semi-
conductors with negative differential conductivity,'”!® since
¥(x)> ¢, everywhere in the interior of the domain), and ex-
ists only for 8> B,. If, on the other hand, 8, <8 <8,, we
have the possibility of a “weak field” domain for which
Y(x) <, ¥+ o) = 9,. This corresponds to the situation
where the particle begins and ends its motion at the point
¥ = ¥, with zero velocity. Another condition for the exis-
tence of domain solutions is that the work done by the force
of friction along the corresponding trajectory ¥ = (x) is
equal to zero. As a result, the domain is at rest for g = 0, but
moves with velocity v « g/v when g 0.7

The domain length 2D (Fig. 1a) in the region where
B> P, is, generally speaking, of the order of L. The excep-
tion is the case where B—f,,. It is readily shown that, if we
can write S(¢)=S () + b — ,)* for ¢y~),, then
D(B)x — LIn[(f —£B,)/B,] ie.,thedomain canbelooked
upon as two domain walls with weak mutual interaction for
B—B,.

3) Periodic structure. This solution, which may be
looked upon as a sequence of “‘strong field” domains, corre-
sponds to the oscillation of a particle in a potential well
U = U (y) (cf. Fig. 3).
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The stability of the types of waves considered above is,
of course, unrelated to the stability of particle trajectories in
the potential U = U (). Obviously, this must be investigated
separately, using the dynamic equation (1.1). The corre-
sponding analysis (see, for example, Refs. 17, 18, and 65-68)
shows that only the domain wall is stable in the regime in
which the parameter 3 is fixed.

B. Wavesinan inhomogenequs medium (qualitative analysis)
Let us now consider what happens to the results given in

the last section when inhomogeneities are present in the me-
dium. For greater clarity, we shall confine our attention to
the solutions of the nonlinear thermal conduction equation
5 =5 e O, 26
where v is the specific heat, x is the thermal diffusivity
f=W-—-Q, Q(T) is the specific heat release,
W = h (T)(T — T,)/d is the rate of loss of heat to the coolant

at temperature 7,, 4 (7) is the heat transfer coefficient,

d =A/P, A is the area, and P is the perimeter of the cross

section of the specimen.

The equation given by (2.6) describes a broad range of
nonequilibrium phenomena that arise when a medium is
heated by an electric field, by chemical reactions, by plastic
deformation, and so on. When the cross section of the speci-
men is small, or when little heat is given up to the coolant
(dh<x), Eq. (2.6) gives the temperature 7 (x,t ) averaged over
the transverse cross section (the y,z plane). Equation (2.6)
may alsoinclude a term of the form — ¢ 3T /Jx, whichis due
to, for example, the Thomson heat® that is small in compari-
son with Q.

If the waves in which we are interested are to exist in a
homogeneous medium, we must ensure that the heat balance
equation Q (T') = W (T)is satisfied for a number of tempera-
tures. This situation is frequently encountered when phase
transitions occur in the system in relatively narrow tempera-
ture intervals, or when the functions Q (7') or W (T') are N- or
S-shaped, and so on. Figure 4 illustrates some characteristic
cases. For example, Fig. 4a corresponds to a phase transi-
tion, at 7= T, from a highly conducting to a poorly con-
ducting state in the presence of a heating transport current,
and Fig. 4b illustrates the appearance of three crossing
points for Q(T) and W (T) that appear because of the N-
shaped form of W (T}, which often arises when thereis alarge
heat flow from the specimen to the coolant.””’' The S-
shaped Q(T) frequently occurs in gases or semiconductor
plasmas in strong electric fields.”>7* Three crossing points

v
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FIG. 4. Characteristic shapes of Q (T) and W (T') for a phase transition (a)
and boiling crisis of coolant (b) in the case of Joule heating of a conductor
by a current of density in the range j, <j <j*.
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may alsooccurfor Q (T")and W (T )inthe case of second-order
phase transitions, for example, antiferromagnetic transi-
tions in metals that lead to anomalies in the resistivity
p(T).39’43

In the heat-transfer problem that we are considering,
the inhomogeneity in the medium has a simple physical in-
terpretation: it is due to the presence of a region of increased
(reduced) heat release or heat removal. We now proceed to
the case of waves (domains and domain walls) that are local-
ized (T /dt = O)onaninhomogeneity. Equation (2.6) cannot
be solved for 3T /9t = 0 and arbitrary dependence of fand x
on T and x. We shall therefore confine our attention to two
limiting cases, namely, a point inhomogeneity (¢» 1) and a
continuous inhomogeneity (¢«€1). The parameter

e=-2 (2.7)

is the ratio of the characteristic spatial scale L « Jdx/h of
changesin the temperature 7T (x) to the size / of the inhomoge-
neity.

We begin with £» 1, for which the inhomogeneity may
be looked upon as a point source (sink) of heat.”> Equation
(2.6) then becomes

4
dz

«SL_f(T)+F(T) 8 (2)=0, (2.8)
where F~A4 f1, and Af'is the characteristic change in f/(7,x)
in the interior of the inhomogeneity [the specific form of F (T')
is unimportant in this case].? Equation (2.8) admits of a sim-
ple mechanical interpretation: it describes the potential mo-
tion of a particle which, at ““time” x = 0, experiences a shock
that communicates to it an additional momentum F (T, ) at
the point 7,, =T (0). An important point for our analysis will
be that 7, determines uniquely the particle trajectory,” i.e.,
the solutions "= T (x) that are of interest to us.

1) Domain (e»1). For a domain, we have, by virtue of
symmetry, T (x) = T( — x). This is equivalent to the elastic
reflection of the particles at T = T, for x = 0. Applying the
conservation of momentum to this reflection process, we
find that

dar

*az

ar
%z

o= —F (T

+0

Using this relation and the conservation of “energy”

L (xS =5 (2.9)
we can readily obtain the equation for 7, in the form**?*
S (Tw) =5 F* (Tw). (2.10)

This equation is conveniently investigated by a graphical
method. This is done in Fig. 5, which is drawn for
F(T) = const. Thesolid line represents thefunction.S (7")and
broken line F2/8. The presence of several crossing points
corresponds to several types of domain that can be localized
on the inhomogeneity.

We must now consider in greater detail the localized
“strong field”” domains (hot regions in a cold phase). When

2If the transverse size of the inhomogeneity is less than the characteristic
transverse size d of the specimen, the expression for F must be averaged
over the cross section of the specimen.
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FIG. 5. Graphical solution of (2.10) for different cases: a-f <f;, b-
B=08.,cB. <B<PBy, d-B, <B<By,eB=P\.

F> 0 (enhanced heat release in the inhomogeneity), we then

have

iV

d—1+0<0, T'm=max T (z)

(Fig. 6a). The graphical analysis given in Fig. 5 clearly shows
that, when B <f,, three different types of domain can be-
come localized on the inhomogeneity, and two can be so
localized for B> f,. The last conclusion is connected with
the fact that conservation of energy prevents the particle
from reaching the crossing point 3.

When F <0 (reduced heat release on the inhomogene-
ity), we have dT /dx| , , > 0 and the nature of the trajectories
T (x) in which we are interested undergoes a change because
T,, is now no longer the maximum temperature in the do-
main (Fig. 6b). In this case, the particle begins its motion at
T = T,, reaches the crossing point between.S (T') and the hor-
izontal axis, and then turns around and is reflected at point 1
or point 2 in Fig. 5. Obviously, such trajectories can exist
only for >4,

Thus, the inhomogeneity may give rise to the localiza-
tion of several types of domain, both for 8> B, and (this is
the most interesting case) for 8 < f,,, when the *“strong field”
domain cannot exist in a homogeneous medium.

We shall now discuss the stability of domains localized
on inhomogeneities. The points 8 = 3, and 8 = S, (see Fig.
5), at which the two types of domain appear (disappear) si-
multaneously, and coalesce for § =, and 8 =, respec-
tively, are points of bifurcation’® of (2.8). It will be shown
below that, in the neighborhood of such bifurcation points,
the growth rate of the most *“dangerous” perturbations is
small, and vanishes altogether at the bifurcation points
themselves. Thus, the stability of stationary localized do-
mains is violated by infinitesimally small perturbations near
B =B, and B = B . This enables us to deduce the stability
criterion in which we are interested from the following sim-
ple qualitative considerations.

T
T
Im
/] T
g z 0 x
a) b)

FIG. 6. Temperature distribution in a localized domain for F> 0 (a) and
F<0(b).
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Suppose that a weak external influence produces a tem-
perature fluctuation and, consequently, a fluctuation in T,
The domain will, of course, be stable if an increase in 7,
ensures that the total heat W removed from the entire do-
mam exceeds the total heat release Q, i.e., 8f>0, where
f= Q The fluctuation 8f can be written in the form

67: 6Tm 57 | S (W —Q)de—F (T) |,

so that the stability condition for a localized domain assumes
the form

2}

= 2.11
0Tm ( )

CS:D]‘(Jl.z>%p.—

Tm

If we use energy conservation (2.9), the equation given by
(2.10), and the relation xf = dS /dT, we can rewrite the left-
hand side of the inequality given by (2.11) in the form

i F et Do Tar- o/ ),

& 05
F(Tm) oT i1,°

6Tm

As a result, we obtain the stability condition for a domain
localized on an inhomogeneity (for a given value of 8 ) in the
form??

=) {Tm >0.

F (s— (2.12)
It follows from (2.12) that, if the solution is stable, then T, /
dB >0, i.e., the temperature of the inhomogeneity increases
with increasing parameter S that characterizes the external
influence. Physically, this condition is fairly obvious.

The inequality given by (2.12) signifies that, if the do-
main is stable, the slope of the graph of S(T) at the point
T = T, is greater than the slope of the graph of F*(T'})/8. In
our specific example (see Fig. 5), the crossing points | and 3
correspond to stable domains. Crossing point 2 (see Fig. 5)
corresponds to an unstable domain. As F—0, this domain
will go over to the domain in a homogeneous medium that
was discussed in the last section.

The domain at temperature 7, that corresponds to
point | in Fig. 5 arises in connection with the local heating by
the inhomogeneity (F> 0) of the original stable homogen-
eous state T = T,. As far as the domain for which 7 corre-
sponds to point 3 in Fig. 5 is concerned, its appearance is
connected with the stabilization by the inhomogeneity of a
region of hot phase with 7'= T,. It is clear from Fig. 5 that
this type of domain will exist for B, <8 <f,, where B, is
determined by the following set of equations:*>?

{ (T, Be) =2 (Tm, Bo),
- [s@. By T, B |, =

As f—f,, the solutions of (2.8) that correspond to
points 2 and 3 in Fig. 5 coalesce into one, which vanishes
abruptly for S<fB,. When this happens, &8 =B,
—B. ~F*3S/3B)or

(2.13)
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6o~ aamt ~ (zg) ="~ () (£)" @14
where we have taken into account the fact that Q~ W. The
ratio 68 /3, may be looked upon as a measure of the effect of
the inhomogeneity on the properties of the domain and, as is
clear from (2.14), it is determined by the ratio of the heat
released in the inhomogeneity, F, and the heat released in the
entire domain, LQ. Correspondingly, we can distinguish
between strong (1"~ 1) and weak (I"<1) coupling between the
domain and the inhomogeneity. The estimate given by (2.14)
shows that the necessary condition for strong coupling is the
presence of astrong (Af /f~¢e> 1) inhomogeneity. If we then
consider the example of a medium heated by a current, this
situation can arise only for high local current concentrations
(4 /A,~+Je, where A, is the cross-sectional area of the in-
homogeneity), or when there is a large change in the conduc-
tivity within the inhomogeneity (o/0,~€).

It is clear from Fig. 5 that, as 8 increases (—f,), the
points 1 and 2 coalesce and, when 8> 3, the static domain
solutions are absent altogether. Both critical parameters, 8,
and B, (B, > B.), are obviously different roots of the same set
of equations given by (2.13) (see Fig. 5).

When 8> 8., the presence of the inhomogeneity leads
to a local heating of the original metastable state with
T =T, , such that the phases cannot coexist and the system
goes over to the state with 7= T, or, in other words, the
phase with 7= T, is absolutely unstable for 8>3, . The
condition 8> B, is analogous to the condition for the igni-
tion of a fuel mixture on a hot surface (see, for example, Refs.
49 and 50).

Thus, in contrast to the homogeneous medium, where
the coexistence of phases with T = T,and T = T, is possible
only when B =B, is strictly satisfied, an inhomogeneous
medium can support several types of stable localized do-
mains that appear in the range 3, <8 <S8, .

The localization of a “weak field”” domain can be exam-
ined in an analogous manner.

2) Domain wall (e 1). The trajectory T = T (x) corre-

sponding to a localized domain wall begins at the point
T = T, (see Fig. 5) and ends at T = T,,, where the additional
momentum F is communicated to the particle so that it
changes its energy by the amount AU = S (T,) — S(T,), and
arrives at 7 = T, with zero velocity. Since AU = §,=S(T,)
«sign( B, — B), for B< B, the particle must be retarded on
“impact”, and for 8> B, it must be accelerated (see Fig. 5).
Hence, it follows that the localized domain wall can exist
only for F> 0 when <8, and for F<0 when 8> f3,.

Let us now examine in greater detail the situation where
F>0(B<pB,) When Fis small (see below), the particle will
be retarded somewhat as a result of the “impact”, but will
not change its direction of motion. Such trajectories
T = T (x)are shown in Fig. 7a, where the “impact”’ can occur
only for T, > T,. Using conservation of energy and momen-
tum, we can readily obtain the equation for 7, :

V25 (Tw) — V2 (S (Tm) — So) = F (Tw).

It is then readily verified that (2.15) can have solutions if
F?<2|S,|. As F increases, the particle will experience “in-

(2.15)
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FIG. 7. Temperature distribution in localized domain walls for F> 0: a)

Bz <B (Bs: b}Ba <ﬁ<Bp'

elastic reflection” as a result of the impact, i.e., it will reverse
its direction of motion. Such trajectories T = T (x) are shown
in Fig. 7b. We note that the impact can now occur both for
T, > T, and for T, <T,. Proceeding by analogy with the
foregoing, we can readily obtain the equation for the tem-
perature T, in the form

V?.S (Tm) + VZ (S (Tm) — 8y) = F (Tw),
which can have solutions when F2 > 21S,|.

The two relationships given by (2.15) and (2.16) can con-
veniently be rewritten in the form

1 |
§ (Tm) = R(Tm) = [ L0 - Be %)

(2.16)

(2.17)

Figure 8 shows a graphical analysis of the solutions of this
equation where, for simplicity, we haveset F (T') = const. For
parameter values for which F 2 < 2|5, |, the solutions in which
we are interested correspond to points 1 and 2 (these “trajec-
tories” are shown in Fig. 7a), whereas 2|S,| < F ? corresponds
to points 1, 2, and 3 (these “trajectories” are shown in Fig.
7b).

Thus, when £, <8 <f3;, we have two types of domain
wall localized on the inhomogeneity. When B, <8 <8,,
there are three such domain walls. Here, 3, is the minimum
value of B for which a nontrivial solution of (2.17) appears,
and S, is determined from the relation 2|S,( 5;)| = F ¥ ;).

Near the bifurcation point 8 = £,, the two types of do-
main wall are not very different and, when B = 53,, they go
over into each other. This behavior of the solutions in which
we are interested signifies (see, for example, Ref. 76) that
their stability is due to the way in which slow perturbations
develop. Consequently, the stability condition for localized
domain walls can be investigated for 8, <8 <8, by using
simple qualitative considerations, similar to those intro-
duced above when localized domains were examined. If we

u() T

FIG. 8. Graphical solution of (2.17) for F> 0 and different values of f: a—
B<B2: b—B= ﬂz: c—ﬂz <B <ﬂ:h d—fF = B;;, e_‘ﬁ;; <ﬂ<Bp .
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take into account conservation of “energy’ and the equation
given by (2.15), we find that the stability condition assumes
the form

F o (R—S) |z, >0. (2.18)

The last inequality signifies that the localized domain
wall is stable for F> Oiftheslopeof R=R(T)atT =T, is
greater than the slope of S = S (T'). Hence, it follows in parti-
cular that, in our example (F = const), the stable domain
wall corresponds to point 2 (see Fig. 8), whereas the unstable
domain wall corresponds to point 1.

A further (new) solution T '(x), which was absent for
B < B3, appears when ; <8 < B, . This is represented by the
curve marked 2 in Fig. 7b. The stability criterion for this
solution cannot be obtained from the above qualitative con-
siderations because the most “dangerous” perturbation now
have nonzero growth rates even at 8 = ;.

For a weak inhomogeneity (I"¢1), the magnitude of £,
for which the localized domain wall appears for the first time
is close to B,. The parameter 3, can then be found from
(2.17), where we must set 8 =, everywhere except in the
term S,/F o« (B, — f3,). This yields

(B —Bo) G|, ~FV ST By enT.

Thus, 8, — B, ~I" B,,i.e., when I'<]1, the domain wall may
become localized in a much broader interval of S than the
domain [compare with (2.14]].

3) Domain (e<1). In the case of a smoothly-varying
(¢ €1) inhomogeneity, all the medium parameters vary slow-
ly over the characteristic length L. If a domain-wall type
wave is then excited in the medium, its propagation velocity
will vary slowly, depending on the local value of the param-
eter B, (x) [see Eq. (2.5)], i.e.,

D =v (D), (2.19)
where D is the coordinate of the domain wall and v is its
velocity obtained from (2.5), written locally for each point in
the medium.

To be specific, suppose that the domain wall is excited
inaregion where 8> 3, (x), i.e., the hot phase (T = T’,) expels
the cold phase (T"= T,). If, in the course of its motion, the
wave encounters a region in which 8 < £, (x), it will come to
rest, and its localized state will be stable. In point of fact, a
small deviation 8D of the domain wall from the position of
equilibrium will, by virtue of (2.19), satisfy the equation

° v
8D=2"| D, (2.20)

The damping rate of the perturbation 8D « exp{A?) is given
by

oy
~ 9z

o W0 %Bp
D Bp oz [p?

(2.21)

where we have used (2.5). The expression given by (2.21)
shows that the localized domain wall is stable (A <0) if, for
3B, /x>0, the T = T, phase lies to the right of the point
x =D and the T =T, phase lies to the left of this point.
Otherwise, it is unstable. The reverse situation occurs for

B, /9x <0.
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FIG. 9. Determination of the dimensions of a localized domain for e€1.

Let us now consider a localized domain for e<1. If the
size D of the domain is much greater than the width of its
boundaries ~L (see Fig. 1a), we have two independent do-
main walls, the motion of each of which being determined by
thelocal B, (x). As an example, consider the case where 5, (x)
has a minimum (Fig. 9). In accordance with the foregoing,
the quantities D, in Fig. 9 can be determined from the
equations®*?°

f = Bp Dx) (2.22)

where 3, (x) is found with the aid of the local “equal areas
theorem” (2.4). The “strong field” domain localized in the
interior of the inhomogeneity shown in Fig. 9 is stable, and
its dimensions rise with increasing .

For f—f,,(0) (see Fig. 9), the quantities D , become of
the order of L, and (2.22) is no longer valid. When D~ L, the
parameters of the medium vary little over the length of the
domain and, if 5 > £, (0), we are back to the situation involv-
inga domain in a homogeneous medium. The presence of the
inhomogeneity manifests itself only as a slight (proportional
to £7) deformation of the domain due to the presence of the
parabolic well in £, (x).

Thus, for <1, two types of domain can become local-
ized on the inhomogeneity. The first exists in the range
B,(0) 5B =B, (o), has macroscopic (on the scale of L) di-
mensions, and is stable. The second exists for 82 B5,(0) and
its dimensions are of the order of L. It has practically indis-
tinguishable properties as compared with the domain in the
homogeneous medium, so that it is unstable when the pa-
rameter B8 is fixed.

The presence of a nonmonotonic A, (x), for example, in
the case of closely spaced inhomogeneities (Fig. 10), leads
not only to the localization of domains, but also to a series of
hysteresis phenomena as /3 increases (decreases). In point of
fact, suppose that a “‘strong field”” domain is localized at the
center of the deepest well (x = Oin Fig. 10). The length of this

Bo(x)

/) T/I

A B

4
I
I
i
I
{

7, T

FIG. 10. Localization of a domain in the presence of two smooth inhomo-
geneities. The corresponding function D = D ( £ is shown in the insert on
the left.
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domain increases monotonically with increasing £ up to
B =B . It then abruptly increases at 8 = 3, by the amount
D, — D, (see Fig. 10), and thereafter again increases mono-
tonically with increasing .

If we now allow 8 to decrease, the length of the domain
will monotonically decrease, and an “interlayer” of the cold
phase with T"= T, will appear in the interior of the domain
for B_ < < B, the length of which will monotonically in-
crease with decreasing /3, so that, for 8 </ _, we shall again
enter the region in which there is no hysteresis. Thus, hyster-
esis occurs for f_ <fB <, . This is illustrated by Fig. 10,
which also shows the function D = D ( 8 (the nature of the
relatively small jumps that occur when £ is reduced again
will be examined below).

The hysteresis connected with the presence of several
inhomogeneities can be detected experimentally in the form
of a discontinuous change in the properties of the system for
small changes in £ and, in particular, in the form of abrupt
changes in the current-voltage characteristics, in deforma-
tion during plastic flow,”””® in absorption of energy under
illumination by light, and so on.

We note that experimental determinations of 7= T (x)
for different S in a specimen containing domains can be used
to determine the function D = D( /), and hence deduce
B, (x). For example, for a parabolic well on £, (x), we obtain

D)=V B — By ). (2.23)
This method essentially enables us to investigate the
nature of the inhomogeneity in a nondestructive manner.

C. Exactly solvable model

We shall now illustrate the above properties of localized
waves by considering the example of a model that admits of
an exact solution. Thus, suppose that uz = 0, the function /()
(see Fig. 2) is piecewise-linear, and all the remaining param-
eters in (1.1) are independent of time. Equation (1.1) then
assumes the following dimensionless form:

Y=p"—%+p B0 — (= p) (2-24)
where 6 (x) is a step function, [@ (x) = 1 forx»>0and & (x) =0
for x < 0], and the point and prime represent differentiation
with respect to dimensionless time and the coordinate, re-
spectively. The inhomogeneity is represented by introducing
the explicit dependence of p(x) and #,(x) on x. The solution of
(2.24) can be found for any p(x,S3 ) and ¢,(x,53).

This model is very popular for the description of nonlin-
ear waves in homogeneous systems and, in particular, ther-
mal domains in superconducting microbridges (hot-spot
model),2%7° thin superconducting films,'® waves that appear
in the course of chemical chain reactions on the surface of a
solid catalyst,>'** waves in gas discharges,*® and so on. An
analysis of the solutions of (2.24) is given in Refs. 80-82 for
p = const and ¢, = const.

Let us now consider a “strong field” domain localized
on a symmetric inhomogeneity (p(x)=p(— x),
¥,(x) = ¥,( — x)}. For the length 2D of the portion of the
domain in which ¢ > ¢,, we then have®

D
29, (D) =e~P S p(x)chzdz.

-D

(2.25)
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For a point inhomogeneity, p(x) can be written in the
form p{x) = (1 + I'§(x)) p, and ¢, = const. We then have

D,,—In %ﬁz—% , (2.26)
2
g=20l_y. (2.27)

The quantity 8, for this model is determined by the equation
&€ (fp) = 0. (2.28)

As an example, consider a medium heated by a current,
in which a phase transition from a highly conducting to a
poorly conducting state occurs**** at T'= T, (see Fig. 4a).
We then have ¢, = 1, ¢ = (T — T,)/(T. — T), B is the cur-
rent density, and a is a parameter determining the Joule
heating p = a8 * for ¢ > ¢, (for simplicity, we have neglected
heat release in the highly-conducting phase with ¥ <1).
When T, is independent of 3, we find from (2.27) and (2.28)
that

eB= ()1 =1 2.

The function D ( B ) given by (2.26) and (2.29) is shown in
Fig. 11, where curve 1 refers to I" = 0, curves 2 and 3 refer to
I'> 0, and curve 4 to I" < 0. We recall that, in this example,
the quanity I" determines the additional heat release (" > 0)
or heat removal (I" <0) on an inhomogeneity in the poorly-
conducting state. The parameters B,, B, and D (see Fig.
11) are, respectively, given by

T2y -1/2 _
B, = (1 -l—-4—) Bp, Pr=Ppl¥%

(2.29)

pal (145) 7~ 5]

(2.30)

It is clear from Fig. 11 that, when I" < 0, the inhomoge-
neity has little effect on the localized “strong field” domain
(to the extent that |I" | €1). This is illustrated by curves 1 and
4 in Fig. 11. This type of domain exists for 8> B, (it is repre-
sented by point 2 in Fig. 5), which is in agreement with the
qualitative analysis given above. The domain represented in
Fig. 5 by point 1 is absent from this model because of the
presence of the &-function in (2.24), which ensures that F =0
for <9,

There is a qualitative change in the nature of the solu-
tions describing the “strong field”” domains for "> 0. New
types of domain (as compared with the homogeneous case)

¥

0 A A4 5 A

FIG. 11. The function D = D{ #8) for a domain localized on a point in-
homogeneity [see (2.26)]: 1—"=0,2—0< 1" <2,3—I'>2,4—I <0.
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appear with an ascending function D = D ( 3) (see curves 2
and 3 in Fig. 11). Thus, when 0 < I" < 2, the function D ( B}
has two branches for B, <f<fB,, which correspond to
points 2 and 3 in Fig. 5. As —f,, the two domain solutions
coalesce into one, and the latter disappears abruptly at
B =pB.,where D (f,) =In(2/I"). From (2.30), we find that, if
I'<l, then 6 =6, I 272, in complete agreement with the
estimate given by (2.14).

The case I" > 2 corresponds to strong coupling between
the domain and the inhomogeneity. It is clear from Fig. 11
that the properties of the localized domain are then radically
different from those of the domain in the homogeneous me-
dium: it exists only for S <f; and is characterized by an
ascending function D { £) in its entire range of existence.

We shall now examine the localization of the domain
wall on a point inhomogeneity. In the model that we are
currently considering, the condition #(0) > ¢, is obviously
satisfied. Consequently, there is a segment of length L, 10 the
right of the inhomogeneity on which # > ,. The static solu-
tion of the piecewise-linear equation (2.24) can be obtained in
a general form, and hence L, can be determined from the
equation

29, (L) = | pe—Ly) e da. (2.31)
0

Following the procedure used earlier in this section, let
us consider the case of a point inhomogeneity with
px)= (1 + F'8(x))py, ¥, = const. Using (2.31), we then have

I

LO =In (?) .
It is clear from (2.32) that the localized domain wall exists
only when I" and & have the same sign (I"'>0, <S5, and
I" <0, 8> B,). The expression given by (2.32) is also valid for
a point inhomogeneity of a more general type for which

F) =% —pb (h — ) — T8 (2). (2.33)

The condition for the domain wall to detach itself from the
inhomogeneity is shown by (2.32) to be

[§1>]|T]. (2.34)

The inequality given by (2.34) will also determine the
magnitude of 5,. When £ ( ) is given by (2.29), we have

B = (1 4 I)7/*B,,. (2.35)

When ["is small, we have from (2.35) 8, — B, =1f,/2,
which is in agreement with the estimate given above. When
the domain wall is strongly coupled to the inhomogeneity
(/" | ~1), we can readily show, by comparing (2.35), (2.29),
and (2.34), that the domain wall can become localized for
[I" |>1in the entire range of existence of the two-phase state.

When a smooth inhomogeneity (e«<1) is present, the
quantities p(x) and #,(x) in (2.24) are slowly-varying func-
tions on a scale of ~ 1. Let us suppose, for simplicity, that
plx) = (1 — sx*)p,, where s ~£2«<1, so that we obtain the fol-
lowing result from (2.25):

exp (—2D) + sD*® + £ (B) = 0. (2.36)

When 0 < s<1, this equation has two roots with essen-
tially different D: D, =0.51n(1/|£ |), D, =s~'/2J|€ |. The two

(2.32)
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branches of the function D=D(f) coalesce for
B =B. =B,(0) + O(£” In*(1/¢)), where, for B~p,

D @) =D, +MVB=F., (2.37)

and D.=D(B,)=0.5In(1/s), M =|0& /3B |/2sD_, I/
dB <0 [see, for example, (2.29)]. Thus, when £«1, the func-
tion D = D ( B)is similar to curve 2 in Fig. 11 as 8, —« and

Bp—B,(0).

D. Dynamics of localized waves

All the waves localized on inhomogeneities in which we
are interested here are essentially nonlinear, so that their
stability against finite-amplitude perturbations becomes an
important question, and so is the dynamics of the localiza-
tion of a propagating wave on an inhomogeneity. In the si-
tuations examined here, the homogeneous state is stable to
small perturbations. Consequently, the waves examined
above will appear only in response to finite-amplitude per-
turbations (hard wave excitation regime®*). The solution of
such problems requires the investigation of nonself-preserv-
ing solutions of (1.1), which is not possible in the general
case. On the other hand, the basic qualitative aspects of the
dynamics of localized waves can be elucidated even by ana-
lyzing the simple model discussed in the last section.

Suppose that, for ¢ = 0, an external influence produces
a region in the neighborhood of a point inhomogeneity with
px) = [1 + I'S(x)] p, [see (2.24)], in which ¢ > ¢,. The length
of this region is D(0) = D, (0) + D_(0), where D_(t) and
D_{t)are the distances from the inhomogeneity to the right-
and left-hand boundaries of this region, respectively (see Fig.
12).

Consider the dynamics of this initial perturbation, re-
stricting our attention to the case where |I" | € 1. The domain
can then be localized on the inhomogeneity in a narrow in-
terval 58 near f,,, in which its equilibrium length is Dy 1 [see
(2.26)—2.29)] and the velocity of the domain wall is small
v~8f /B, <1 [see (2.25)]. If the initial distribution ¢ = ¢(x)
issuch that the length of the domain is much greater than the
width of its boundaries (Fig. 12), its subsequent evolution in
time can be divided into two stages. In a time ~ 1 during the
first stage, the distribution ,(x) relaxes to the quasiequili-
brium distribution in the range —D_(0)Sx%D_(0) in
which ¢ = ¢,.% The length of this region begins to vary slow-
ly with time during the second stage. The rate of this vari-
ation is determined by the velocities of the domain walls,
which are small for Bzﬂp. The characteristic time for a
changein D , (z)is of the order of D _ /v 1. This enables us
to reduce the relatively complicated nonlinear integral equa-
tion for ¥(x,t ) to a set of two ordinary differential equations®*
forD (t}):

) A R

=I.(¢) ] o0 =

FIG. 12. The distribution ¢ = ¥(x,? ) during the localization of a domain.

¥The dimensions D, (¢) change by ~ 1 during this time.
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FDst L= g ()4 TePs— o Px¥Pp), (2.38)

The appearance of the term p/p in (2.38) is connected
with the possible time dependence of the parameter 8. It is
clear from (2.38) that the slow variation in D, (¢) is deter-
mined by the smallness of the quantities &, I', p/p and
exp[— (D, +D_)].

Let us now begin by considering the stability of the lo-
calized waves against small perturbations. Assuming that
D, (t)=D+ 8D, expit, D»8D 4 , we find that the
growth rate of the most “dangerous” perturbations
(6D, = —8D_)is

A=2(2eD _T)eD, (2.39)

where D is given by (2.26). When I <0, we have 1 > 0, i.e.,
the localized “strong field” domain is always unstable. On
the other hand, when I" > 0, the function A ( ) vanishes for
D=D,=In{2/I'), where A>0 for D<D, and A <0 for
D> D_. Comparison of (2.26) and (2.30) shows that A = O for
B =B, and{ (B,) = I'?/4.Thus, the entire ascending branch
of the function D ( 8)in Fig. 11 is stable, and the descending
branch is unstable.

It has been assumed throughout the foregoing discus-
sion that 8 = const. It is, however, possible to have a situa-
tion where the parameter £ is a function of
2D (t)= D, + D_ because of the presence of a measure of
feedback in the system. This feedback may stabilize the do-
mains that are unstable for f = const.

As a simple example, consider the case where 3 is the
transport current flowing through a specimen connected toa
load of resistance r and inductance .. For the sake of sim-
plicity, we shall suppose that the entire electrical potential
difference develops across the domain alone (this occurs, for
example, in superconductors'®2'), so that

£B + (r +2D) p = 1By, (2.40)
where the quantities .2, r, and D have been made dimension-
less by dividing them by quantities that are characteristic for
each specific problem. Linearizing (2.38) and (2.40), it can be
shown that the domain that was stable for 8 = const [as-
cending branch of the function D = D ( #)inFig. 11] remains
stable in the present case as well. On the other hand, the
domain that was unstable for # = const [descending branch
of D = D( f)in Fig. 11] is stabilized by the feedback loop if
K <L, where

£, = [17 (r +2D)—4 | €20 (2 — TeD);

in which D ( B)» 1 is given by (2.26). We note that, as —5,,
we have .¥|, — . The self-oscillatory state with frequency
w~.7 " 'setsinfor .¥ > .7, . Such self-oscillations can oc-
cur in a great variety of systems, including superconducting
films,?>#>¢ ultrathin superconducting threads,®” composite
semiconductors,®*%° semiconducting structures,”°! and so
on.

Let us now examine the stability of a localized domain
wall (Fig. 7). From (2.39), we now have

A = — 2T exp (—Ly). (2.42)

Thus, in the model defined by (2.42), the localized wall
is stable only for I" > 0. The absence of stable (4 < 0) solutions

(2.41)
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FIG 13. Phase portrait of the system (2.38) for0 < £ < I"'*/4 and I'> 0.

for I' <0 is connected with the fact that, in this model,
F(3)=0 for ¥ <,. If, on the other hand, f(¢) is given by
(2.33), the localization of the stable domain wall is possible in
the range 0 < |§ | < |I" | for any sign of I'.

We now turn to the stability of a localized ““strong field”
domain against finite-amplitude perturbations. The phase
portrait® of (2.38) for B = const is shown in Fig. 13 for
0< & <TI'?/4. The two possible states of the domain on the
inhomogeneity (I" > 0) correspond to the two singular points
1 and 2, where 1 (saddle) corresponds to the unstable and 2
(node) to the stable state of the domain. The domain dynam-
ics depends on the position of its phase trajectory on Fig. 13.
If the mapping point corresponding to the initial (r = 0) state
of the domain [D , (0), D_(0)] lies to the right of the separa-
trix AIB (broken line in Fig. 13), then, as £— «, the domain
becomes trapped by the inhomogeneity. In the opposite case,
the domain collapses before it succeeds in localization.

The domain localization dynamics can be divided qual-
itatively into two stages. During the first stage, there is a
relatively rapid independent motion of the domain boundar-
ies, which leads to its symmetrization (D, ~D_). This is
followed by either a slow [see (2.39)] relaxation of the domain
to its stable state on the inhomogeneity (D +>0 for
D, <D, <D,and D, <0for D > D,), or the domain van-
ishes altogether for D < D,.

To conclude this section, let us consider the localization
dynamics of a domain wall on a point inhomogeneity. If, for
example, the wall (see Fig. 7) moves from right to left (I"> 0,
&> 0), wemust substitute D_— o0, D (t)=L,(t)in(2.38)and
obtain

Lo (t)=1In [%+ (eL.(O)_%) e-zgt]

from which it is clear that, for L,(0)»L,{ o) = In(I" /£ ), the
domain wall moves uniformly (L) = L, — 24t ) and, as it
approaches the inhomogeneity (L, ~ L« )), its velocity falls
off exponentially.

The model that we are discussing will also lead us to the
equation describing the slow domain-wall dynamics in a me-
dium containing several inhomogeneities, in which case
FW) =¥ —pbh— ) + S T8x —x;), where T,

= const. Using the results reported in Ref. 84, we find that

(2.44)

(2.43)

FLo= 2@+ I Tvexp (— 1z —Lo D),

where & (B) corresponds to the homogeneous part of the
specimen.
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3. LOCALIZED STATIC WAVES (GENERAL APPROACH)

In this section, we shall summarize the formulas that
enable us to describe the general case, where the parameters
in (1.1) are arbitrary functions of time. We shall be interested
in static solutions of this equation that describe localized
waves, the conditions for their existence, and their stability.
Such questions have been examined in several papers (see,
for example, Refs. 11, 15, 18, 22-24, and 29) in relation to
different physical systems. In our presentation, we shall es-
sentially follow Refs. 23 and 24.

A. Static distributions

Let us begin by considering the “strong field”” domain
localized on a point inhomogeneity (> 1). The distribution
/(x) outside the inhomogeneity is obtained by direct integra-
tion of (1.1) with ¢ = 0. In the interior of the inhomogeneity,
¥i{x) varies little for £» 1, which enables us to find ¥{x) by
substituting ¥ = ¢, in the functions f(¢,x) and x(i,x) in
(1.1). By joining the solutions obtained in this way on the
inhomogeneity boundaries, we obtain the distribution
¥ = ¢(x) in the domain:

wm
lz () [ =202 | wsm2dy,
v
where the functions x(¢) and S (¢) [see (2.2}] are determined

by the homogeneous part of the specimen and ¢,,, is a root of
(2.10) where*

(3.1)

!

F (o) = [ § 7 (m, 2) dz ]

-1
i

- SMm]cm S

0

dr g f(pm, ') dz’,  (3.2)

% (Pmy %) )
b

in which £, and x,, are the values of f and » outside the
inhomogeneity for ¢ = ¢, . In an inhomogeneous medium
in which fand x are not explicit functions of x, we have F'=0.
Equation (2.10) together with the expression for F (i) given
by (3.2) enable us to examine all the possible types of domains
that can be localized on a point inhomogeneity of arbitrary
physical nature. It is important to note here that, because of
the essential dependence of F on ¥, the inhomogeneity then
plays the role of a self-consistent point source whose
strength depends on the distribution ¢ = ¢(x) in the domain.

The critical values 3. and 8, for which new types of
localized domain appear (see Figs. 5 and 11) are determined
from (2.13), where T =, T, =v,,, and F = F (¢} is given by
(3.2).

The solutions describing the domain wall localized on
an inhomogeneity can be constructed in an analogous man-
ner. Assuming, to be specific, that { — o) = ¢, ¥{0) = ¢,
F>0, B <p; (see Fig. 7), we obtain

wm
z ()= 212 S wS2dy, x>0, (3.3)
¥
¥
z ()= — 2172 S % (S —8,)12dy, z<O. (3.4)
\bm
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The quantity ¢, =(0) in (3.3) and (3.4) is determined,
as before, from the condition for joining the solutions inside
and outside the inhomogeneity:

=

S (po) =L 4§, b = R (pw), (3.5
14
Fu(hm) = § [ 1 (bm, 2)— m | da. (3.6)

-1

Comparison of (3.5) and (3.6) with (2.17), where the lat-
ter is obtained on the assumption of a point inhomogeneity,
shows that they are identical only for F = F, i.e., when the
inhomogeneity produces a strong change in f(#,x) and a
weak change in x(i,x), and the second term in (3.2) and (3.6)
can be neglected.

The necessary condition for the existence of localized
domain walls is the existence of nontrivial solutions of (3.5)
and (3.6). The critical value 3, for which such solutions dis-
appear can be determined from the following system that is
analogous to (2.13):

§ (s B2) = R (Y, Be), 5o [S (i, B) — R (i, Bo)] = 0.
(3.7)

Let us now consider the opposite case of a smooth in-
homogeneity**?® (¢<1). When D~ L (see Fig. 1a), the coeffi-
cients of (1.1) that depend explicitly on x can be expanded
into a series in x, and we retain only terms « x2. The variable
x can then be expressed in terms of ¢ in these expansions, if
we use the implicit relationship x = x,(y) for the domain in
the homogeneous medium with parameters f = f,(¥)=f(1,0)
and x = x,(y)=2x(¥,0). The final result is

Y ]
|| =22 i [t 225 ]Sz dy, (3.8)
~ v 2 02
S(p)= 5 [%ofo -;Liég ey (%f) ,0] dap, (3.9)
‘Dﬂ
where
ll’7!1"!
| 2 (P, Pm) | =27172 g %S 2 A, (3.10)
v VP
Sy (p) = S #ofo dp (3.11)
1)

[for simplicity, it was assumed in the derivation of (3.8)-
(3.11) that the inhomogeneity was symmetric]. The equation
for ¢, in (3.8)—(3.11) has the form

S (m) = 0. (3.12)

This method of solving the nonlinear equation (1.1) ena-
bles us to describe the appearance of a new branch of solu-
tions for f~/,, which are absent in the homogeneous medi-
um (Ref. 24).%

The equations from which B, can be determined are
analogous to (2.4): ’

8 (4m, B) =0, 55— 8 (Ym, B) =0. (3.13)

“This approach is equivalent to the Rauscher method, well known in the

theory of nonlinear oscillations (see, for example, Ref. 92).
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When /3 is only just greater than 8, (88 ~ (¢ In{1/€))*8, ),
the size of the domain corresponding to the ascending
branch of the function D ( 8 ) becomes much greater than D, .
When D3 D, the quantity D is determined from (2.22), and
the distribution ¢ = #(x) in the domain can be found on the
basis of the following considerations.?*?°

To within terms ~&, the stationary state of the phase
with ¥ = 9, in the domain with D3 L is determined from the
local balance condition f(#,x) = O everywhere with the ex-
ception of the domain boundaries (|x| =D ), where #(x)
changes from =y, to ¥y =~ ¢, over a length ~ L. The func-
tion ¥ = ¥(x) can be found on the domain walls by expanding
f(#,x)and x(#,x) into a series in powers of (|x| — D, ). If we
then join the solutions for the exterior (|x| <D . ) and interi-
or (|x| R D ) regions of the domain, we find that the self-
consistent equation D , =D () becomes identical with
(2.22) to zero order in £ (a more rigorous development of
domain solutions for £ €1 is given in Ref. 29, using the meth-
od of singular perturbations®?).

B. Stability of localized waves

Let us now consider the stability of waves localized on
an inhomogeneity against small perturbations 8¢(x,¢ ):

8y (z, t) ==t 2 yn ()€, (3.14)
n=0

where A, are the eigenvalues and y, (x) are the eigenfunc-

tions to be determined. When £> 1, the.equation for y, (x) is

" = 3.15
yﬂ_—[vn"’?Tcp"_; dws(I)Jyn_O’ ( )

where the prime represents differentiation with respect to x,
¥, =x"'A,(v + uA,), and the coordinate dependence of 1,
v, %, F and f is determined by their dependence on the sta-
tionary solution #(x). Clearly, the wave is unstable if there is
at least one eigenvalue A, > 0. We shall be interested in the
quantity A, =max 4,, n =0, 1, 2, ..., that determines the
stability boundary 4, = 0.

We shall seek the solution of (3.15) in the form
yix) = z{x)-exp(§ u dx), where z(x) = xy'(x). We then obtain
for u(x) the following first-order equation:

w2y, (3.16)

The quantity A, is small near the stability boundary,
and the function u = u(x) can be sought in the form of a
series in A,. This leads to the following equation for 4, (see,
for example, Ref. 23):

— 1 .
A= (—1 = VI 4k 5 3.17)
Y Yy _
k= S pVEdq;/ S v Sdy,
Vo Wo
F d_(F_ 3.18
b=~ T (5 5): (.18
23/ .‘ vy Sdy
‘bﬂ

The localized “strong field” domain is stable if . <0,
and this leads to the condition given by (2.12} that was ob-
tained above from qualitative considerations (in the neigh-
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borhood of the bifurcation points B, and ). Strictly speak-
ing, the expressions given by (3.17) and (3.18) are valid only
for A;,—0, 4. —0 (see Ref. 23), so that the square root in (3.17)
can be expanded into a series, except when the quantity & is
anomalously high. The latter occurs, for example, in a Jo-
sephson contact,'® where the damping of perturbations is
oscillatory in character, even near the stability threshold
(4kA, < — 1).

Similarly, as 4,—0, we obtain the following expression
for the localized domain wall:

©

0
z2(+0) g'yozzd:c—\—z'z(—~0) S Vo22 dx
b — oo

=y F+2(+0—2(—0)loyi  (3.19)

where the expression for z(x) = x/’(x) follows from (3.3) and
(3.4). The stability condition A, < 0 (¥, < 0) leads to the con-
dition given by (2.18) and obtained above for the neighbor-
hood of the bifurcation point # = /3, on the basis of qualita-
tive considerations. Thus, the delocalization of the domain
wallat B = f3,is connected with the loss of stability. We note,
however, that, in the model defined by (2.24), the quantity A
remains finite at S =3, [see Eq. (2.42)]. This is connected
with the nonanalytic behavior of the function S(y¥) at
Y= 1/’1-5)

Let us now examine in greater detail the situation pre-
vailing in the neighborhood of the bifurcation point 8 = f3,,
where 2|S,| = F2. The right-hand side of (3.19) vanishes for
B = B; but, simultaneously, the coefficient ¥, on the left-
hand side of (3.19) becomes infinite. This is so because the
“momenta” z( + 0) vanish for “trajectories” corresponding
to points 3 and 2. The fact that the coefficient of ¢, becomes
infinite indicates that perturbation theory developed for the
derivation of (3.19) is invalid and, consequently, the relation
given by (3.19) itself is invalid in the neighborhood of B = ;.
Thus, the stability criterion given by (2.18) is invalid at the
bifurcation point 8 = ;. As already noted, physically, this
is connected with the finite growth rate of perturbations at
B=05:.

Analysis of the stability of the localized domain for £ <1
shows?* that, when D> D_ ~ L In(1/¢), the expression for A,
(¢ = 0) is identical with the formula given by (2.21) and ob-
tained on the basis of quantitative considerations. If, on the
other hand, D < D,, then A, changes sign, and this corre-
sponds to the instability of the descending branch of the
function D ( B) (see Fig. 11, curve 2).

4. EXAMPLES

In this section, we shall examine a number of special
cases that can be described with the aid of (1.1). We shall be
interested only in phenomena connected with the presence
of inhomogeneities, so that the list of references referring to
this part of our review will undoubtedly be incomplete.

$'The discontinuous reconstitution of stable structures, described by two
coupled nonlinear parabolic equations, is examined in Ref. 94.,
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A. Resistive domains in superconductors

Under the influence of external fields, a superconductor
can assume different inhomogeneous states that can be ei-
ther in thermodynamic equilibrium (intermediate state and
vortex structure in superconductors of the first and second
type®>®®) or well away from thermodynamic equilibrium.
The latter will be considered later.

There is a great variety of methods for producing non-
equilibrium inhomogeneous states, including effects due to
transport currents,'*?*?”*® laser and microwave radi-
ation,””'°° ultrasound,'?'~'°* tunnel electron injec-
tion,'°>-'°7 and so on.

To provide a quantitative description of nonequilibri-
um states in superconductors, one must turn to the dynamic
equations of the theory of superconductivity.®*'%%-!1° There
are, however, many cases for which these relatively complex
equations can be reduced to a single equation analogous to
(1.1). Depending on the particular conditions (see, for exam-
ple, Refs. 62 and 108-110), this equation will describe the
diffusion of electronic excitation, the distribution of the or-
der parameter, temperature distribution, and so on.

Here, we shall consider the situation where only ther-
mal effects are important. In superconductors in which a
transport current J is flowing, we have, in the simplest case,

T<TC(])7

T>T, (), @1

0= x|

—Juils
where j is the current density, p is the resistivity in the resis-
tive state, j. is the critical current density due to either the
pinning of the vortex lattice in type II superconductors'!! or
the critical velocity of the superconducting condensate in
thin films.''?

Figure 4a® shows the functions Q (T') and W (T ) for su-
perconductors carrying a current [Q(T)=0 for T<T.,].
Consequently, such semiconductors may contain resistive
domains, i.e., regions of finite size in the normal (resistive)
state due to Joule heating.'™' They are, at the same time,
electric-field domains.

Let us consider the localization of resistive domains on
point inhomogeneities due to, for example, reduced values of
J. and p, which may be connected with a reduction in the
height of the surface barrier to the entry of vortices,”"'"* a
change in the transverse cross section of the specimen, the
presence of grain boundaries or inclusions of a different
phase (especially in granulated films), and so on. In most
cases, such inhomogeneities obviously act as ““nuclei” for the
formation of resistive domains upon them.

All the features connected with the localization of resis-
tive domains are particularly clearly defined on the current-
voltage characteristics ¥ = ¥ ( j) of a superconductor, where

T,

V() =VZ {up(G—jc) $72dT + jAAR

T

(4.2)

c

®There is also the possibility of a larger number of crossing points between
Q(T)and W (T }dueto, forexample, the peak effectinacritical current, '
the coolant boiling crisis,” and so on.
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FIG. 14. Current-voltage characteristic of a superconductor with a local-
ized resistive domain in the presence of an inhomogeneity in the resistivity
alone (curve 1) and in both critical current and resistivity curve (2) (the
bars on the j axis to the right of O correspond to /3 j;).

in which ¥ ( ;) is the potential difference across the supercon-
ductor containing the domain, T, is a root of Egs. (2.10) and
(3.2}, in which £ =j, ¢, =T,,, AR is the excess resistance of
the inhomogeneity, and A4 is the cross-sectional area of the
specimen. The current-voltage characteristic is then multi-
valued and (4.2) describes the branch of the characteristic
that corresponds to this domain solution.

Figure 14 shows typical current-voltage characteristics
of a superconductor with a resistive domain localized within
it. Curve 1 corresponds to an inhomogeneity in p = p(x)
alone, which is an additional source of heat in the resistive
state, and curve 2 corresponds to an inhomogeneity in
both*>?* p(x) and j, (x). In Fig. 14, j, is the critical current
density, j. is the critical current density on the inhomogene-
ity, j, and j, are current densities determined from (2.13)
with 8, , =/, , and j, is determined from (2.4) with 8, =j,.
The quantity 7, is called the minimum current for the propa-
gation of the normal phase®”*® and can be estimated by
equating the Joule heat release p /7 in the resistive (T'> T,)
phase to the heat removed by the coolant 4 (T — T,)/d. On
the 7. — T, temperature scale that is characteristic for a
superconductor, this gives

o (42)7 (1= 1)

(4.3)

Phenomena connected with Joule heating in supercon-
ductors will obviously become important for j, %j <j.. For
films, for example,''? j_ ~j,[1 — (T/T.)]*’% so that, as
T—T,, we havej_ <, i.e., thermal phenomena can be ne-
glected in the temperature range
T, —Ty&T. jy VhT./pd .

For the current densitiesj, andj, of Fig. 14, we have the
order of magnitude estimates j, — j, ~Ij., j, —j. ~T %,
where I'~dpl /pL, and 4p is the change in p = p(x) in the
interior of the inhomogeneity.

Many-valuedness and the presence of descending
branches on the current-voltage characteristics (Fig. 14) re-
sult in hysteresis in phenomena accompanying the removal
(restoration) of superconductivity by a current.”*** Bound-
ed, stable, resistive regions that do not extend to the entire
specimen can then be present in the superconductor in a
broad range of currents min(j,, j,) <j <j, even in the sim-
plest case.
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FIG. 15. Current-voltage characteristic of a granulated In film®® for dif-
ferent values of £, = 1 — (To/ T, ): 1—£, = 0,2—8X 107%,3—4.7X 1073,
4—6.1%x1073, 5—75x1073, 6—9.1x1073, 7—1.19x107% 88—
1.4X1072, 9—1.46X1072, 10—1.52X1072, 11—1.63x 1072, 12—
1.79% 1072, 13—1.9xX 1072, 14—2.07x 1072

Current-voltage characteristics similar to those shown
in Fig. 14 have frequently been recorded experimental-
ly.28:88.114.115 1y particular, Fig. 15 shows the CVC of a gran-
ulated In film obtained experimentally in Ref. 28, where it
was also shown that the temperature functions p(T )and}j, (T)
in the interior of an inhomogeneity may be essentially differ-
ent from the corresponding functions for the homogeneous
part of the film, and this must be taken into account if correct
interpretation of experimental data is to be achieved. As
T,—T,.,the CVCshown in Fig. 15 is single-valued but, as T},
is reduced, it becomes multivalued and a descending branch
appears (see also Ref. 115). In Figs. 3 and 5, this corresponds
to a transition from the region in which <8, ~f, to the
region in which B~5,,.

The CVC of a superconductor containing a resistive do-
main localized on a smooth inhomogeneity (€ €1) is shown in
Fig. 14 (curve 1, where j,. =, (0), j, =/, (o), jo =j.(0)) and
in Fig. 16. Depending on the parameter values, we can have
J(0)>j, (o) (see Fig. 14) or . (0) </, (oo} (Fig. 16). In the for-
mer case, an increase in the current is accompanied by a
transition of the specimen to the normal state for which
Jj =J.(0) and back again, i.e., from the normal state to the
superconducting state, beginning with j=j (0} </, (0).
Thus, for current densities in the range j, (0} <j <j, (o), the

A A
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FIG. 16. Current-voltage characteristic of a superconductor with a resis-
tive domain localized on a smooth inhomogeneity for I, < 1,(w).
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FIG. 17. Current-voltage characteristic of a granulated In film.?’

specimen is in the resistive state owing to the localization
within it of the resistive domain.

When j; (0) </, () (see Fig. 16), a localized domain ap-
pears on the inhomogeneity for j = j. (0) >/, (0), but the re-
mainder of the specimen remains superconducting. Hystere-
sis is observed when the current is reduced, since
superconductivity is restored for j=j,(0)<j.(0). For
Jc(0) <, (0), the CVC of the specimen containing the resistive
domain is similar to curve 3 of Fig. 11 and, clearly, hysteresis
is absent.

When the specimen contains several inhomogeneities,
the CVC may consist of a number of steps due to the succes-
sive appearance of resistive domains within each of the inho-
mogeneities, as the current increases. Hysteresis occurs as
the current j is reduced, because of the difference between
Jo(X,) and j, (X,), where X, is the coordinate of the n-th
inhomogeneity (j. (X, )>j, (X, )). The steps on the CVC will
also appear if there are just a few inhomogeneities producing
a nonmonotonic function I, (X ) (see Fig. 10). The suppres-
sion of superconductivity by the current then begins locally
on a “weak” point for whichj, <j, and subsequently contin-
ues in a stepwise manner (see insert in Fig. 10). Figure 17
shows the CVC of a granulated In film, obtained experimen-
tally in Ref. 27, which is in complete agreement with the
picture given above.

We note that the hysteresis, the steps, and the breaks on
the current-voltage characteristics of thin superconducting
films have been reported frequently”?%113-117 and can prob-
ably be explained by the influence of inhomogeneities. Alter-
native (nonthermal) mechanisms that may be responsible for
steps on the CVC’s include, for example, the appearance of
phase-slip centers,'!®!!? the entry of vortex “strings” into
the specimen,''>'?° metastable states of the vortex lattice of
macroscopic defects'?’'*? and so on. These mechanisms
play a major role in the evolution of the resistive state as
T—T, but, if the number of vortices or phase-slip centers on
the characteristic thermal length L is much greater than uni-
ty, a transition to the macroscopic description given above
takes place.

B. Optical discharge in gases

Ionization waves that accompany the propagation of a
powerful laser beam in a gas (see, for example, Refs. 47 and
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FIG. 18. Plasma domain in an optical gas discharge.

48)are a very interesting example of localized domains. Plas-
ma condensations (domains) that exist because of the heating
and ionization of the gas by the incident radiation may be
formed in this type of beam. The plasma temperature
(T'~(1-3)-10* K) is determined by the balance between the
heat liberated Q and the heat W removed into the ambient
cold gas.

Here, we shall confine our attention to the “slow light
burn” state.*® In this case, the laser power is insufficient for
the direct ionization of the gas, and the velocity of the boun-
daries of the plasma region is small in comparison with the
velocity of sound. When the gas pressure is not too high, the
evolution of the plasma domain can be described in the first
approximation by the following set of equations (see, for ex-
ample, Ref. 48)

aT _ @

N o—_— ==

aT v
T, —3;%¥+Cppm (T)—'r_fx(T_TO)v

(4.4)
2 e (1) T =0; (4.5)
where x is the coordinate along the beam of radius r(x) (Fig.
18), P (x) is the energy flux density in the incident radiation
per unit time, J (x) = 7P is the beam power, u_, (T is the
light absorption coefficient, and y is a numerical factor of the
order of unity. Clearly, Eq. (4.5) describes the attenuation of
the laser-beam intensity as a result of the absorption of light.
The absorption coefficient u,(T) rises rapidly for
T>T,_, where T, is of the order of the gas ionization tem-
perature (see, for example, Refs. 123). Thus, the temperature
dependence of the heat release Q (T') = cPu,, hasacharacter-
istic form similar to that shown in Fig. 4a. When the Q(T)
and W (T) curves have three crossing points, we have the
possibility of a self-sustaining state in which the plasma ab-
sorbs light energy incident upon it, and heats up to tempera-
ture T = T > T, (see Fig. 4a). The function U = U (T )isthen
identical with that shown in Fig. 5, where the role of the
parameter [3 is now played by J, and the region occupied by
the plasma is a “strong-field” domain.

Figure 18 shows the scheme of a “slow light burn” ex-
periment.*” Focusing of the laser beam gives rise to an in-
homogeneity of the external conditions in which the gas is
situated, and thus to the localization of the plasma domain in
the region of the focus (the characteristic scale of the inhom-
mogeneity is obviously of the order of the focal length /, of
the lens). In accordance with the foregoing analysis, this lo-
calized domain is stable if the beam power J exceeds the
threshold J,. To estimate the latter, it is convenient to use
the model*® in which u, (T') = uofor T> T, and u(T) =0
for T < T,, with the remaining parameters in (4.4) being in-
dependent of T (see also Sec. 2B). Neglecting light absorp-
tion, we obtain (see, for example, Ref. 48)

9

Jo= ”:0" (T.—Ty).

c

(4.6)

33 Sov. Phys. Usp. 27 (1), January 1984

b

This formula has a simple physical interpretation: the inten-
sity of the incident radiation should be sufficient to heat up
the plasma to a temperature of the order of T, ie.,
cluOPp ~(Tc - To)yx/’.z'

Let us now examine in greater detail the situation
where, as a result of the focusing of the laser beam, the func-
tion P (x) varies slowly over lengths of the order of r, i.e., [, >r
(Fig. 18). In this case, we have the localization of the domain
on a smooth (¢<1) inhomogeneity. The domain dimensions
D_ and D_ can be determined from equations analogous to
(2.22):

v[J (Dy), D]=0, (4.7)

where the explicit dependence of the domain-wall velocity v
on D, is due to the presence of the inhomogeneity (focus-
ing), while the dependence of Jon D, is connected with the
absorption of radiation in plasma, which is assumed to be
sufficiently weak (1, 7<1). The veloicty v can be expressed in
terms of the laser-beam and gas parameters, in accordance
with (2.5). On the other hand, the equations given by (4.7) are
themselves equivalent to the “‘equal areas theorem” (2.4),
where f=J (x) and the coordinate x is a parameter.

When D | «/,, the equations given by (4.7) can be ex-
panded into series in powers of D _ . If we place the origin at
the focus, we obtain the equations describing the slow dy-
namics of the domain in the case of sufficiently weak absorp-
tion g, (To)l, <17

%: v (J)—sD?, (4.8)
9D, ; 4.9
S5 =v, (J)—m (D, + D_)—sD?, (4.9)

where J is the beam power incident on the left boundary
(x = — D_)ofthe domain (see Fig. 18) and v,(/ ) is the veloc-
ity of the plasma boundary (domain wall) along the uniform
beam (¢ = 0)withJ, = J(0). The parameters sand m in (4.8)
and (4.9) are given by

4] 0% vy
S=T T o T B
dv  aJ dv
m=——_w —— D_:Jum (Ta)a—]muolio, (4.10)

where vy « % /vr and we have used (4.5) in the derivation of
the expression for m. We note that (4.8) and (4.9) are analo-
gous to (2.19). The appearance in (4.9) of the additional term
—m(D, + D_)isduetoareduction in the intensity of radi-
ation reaching the right-hand wall of the domain (x = D _ ) as
a result of absorption of light.

The solutions of (4.8) and (4.9) that describe a stable
localized domain can be readily obtained:

A SRS

It is clear that the inclusion of absorption (m > 0) leads to an
asymmetry of the domain (D_ > D, ). As the power J de-
creases, the domain length D = D, + D_ is found to fall,

(4.11)

"This case is characteristic, for example, for the neodymium laser in the

case of a discharge in the atmosphere,*” where u,, (T,) =410~ cm ™' for
T,=12000K, J, =1 MW,
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since v\(J)ocJ — J,(0) for J~J —J,(0) [see (2.5)] and m,
s = const. When v,(J ) <m?/s, the right-hand domain wall
shifts to the left of the focus (D, <O, see Fig. 18). When the
power J becomes equal to J;, where J, is given by the condi-
tion v,(J;) = m*/4s, the domain vanishes. We then have
D,= —D_,D=0andJ, —J,(0)~J,(0)( sol,)*. The do-
main vanishes at the pointx = — D_, which lies to the left of
the focus at a distance given by

D= p, (T 1 (4.12)
when we have used (4.10) to obtain an approximate estimate.
Under the conditions of the experiment reported in Ref. 47,
where /, = 50 cm and p,, (T,) =~4-107> (Ref. 48), the length
D, is of the order of 1-10 cm.

A similar approach can be used to examine, for exam-
ple, a localized plasma column in a microwave discharge,” a
glow discharge in a tube of variable cross section,'?* and so
on. We note that, as in the above example, the inhomogene-
ity is then frequently due to the discharge geometry itself.

C. Temperature-electric domains in normal metals

We now consider one further example, namely, that of
temperature-electric domains in a normal metal carrying a
current. In an infinite specimen, such domains can be pres-
ent if the heat-balance equation p(T %) j2 = W (T} is satisfied
for two or more values of the temperature 7 (see Fig. 4). In
practice, this situation occurs either when the resistivity p(T")
is a sufficiently rapidly varying function of temperature, or
when the heat-removal function W= W (T) is N-shaped
(Figs. 4a and b, respectively).

If, for example, the presence of three crossing points of
thefunctions Q (T )and W (T )is largely due to the behavior of
the resistivity p(T), the appearance of a temperature domain
is accompanied by the appearance of an essentially inhomo-
geneous electric field. Domains of this kind are essentially
temperature-electric domains.*' Let us examine the physical
mechanisms responsible for the appearance of such do-
mains. The function Q = Q (T'), similar to that shown in Fig.
4a, is characteristic for any sufficiently pure metal because
the transition from helium to nitrogen temperatures is ac-
companied by the onset of phonon scattering of electrons,
which gives rise to a substantial*' increase in p(t ). Moreover,
the appearance of the temperature-electric domains may be
connected with phase transformations, in which case p(T')
increases*? in narrow temperature intervals.” For example,
this may occur in melting, during magnetic transitions,*>*?
and so on. As far as the N-shaped function W= W(T) is
concerned, this may be due to the particular features of the
electron-phonon interaction, for example, the presence of a
“narrow phonon bottleneck” in semi-metals,"?® and so on.

So far, we have been concerned with the properties of a
metal as such. On the other hand, the properties of the cool-
ing medium may undergo a change when the heat flux leav-

®1f p(T') decreases with increasing T, the phases may separate in the direc-
tion perpendicular to the current, and filaments will be formed (examples
are the melting of gallium, antimony, and bismuth, the transition from
the ferromagnetic to the superconducting state in magnetic supercon-
ductors,'?* and so on.
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FIG. 19. Current-voltage characteristic of a normal metal with a tempera-
ture-electric domain. Broken line shows the change in the CVC in the
presence of point inhomogeneities.

ing the specimen for the coolant is high. A characteristic
example of this is the so-called boiling crisis of a liquid coo-
lant,”®"! i.e., the transition from bubble to film boiling (see
Fig. 4b). The result of this is that, when heat is removed by a
boiling liquid temperature-electric domains due to the for-
mation of a vapor film on the surface of the metal'>”!2® may
appear. At constant current, the transition of the metal from
one homogeneous state (T = T',) to another (T = T;) occurs
forj > j* (see Fig. 4a). If, on the other hand, the voltage rather
than the current is constant, this transition cannot occur
because it is accompanied by a rapid increase in resistivity
and a reduction in j below the valuej. for which there is no
equilibrium state with 7= T,. Thus, only a portion of the
specimen can go over into the high-temperature state, and it
is this portion that constitutes the temperature-electric do-
main.

Figure 19 shows the CVC of a metal containing a tem-
perature-electric domain (see, for example, Refs. 42 and
129). The branch Oa corresponds to a uniformly heated metal
(T = T,), whereas the remainder of the characteristic corre-
sponds to a specimen containing a domain. When the voltage
Vis high enough, the current 7 in the metal remains constant
(barretter effect*?). The length D (V) of the domain is then
determined from the condition for the equilibrium of its
boundaries I = I, i.e.,

Ry (I) I, + Ap I) D (V) I = V, (4.13)

where R(] ) is the resistance of the specimen with 77 = T',(I),
and 4p is the jump in the resistance of a specimen of unit
length in a transition from the state with 7 = T, to the state
with T = T,.

Domains may become localized in inhomogeneous met-
als, which will lead to the following effects: (1) stabilization
of the domain at constant current, (2) existence of several
types of localized domain and, consequently, the presence of
discontinuous transitions between them when I changes,
when external perturbations are introduced, and so on, and
(3) multivaluedness, steps, and hysteresis on the CVC.

As an example, let us consider the segment of the CVC
for a homogeneous specimen on which the current is stabi-
lized (I = I,,) (see Fig. 19) and an increase in V¥ produces a
proportional increase in the domain length D (V') [see (4.13)].
When local inhomogeneities are present, this situation will
continue until both domain boundaries encounter “cold” in-
homogeneities (I" < 0). As shown in Sec. 2, this leads to the
localization of domain walls. As a result, the domain will be
“held” between two inhomogeneities, and its length will
cease to be a function of V. The CVC of a specimen with this
type of localized domain will be resistive, so that further
increase in ¥ will produce a rise in the current 7 until one of
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the domain walls detaches itself from the inhomogeneity
[ —I,>A4I~|I' |l ;seealso(2.17)]. When the domain walls
become delocalized, there is a discontinuous change in the
current by the amount 47, and the specimen goes over into
the barretter state*? until, with increasing V, the domain
boundary meets the next inhomogeneity with I" <0. Thus,
the CVC of an inhomogeneous specimen assumes the saw-
tooth shape (broken curve in Fig. 19). We note that the separ-
ation between the “‘teeth” on the CVC is uniquely related to
the separation between the inhomogeneities in the specimen.

Temperature-electric and thermal domains have been
observed??128-131 at different coolant temperatures, and lo-
calized thermal domains were reported in Ref. 128,

D. Chemical-reaction waves

We shall now illustrate in detail the situation that arises
during the localization of a domain wall by considering the
example of switching waves that accompany chemical reac-
tions. We shall examine two limiting cases, namely, noni-
sothermal waves propagating over the surface of a solid cata-
lyst®'5? and isothermal waves accompanying the “cold
combustion” chain reaction {Refs. 49, 50, 54, and 132). Sup-
pose that a chemical reaction between gaseous reagents oc-
curs on the surface of a thin catalyst wire of diameter d.
Depending on its temperature, the catalyst can be in one of
two reactive states, namely, the kinetic state (low tempera-
ture) and highly-active diffusion state (high temperature;
see, for example, Ref. 49). The switching of the catalyst ac-
tivity states occurs through the propagation of a tempera-

ture wave>>? which can be described by
v A (@ —T)—CmQO T =Tyl (414)

where v and x are the specific heat and thermal conductivity
of the catalyst, 4 is the heat-transfer coefficient between the
wire and the ambient gas at temperature T, m is the mass
supply coeflicient for a reagent of concentration C, (J is the
heat of the reaction, and T, ~E,, where E, is the reaction
activation energy. For simplicity, v, x, and 4 are assumed
temperature-independent in (4.14), and heat release in the
kinetic state has been neglected (T'< T ).

Let us now consider the localization of the switching
wave for the catalyst activity state on an inhomogeneity due
to, for example, a local rise in / (x) over a length 2/. It will be
convenient to write (4.14) in dimensionless form by substi-
tuting x, =x/L, t;=t/7, and Y ={(T —TY/(T, —Ty),
where L = \/dx/4k and r = vd /4h. We then have

V=" — PO (p — 1)+ Tyd (zy), (4.15)
where z
CmQ h(z)]dx
b= Ton F:S [1— (h ]T- (4.16)
11

We note that (4.15) is a special case of (2.24), which we inves-
tigated in Sec. 2C.
When I" = 0, we can readily find the solution describing
the domain wall moving with velocity v from Eq. (4.15),
where
B—2

L (4.17)
e

V=1,
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Itis clear from the last equation that the two-phase state can
exist only when f> 1. For / <8 <2, the domain wall takes
the catalyst from the diffusion state to the kinetic state, and
the reverse situation occurs for 8> 2. If, on the other hand,
B = 2, the domain wall is at rest ( 8, = 2}.

It is readily shown from (4.15) [see also (2.17)] that,
when I' < 0, the diffusion-state wave is localized in the range
B, <B <B,, where, for |I" | €1, we have

B, =2 —T. (4.18)

Since, for each value of 3, there is a wave moving with a
particular velocity v = v( B), it follows from (4.18) that the
diffusion-state waves with velocities v < v, (v, = v( B,)) can-
not propagate. The magnitude of the critical velocity can be
found from (4.17) and (4.18): v, = 2|I" |v,,(|I" | €1). We note
that I"«d ~!/2, so that the importance of the inhomogene-
ities increases with increasing d.

If, for example, the velocity is investigated experimen-
tally as a function of the temperature 7, of the medium, it is
found that the wave will not propagate for
T, <Ty<T, + 6T, The temperature T, is determined
from the relation 8(T,) = B, =2, and

8Ty = (Tx — To) I T | (4.19)

We note that, in the range T, <T< T, + 67T, the
catalyst can go over into a metastable inhomogeneous state,
so that segments of kinetic and diffusion states will alternate
along its length, and the combustion process will occur in
“spots.”

Effects associated with the localization of chemical-re-
action waves on the surface of a catalyst have often been seen
experimentally.>'3>!3* In particular, localization of waves
moving with velocities v < v, has been observed in the course
of experiments involving the oxidization of CQ, ammonia,
and ethylene®’->%'*3 on platinum. A series of alternating lo-
calized regions in different reaction states has been obtained
by producing artificial inhomogeneities.*'~*

Figure 20 shows the temperature profile of a moving (1)
and localized (2) wave during the oxidation of ethylene on
platinum."** There is a clear “knee” that is characteristic for
waves localized on inhomogeneities (cf. Fig. 7). It is found®’
that, when ammonia is oxidized on platinum,
T, — T;~1000 K and the localization interval is §T,~ 10
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FIG. 20. Temperature distribution in a moving (1} and localized (2) cata-
lyst activity switching wave when ethylene is oxidized on platinum.'??
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K. It follows from (4.19) that a small inhomogeneity with
I'~0.01 is sufficient to localize the waves under the condi-
tions prevailing in the experiment described in Ref. 51.

Let us now examine the isothermal “cold” combustion
reaction which can occur in a gaseous medium {see, for ex-
ample, Refs. 49, 50, and 132), on the surface of a catalyst,>*
and so on. During “cold” combustion, there is a deficiency
of one of the reagents, the heating of the mixture by the heat
of the reaction is small, and hence the propagation of the
usual combustion waves associated with thermal self-igni-
tion**? is not possible. Recently, there has been increased
interest in such reactions in connection with the develop-
ment of chemical lasers.”>*

The “cold” combustion reaction proceeds through a se-
ries of intermediate stages, one of which involves the forma-
tion of active centers that are responsible for chain branch-
ing. This leads to the propagation of “‘cold” combustion
waves due to the diffusion of active centers.*® Let us consider
the localization of such waves when they are associated with,
for example, an inhomogeneity on the surface of a reaction
tube or catalyst. »

When the active centers have long lifetimes, the initial
set of equations describing the chemical kinetics of the sys-
tem can be reduced to a single diffusion equation for the
concentration n of the active centers:

on 92n

where the specific form of f(n) is determined by the nature of
the intermediate stages of the given reaction and, for simpli-
city, the diffusion coefficient D, is assumed to be indepen-
dent of n.

We shall confine our attention to the case of quadratic
chain branching so that f(n) is of the form*®-3%132
kn®(ng—n)

kyt-mky

where k and &, are constants that can be expressed in terms
of the corresponding rate constants for the elementary reac-
tions, m is the concentration of molecules M on which the
reaction chain stops, n, is the initial concentration of the
deficient reagent, and k, and k, are rate constants represent-
ing chain breaking at the wall of the reaction tube and as a
result of a collision with the molecule M, respectively.

Equation (4.21) provides a sufficiently satisfactory de-
scription of, for example,'*? the oxidation of CS,
(ny = [CS,), oxygen in surplus).

Equation (4.20)is analogous to(2.6) with U = U (n}simi-
lar to that shown in Fig. 3. It will be convenient to transform
to dimensionless variables x, = x/L, t, =t/7, y =n/ny,
where L = /D_/k and 7=k ~', and take the intensive pa-
rameter 8 in the form 8 = k,n3/k (k, + mks). The “cold”
combustion waves will then be the above domain walls. They
can obviously exist only for ny>n,; for no=n, the wave
velocity is zero, and for n,<n, the propagation of such
waves is impossible. The quantity #,, is found from the equa-
tion B, = 9/2 (see, for example, Ref. 50).

Let us now consider the localization of the “‘cold” com-
bustion wave on an inhomogeneity connected with a local
increase in the rate k, of chain-breaking on the tube wall over

f(n)=kn— (4.21)
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a length 2/<L. As shown in Sec. 3, the condition for this
localization is the existence of nontrivial solutions y,, and of
Egs. (3.5) and (3.6), which in our case (¢,,=y,,), take the
form

dxia

Ty Ty (t—ym) (1= F ym), (4.22)
r— 30 kg (2) — ky (00) (4.23)

ko () 4 miey

where I"'~1 /L and terms of the order of I" % are neglected in
(4.22). The critical quantity 3,, for which the localization of
the combustion wave takes place, can be found from (4.22):
9 1\, 2\
Po=Pp+ed, ci=1—0(1_,/_m) (1T,/_T_6)~1’49'
(4.24)

The critical velocity v, can be readily obtained by substitut-
ing for B, in (2.5). This yields

ky (z) — kg (20) dz

ko (z) + mkg (4.25)

vy, = ok 5 cz=%c1~1.

Thus, the flame becomes extinguished before the wave
velocity becomes equal to zero, and this had already been
seen in early experiments on the “cold” oxidation of CS, (an
alternative explanation is given in Ref. 135).

Direct measurements of v, yield information on the ki-
netics of the intermediate stages of “cold” combustion re-
gions. In particular, if a region with k,» max[k,( ), mk,] is
artificially produced on the surface of the reaction tube, then
vy =21k, so that the constant k£ can be investigated as a func-
tion of 7 and of pressure. When the constant k corresponds
to a second-order reaction,'*? we have

\

v, &~ 21k, (%)GXP(—iEg;)a

(4.26)

where p is the partial pressure of oxygen and E, is the activa-
tion energy (the temperature dependence of the preexponen-
tial factor k, is neglected).

E. Superconductor exposed to laser radiation

Superconducting and resistive phases, and also super-
conducting phases with different values of the modulus of
the order parameter 4 (see, for example, Ref. 62), can coexist
in a superconductor exposed to a laser beam. The nonlinear
waves (domain walls) in which we are interested are the se-
paration boundaries between the corresponding phases.
Waves of this type are usually connected with the diffusion
of nonequilibrium electronic excitations and are described
by equations such as (4.20),% where the function U = U (n) is
analogous to that shown in Fig. 3, and the parameter 8 is
replaced by the radiation power P.

When a certain threshold power P, is exceeded, the re-
sistive phase replaces the superconducting phase and, for
P~P,, the velocity of the N-S boundary isy~P — P,. The
quantity P, can be estimated by equating the density ng of
Cooper pairs broken up by the electromagnetic field to the
equilibrium density of paired electrons ny~A4 *N¢/kg T,
where N  is the density of states on the Fermi surfaceand &
is the Boltzmann constant. We also have ng ~Ng7,.7/d,
where N is the number of photons absorbed by a unit sur-
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face of the film per unit time, 7, is the electron energy relaxa-
tion time, 7 is a coefficient representing the multiplication of
quasiparticles due to reabsorption of phonons, collisional
ionization across the gap, and so on,%? and d is the film thick-
ness. The above estimate for n; has a simple physical inter-
pretation: each absorbed photon results in the breaking up of
r Cooper pairs, so that 27 nonequilibrium quasiparticles are
produced andrecombineinatimer,.SinceNg = (1 — k )P/
#iw, where w is the radiation frequency and & is the reflection
coefficient, it follows from the foregoing estimates that®-'3¢

Pp AhwNyd

~ U—k) verkplec (4.27)

where A2~ T (T, — To)k &.

In the case of time-independent illumination with pow-
er P> P,, the entire specimen goes over to the resistive state
in a time L, /v, where L, is the specimen length. Under
pulsed illumination,’’~*° the resistive phase exists only dur-
ing the pulse length 74{7,»7,), and the size of the region
occupied by it is of the order of vr, (this is the model of the
dynamic intermediate state'*”).

The presence of inhomogeneities in the superconductor
may lead to the following. Firstly, the resistive phase may
become localized under stationary illumination. Secondly,
in the case of pulsed illumination, localization of the domain
walls can occur, and this will lead to a deviation of the ob-
served resistance R from the relation pvr,/4 predicted by
the model of the nonstationary inhomogeneous state. Local-
ization of the resistive phase on inhomogeneities can, in turn,
be accompanied by hysteresis effects similar to those de-
scribed above.

Characteristic inhomogeneities can be due to, for exam-
ple, variable film thickness, the nature of the surface, the
distribution of impurities in various structural defects, the
illumination itself (controlled weak coupling'*®), and so on.
We note that some of the inhomogeneities on which the lo-
calization of domain walls is possible have no essential effect
on the width of the superconducting junction, which is
usually a measure of the inhomogeneity of a superconduc-
tor. This applies, for example, to point inhomogeneities (be-
cause of the smallness of theratio/ /L, ), the inhomogeneous
distribution of nonmagnetic impurities that do not affect 7,
by virtue of the Anderson theorem,”® the surface properties
that produce a change in the reflection coefficient & in (4.27),
and so on.

Thus, the resistive states of films that are homogeneous
in the sense of the width of the superconducting junction,
which appear under time-independent laser illumination,
can be determined by the localization of N-S boundaries on
inhomogeneities.

F. Dielectric-metal phase transition

Let us now consider the nonlinear waves that accompa-
ny the dielectric-metal phase transition (see, for example,
Ref. 139). This transition usually occurs when the tempera-
ture or pressure is increased, and is accompanied by a large
(by ten orders of magnitude in vanadium oxides) jump in the
conductivity and a radical change in optical properties,
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FIG. 21. Phase separation across a metal-dielectric transition in an elec-
tric field E.

which is widely exploited in electronics, optoelectronics, and
so on."®

The nonlinear waves in which we are interested arise
under nonequilibrium conditions and, in particular, when
the specimen is heated by an electromagnetic field,**'*°
when a nonequilibrium distribution of carriers is estab-
lished,® and so on. They are switching waves that take the
specimen from the metal to the dielectric state and back
again. To be specific, we shall consider temperature waves
(domain walls) that arise in a constant electric field E *'3°
where, obviously, the heat release in Q = o(T')E %. Since in
contrast to, for example, a superconductor carrying a cur-
rent, the system in which we are interested does not have an
N- or S-shaped CVC, the phase separation within it occurs at
right-angles to the direction of the E-lines'”*® (Fig. 21). In all
other respects, the switching waves are analogous, in this
case, to those considered above (see Chap. 2). For example,
the function U (T') is similar to that shown in Fig. 3, where E
plays the role of the parameter S3.

The velocity of the switching wave (domain wall)
changes sign at E = E,. The quantity E,, can be readily esti-
mated by analogy with (4.3) (see also Ref. 64):

ml/ Ty
ED~]/0d Te

where o is the conductivity of the metal phase and 7, is the
phase transition temperature. When E > E, the metal phase
replaces the dielectric phase, and the reverse situation oc-
curs for E<E,.

The presence of inhomogeneities ensures that the do-
main wall can be localized for E~E_ . In particular, for con-
ductivity inhomogeneities, we have E, — E, ~T'E_, where
I'~Acl /oL, L =\dx/h,, Ao =0 — 0, As an example,
consider the propagation of the switching wave in a medium
with point inhomogeneities for E > E,,. We shall use the sim-
ple model discussed in Sec. 2, and take into account the in-
homogeneity by adding the terms 2,1, §(x — x;) to the right-
hand side of (2.24), where I'; are constants characterizing
the strength of the /-th inhomogeneity at x = x;.

Equation (2.44) describes the dynamics of the domain
wall in our case and can be integrated readily, so that the
motion of the wall can be determined for an arbitrary distri-
bution of inhomogeneities. To illustrate the situation, we
shall confine our attention to the limiting case |x; —
X;, 1 |»L, where the wave front interacts with each inhomo-
geneity separately. The wave then propagates in stages, ac-
celerating as it passes inhomogeneities with I, > 0 and de-
celerating when I'; <0. The dynamics of such processes is
described by (2.43), in which r=|¢|.

We shall now establish an expression for the mean ve-
locity of a domain wall, v = L, /1, where 7 is the time taken
by the wave to traverse the entire specimen. It is clear that

(4.28)
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t = (L, /v) + Z,4¢;, where At; is the time by which the do-
main is delayed on the /-th inhomogeneity and v = v(E ) is its
velocity in a homogeneous specimen (v > 0 for E > E,). We
can readily show from (2.43) that Ar, = —(2L/
v) In[1 + (2I;v4/v)], where v, =L /7, and 7 = vd /A is the
thermal time. We now introduce the inhomogeneity distri-
bution function ¢(I") and obtain

Lep [1+21—f 5 dle (I) In 4],

i
v v+ 2Ty,

(4.29)
where /; is the mean separation between inhomogeneities
(/; L ). The time f becomes infinite in the presence of at least
one inhomogeneity I'; for which the localization condition
2v,|T; | >v is satisfied. If, for example, the inhomogeneities
are identical sources or sinks of heat (|I';| = I'), and the
specimen is homogeneous on average (3, I"; = 0), then

v - (4.30)
v?— 420}

D=

1—(—Lln
{

The quantity ¥ vanishes at the localization threshold
(2l o =v).When this is so, and v — 2l wy>v~vl
Xexp( — I, /L), the inhomogeneities have practically no ef-
fect on the mean wave velocity.

Thus, the inhomogeneities influence the switching time
(especially for E~E_ ), and this may be important in applica-
tions. We note that, by suitably introducing artificial inho-
mogeneities, it is possible to produce metallic regions (cur-
‘rent filaments), localized in the dielectric phase. In
particular, the CVC hysteresis and the discontinuous transi-
tions between different states of localized waves that were
discussed above can be used to record and store information,
and so on.

G. Dissipative structures in an inhomogeneous medium

In the preceding sections, we were largely concerned
with localized states of domains and domain walls on isolat-
ed inhomogeneities. If, on the other hand, the specimen con-
tains several inhomogeneities, they may combine into a me-
tastable inhomogeneous state in the form of a structure
consisting of individual fragments in the form of localized
domains or domain walls. Let us consider the properties of
such structures in greater detail.

We begin with the relatively simple case of smooth in-
homogeneities, for which the most important factor is the
variation in 8, = f3, (x) along the specimen. Stable “strong-
field”’ domains can then localize on inhomogeneities in the
neighborhood of the minima of the function £, (x). If, for
example, such domains are described by the thermal con-
duction equation (2.6), the resulting structure takes the form
of a sequence of alternating “hot” and “cold” phases. We
note that, for a given distribution of inhomogeneities, the
form of the structure itself is not uniquely determined by the
magnitude of 8. In fact, a finite-amplitude fluctuation is, in
general, necessary for the formation of each localized do-
main. The maximum number of different structures that can
be realized in the presence of n smooth inhomogeneities is
equal to 2". The specific form of the resulting structure is
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FIG. 22. Example of a dissipative structure arising during localization of
domain walls on inhomogeneities 1, 2, 3, 4, and 5.

then determined by the prior history of the specimen, the
nature of external agencies, and so on.

A variation in the parameter 8 may be accompanied by
sudden rearrangement of the above structures, for example,
as aresult of a “hop” of the domain boundary to a neighbor-
ing inhomogeneity, the appearance of new localized do-
mains, and so on. As already noted above, such a rearrange-
ment is usually accompanied by hysteresis (see Fig. 10).

A metastable multiphase structure due to the localiza-
tion of either interphase boundaries (domain walls) or re-
gions of different phase of finite dimensions (domains) may
exist in the presence of point inhomogeneities. For example,
the localization of domain walls in the specimen may be ac-
companied by the presence of regions of different phase,
whose dimensions D, are determined by the separation
between the inhomogeneities (Fig. 22). When the localiza-
tion condition (3.5) is satisfied for each of the domain walls,
the quantity D, is a slowly-varying function of 5. When this
condition ceases to be satisfied for some particular inhomo-
geneity, for example, inhomogeneity 1 in Fig. 22, the domain
wall localized upon it “breaks off”’, and the length of the left
domain in Fig. 22 decreases until the wall meets a stronger
inhomogeneity along its path, for example, inhomogeneity
2. This discontinuous rearrangement can occur both as a
result of a change in £ and in response to a strong enough
external perturbation. We note that hysteresis connected
with the difference between 8, and 53, (see Chap. 2) will oc-
cur when the variation in £ is reversed.

The foregoing considerations can also be used to de-
scribe dissipative structures in an inhomogeneous medium.
Thus, dissipative structures such as static spatially inhomo-
geneous distributions of various physical quantities (concen-
trations of chemical reagents, density, electric field, tem-
perature, and so on) that appear under nonequilibrium
conditions are usually described by the two coupled equa-
tions (see, for example, Refs 4-6):

ap _ a ap

Vo 3 =gz %o 5, — (b, @), (4.31)
[7] a a
Ve g =57 %o 5 — P (¥, @), (4.32)

where the variables ¥(x,t ) and @(x,t ) are determined by the
nature of the particular problem. The functions f(i,¢ ) and
P (@ )describetheinteraction (including self-interaction) of
the quantities ¥ and @.

Dissipative structures (periodic, stochastic, and so on)
in various physical, chemical, and biological systems have
attracted considerable attention in recent years (see, for ex-
ample, Refs. 1-6, 32, 33, and 140). The necessary condition
for the appearance of such structures in a homogeneous me-
dium is that the zero isocline ¢ = ¢, () of Eq. (4.31)
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{f (@) = 0) should be N-shaped (compare with Fig. 2) and
the variable ¢(x,t ) should damp the inhomogeneous distribu-
tions i(x) (for example, periodic, etc.*'*°) that are stable for
@ = const. In this approach, the medium in which the dissi-
pative structures appear is itself only a passive background
on which “the action” takes place. On the other hand, inho-
mogeneities are alway present in real systems in one form or
another.

The foregoing discussion shows that the presence of the
damping variable @(x,t ) is not a necessary condition for the
existence of a dissipative structure in an inhomogeneous me-
dium: its functions begin to be performed by the inhomoge-
neity. The formal transition from (4.31) and (4.32) to (2.6),
which describes an inhomogeneous one-component medium
{ #==0), occurs when the function @ (¢, )isindependent of ¢,
i.e., the variable @(x,t ) plays the role of a given external field.
We now list the leading features of the above dissipative
structures: (1) hard excitation regime, (2) discontinuous rear-
rangement and hysteresis accompanying a variation in the
external parameters, and (3) essential dependence of charac-
teristics on the disposition and strength of inhomogeneities
which, in a sense, may be looked upon as data-carrying “‘nu-
clei” in the dissipative structure (see, for example, Ref. 4).

When the function @ (¥,@) in (4.32) varies appreciably
with ¢, the variable @(x,t) may be looked upon as a self-
consistent inhomogeneity that adjusts itself to the field
¥{x,t). If the characteristic spatial scales L, and L, of Egs.
(4.31) and (4.32) are essentially different, the resulting dissi-
pative structures can be usefully analyzed by the methods
presented above as applied to inhomogeneous one-compo-
nent systems. Finally, as far as the effect of true inhomogene-
ities on the properties of multicomponent dissipative struc-
tures, described, for example, by Egs. (4.31) and (4.32), is
concerned, this problem is, of course, of independent interest
(see, for example, Refs. 141 and 142 and the review given in
Ref. 143).

5. CONCLUSIONS

We have attempted in this review to delineate the gen-
eral features of nonlinear waves such as domains and domain
walls localized on inhomogeneities of a medium. Qur analy-
sis shows that this localization can have an important effect
on different physical properties of the system.

The waves considered in this review corresponded to
one-dimensional or, more precisely, quasi-one-dimensional
situations that are relatively frequently encountered in ex-
periments. The description of two- and three-dimensional
waves localized on inhomogeneities is an undoubtedly im-
portant but more complex problem. However, the recently
developed very effective methods of integrating nonlinear
partial differential equations, based, for example, on the in-
verse scattering method,®'° lead us to the expectation that
progress will be achieved in this area as well.
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