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Open systems that contain chemically reacting mixtures and are restrained from relaxation to thermodynamic
equilibrium manifest a capability of characteristic collective effects. In particular, macroscopically ordered
states (dissipative structures) can arise in them spontaneously. This study discusses the fundamental results of
the theory of dissipative structures: potential multiplicity of states differing in type of spatial organization, the
possibility of both spontaneous and induced transitions between these states, and a universal description of the
dynamics of establishment of macroscopic order. The capability of self-organization of a broad set of
physicochemical systems opens up the possibility of modeling processes of desymmetrization and
complication of spatial organization during the embryonic development of multicellular organisms. The
article reflects the most significant results in this field.
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1. INTRODUCTION

The advances of molecular biology and molecular
genetics evident today would not have been possible
without the substantial penetration of physical ideas and
experimental methods into this field. This penetration
has imparted a powerful stimulus to development in
such problems on the molecular level of biological or-
ganization as the structure of the genetic apparatus of
the cell, its reproduction, and principles of functioning,
the principles of protein structure, the construction and
molecular mechanisms of action of cell membranes,
etc. (see the reviews on this topic in Uspekhi
Fizicheskikh Nauk1"3). However, only in very recent
time have physicists become seriously attracted to
problems pertaining to the higher—supercellular—level
of organization of life. On this level, individual cells
now act as a whole. Therefore the entire set of mole-
cular and submolecular intracellular processes must be
taken into account in some way or another.

It is hard to anticipate that one can adequately treat
the living cell—undoubtedly a macroscopic object—on
the basis of the concepts of macroscopic physics that
have been developed and well adapted to describing
such objects as homogeneous liquids, gases, or crys-
tals. With a macroscopic number of degrees of free-
dom, the behavior of the cell is very far from statisti-
cal. The extremely complex, irregular spatial organi-
zation of intracellular structures and the consequent
space-time organization of physical, chemical, and

biochemical processes has no analogs in nonliving na-
ture. For this reason, the problem of describing the
functioning of the cell in the language of the exact
sciences usual in physics is hardly actually solvable
at the contemporary stage. Does this mean that it is
hopeless for the physicist to try to understand how the
establishment of multicellular organization occurs dur-
ing individual development (ontogenesis) of living beings?
Can physics facilitate advance in this field, despite the
deficiencies of understanding of the functioning of indivi-
dual cells?

In the theory of multiparticle systems the situation is
usual in which almost none of the physical quantities
of interest can be calculated rigorously from fundamen-
tal principles. However, the partial lack of knowledge
of the complex details does not impede our obtaining
certain general results. An example of this is the dis-
persion relationships in the hydrodynamic theory of
fluctuations.4 The value of such results lies in the fact
that they indicate which quantities of the theory acces-
sible to experimental study prove to be insensitive to
the multitude of dynamic characteristics not amenable
to being taken into account. Analogously one can try to
construct a theoretical picture of the formation of spa-
tial organization on the multicellular level abstracted
from the aforementioned complexity of the intracellu-
lar apparatus. Especial progress has been noted pre-
cisely along this pathway in recent time. In this re-
view we present the considerable positive results that
have been attained here already.
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Why do the descendants copy in their appearance many
of the features of the parents? The banal answer,
" Because they receive from each of them half of their
set of genes," will now satisfy hardly anyone. One can
yet add a mass of important details, such as: the genes
amount to regions of definite length arranged in the
form of a linear chain in the giant molecule of DNA;
information on the structure and functional properties
of all proteins are coded in the form of sequences of
monomeric links in DNA; one can describe the princi-
ples of extraction of this information in the process of
protein synthesis, etc. However, these refinements do
not eliminate the main question: how are the structural
and functional properties of multicellular living systems
produced during their individual development (embryo-
genesis)?

Histologists distinguish about two hundred cell types
in the human body. Among the vertebrates—fishes,
amphibians, reptiles, and mammals—there is a certain
variation in the types of specialized cells. Yet the key
to the differing organization of these living beings does
not lie in the cells as such. We should seek it in the
spatial arrangement of these fundamental building ele-
ments and in how this arrangement evolves in develop-
ment.

Undoubtedly, the entire variety of types of specialized
cells is programmed in the DNA of the single starting
cell, the fertilized egg.5 Thus, for each given cell all
the possible discrete states (types of specialization)
are coded in its own DNA. The problem lies only in
how the correct choice—corresponding to the function
of the given cell in the whole organism—of one of this
multitude of states is made.

This choice (in biological terminology, determina-
tion) occurs in the process of development of the em-
bryo. The cells at the early stages of embryogenesis
can be specialized for any of the types present in the
developed organism. At the same time, in the later
stages of development of the embryo, as a rule, the
types of specialization of the cells are irreversibly
determined. What controls this determination?

As a preliminary, we should clarify a more funda-
mental question: is the process of determination of
cells in the developing embryo associated with the
creation of new information? In other words, is such
a determination the result of remembering a random
choice T6-7

Definitely, random events have their place in embryo-
genesis. For example, in cell divisions in the process
of growth, the position of a newly formed cell or the
displacement of a previously existing one are as a rule
random.8 At the same time, random events play no
substantial role in determining the final "macroscopic"
result of the process of individual development of the
embryo. Otherwise the probability of birth of identical
monozygotic twins would prove extremely small. The
identical initial state (fertilized oocyte) and the identi-
cal conditions of development lead to completely iden-
tical results. This means that the creation of new in-
formation does not occur in embryogenesis.

a) Some experiments and generalizations

Experiments show that the factors controlling the de-
termination of individual cells in the formation of multi-
cellular structures do not lie under the direct control
of the genes, but are developed on the basis of the col-
lective properties of multicellular ensembles.* As a
rule, an initially defined mass of cells as a whole
is determined for the corresponding pattern formation,
and only then do individual cells obtain the appropriate
"instruction" for determination. We can explain and
illustrate this conclusion with the example of experi-
ments on rotating the rudiment of an extremity of
amphibia.8

At a certain stage of development of a triton, one can
distinguish a group of cells destined to produce an ex-
tremity. At the instant of performing the experiment,
this pathway of development for the given group of
cells as a whole is already determined. (If one trans-
plants it onto another embryo at an arbitrary site, then
the same extremity will still develop from the given
mass of cells.) Without altering the position of this
rudiment, one can change its orientation with respect
to the rest of the embryo. Here it turns out that a ro-
tation performed before a definite instant of the develop-
ment of the rudiment leads to formation of an extremity
oriented in a fixed way with respect to the external axes
of symmetry of the embryo—corresponding to the posi-
tion after the rotation. Thus the fate of the individual
cells in the rudiment is altered, depending on its orien-
tation.

However, if the rotation is performed after a certain
instant, then the orientation of the developing extrem-
ity no longer adjusts to the new position of the rudi-
ment. The further development of the extremity after
the rotation occurs as though it had no connection with
the rest of the body of the embryo. We note that the
described changes in the character of development,
which lead to total loss of the " sensing" of position in
the external system of coordinates, take form gradu-
ally, as shown in Fig. 1. The presented data, which
have been confirmed with many other rudiments, indi-
cate that the fate of the individual cells has not yet been
determined up to the instant of determination of a cer-
tain mass of cells as a whole.

The experiments of Spemann and Schotte9 have been
of fundamental significance for the further development

FIG. 1. Diagram of the results of experiments on rotating the
rudiment of an extremity of a triton. Step-wise determination
(1—3) of the direction of the extremity in the course of devel-
opment; solid arrows—allowed directions of growth of the
rudiment that are realized upon rotations; dashed arrows—
directions forbidden at the given stage. AP—anterior-poster-
ior axis of the embryo, DV—dorsal-ventral axis.
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of understanding the mechanisms of embryogenesis.
In these experiments a group of cells explanted from an
arbitrary region of a frog embryo at an early stage of
embryogenesis was transplanted into the region of the
future mouth of an embryo of the same species. After
transplantation, the characteristic structures of the
mouth developed from the given group of cells. This is
a typical "positional" development, which indicates,
on the one hand, the undetermined character of the
cells being transplanted, and on the other hand, the
inductive effect of the underlying structures.

The results of an experiment in which the same region
of a frog embryo was transplanted into the mouth re-
gion of the embryo of adifferent species, Triton, proved
rather unexpected. In this case the typical mouth of
a frog is formed from the transplant, and sharply dif-
fers from the mouth of a Triton. Thus the inductive
action of the underlying layers of the mouth region is
completely "abstract". This action dictates the develop-
ment in the given position of a "mouth as a whole"
without determining practically any detail of its struc-
ture . 8

A very general rule is manifested in these experi-
ments—the formation of a certain organ depends on the
presence of a certain inductive action. The nature of
this action proves to be similar for representatives of
different species of organisms. However, the reac-
tions to it are limited by the specific nature of the re-
acting tissue. This specificity is determined by the
genetic constitution of the cells and their prior history
of development.

b) Spatial ordering without movement of cells

A characteristic feature of supercellular organiza-
tion is the concerted, coherent behavior of cells in
cellular ensembles. Groups of identical cells form
stable aggregates: tissues. The cells forming one tis-
sue possess an identical regime of functioning,
and this regime differs from that of the cells of other
tissues. The aforementioned difference arises from
the difference in the sets of proteins being synthesized
by the cells, Here we touch upon one of the global
problems of modern biology: the problem of differentia-
tion of cells. In all its fullness, this problem is yet far
from being solved. But we are interested in this study
in a more special problem: how is spatial order attained
in ensembles of differentiated cells (spatial differen-
tiation)?

We know from experimental data that often the spatial
differentiation of cells arises in initially homogeneous
cellular ensembles, this process not being associated
with the division of cells.10 Thus a spatially ordered
assignment of specific states to an ensemble of identi-
cal cells with an identical initial state takes place, so
that the resultant ensemble of states forms a definite
spatial structure.

As a rule, such transformations encompass cellular
ensembles of from 10 to 100 cells.10 The correspond-
ing time intervals amount to hours. 10~12 The stated
characteristic scales define the so-called morphogene-

tic fields—groups of cells manifesting concerted behav-
ior in pattern forming processes. As an example, the
whole embryo in the early stages of development con-
stitutes a single morphogenetic field.10 In the later
stages in the embryo one can distinguish a number of
morphogenetic fields. The modeling of the pattern-
forming processes on the scale of individual morphoge-
netic fields is the fundamental topic of this study.

c) Positional information

In 1969 L. Wolpert formulated a set of statements
generalizing the experimental data on the development
of structures on the supercellular level.10 Wolpert
concluded that spatial differentiation is essentially a
two-stage process. In the first stage a mechanism
operates by which positional information (PI) is impart-
ed to the cells of the morphogenetic field-information
on the spatial position being occupied with respect to
a certain reference point. The PI implies the exis-
tence of a certain physical property that varies in the
system of coordinates of the morphogenetic field. The
positional information of a cell unambiguously dictates
the choice of its regime of functioning. The establish-
ment of the PI precedes in time and is independent of
the stage in which this choice is determined—the stage
of translation of the positional information. Apparently
the mechanisms responsible for the establishment of the
PI are universal, i .e. , they do not depend on the nature
of the morphogenetic field.

Thus the geometry of the spatial organization that
arises is completely determined in the first, faster
stage of formation of the PI. Probably the mechanisms
that act here do not involve directly the features and
details of functioning of the differentiating cells. This
circumstance is precisely why we can count on disen-
tangling the mechanisms of establishment of the spatial
order of cells by abstracting the treatment from the
inaccessible details of the processes inside them.

d) The chemical basis of morphogenesis

Thirty years ago a paper of A. Turing13 appeared
with the title taken as the heading of this section. This
happened before the birth of molecular biology, when
practically nothing was known of the molecular mechan-
isms of the processes in the cell. What chemical basis
could one have in mind? The " chemical" theory of
Turing did not claim to describe the morphogenetic
processes on the molecular level of chemical transfor-
mations. Nevertheless it yielded much of a funda-
mental understanding of the mechanisms of formation
of spatial order in the ontogenesis of multicellular
organisms.

The essence of Turing's study amounts to the follow-
ing. Let reactions occur in the limited volume of a
chemical reactor that can be described by macroscopic
equations of chemical kinetics. Here the diffusion coef-
ficients of the reagents are not so great that complete
mixing in the reaction volume can occur in the charac-
teristic times of occurrence of the reactions. In such
a system one can always find a steady corresponding
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to thermodynamie equilibrium—a homogeneous distribu-
tion of all the reagents throughout the volume. Turing
studied the stability of this state, i.e., its physical
realizability. It turned out that, under certain condi-
tions, the homogeneous state can become unstable. In
such a situation the system must manifest new collec-
tive features of behavior: in response to arbitrarily
small perturbations it must leave its initial state and
evolve into a new state. The fact that proved to be the
most remarkable was that in the case of two chemi-
cally reacting and diffusing agents, a perturbation that
destroys the stability of the homogeneous (symmetric)
state possesses a lowered spatial symmetry, e.g. , it
can have the shape of a sine wave. If such a perturba-
tion has arisen beyond the threshold of this instability,
termed Turing instability, then it will develop without
substantial change of shape, increasing only in ampli-
tude. Under these conditions one can hope to find a new
state in which the concentrations of the reagents are
distributed in space in a certain ordered way. Finally,
if this new state actually existed and were stable, then
in real systems, which are always subject to fluctuation,
the transition to it would occur spontaneously. Thus it
is appropriate to speak of self-organization.

The experimental discovery of the chemical structures
predicted by Turing served as a powerful impetus to
development of the theory. The concept of "dissipative
structures"15-18 arose and became widespread. The
phenomenology of the phenomenon—its macroscopic
character that results from amplification of the fluctua-
tional deviations—links it with a broad set of related
phenomena of self-organization in nonequilibrium sys-
tems of differing physical nature. Generation of laser
radiation, the macroscopic convective structures of
Benard in liquids, and chemical dissipative structures
form a set of systems with similar behavior. Common
to all of them is the interaction of a large number of
subsystems, which leads to collective effects with
characteristic spatial scales that substantially exceed
the dimensions of the individual subsystems.

A new interdisciplinary field has taken shape and
developed vigorously in the past decade—synergetics,
in which effective methods are being developed for
studying collective phenomena under nonequilibrium
conditions. One can become better acquainted with it
in a number of good reviews,17"20 monographs,21"24 and
also in the collected volumes of the proceedings of the
International Symposium "Synergetics".25

What relation do the dissipative structures in systems
with chemical interactions and diffusion (reaction-dif-
fusion systems) have with the specific spatial forms
that take shape in the ontogenesis of multicellular or-
ganisms? Can these structures serve as models of
the spatial order in the morphogenetic field?

A positive, albeit indirect, indication of this is the
fact that chemical dissipative structures and morpho-
genetic structures manifest order with similar scales.
For dissipative structures the characteristic dimen-
sions are determined by such macroscopic parameters
as the diffusion coefficients and times of kinetics:

I ~V~DT.

Crick26 has called attention to the fact that, if one starts
from the characteristic times of cellular dynamics
(hours), taking as the diffusion coefficient the one for
the molecules of organic compounds of medium molec-
ular weight (10Z-103) in a medium with a viscosity
close to that of the cell contents, then the estimate that
one derives for the length scale proves to be 1 mm.
This corresponds to cellular ensembles including some-
thing of the order of one hundred cells. We recall that
precisely such ensembles constitute the morphogenetic
fields. The stated range of molecular weights has not
been taken at random for estimates. It includes such
molecules as steroids, nucleotides, amino acids, low-
molecular-weight peptides—the fundamental compo-
nents of intracellular reactions. We also add that spe-
cial channels have been found relatively recently in
membranes at sites of cell contacts.27 Molecules of
the type listed above can diffuse through these chan-
nels.27 Moreover, direct data exist on the diffusion
of molecules of cyclic adenosine monophosphate (cAMP)
between cells of embryonic tissue.28 This substance
plays a leading role in regulating the activity of genes
and in many reactions of cellular metabolism.

Thus reaction-diffusion processes of the type of those
that Turing discussed in very general form must have
a relation to the actual events in morphogenetic fields.
Turing himself proposed a considerably more concrete
hypothesis13: chemical interactions and diffusion make
possible the mechanism of spatial self-organization in
multicellular ensembles. Or, in other words, the
positional information in the morphogenetic field
arises spontaneously and is fixed by the concentration
distribution of the reagents in a chemical dissipative
structure. The corresponding chemical agents have be
been called morphogens.

We note that the idea of a concentration gradient of
certain substances as the cause of spatial ordering of
the processes in the morphogenetic field was wide-
spread even before Turing's paper was published (see,
e.g., Ref. 29). However, the content of Turing's
hypothesis is considerably more constructive. By
pointing out an overall mechanism of onset of a chemi-
cal gradient, it enables one to make concrete predic-
tions of observed characteristics (such as spatial sym-
metry) of morphogenetic structures. These predic-
tions can be directly compared with the data of experi-
ments on real biological objects. Thus, on the one
hand, the theory is subject to test, and on the other
hand—it receives food for further development.

The spontaneous onset of dissipative structures, in-
cluding reaction-diffusion systems, has already firmly
become an object of study, and has even given rise to a
certain independent branch of physics. At the same
time, it has become a fixed tradition to "decorate"
reviews on dissipative structures with references to
biological applications. As a rule, such references in
nonspecialized studies have no concrete content. At
present this does not reflect the actual state of the
matter. Already many concrete examples have been
accumulated on actual objects that demonstrate the
"biological significance" of dissipative structures.
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Some examples of this type, in our view the most
representative, have been included in this review.

2. SYMMETRY-BREAKING INSTABILITY. LINEAR
ANALYSIS

It has become clear from Turing's work13 that chem-
ical interactions coupled with diffusional transport of
the reacting molecules can serve as the cause of spon-
taneous excitation of collective modes with macro-
scopic scales of inhomogeneity. Just like the modes
that arise in the equilibrium cooperative phenomena of
the Goldstone modes, these modes involve formation of
states (stationary spatial concentration distributions)
that break the symmetry of the operator controlling the
dynamics of the system. But this is no more than an
external resemblance. Above all, the difference lies
in the fact that a certain nonzero level of energy dissi-
pation is required to excite and maintain the macroscop-
ic inhomogeneities.16 These states cannot be realized
under conditions of thermodynamic equilibrium. More-
over, one cannot arrive at them by smooth extrapolation
of the thermodynamic branch.16 The latter must be-
come dynamically unstable, and this gives rise to the
macroscopic response to the microscopic events—the
spontaneous fluctuations are amplified to macroscopic
scales.

As we know,30 the stationary states of a thermody-
namic system departing from true equilibrium no fur-
ther than the limits of validity of the Onsager relation-
ships are stable. (In this regard, see also the earlier
study of Ya. B. Zel'dovich,87 which showed that in a
closed system with chemical reactions, the equilibrium
state is unique and stable.) This property is guaran-
teed by the theorem of minimum entropy production.30

This implies that it is possible to substantiate the onset
of macroscopically inhomogeneous states in an initially
homogeneous system only outside the limits of the region
of linear nonequilibrium thermodynamics, i.e., suffi-
ciently remote from complete thermodynamic equilib-
rium. A mixture of chemically reacting substances
can be kept from relaxing toward equilibrium only by
continual influx of substrates and efflux of products
from the reaction mixture. It is precisely under such
conditions that the development and functioning of any
biological system occurs.

Glansdorff and Prigogine16 have adopted the aim of
constructing a thermodynamic theory of stability out-
side the region of linear thermodynamics of irreversi-
ble processes. Upon adopting the postulate of local
equilibrium,1' they concluded that the increment of
specific entropy 62S caused by the fluctuations can
play the role of the Lyapunov function. This means
that for stable stationary states the quantities 62S and
S(5

2S must have opposite signs. With a given scheme
of chemical transformations, the quantity 3,52S can be
calculated by the laws of chemical kinetics from the

deviations of the concentrations from the stationary
state. Analysis of the signs of the quantities 62Sand
3,62S for concrete reaction mechanisms has shown that
nonlinear effects associated with auto- and cross-
catalytic stages can lead to instability of the thermo-
dynamic branch. le

However, we should note that such a thermodynamic
approach, while useful for a general understanding of
the phenomenon, still is not more economical in cal-
culations than direct analysis of the macroscopic equa-
tions of motion. Moreover, it is not at all constructive
in treating states in the transcritical region of insta-
bility of the thermodynamic branch. It proves more
informative here to study the dynamics of the harmonic
modes, as enriched recently by new powerful methods.
They will be discussed in Sec. 6. Here we shall under-
take a more comprehensive elucidation of the mecha-
nisms giving rise to symmetry-breaking instability
(SBI) in reaction-diffusion systems.

The macroscopic equations of motion for a mixture
of chemically interacting and diffusing components are
derived by adding nonlinear local sources /(C) (chemi-
cal reactions) to the diffusion equations:

.., a^+D,^-, j = l, ..., TV. (1)

Here C1( . . . , CN are the concentrations of the N compo-
nents of the mixture, and «1; . . . , au are external para-
meters such as the rate constants of the chemical re-
actions, the reservoir (nonevolving) concentrations,
etc. The form of the functions /, ({C, a}) is determined
by the laws of chemical kinetics and will not be made
more precise as yet. We note only that, in sufficiently
complex chemical mixtures, one can expect practically
any form of the function /, (see Ref. 23). The reac-
tions and diffusion are assumed to occur in a bounded
one-dimensional volume. In the other sections we shall
treat the cases of several spatial dimensions.

The conditions at the boundary must allow the existence
of a thermodynamic branch, i.e., a stationary, spat-
ially homogeneous solution of the system of equations
(1). This requirement is satisfied either by the condi-
tions of zero fluxes:

ax Iz. = 0, ..., N, (2)

or (for a cyclic closed-region) by periodic boundary
conditions:

C,(0, , t), d£i
dx (3)

In local equilibrium the entropy Is expressed locally in terms
of the state parameters P, p, and T in the same way as is
done for the entire volume in true equilibrium.

or by values of the concentrations fixed at the bound-
aries:

C,|0 = C,|I. = Ci. (4)

Here the values of the Ct correspond to the thermo-
dynamic branch. The choice of any particular condi-
tions is determined by the experimental situation and
does not affect the discussions of this section.

We intend to elucidate under what conditions a transi-
tion becomes possible in systems described by the
dynamic equations (1) from the homogeneous state C;

to a state of lower spatial symmetry. When N»3,
the problem proves to be too complex to treat by ana-
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lytical methods. But even in a two-component system
(N = 2), the property that we need can be found, as was
first shown by Turing.13

First let us convince ourselves that in a simpler
(W=l) reaction-diffusion system an instability that
leads to breaking of spatial homogeneity never arises
under any conditions.

Let C (alt.... aj,) be a homogeneous stationary solu-
tion of a kinetic equation of the type of (1) that depends
on the set of external parameters {a^} and which is ob-
tained by smooth extrapolation from thermodynamic
equilibrium with varying {ĉ }. The condition of sta-
tionarity dC/dt = 0 has the form

f ( C ( a t , ..., (5)

To elucidate the stability, let us examine the evolution
of small inhomogeneous deviations u(x, t) = C(x, t)-C.
We can employ the linearized Eq. (1):

(6)

Upon using the ordinary procedure for separating the
variables x and t and representing the solution of the
equation that is derived for the coordinate-dependence
in the form of a superposition of harmonic modes eila ,
we arrive at the dispersion equation

A. (k) = a — Dft2, where a = fc (C). ( 7)

This relates the time decrement of the harmonic X
with its wave number k. An arbitrary solution of the
linear equation (6) is represented in the form

Within the limits of stability of the thermodyanmic
branch we have a <0. As we can see from (7), we
have the time index \(k,)<0 in this case for all spa-
tial mode e'*'*.

Instability upon varying the external parameters
can arise only as the result of vanishing of a. Here a
homogeneous perturbation (zero-order harmonic fe0 = 0)
brings the system out of equilibrium. Thus a homo-
geneous state corresponding to the thermodynamic
branch can become unstable, but breaking of spatial
symmetry does not occur here. The reason for this
situation is the monotonic nature of the X(fe) relationship
A stronger statement also holds (see Refs. 31 and 32):
in a one-component dynamic system of the form of (1)
with bounday conditions (2) or (3), inhomogeneous sta-
ble states cannot exist, regardless of the form of the
nonlinear source.

Already in the presence of two diffusing agents coup-
led by chemical reactions (a Turing system), the reason
for the negative result that we have obtained— the mono-
tonicity of X(&)— is removed. We shall convince our-
selves below that, in two-component reaction-diffusion
systems, a transition accompanied by breaking of spa-
tial homogeneity of the thermodynamic branch can oc-
cur. Such systems are the simplest ("basal"19) mod-
els for substantiating spatial self-organization.

a) Two-component systems. Mechanisms of Turing
instability

When N=2, the linearized kinetic system for small
deviations from a homogeneous stationary state
w = C^x, 0 - CL v = C2(x, t) - ~C2 has the form

£=/..»+/„»+/>.!£.
Again, upon substituting the solution in the form of a
superposition of harmonic modes

(8)

we arrive at the characteristic equation that determines
the dispersion law:

Det [-ftl + 6j, X — Du •• 0, (9)

Now the equation relating X and k is second-order in X
and fourth-order in k. Depending on the values of the
set of parameters {fit',D^, we can face two typical
situations, which are shown in Fig. 2.23 While the
case in Fig. 2a contains no new fundamental features
as compared with N=l, that in Fig. 2b has such fea-
tures. Here two new types of instability can arise.
The first arises when the instability threshold ReX = 0
is reached in the region of complex roots of the char-
acteristic equation. As Fig. 2c implies, this can hap-
pen only when k = Q. That is, the spatially homogeneous
modes of the perturbation break the thermodynamic
branch. However, the difference from the case N=l
consists of the fact that now ImX#0. Owing to this
instability, the new regime proves to be ordered in
time—synchronous oscillations (homogeneous through-
out the volume) arise. This is not the case in which
we are interested at present.

The second variety of critical situation occurs when
a local maximum of the curve X(fe) touches the axis
ReX = 0 in the region of real X (Fig. 2d). This is the
Turing instability. Here we have assumed that the
spectrum of wave numbers in continuous. In a bounded
system a discrete set of harmonic modes ei*!JC = *I is
realized, with wave numbers k, determined by the bound-
ary conditions. In this case, Turing instability arises
when the greatest of the numbers X(fe,) passes through
zero.

FIG. 2. Types of dependence of the time decrement Ke\ on
the wave number * of harmonic modes of perturbation based on
the characteristic equation (9). a) The case of two real
branches of solutions of Eq. (9); b) two complex conjugate so-
lutions of Eq. (9) transforming into a pair of real solutions
when fe>£0;

 c) the dispersion relation X(fc) at the threshold of
excitation of homogeneous oscillations; d) the dispersion re-
lation at the threshold of excitation of a dissipative structure.
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Upon emerging into the transcritical region, a narrow
range of modes eitx or a single critical mode (in case of
limited dimensions) acquires a positive increment.
Thus the system proves to be capable of singling out
and amplifying definite harmonics from the unstructed
noise (natural fluctuations). Upon growing, they can
lead the system into a macroscopically ordered state.
This new state is fully determined by the dynamic para-
meters, rather than by the random events inducing the
transition. Here it is proper to use the term "self-
organization" . In the fourth section we shall take up
the structures in the transcritical region, but for the
present we shall try to define more precisely the fea-
tures of a reaction-diffusion system that give rise to
its capacity for self-organization. To do this, we
shall idealize somewhat the critical situation by ignor-
ing the properties of the linear reaction-diffusion sys-
tem of general form that are noninformative near the
instability threshold.

In the vicinity of the instability threshold, the modes
with wave numbers outside a narriw interval including
the critical mode fecr should not affect the behavior of
the system. These modes have a finite damping incre-
ment and hence at long times—of the order of the life-
time of the critical mode Tcr ~ l/A.cr — «, they are
not manifested. For this same reason, the existence
of two branches of solutions of the dispersion equation
(9) is not reflected in the behavior of the dynamic sys-
tem.33 Therefore we can use the smallness of A, and
neglect A.2 in comparison with A.3 3 Consequently \(k)
will be equal to

' -°+"»B'*' °=H'-D«». (10)

Here we have introduced the notation

« = *„ P: ?,"- I D.
DUD,

We can consider the simplified dispersion equation (10)
to be the image in the k- re presentation of the linear
equation of motion of the single-component system,
in which the spatial couplings are established by two
mechanisms: by diffusion—the term -Datk

z in Eq. (10),
and a nonlocal mechanism reflected in the term
-(a - aP)/[-p + (Du + DB)fe2]. The first mechanism dom-
inates at large wave numbers, i.e., with short-wave-
length perturbations, while the second dominates at
small k. We obtain the following equation in the
variables x and t from the dispersion equation by in-
verse Fourier and Laplace transformation:

, = c™_v je*p(- "-*'' ) w(x', *)*£.+/>„,*„.

Rt=D, + D, _ ° (ID

We note that the requirement of stability of a homo-
geneous distribution (u = 0, v=0) with respect to the
homogeneous perturbation modes fc = 0 and to the re-
quirement of nonmonotonicity of the A.(fe) curve yields
the inequalities

p<0, f = a. — ~>0.

The equation of motion (11) describes an asymptotic
dynamics (for large times) of an arbitrary two-compo-

nent reaction-diffusion system near the instability
threshold of the homogeneous state. Its advantage over
the general equations of motion of the two component
system consists of the fact that it no longer contains
anything "superfluous", but includes in explicit form
only the mechanisms necessary to enable SBI. The
main point here lies in the existence of two character-
istic spatial scales: the scale of diffusional mixing
~VD,ft and a second scale ~K associated with nonlocal
inhibiting effects33 (we call attention to the minus sign
in front of the integral in Eq. (11)). Before we make
more precise the quantitative relationships between the
aforementioned characteristic dimensions, we shall try
to find a more concrete and clear meaning of the corre-
sponding mechanisms. To do this, we shall assume in
addition that

Then the parameters of Eq. (11) can be directly related
to the molecular parameters of the two agents a and h.
Here a autocatalytically activates its own production,
diffuses with the diffusion constant Da, and is sup-
pressed by the agent h. In turn, the dynamics of the lat-
ter is determined by its production, which is activated
by a, by degradation, and also by diffusion with the
constant Dh. The equations of motion describing these
interrelationships have the form

, = <p (a) -
(12)

Here Ta and Th are the characteristic time scales of
the dynamics of a and h. If, moreover, the relation-
ship holds that Ta »T,, then in the rate-limiting stages
of evolution the distribution h(x,f) is quasistationary,
while a(x, t) varies in accordance with the kinetic equa-
tion

Taa, = cp (a) —~ \ exp ( - ' z n*' ' ) a ( x ' , t) dx' + R'aax (13)

Upon linearization with respect to small deviations 6a
from a homogeneous stationary state, this equation be-
comes equivalent to that derived above upon reduction
of an arbitrary two-component system near the thres-
hold for self-organization (11). However, here the
functions of realization of the two necessary modes of
spatial interactions—local activating and nonlocal in-
hibiting—are divided among the two agents. Their
molecular parameters determine both the instability
point itself of the homogeneous state and the wave num-
ber of the harmonic mode of the unstable perturbation.

The \(fc) relationship obtained from Eq. (13) has the
form

From this we define more precisely the condition on the
parameters necessary for existence of SBI. This condi-
tion arises from the requirement of existence of a max-
imum on the A(£) curve, and is expressed in the form33

** > *.- (14)

Reaching the instability threshold -A(&cr) = 0 can be at-
tained, e.g., by variation of the parameter a, whose
critical value is
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The inequality (14) expresses the physical condition for
appearance of spatial order in a reaction-diffusion sys-
tem. Two kinetic effects are decisive: local autocat-
alysis and long-range inhibition.

Now let us turn to the experimental data.

b) Hydra. Mechanisms of self-organization

Typical features of the process of self-organization of
biological forms are manifested even in the develop-
ment of such a simple, and hence well studied, or-
ganism as hydra.34 Its simplicity consists of a rela-
tively small number of differentiated tissues organized
in one spatial dimension. Figure 3 shows a crude
diagram of the animal. This same diagram shows the
scheme of transplantation experiments and experiments
on regeneration, to which we shall refer.

Morphologically homogeneous zones (A and B) were
dissected from a formed organism and placed in a nu-
trient medium. In about forty hours, these initially
homogeneous fragments had regenerated a complete
animal. An essential point here was that the process
is not accompanied by growth of the regenerant. Con-
sequently the obtained organs are proportionally di-
minished in dimensions. We shall refer to this feature
of the regeneration process again in Sec. 7. But here
it is important to pay attention to the reproducibility
of the orientation of the "head-foot" axis: In the re-
generant the direction from the head to the foot coin-
cides with the original orientation of the animal.34 This
property indicates the presence of a certain asymmetry
in the visually homogeneous tissue of the fragment,
i. e., its polarity. The polarity owes its origin to an
asymmetric distribution of some scalar property,
rather than to a definite orientation of asymmetric
cells.35 According to the concept of a chemical grad-
ient, this property is the concentration of a morphogen
(see the Introduction). The gradient of the latter along
the body fixes the direction of the polarity.

The type of specialization (belonging to some particu-
lar tissue) that the cells acquire in the process of re-

ftff-cr-:::- cr-
FIG. 3. Diagram of experiments on regeneration and trans-
plantation in hydra. Regeneration of an animal from a mor-
phologically homogeneous fragment. The cells marked with
a cross x can develop into a foot (above) or into a head (below),
depending on their position with respect to the rest of the ex-
cised fragment; b) transplantation of cells of the future head
(black square) into the body of an adult animal. See text for
more detailed explanation. The dashed line indicates the path-
way of normal regeneration.

generation is not determined by the absolute magnitude
of the concentration of the morphogen at the onset of
the regeneration process. This stems from the fact
that the very small cells (x) can develop into a foot or
into a head (Fig. 3a). The position of the organs is
determined as the result of the process of establish-
ment of the concentration gradient of the morphogen
that occurs in the first stages of regeneration (~ an
hour); in about five hours after dissecting out the frag-
ment, although the future structures are not noticeable,
the positional information coding for them has already
been formed. This conclusion is based on the trans-
plantation experiments shown schematically in Fig. 3b.

When cells of a fragment removed from it six hours
after dissection are transplanted into the body of a
grown, formed hydra, the adjacent tissues of the stem
are stimulated to form a new head. This does not hap-
pen if cells of the future head of the fragment removed
shortly after its dissection were transplanted.36 The
effect of "short-range activation"37 is revealed in the
stimulation by mature transplanted cells of the sur-
rounding tissues to form a secondary head. These
same experiments manifest the effect of "long-range
inhibition"—a secondary head is not formed, even by
fully mature cells of the transplant, if they are placed
at an insufficient distance from the primary head of the
acceptor organism.36

On the basis of these experiments, Gierer and Mein-
hardt37 postulated the existence of two agents that lead
to opposite effects in the process of formation of the
morphogenetic structures of hydra. They are a locally
acting "activator", which induces the morphogenesis
of a head from cells adjacent to the transplantation site,
and an "inhibitor", which suppresses the effect of the
activator. The inhibitor is also produced at the trans-
plantation site, but can diffuse to relatively great dis-
tances. The authors constructed a set of mathematical
models—dynamic systems of the form (1) with N=2, a
general feature of which was a nonlinear auto- and
cross-catalytic effect of the activator, an inhibiting ef-
fect of the inhibitor, and a relationship between the dif-
fusion coefficients Da < Dh,

3S'w The models were studied
by numerical methods,38"40 and the results were com-
pared with the experimental data on pattern-forming
processes in a set of morphogenetic systems. Good
agreement was obtained here (see Sec. 5 of this review
on this topic).

It should be said that the demonstrated descriptive
power of the " activator-inhibitor" model has stimulated
attempts to discover experimentally the molecular
agents themselves that fulfill the corresponding func-
tions. The search has proved successful. In the same
hydra, molecules have been found and characterized that
that can activate the process of head formation, and al-
so agents that suppress this process.41 They proved to
be: the activator is a peptide of molecular weight 1300;
the inhibitor function is fulfilled by a basic agent of non-
protein nature and molecular weight less than 500. We
note that the smaller molecular weight of the inhibitor
corresponds well to the theoretical prediction of a lar-
ger diffusional mobility of this agent.
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3. TWO-DIMENSIONAL DISSIPATIVE STRUCTURES.
AN EXAMPLE FROM INSECT DEVELOPMENT

In this section we shall examine a single example of
biological development in which chemical dissipative
structures provide the key to understanding rather
specific phenomena. We shall be dealing with the early
stages of ontogenesis of the fruit fly drosophila
(Drosophila melanogaster). The studies performed
on this organism have furnished a mass of valuable
experimental results in the field of biology of individual
development.

Before taking up the concrete data, we shall give
some information from enbryology on the general fea-
tures of development of all insects. This minimal
information will facilitate an understanding of the ex-
perimental data given here and also in Sec. 5.

The process of individual development of the embryo
starts with the fertilization of the oocyte. After fertili-
zation a series of synchronous divisions of the nuclei
occurs inside the common cell envelope—the stage of
cleavage, which lasts several hours. Then the daughter
nuclei migrate through the cytoplasm to the periphery
of the egg, where new cell walls soon appear between
them. Thus a layer of cells is formed at the surface
of the egg, called the blastoderm. At this stage there
are still no visible signs of spatial organization of the
cells. However, a more careful analysis shows that
already at the blastoderm stage the embryo becomes
stratified into discrete, nonoverlaping zones, or com-
partments. Groups of cells from the different zones
of the blastoderm form the so-called imaginal discs-
precursors of the future organs of the adult organism.
The imaginal discs also undergo a series of compart-
mentations, after which they transform into the rudi-
ments of the future tissues and organs. The compart-
ments arise in a strictly defined sequence that indicates
in which order the different spatial domains of the
embryo obtain their appropriate program of develop-
ment.42-43

The morphological features in the embryo are mani-
fested in the next stage after the blastoderm—the stage
of the larva. Figure 4 shows a diagram of the described

FIG. 4. Overall diagram of the early stages of development
of insects, a) Fertilized egg cell; b) cleavage and migration
of nuclei to the periphery of the egg; c) preblastoderm, nuclei
not yet separated by membranes; d) blastoderm, appearance of
cell walls between the nuclei; e) larva with 16 segments—pre-
cursors of the structures of the adult insect (H—head, seg-
ments, 8—16—abdomen).

FIG. 5. Boundaries of the compartments of the imaginal disk
of the wing of a fruit fly. The numbers correspond to the
order of appearance of the boundaries.45

pathway of development of the embryo of insects. One
can obtain more detailed information on the general
stages of ontogenesis of insects from the pertinent text-
books (see, e.g., Ref. 34).

We have already noted that the imaginal dies, before
transforming into the corresponding organs, undergo
a series of transformations of spatial organization, or
compartmentations. This process can be studied ex-
perimentally. The compartmentation of the imaginal
disc of the wing of drosophila was studied in Ref. 44.
Figure 5 shows schematically the pattern of compart-
ments obtained on the basis of these data, where the
numbers along the boundary lines correspond to the or-
der of appearance of the boundaries. Kauffman and
his associates45 have proposed an interpretation of the
pattern shown in Fig. 5 as the manifestation of chemi-
cal dissipative structures. Their argument is based
on the evident similarity of shape of the boundary lines
of the compartments with the nodal lines of the eigen-
functions of the diffusion operator V2 in a planar region
with an elliptical boundary. The approximation of an
actual imaginal disc with a plane ellipse is a rather
crude model. Nevertheless a calculation based on it
proves to agree well with the experimental data.

Following the authors of Ref. 45, let us examine how
the spatial self-organization of a reaction-diffusion
system in a planar region with an elliptical boundary
can occur. As above, here we allocate to the reaction-
diffusion system the role of organizing the spatial dif-
ferentiation of the cells of the given morphogenetic
field. At the stage being discussed, the concentration
distribution of the morphogen that fixes the positional
information is being formed. The distribution of the
cells observed experimentally44 into the discrete com-
partments is the result of translation of this positional
information. Translation presupposes the employment
of a certain code. A very simple variant of a binary
code proves sufficient in the compartmentation of the
imaginal disc of the wing.48 Namely, a cell at a given
point in the morphogenetic field is specialized as type
"I" if the local concentration of the morphogen ex-
ceeds a certain threshold value xa, and as type "II"
otherwise. In the adopted scheme the contour lines of
the concentration xa must correspond to the boundaries
of the compartment. Thus we can correlate the result
of calculation—the concentration distribution in the
chemical dissipative structure—with the distribution of
the compartment boundaries found by experiment.
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Let us turn again to the form derived above of the ki-
netic equation for a reaction-diffusion system near the
threshold of dissipative Turing instability (11). We
shall assume that the level of concentration of the
morphogen in the initial homogeneous state of the re-
action-diffusion system corresponds to the threshold
value x0. We shall be interested in the types of spatial
ordering that take shape upon loss of stability of the
given homogeneous state. The linear equation of mo-
tion near the instability threshold (which suffices for
studying the geometry of the dissipative structures that
arise and the order of their appearance) in the two-
dimensional region Si has the form

wt = nw~i jexp (-il^li.) „,(,', Q^jL+Drttfrw. (15)

This is a natural generalization of Eq. (11). The ima-
ginal disc of the wing is separated from the surrounding
tissues by a special membrane. We shall assume (fol-
lowing the authors of Ref . 45) it to be impenetrable to
the morphogen. This implies that the conditions at the
elliptical boundary C correspond to zero fluxes:

(nVB,)|rec = o. (16)

The only evident parameter of development whose
variation induces a transition from the initial homo-
geneous state x0 (w = 0 is Eq. (15)) to a state of lower
spatial symmetry is the size of the region O. The lat-
ter increases in the course of ontogenesis owing to cell
divisions. The variation in the size of the imaginal
disc caused by growth of the embryo occurs consider-
ably more slowly than the evolution of the concentra-
tion of the morphogen, owing to the relatively simple
chemical transformations and diffusion. Therefore we
shall assume the size to be a nonevolving parameter.
When it is sufficiently small (smaller than the region
of diffusional mixing), the only stable state for the
system is the trivial state iv = 0. With growth of the
embryo, when the size of the imaginal disc exceeds the
size of the region of diffusional mixing, a second char-
acteristic scale begins to be manifested— the scale of
long-range "lateral" inhibition. Here the homogeneous
state x0 can become unstable. The spatial form of the
new nonhomogeneous states is determined by the geo-
metry of the unstable modes that destroy the symmetry
of the initial state. Let us introduce as the coordinate
system the natural coordinates of the ellipse r= (|,TJ)
(see Fig. 6). Upon separating, as usual, the spatial
and temporal variations, we find that the evolution of
the spatial distribution W(£,TJ, t) is represented in the
form of a superposition of normal modes of the form

, (r) = exp Kn]t Sen (|, ,„,)

ti, snl),

, tn,).

S-ff

FIG. 6. Elliptic coordinates in a plane.

784 Sov. Phys. Usp. 26(9), Sept. 1983

FIG. 7. The dispersion relation X(fe2) corresponding to Eq. (19)
under the condition a>—L*

Here cen(rj, sn]) and sen(7], sni) are the periodic cosine
and sine elliptical Mathieu functions of integral order,
while Cen (£, snj) and SeB(£, sny) are the corresponding
modified functions.47 In (17) we have snj = tfk*nj, where
h is half the interfocal distance of the ellipse, and kaj

is an analog of the wave number. The sequence of
values of knj is determined from the boundary condi-
tion

ac°n(E. W I =0 or ase"'£•"") I =o (18)ee !EO #1 llo

(here j is the number of zeros of the derivatives 8/3£
in the interval (0, |0)). The functions Cencen and Sensen

have risen as eigenfunctions of the operator

Zu)=jexp (—|r~r ' ' ) icdr'-f Z?effvX

which satisfies the given conditions (16) at the elliptical
boundary. One obtains the following expression for the
time decrement \nj of the mode {nj}by substituting (17)
into Eq. (16):

XB, = a + L*(J&),

» = fexp ( LP
(19)

The character of the X(fe2) variation is that in Fig. 7.
We shall assume that a >- L* (*£«). Then the maxi-
mum of the curve A(£) lies in the region of positive
values of X.

For each of the modes of the sequence (17), the boun-
dary condition (18) fixes a definite value of the parame-
ter sn/ that depends on the eccentricity of the ellipse.
Consequently the corresponding wave numbers knj de-
cline with growth as 1/h. At sizes up to a certain cri-
tical size, the wave numbers kni lie on the declining
section of the X(k) curve. Hence the decrement A in-
creases with increasing size h for all the normal modes
of (17). The condition for excitation (passage of X
through zero) has the following common form for all
modes:

X = a + L*(A;cV) = 0. (20)

However, the corresponding value of the size h for each
mode is individual, owing to the relationship «„, = /zj^fe;|r.
Figure 8 shows a possible growth trajectory (line with
arrow) for which the eccentricity of the ellipse remains
constant. Such a trajectory qualitatively agrees with
experiment. In this case, as we see from Fig. 8, the
order of excitation of the modes is45:

Cence,,, Sense,,, Ce21ce21, Se2,se21, Ce8lce3,, Ce0,ce01.

Figure 9 shows the nodal lines of these functions. As
was proposed above, the nodal lines of the excited con-
centration structure are the lines of threshold value of
the morphogen. The cells of the morphogenetic field
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FIG. 8. Dependence of the parameter Sn on the eccentricity
E of the ellipse for certain eigenfunctions of the operator L in
elliptic coordinates.45 The arrow corresponds to the trajec-
tory of growth with conservation of shape of the imaging! disk.
The points a, /3, y, etc., define the critical size at which the
corresponding inhomogeneous stationary solutions branch from
the spatially homogeneous state.

choose one of the two possible directions of further
specialization, depending on whether the local concen-
tration of the morphogen is above or below the thres-
hold level. If in addition the cells remember the entire
sequence of determination events, then each of the ter-
minal domains of identically specialized cells (compart-
ments) can be determined by a unique combination of
states from a small number of coupled pairs. In this
case the final subdivision of the imaginal disc into com-
partments is obtained by superposition of Figs. 9a-f.
The agreement of the pattern that arises (Fig. 9g) with
that obtained experimentally (see Fig. 5) is evident.

Of course, the sketched scheme of the process of
compartmentation is far from final completion. As an
example, the problem remains unsolved of whether all
stages of the process are covered by a single morpho-
gen, or a new morphogen acts at each event of forma-
tion of a new compartmental boundary. The aim of
subsequent experimentation is to clarify the situation
However, what has been obtained is already consid-
erable. Such a successful prediction of the geometry
of the compartment boundaries and the sequence of their
appearance lends great weight to the principal premise
of the proposed explanation of the origin of the spatial
organization in the given morphogenetic field. The
leading role here belongs to the reaction-diffusion
system, which undergoes spontaneous breaking of spa-
tial symmetry owing to Turing instability.

OO(Q>^
ffe2Jceff

c)

FIG. 9. Nodal lines of several of the first eigenfunctions of
the operator L in the order in which the corresponding station-
ary distributions branch from the homogeneous state (see the
preceding diagram). The modes Seuseu and Se2ise2i have been
omitted in obtaining the superposition in Fig. 9g. (see Ref.
45).

We note that the comparison with experiment of such
characteristics as the symmetry of spatial organiza-
tion and the sequence of structures supplanting one
another requires no assumptions on the concrete
mechanisms of the chemical transformations. Only
the overall symmetry of the region and the isotropic
nature of the intercellular interactions arising from
diffusional coupling (short-range for the activating
agents and relatively long-range for the inhibitors)
create the pattern that is obtained. Therefore, in es-
sence, the comparison that has been performed is a
test for the hypothesis if chemical dissipative structures
as the source of the spatial order of the processes in
multicellular ensembles.

4. STATES BEYOND THE INSTABILITY THRESHOLD
OF THE THERMODYNAMIC BRANCH

Upon going into the transcritical region, the homo-
geneous state is no longer stable. We know from the
linear approximation that the breakdown of this state
gives rise to excitation of a quite definite degree of
freedom. For reactions in a finite volume with a dis-
crete set of normal modes (eigenfunctions of the dif-
fusion operator), one of them, *OP, constitutes this
singled-out degree of freedom. The linear approxima-
tion indicates that it relaxes very slowly (the decre-
ment XCP approaches zero near the instability threshold)
in the near precritical region and is amplified with a
small increment in the near transcritical region. In
the case of nondegenerate instability the characteris-
tic numbers X remain finite for all the remaining modes.
This implies fast relaxation (in comparison with ^cr).
As we see, here the same situation takes shape as oc-
curs near an equilibrium second-order phase transi-
tion, where the slowly relaxing parameter is the order
parameter.2' Haken, who studied nonequilibium col-
lective phenomena in the generation of laser radiation,
first called attention to this analogy.49

Owing to the aforementioned slowness of the critical
dynamics, one can construct closed equations of motion
of the singled-out critical degree of freedom. Within
the framework of this abbreviated description one can
also study the nonlinear effects. The latter can only
stabilize the new state by replacing the thermodynamic
branch in the transcritical region. However, in addi-
tion the nonlinear contributions can substantially enrich
the system with new types of collective effects. They
include such effects as the appearance of multiple sta-
ble dissipative structures and transitions among them,
secondary instabilities of stationary concentration dis-
tributions that are already inhomogeneous, and ac-
companying changes of spatial symmetry. To discover
and study this variety of features of "nonlinear" be-
havior does not require any complication at all of the
macroscopic dynamics of the system.

2)Upon continuing this analogy, one can find that large-scale
correlations of fluctuations and also a number of fluctuation
effects characteristic of equilibrium transitions are associ-
ated with slowness of critical relaxation. We shall not treat
them in this review (see Ref. 48).
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We shall start with the equation of motion of the
"activator-inhibitor" model in the form (13) and try to
simplify it by isolating the slow critical dynamics. In
compact notation this equation appears as follows:

Here the linear operator Acr has the form

exp - !»-»' I

(21)

(22)

The function N(a) includes all the nonlinear contribu-
tions to the kinetics. The parameter ji gives the devia-
tion from the instability threshold such that n >0 corre-
sponds to the transcritical situation, and ^ < 0 to the
precritical. Below we shall assume a definite small-
ness of this quantity (and define it more precisely).
For the sake of simplicity, we shall assume the para-
meter M to be the only one varying in the system.

We shall restrict the treatment only to states that
arise as the result of "soft" bifurcation of the thermo-
dynamic branch^ Then the amplitude of deviation from
the initial state a = 0 is small in connection with the
smallness of the distance from the bifurcation point
(we recall that the initial homogeneous state lying on
the thermodynamic branch corresponds to the solution
a = 0 of Eq. (21)). This enables us to take into account
only the lowest powers of a in the expansion of the
function N(a) in a Taylor's series about a = 0. For
stabilization of structures in the transcritical region,
it proves sufficient to take into account terms no higher
than a3. Therefore we shall adopt for N(a):

N (a) = — P (23)

The quadratic term omitted in (23) leads, in the absence
of degeneracy of the decrements in the linear problem,
only to formal complications without changing anything
in principle.

Further, we shall employ an expansion in the com-
plete set of normal modes <£, (eigenfunctions of the
operator Acr) in the form

a<z,*) = Jj &,(«)¥,(*). (24)

For boundary conditions of the zero- flux type, the set
{*,} amounts to

*, = - - , l = l 2 ..... T0 = l.

(the

(25)

The corresponding eigenvalues of the operator Ac

spectrum of its Fourier transform) are:
A< . = 0. A, , t ,<0.

The subscript Zcr denotes the critical mode, which is
neutrally stable at the threshold |i = 0. Upon transform-
ing to a basis of the normal modes, the kinetic equation
(21) is transformed into an infinite system of ordinary
differential equations in the amplitudes 6, (see Ref. 33).
Thereupon we should make the self-consistent assump-
tion17

It is justified by the closeness to the instability thresh-
old, owing to which all the modes but the critical mode

relax rapidly. Let us restrict the treatment to small
deviations from the instability threshold, such that

(KIA^.J. (26)

Then at times f ~l/ jx the number of evolving degrees
of freedom is sharply abridged. The original infinite
system of equations in the amplitudes 6, is shortened
to the following:

*""»• «er=°(*-)
(27)

(see Ref. 33). Hence it is clear that, when 0 <0, the
nontrivial solution 6CP =± V4/V3/3 exists until we reach
the instability threshold of the trivial solution b, = 0,
which corresponds to the initial state. However, as
we see fromjhe equation of motion (27) , the stationary
solutions of &cr are unstable. Thus, no stable nonhomo-
geneous states are obtained in the precritical bifurca-
tion of the homogeneous state.

But if 0 >0, then at the point y. = 0 a pair of new non-
trivial solutions_6er=±V4(j./3);i branches off from the
trivial solution 6, =0 in a continuous fashion, now as
the result of transcritical bifurcation. Both new
branches in this case are stable.33 The form of the
spatial distribution a (x) that replaces the homo-
geneous state is determined by the expression

o.(*)=±6c r [ ( l - 3A, (28)

Near the appearance threshold (small values of n), the
inhomogeneous states have the form of the sine waves
*/ . With increasing jj. this form smoothly distorts
becoming more rectangular owing to the contribution
of the odd harmonics *3I ,*5( , etc. (see Ref. 33).

With increasing ji, the now already unstable thermo-
dynamic branch undergoes a new bifurcation at p., =A,.
The new branches of stationary solutions that arise
here, at least near their point of appearance, are all
unstable. However, this situation does not persist as
we move into the transcritical region. It turns out that
the new unstable branches undergo bifurcations at
which other pairs of unstable solutions arise, but the
initial branch itself consequently becomes stable (Fig.
10). This fact is found in analyzing the equations of
motion for two unstable modes.33

FIG. 10. Stationary diagram for the kinetic system (29)—de-
pendence of the amplitudes of the harmonic stationary solutions
on the bifurcation parameter f t . The solid lines correspond
to stable stationary solutions of the (29), and the dashed lines
to unstable solutions. The insets show the spatial variations
of the stationary solutions of Eq. (21) corresponding to the
stable branches.
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,1

Let ^ be the first mode following the critical mode
to acquire a positive increment. This happens at
p. = A(l. Let us assume that for all the rest of the
modes ^M ,cr ^ the excitation threshold has not been
reached yet, i.e., M < | A,,,,crfll In this case linear
analysis predicts relaxation of the harmonics with
Z*Z c r , Z1; whereas both of the latter can be amplified.
Now let us see what the nonlinear terms give under
the assumption | 6, ,btl »|6,|. The equations of mo-
tion for the two "large" amplitudes 6, and bti are33

= (n - A,,) bh - - f-
(29)

We can study them easily to obtain the stationary solu
tions and the nature of the stability of these solutions.
The result of such analysis is given in the diagram of
Fig. 10. As we see from the diagram, in the region
ji > 2A,t we encounter the fact of non-single-valued na-
ture of the stable solutions of the system (29), i.e. , of
the macroscopic states of the reaction-diffusion system.
These states can be, e .g. , a polar and a symmetric
bipolar dsitribution, as in Fig. 10. They are not ob-
tained from one another as a result of loss of stability,
but both can be manifested under the same conditions.
If the system, upon evolving from the homogeneous
state, finds itself in one of them, then it can pass into
the other only as the result of a "hard" excitation from
outside. The source of such an excitation for morpho-
genetic systems can be experimental manipulation on
the developing embryo. In the next section we shall
try to impart concrete content to these as yet abstract
possibilities.

Of no less interest is a replacement of a macroscopic
regime that occurs spontaneously without external
excitation. In order for this to happen, we must reach
the instability threshold of a state that has arisen and
become stabilized as a result of bifurcation of the ther-
modynamic branch. Sufficient (and perhaps also nec-
essary) conditions for such a bifurcation are created
when the primary bifurcation proves to be in a certain
sense degenerate. More definitely, let us examine the
case in which the critical mode *,cr amounts to a har-
monic half-wave, i. e. , ZCP = 1. We shall assume further
that the two adjacent mdes with 1 = 0 and 1 = 2 have simi-
lar decrements A0 and A2, whereas all the rest are sub-
stantially larger:

|A0, A2 | < | A, |, (30)

This situation is shown in Fig. 11. When ^ > | A0, A2\,
the modes ^0, ^?l, and ̂ 2 have positive increments in
the linear approximation. These modes can be excited
and must be taken into account, while the rest, which
have a large damping decrement, are suppressed.3>

The dynamics of the three excited degrees of freedom
ba, bj, and &2 is described by a system similar to (29)
(see Ref. 33). All the information contained in this
system on the character of the stationary states is re-
flected in the diagram of Fig. 12. A new element in

FIG. 11. Dependence of the time decrement A on the wave
number under the condition of fulfillment of the inequalities
(30) (three quasidegenerate unstable modes).

comparison with Fig. 10 here is the bifurcation of the
stable nonhomogeneous branch at the point A. At this
point the system undergoes a spontaneous transition
accompanied by a change in spatial organization, as
we see from Fig. 12. We should note that close-
ness of decrements of specifically the modes $„, ^l,
and *2 is not necessary for the possibility of such a
transition. One should obtain the same result (diagram
of Fig. 12) if the condition with respect to close-lying
decrements (30) were satisfied by the modes *0, *1;and
*2I.

5°

All the stationary diagrams presented above are sym-
metric with respect to the initial thermodynamic branch:
for every solution ~a(x) there is a reflected solution
-a(x) (for economy of space, Fig. 12 shows only half
of all the stationary branches). This symmetry is not
obligatory—it arose from the lack of a quadratic term
in the adopted form of the nonlinear function N(a). If
there is no degeneracy in the linear problem (21) (the
operator Ac r has a nondegenerate spectrum), then ad-
dition of the quadratic term only removes this symmetry.
Otherwise the character of the bifurcation of the homo-
geneous state is not altered.

The pattern changes qualitatively in the presence of
degeneracy in the linear problem. Figure 13 shows the
character of the bifurcation of the homogeneous state
a = 0 when the modes ̂ , and #2( possess identical in-
crements in the linear problem and a quadratic term a2

is present in the expansion of the nonlinear function
N(a). A characteristic point here is that the excitation
of the stable structure occurs in a drastic way— "with a
jump in state".51

3)The interaction of modes is effected by the nonlinear contri-
butions.

FIG. 12. Stationary diagram for three quasidegenerate un-
stable modes *0, *], and *2-M T^16 insets show the corres-
ponding stable stationary profiles.
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FIG. 13. Character of the bifurcation of the homogeneous
state in the presence of a quadratic term in the function N(a)
and degeneracy in the linear problem in the modes *| and
*2i-51 The upper stable branch corresponds to mixed states.

Strongly degenerate bifurcation. At a low degree of
degeneracy, when no more than three modes with wave
numbers that are multiples of a common value have
close increments, it presents no effort to study their
interaction on the basis of a kinetic system such as (29).
In the case of strong degeneracy, one cannot analyze
the kinetic system for the amplitudes without the help
of a computer. Exactly this situation arises for two-
component reaction-diffusion systems with a sharp
disproportion of characteristic diffusion lengths:

In this case, as we can easily convince ourselves, the
curve of the \(k) relationship proves to be very broad
in the vicinity of its peak (see Eq. (10)). Consequently,
even near the Turing bifurcation the interval of unstable
modes can include, in addition to the fundamental mode,
also harmonics with multiple wave numbers. The prin-
cipal effect that this yields is that the dissipative struc-
tures cease to be harmonic or quasiharmonic. In the
spatial distribution of the dynamic variables, extended
regions (~Rti) of smooth variations are separated by
narrow zones (~.Ra) in which the "short-range" com-
ponent undergoes considerable changes. This is the
so-called contrast dissipative structures (Fig. 14).
Owing to the stated disproportion of the spatial scales.
one can study the contrast structures by qualitative
methods in the spirit of the theory of nonlinear oscilla-
tions (see the series of studies by Kerner and Osipov52).

It turns out that the stationary problem has as solu-
tions a multitude of contrast structures— including en-
tire continua of structures with the same spatial period,
and also completely nonperiodic structures.52

The material presented in this section shows that,
rather than a single dissipative structure being sta-
bilized beyond the instability threshold of the homo-
geneous state, in principle a whole spectrum of
them can be stabilized. This multiplicity narrows the
"interval" of initial perturbation that falls in the region

of attraction of a certain macro state. The problem
arises of the reproducibility of the process of structure
formation.

In the region of high wave numbers fe the relative den-
sity of modes is high, and also that of the possible
macrostates. In order to realize one of them, one needs
a better "aim" of the initial perturbation. Therefore
it can be difficult to end precisely in a given state from
the homogeneous state in the natural process of pattern
formation. The way out of this difficulty is in the re-
cursive method of building a structure. This is pre-
cisely how the regular arrangement of leaves on a
growing stem is formed.43

5. MULTIPLE DISSIPATIVE STRUCTURES IN
BIOLOGICAL EXPERIMENTATION

In the last section we saw that one can expect the ap-
pearance of several alternative stable macroscopically
ordered states at a sufficient distance from the insta-
bility threshold of the thermodynamic branch (Fig. 10).
As applied to morphogenetic fields, we should interpret
this result as a non-single-valued determination of the
positional information. Hence more then a single
morphogenetic structure can prove to be realized in the
same morphogenetic field. Is this actually what hap-
pens? The experiments cited below answer this ques-
tion affirmatively.

Special experiments have been set up, beginning about
in the twenties of this century, designed to seek the
mechanisms that control the process of pattern forma-
tion. The results of a multitude of experiments have
shown the influence on morphogenetic processes of such
simple manipulations as constriction of the body of an
embryo,54 ultraviolet irradiation,55 centrifugation,58 etc.
(for a review, see Ref. 57). The most convincing re-
sults, which we shall take up here, have been obtained
in experiments on insect embryos.

In Ref. 54, eggs of the insect Smittia at the blasto-
derm stage were constricted transverse to the long
axis at different sites. As a result only one segment
proves to be lacking in the segmental structure of the
larva (see the diagram of development of insects in
Fig. 4), and differs depending on the site of constric-
tion. Figure 16 shows a diagram of this experiment and
the result obtained. The numbers at the top define the
site of constriction (in percent of the length of the^gg,
measured from the pole in whose zone the abdomen
will develop at the larva stage—the " abdominal"-pole).
The inner series of numbers refers to the numbers of

(H-T 3-it J Ca-t s-tf]

L

FIG. 14. Fragment of a contrast dissipative structure.52

Bold line—spatial distribution for the "short-range" compo-
nent, light line—for the "long-range" component.

FIG. 15. Establishment of the positional information on the
segment structure of larvae in experiments on constriction of
the embryo at the blastoderm stage. Below—linear map of the
blastoderm along the long axis of the egg.38
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FIG. 16. Linear map of the blastoderm corresponding to sym-
metric (two-abdomen) larvae, after local ultraviolet irradiation
(a) and puncture (b) in the region of the future head (for details,
see text).

the segments existing in the structure of the larva.
Evidently in this case the constriction impedes the de-
velopment of the specific segment that normally develop
from the region of the blastoderm lying at the constric-
tion site. On the basis of such data, a linear map of the
egg at the blastoderm stage was constructed, on which
the zones were indicated that were responsible for the
future segments of the larva58 (Fig. 15).

While a local action at the blastoderm stage yields
also a local effect (only one segment is affected) in the
structure of the larva, experimental manipulations
on the embryo at an earlier stage—cleavage turn out to
lead to long-range effects. Figure 16 shows the re-
sult of local irradiation with ultraviolet light of a region
of the egg belonging to the pole of the future head.55

Two rather striking effects are found: first, an abdo-
men arises at the irradiated pole instead of the head
of the normal embryo, i. e. , the structure that nor-
mally develops at the opppsite end of the embryo,
Second, in the middle region, instead of the normal
fifth segment (see Fig. 4), segment No. 9 appears,
which is usually formed in the abdominal region of the
embryo. Here certain segments of the normal embryo
(from H to No. 8) are not found at all. Interestingly,
a fully similar structure in the abdominal region—seg-
ments from the 9th to the 16th—is obtained upon con-
striction of the egg in the middle at the cleavage stage. M

Another experimental fact also obtained in the cited
studies is that the effect of formation of a symmetric
"double-abdomen" larva disappears if the irradiation
is applied to any region at a distance less than 75% of
the length from the abdominal pole, rather than to the
" head" end of the egg. In this case the irradiated
embryo passes through the stage of a completely nor-
mal larva with all 16 segments in the proper order.

We should add that breakdown of normal development
leading to formation of symmetric double-abdomen
structures of the larva can be caused by highly non-
specific experimental actions. In addition to the men-
tioned ultraviolet irradiation, they are puncture of the
egg in the zone of the future head at the cleavage stage59

and centrifugation of the embryo at the same stage.58

Certain genetic changes have been found that also in-
duce spontaneous development of double-abdomen lar-
vae. 60 Such a broad range of stimuli that transform the
head zone indicates a certain instability of the position-
al information "normally" formed in this region. More-
over, we can conclude from the listed experimental
data that the formation of the PI concerning spatial

organization of the larva occurs at the cleavage stage.
Precisely at this stage, local actions lead to global
transformations of the spatial organization of the em-
bryo.

We shall approach the interpretation of the presented
experimental data from the standpoint of a model of a
chemical gradient as the source of the positional infor-
mation. Pursuing this idea, we assume that spatial
control of the cellular differentiation is performed by
a dynamic reaction-diffusion system. The PI is fixed
by the spatial distribution of the concentration of a
chemical reagent. This distribution is established as
a stable stationary regime of the equations of motion
of the reaction-diffusion system. We shall employ as
the form of representation of the PI the linear division
of the egg into zones responsible for the future segments
of the larva (see Fig. 15).

Let us examine a reaction-diffusion system in which
two components are coupled by the following interaction.
One of them, a, autocatalytically activates its own
synthesis and the synthesis of the second component, h,
which in turn inhibits the synthesis of the first compo-
nent. In addition, the agents diffuse in one-dimensional
space, with the inhibitor h having a higher diffusional
mobility than the activator a. A concrete example of a
kinetic system with the cited properties, treated by
Gierer and Meinhardt37 39 for the interpretation of the
discussed experiments has the form

2 _ vh + p, (31)

As we saw in Sec. 2, this type of interaction pre-
supposes the possibility of spontaneous origin of spatial
order. To realize this possibility, we must have: a)
kinetic parameters of the equations of motion c, y., v,
etc., lying in the region of Turing instability of the
homogeneous state (Here the set of modes of perturba-
tion of the homogeneous state in the range of values of
the wave number Afe acquires a positive increment.);
b) dimensions of the spatial region L such that at least
one mode satisfying the boundary conditions lies in the
interval A f e . If -we adopt as the boundary conditions
zero fluxes across the boundaries, then requirement
b) is satisfied when k, =liiL belongs to the interval Afe .

Evidently, as the size increases (growth occurs) of
the homogeneous morphogenetic field, the first to
satisfy condition b) is the mode with 1 = 1, i .e. , the
harmonic half-wave. Let us assume that the "polar"
dissipative structure formed here fluxes the positional
information in establishing the normal organization of
the egg as a sequence of zones having individual post-
translational fates.

If we possess the stationary distribution of the mor-
phogen from the calculation of the theoretical model
(31)4) and the experimentally constructed mapping of the

4>An interaction of the "activation-inhibition" type of two com-
ponents is necessary only for the appearance and mainten-
ance of spatial order. As regards the translation of the PI,
only one of the two agents may relate to it, say h. Then h is
the morphogen.
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FIG. 17. Phase portrait of the "point" system of Meinhardt.39

The arrows indicate an individual phase trajectory after re-
moving h at the initial instant of time.

egg into the zones of the future sixteen segments, we
can calibrate the scale of concentration h. Here each
segment is matched with a certain interval A h (Fig.
18). One can employ the calibration thus constructed
also in interpreting the "non-normal" distributions of
h(x) by modeling the effects of experimental interactions.
It remains only to elucidate how to model the perturba-
tions introduced by these interactions.

Naturally, constriction of the egg in the experiments
of Ref. 54 has as its main effect the interruption of dif-
fusion of the agents a and h through the constricted
region. This leads to the condition of zero diffusional
fluxes a, = 7^ = 0 (x = xa). Puncture of the embryo59

opens an efflux channel into the external medium for
the reagents a and h. Consequently the concentration
of a and h is lowered in the vicinity of the site where
the puncture was made. This decrease is more sig-
nificant for the inhibitor, since it has a higher diffu-
sional mobility.

The perturbation produced by ultraviolet irradiation
is the least obvious. It is not likely that the cellular
biosynthetic apparatus is substantially affected here.
In this case changes would be manifested in the struc-
tures of the larva, independently of the localization of
the irradiated region), and this is not found experimen-
tally. Most likely, the observed effect of ultraviolet
irradiation arises from a direct action on the agents a
and h. Meinhardt39 considers that the agent h is modi-
fied so much upon irradiation that it drops out of the in-

\to\tt\K\n\n\ts\ie\\

teractions described by the kinetic system (31). This
hypothesis is corroborated by the fact that the effect of
ultraviolet irradiation of the head zone is identical with
the effect of direct removal from the reaction volume
of the agents that occurs upon puncture in this same
zone (see Fig. 16).

Thus we view that in the normal course of develop-
ment the embryonic system acquires a polar organiza-
tion. That is, the corresponding reaction-diffusion
system (31) proves to be in a state of the "half- wave"
type. The symmetric double-abdomen structures ob-
tained upon experimental intervention indicate the exis-
tence of alternative bipolar states of the embryo. Such
states can be formed as the result of transition to a new
macrostate of the reaction-diffusion system. In the
last section we have already concluded on the basis of a
general analysis that multiple stable dissipative struc-
tures exist and transitions can occur among them.
Now, upon turning to the concrete dynamics of the
system (31), we shall try to model the type of perturba-
tion that realizes the transition.

In analyzing the equations of motion (31), we have no
grounds for assuming closeness to the self- organization
threshold. Therefore we cannot employ the method of
reduction of the last section. It remains to rely only
on qualitative and numerical methods of study. Useful
qualitative information is furnished by an analysis of
the phase portrait of the "point" system (including only
the local dynamics without diffusion terms). Figure 17
shows on the phase plane the zero- isoclines of the ki-
netic system:

cu*
a = — - W + Po,

FIG. 18. Result of numerical calculation of the stationary
problem (31). Curve 1—before perturbation, 2—after pertur-
bation: fc(x, t0) = 0, *>0.75. The positional information in
these two cases is presented below.39

Let us assume that at the initial instant the system is in
the lowest stable state (point A). The external interven-
tion that removes the inhibitor h from the reactions
causes the system to lie near the horizontal axis. Ac-
cording to the equations for small concentrations of the
inhibitor, the rate of autocatalytic production of the ac-
tivator is large. The fast growth of the concentration
of a leads the system into the region of attraction of the
upper stable point B. Further evolution is accompanied
by growth of the concentrations of a and h, which stops
with the accumulation of the inhibitor at the point B. A
characteristic feature here is the fact that, in returning
to a stable state, the system bypasses the nearest sta-
ble point and enters directly the zone of attraction of the
more remote point.

This analysis suffices for a qualitative understanding
of the experiments on ultraviolet irradiation of the
head zone of the embryo. In this region, as we see
from Fig. 18, the stationary profile of the concen-
tration h(x) has a gently shaping course. Therefore
diffusion effects exert little influence, at least in the
initial stages of evolution of the perturbation. For
this same reason, the events in the head zone do not
effect the state of the abdominal region. Owing to the
increase in concentrations of h, the positional informa-
tion for the "abdominal" segments takes shape in the
"non-abdominal" half, and the embryo as a whole be-
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comes symmetric, with two abdomens. The exact pro-
file of the stationary distribution of h(x) obtained by
numerical solution of the kinetic system (31)39 is shown
in Fig. 18. We see from the diagram that, in the cen-
tral region of the new distribution, it proves to be ele-
vated over the normal level. In line with the calibration
of the h scale, segment No. 9 should develop here (in-
stead of No. 5), as is observed experimentally.

The experimentally discovered difference in behavior
upon irradiation of regions of the egg lying closer to the
abdominal pole—in this case, as was noted, irradiation
does not alter the structure of the larva in any way—is
also explained on the basis of the dynamic model (31).
These regions lie in a region of larger gradient of h in
the "normal" distribution h(x) (see Fig. 18). When
the inhibitor is removed from this zone, its diffusional
influx from the abdominal half proves to be substantial.
Consequently the concentration of h in the irradiation
zone is restored more quickly than an effect of the local
dynamics makes itself felt. Switching of the dynamic
system to a new macrostate does not happen. The pre-
sented qualitative arguments are fully confirmed by nu-
merical analysis of the equations of motion (31).39

6. UNIVERSAL EQUATIONS OF MOTION NEAR THE
THRESHOLD OF SELF-ORGANIZATION

The two component reaction-diffusion systems of
Turing amount to a "basal" model convenient for theo-
retical analysis. Up to now almost all the general
problems of principle pertaining to self-organization
in systems with chemical interactions and diffusion
have been treated using this model. At the same time
it is clear that two-component systems are a rather
special case. Of course the variety of chemical mecha-
nisms is not exhausted by such systems. On the con-
trary, we know that the real chemical interactions in
cells are generally much more complex. Nevertheless
the essential movements—the slow movements in the
vicinity of the threshold for self-organization prove in-
sensitive to this complexity. The details of the mole-
cular mechanisms are not manifested in the critical dy-
namics. This implies that if we had found experimen-
tally that a system lies near the threshold for self-or-
ganization, then, even if we do not know the chemistry
of the processes occurring, we can predict its behavior.

Let us take up very briefly some features of the mod-
ern theory of critical phenomena. This small digres-
sion is warranted by the fact that the fundamental topic
of this review—self-organization in nonequilibrium
chemical and biological systems—manifests many fea-
tures of similarity with phase transitions under condi-
tions of thermodynamic equilibrium.

Apart from a small number of exactly solvable models
in the theory of equilibrium second-order phase transi-
tions, one cannot make a correct transition from the
microscopic formulation of the model (assuming a com-
plete knowledge of the Hamiltonian) to the macroscopic
equation of state. At the same time, a set of experi-
mental data definitely indicates that many specific de-
tails of the microscopic pattern cease to be essential

if one is interested in the thermodynamic properties of
the system in the vicinity of the critical point.61 It
suffices to recall the law of corresponding states for
the critical point of the liquid-vapor transition or the
universal relationships between the critical indices.
Such a similarity of the critical behavior of systems
highly different from the microscopic standpoint has
stimulated interest in the general heuristic approaches
in the theory.

In the current treatment of the phenomenon, the ma-
jor accent is placed on the global characteristics of the
object, such as its symmetry and space dimensionality,
and many fine details of the interaction are ignored.
The justification for proceeding in this way is given by
the construction of Kadanov (see Ref. 61). Near the
critical point, coherent behavior is manifested at
distances exceeding all the microscopic scales in
the system. When entire macroscopic regions behave
like a unitary element, the fine details of the interac-
tion between the particles of such regions do not affect
the behavior of the latter. In such a situation the mac-
roscopic properties are sensitive only to the global
characteristics of the system.

Another distinguishing feature of critical dynamics is
the slow relaxation of the large-scale fluctuations of the
order parameter. This is precisely why all the features
of critical behavior can be encompassed in one or sever-
al equations of motion amenable to theoretical study.
Thus two essential features—the macroscopic scales of
coherence and the slow dynamics of the singled-out
degrees of freedom—enable a general analysis of the
thermodynamic properties in the vicinity of the criti-
cal point for systems of highly differing microscopic
nature.

As we shall show, we face a similar situation in
treating physical, chemical, and biological systems
far from thermodynamic equilibrium near the threshold
for self-organizatoon. Here also the onset of macro-
scopic order (in time or space) proves to be associated
with slow, large-scale motions of singled-out modes.
Owing to this slowness, one can reduce the complex
multicomponent kinetic system to the equation of
motion of one or several essential degrees of freedom—
an analog of the macroscopic description of critical
phenomena in the language of the order parameter.

This section will be devoted to deriving the reduced
equations of motion for transitions involving onset of
spatial order in reaction-diffusion systems. Quite sim-
ilar equations have been derived to describe non-equilib-
rium collective phenomena in systems of a different
nature. This was done by Haken and Wunderlin62 for
generation of coherent radiation in a laser and by Newel
and Whitehead63 for the appearance of convective struc-
tures in a liquid in the case of Benard instability. The
cited studies analyzed the case of spatial dimensionality
d = l. Nitzan and Ortoleva64 studied spatial self-organ-
ization of reaction-diffusion systems in the more gener-
al case of spatial dimensionality d>\. A reduced de-
scription was obtained in Ref. 65 also for transitions
with appearance of temporal organization in nonequili-
brium chemical systems.
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All the cited studies employed a conceptually common
method based on expansion in a small parameter—the
degree of closeness to the instability threshold. This
method is applied often in analyzing bifurcations in non-
linear kinetic systems. Therefore it seems expedient
to us to derive the reduced description in which we are
interested with some degree of detail.

Turing bifurcation. Scales of parameters

The macroscopic equations of motion in multicompo-
nent reaction-diffusion systems (see Eq. (1)) have the
following form in vector notation:

-^-=f(C)+£>v2C. (32)

The duffusion coefficients together with the kinetic para-
meters of the function f(C) (reservoir concentrations,
rate constants) constitute the parameter space of the
system {r,}. We assume that in a certain region of this
space the stable state is the homogeneous concentration
distribution throughout the volume CK, which is the
asymptotically stable, stationary solution of the kinetic
system (32). This presupposes that

f(Ce q ) = 0. (33)

Upon introducing in place of C the vector of deviations
from the stationary state

) = C(r, f)- (34)

and linearizing the original kinetic equation in the small
deviations c, we obtain

(35)

Here we have

One can construct an arbitrary solution of the linear
problem (35) in the form of a superposition of vectors
q" (k) exp(\"t + ikr) with all possible k. Here q"(k) and
X" are the eigenvectors and eigenvalues of the matrix
L—Dk2. The time decrement X is connected to the
wave number (k) by the dispersion relation that follows
from the characteristic equation

The spatially homogeneous stationary solution C,, is an
asymptotic state (as £— °°) of the system if the condition
is satisfied that

Re X" (fc) < 0 for all n, ft. (37)

As the external parameters are varied in the region of
parameter space where the condition (37) is satisfied,
the state C,Q does not undergo qualitative changes, but
varies smoothly. The system can acquire "new" qual-
ities owing to passage through a point of structural in-
stability at which86

Re t." (ka) = 0. (38)

If here the multiplicity of the eigenvalue X° is odd, then
the initial branch of states CN undergoes bifurcation-
new branches of stationary states are created.66 The
situation corresponds to Turing bifurcation when the

multiplicity is unity, fecr*0, and ReX"(fe)<0 for all val-
ues of the wave number k fk^. In this case the eigen-
value X° in the vicinity of the critical wave number fecr is
real, and moreover, X°(fecr) is the maximum of the
X°(fe) variation:

d* (39)

What we have said pertains also to the region of para-
meters close to the point of Turing bifurcation.

For simplicity, and without restricting the generality
at all, we shall examine the onset of structural insta-
bility as only one parameter of the set {r,} varies. Here
the values of all the rest correspond to the critical
point.

We shall obtain the description of the dynamics near
the critical point by employing an expansion in the small
parameter y = I\ - T\T. We should start with elucidating
the scale factors for the space and time variations of
the various quantities. We can do this on the basis of
the characteristic equation (36). For definiteness, let
only the matrix L depend on the parameter y. We can
consider this relationship to be analytic, which is
equivalent to the assumption of smooth dependence of
the homogeneous state CM itself on y:

As we have already noted in Sec. 2, also A f e = f e - f e c r

and X° are small, as well as the parameter y, near the
threshold of dissipative instability. On the basis of
this smallness, together with the condition (39), one
can write the characteristic equation (36) approximately
in the form

+ b (Afc)2 + cy = 0. (41)

The orders of magnitude of Afe and X° respectively de-
termine the spatial and time scales of the critical dy-
namics. For a start, let all the terms in (41) have the
same order of smallness, namely 0(y). It is convenient
to introduce the small number t such thaty = ge2,
q = O(l).e4 Then we must have

A* = O (e), X° = O (e2). (42)

This enables us to describe the critical dynamics in
terms of the new "scaling" variables T and .R64-

T = e2t, a = Br. (43)

The quantity 1/e characterizes the scale of distances
at which the perturbation deviates appreciably from
the form of the pure harmonic exp(ikcp- r), while 1/e2

fixes the scale of the time of evolution of this deviation.
Further, bearing in mind the smallness of the ampli-
tude c near the instability threshold,5' we shall repre-
sent the solution c(r, t) of Eq. (32) in the form of an ex-
pansion in the small parameter e:

c (r, t) = 2 e"cn (r, t). (44)

5 'The entire analysis of this section is suitable for the case of
"soft" branching of the dissipative structures from the homo-
geneous state.
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The existence of the two spatial scales r~l/fec r and
R -(Afe)"1 -1/e suggests the form of the functions cn

64:

cn(r,t)~Wa(R, t)cn(T, t)qn. (45)

Correspondingly we can replace the operations V and
S/dt with

and (46)

Now we should substitute (44)- (46) into Eq. (32) and
examine the conditions of balance in the different orders
of t:

The intermediate stages of the calculation have been
given in Ref. 64. The final results are the following:

1) Dimensionality of the space d= 1. The general form
of the solution c(x, t) to the accuracy of O(e) is

, r)ei*c.3I+c.c.). (47)

Here q° is an eigenvector of the matrix L° -Dk2. In
expression (47) the neutrally stable mode e'*cr* (having a
zero decrement) at the critical point y =0 is modulated
by the amplitude W, which slowly varies in time and
space. The dynamics of W(R, T) is described by the
equation64

,„ , ,,, .
- = fl,W -02 | W

d'W (48)

Here the coefficients ax, a2, and a3 are expressed in
terms of the parameters of the original kinetic system
(see Ref. 64). We note the fact that varying the scales
of the quantities W, R, and T converts Eq. (48), which
contains three parameters, into a universal form that
does not depend on the values of the parameters64:

(49)- = ±W—\ W\"W- anv
aft1

Here the plus sign pertains to the transcritical region
y >0, and minus to the precritical y <0.

The obtained universal form of the equation of motion
contains no information on the number of dynamic
variables (reaction components) in the original formu-
lation (32) nor on the character of their interaction.
This information is not needed to describe the slow
large-scale critical dynamics. Such a universal form
of the equation of motion can be compared with the law
of corresponding states for the vicinity of the critical
point of a van der Waals transition or with the laws of
similarity in the theory of equilibrium second-order
phase transitions.

In the equation for the stationary amplitude (obtained
by putting 3W/dT = Q in (49)) we can easily recognize
the phenomenological Ginzburg-Landau equation from
the theory of superconductivity.4 Evidently, in the
transition from the homogeneous state to the dissipa-
tive structure, the amplitude W plays the same role as
the condensate wave function in the Ginzburg-Landau
equation in the transition to superconductivity. At the
same time, we call attention to their differences.
Equation (49) has been derived and holds for one-di-
mensional space. Its generalization to the case d>l
does not reduce to replacing the operation d2/8R2 by a
multidimensional Laplacian, as happens for the Ginz-
burg-Landau equation.

Let us study the stationary solutions of Eq. (49).
First of all we find the real homogeneous solution
| W | = 1, which exists and is stable in the transcritical
region. We conclude from Eq. (47) that it corre-
sponds to the stationary distribution c^x), which coin-
cides in form with the critical mode. The stationary
solution W =0, which corresponds to the original ho-
mogeneous branch, exists on both sides of the critical
point, but is stable only in the precrtitical region. If
we turn to the starting variables R, T, and W, it be-
comes evident that the distribution Cj(x) continuously
( "softly") branches from the homogeneous branch,
with an amplitude increasing with increasing distance
from the point of origin as Vy.

Interestingly, | W | = 1 is not the sole stable solution
in the transcritical region. A multitude (continuum)
of other complex solutions also satisfies the stationary
problem. Actually, if we represent W(R) in the form
W = pe'*, we find directly from (49) the equations for
p(R,T) and <1>(R,T):

(50)

Any solution of the following form also is a stationary
state:

PT = P — P3 + PBR — P (fR)z,

= const<i, (51)

The region where such solutions are realized as
asymptotic states can be found, as always, by analyzing
the evolution of small deviations from p and lp in the
framework of the linear approximation. The corre-
sponding analysis is performed without special diffi-
culty and yields the following result. Among the mul-
titude of solutions of_(51), the asymptotically stable
ones are those with p2 >2/3.

We can easily understand what sort of additional states
are these with a nonzero phase gradient. Upon sub-
stituting a complex W(R) into Eq. (47), we can convince
ourselves that the corresponding distribution c^x)
amounts to a harmonic dissipative structure with a
wave number differing from the critical value fcor.
Thus the multitude of solutions of (51) leads to a con-
tinuum of structures c^(x) that differ in spatial period.
The corresponding wave numbers occupy a band A£
about fecr that expands with increasing distance from
the self-organization threshold67 A f e ~ y 1 / 2 .

This continuum of possible structures, which in-
volves the very origin of macroscopic ordering, though
remarkable, is yet not unexpected. Here the situation
is quite analogous to that in a superfluid liquid or in a
superconductor, where, together with the appearance
of a condensate wave function, an entire continuum of
possible macroscopic states arises. We are consider-
ing nondissipative macroscopic motions—the flux of the
superfluid component in liquid helium, and the super-
conductive electric current in a metal, which can be
established below the Appoint. Just as in our case,
these states differ in phase gradient of the complex
order parameter. Always some one of the set of
possible macroscopic states is realized. The choice
of this state is fully determined by fixing the initial
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value of the current or velocity.

In our case of concentration dissipative structures,
the phase gradient of the harmonic distribution of con-
centrations also governs the macroscopic flux—the
diffusional flux of matter. However, the essential
difference is that this flux is now not homogeneous,
but varies periodically with the distance. The stable
existence of a diffusional flux, in contrast to the afore-
mentioned macroscopic motions, is necessarily ac-
companied by dissipation of free energy. Hence it
requires a constant influx of energy from outside. The
fact that all of the indicated set of macroscopically
distinguishable states can be realized for the same
values of the external parameters indicates only that
their appearance requires no special additional influxes
of matter or energy. It suffices only to excite the
system in an appropriate manner at the initial instant
of time.

2) Dimensionality of spaced d > 1. When d> 1 there are
fundamental differences in comparison with the one-
dimensional case. They arise from the orientational
degeneracy of the critical modes. Actually, the condi-
tion of criticality, defined as X°(feer) = 0 fixes only the
modulus of the critical wave vector (see (36)), whereas
its direction remains arbitrary. Now the general form
of the solution of Eq. (34) will be, apart from terms of
the order of O(c):

_*!£.=#,+2
dT

(55)

c,(r, t) = (52)

Here the summation is performed over all possible
orientations of the critical wave vector k7: Ik/^fej,.
Owing to the superposition of several one-dimensional
harmonic distributions with wave vectors differing in
direction, a cellular spatial organization must arise.
It was shown in Ref. 64 that there are rigid selection
rules for the possible directions / in the superposition
(52). Namely: three dimensions Ilt I2, and I3 can be
included, with the vectors k/J, k's, and k/3 forming an
equilateral triangle. This means that the shape of the
cell must be hexagonal.

The character of the branching of the cellular dissipa-
tive structures from the homogeneous state differs from
that for one-dimensional distributions. It is found from
the equation of motion for the slowly varying amplitudes
Wj (R, T). The idea of deriving these equations re-
mains the same as in the one-dimensional case, but
there are differences in the details. In particular, the
"scaling" variables R and T are introduced in a dif-
ferent way (see Ref. 64). The final equations have the
form

(53)

We note that here, as in the one-dimensional case, we
can introduce new scales for the variables T and W,:

T = a>lT, W, = WT-^-, (54)

Consequently the system (53) acquires a universal form
not depending on the parameters

It is not difficult to find the stationary values of the
three nonzero amplitudes Wti, Wlz, and W,3. The com-
plete set of solutions is obtained from all possible per-
mutations of the two combinations (1,1, -1) and (-1, -1,
I).8*

We call attention to the fact that the found nontrivial
solutions exist on both sides of the instability threshold
of the homogeneous solution (^ = 0). In this case the
branch of nontrivial solutions intersects the initial
branch W7 = 0 at the critical point y1 = 0, but not at a
right angle as for one-dimensional distributions. How-
ever, the states corresponding to the nontrivial solutions
of the system are unstable on both sides of the critical
point. This conclusion pertains only to the states that
continuously branch from the homogeneous branch (W7
= 0), rather than to cellular structures in general. A
stable cellular spatial organization can arise, but in a
first-order transition, i.e., with a discontinuity in
state. The reduction procedure employed above is
unsuitable for describing such transitions, since the
deviation from the homogeneous branch can no longer
be considered small.

Not only superpositions, but also pure one-dimen-
sional periodic distributions can arise in the case of
Turing instability in d-dimensional space. The orien-
tation in space of such a one-dimensional dissipative
structure is arbitrary, while the period is governed by
the condition for Turing instability itself and by the
characteristic equation (36). The one-dimensional
structures compete with the cellular structures, since
the condition for their excitation in the dynamic (rather
than statistical) description is fulfilled for the same
values of the parameters, when \°(fecr) = 0. An inter-
esting selection problem arises in this connection that
has not yet been studied completely (see Ref. 68).

Apparently the problems that we have touched upon
have greatest value in connection with the appearance
of macroscopic order in hydrodynamics.69 Up to now
it has been possible in reaction-diffusion systems to
observe only one-dimensional stationary dissipative
structures (see Ref. 14). The situation is characteris-
tic for pattern formation in biology in which the dimen-
sions of the self-organizing volume are small in com-
parison with the characteristic spatial periods of the
structures. In this case the boundary conditions remove
the orientational degeneracy of the critical modes. For
example, in the case of the elliptical boundary treated
in Sec. 3, the type of spatial organization beyond the
threshold for Turing instability is unequivocally deter-
mined. The lifting of degeneracy arises from the nar-
rowing of the symmetry group of the problem upon
imposition of the boundary conditions. In this connection
the general group approach developed in Ref. 68 seems
interesting. Here the universal reduced equations of
motion in the neighborhood of the self-organization
threshold are constructed on the basis of the irreducible
representations of the symmetry group of the problem.

In essence, the abbreviated description obtained in
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this section of the dynamics in the neighborhood of the
self-organization threshold can be appraised as being
the realization in a concrete case of the general idea of
Bogolyubov. As we know, its content is: if one can sin-
gle out in a system with many degrees of freedom a set
of variables (secular variables) whose time scales of
variation are large in comparison with the relaxation
times of the other degrees of freedom, then this slow
relaxation must fit a closed— " macroscopic" description.
In the case of the hydrodynamic description, such slow
parameters (as compared with the molecular variables)
are the five macroscopic variables—the density, the
components of the mean velocity, and the mean thermal
energy. In our case near the threshold of an instability
that breaks the symmetry of the homogeneous state,
the secular parameter is the amplitude of the critical
mode or the set of amplitudes in the case of degeneracy.
These parameters prove to fit a closed description that
depicts the "macroscopic" behavior for large time in-
tervals. In going from the macroscopic parameters of
state—concentrations—to the collective variables-am-
plitudes of modes, we sharply reduce the information
needed to describe the dynamics of establishment of
spatial organization. Thus, for example, Eq. (53)
contains only two parameters characterizing the chem-
ical interactions in the initial reaction-diffusion system,
while this number does not depend on the degree of com-
plexity of the latter. Of course, the reduced descrip-
tion of the critical dynamics does not enable one to pre-
dict either the actual point of spontaneous onset of spa-
tial order or in general the potentiality for self-organ-
ization in concrete reaction-diffusion systems. In any
chemical system of some degree of complexity this in-
formation can be obtained only by experiment. Upon
possessing it, we can use the reduced equations of mo-
tion to draw conclusions regarding the geometry of the
spatial order produced, and the manner in which this
process occurs in time.

7. SIZE INVARIANCE OF MORPHOGENETIC
STRUCTURES

A broad class of systems is known in embryology that
manifests the capacity for regulation of structures in
relation to the overall dimensions. In normal growth
this regulation is expressed in maintaining unchanged
proportions of the structures—the so-called size in-
variance. In experiments the capability of regulation
reveals itself in the regeneration of structures after
parts of them have been removed.34-71 In Sec. 2 we
have already cited such experiments in hydra (see Fig.
3a). Individual segments cut from the trunk of hydra
and possessing no morphogenetic features in the initial
state regenerate in time a complete animal with all the
inherent elements of organization. This regeneration
is not accompanied by growth. As a result one obtains
dwarf organisms in which, however, " everything is in
place". Over a broad range of sizes of the regenerat-
ing component, the relative dimensions of the parts of
the developing organisms—the "head", the tentacles,
the digestive zone, and the foot—remain constant. Thus
the organism can not only regenerate its parts, but
match their proportions.

As is assumed everywhere in this review, the spatial
organization of the morphogenetic field is controlled by
a reaction-diffusion system. However, it is easy to see
that passive diffusion alone does not suffice as a basis
for the property of size invariance of structures. In a
reaction-diffusion system of the general type (1), the
characteristic spatial scales of the dissipative structure
are determined by the kinetic parameters of the chem-
ical interactions and the diffusion coefficients. These
are molecular parameters, which contain no informa-
tion on the overall dimensions of the system.6*

In order that the condition of size invariance be satis-
fied in a reaction-diffusion system, the spatial coordi-
nate and the size must enter into the equations of mo-
tion only in the form of the dimensionless combination
% = x/L. If we make the corresponding substitution of
the variable x-~ £, then the kinetic equations (1) acquire
the form

As we see, a dependence on the size L is present in ex-
plicit form. The required dimensional invariance of
the solutions will exist only in the case when Ds ~L2.

A coupling of the necessary form of the transport
coefficient D1 with the overall size can arise as a con-
sequence of a special mechanism of transport of the
components of the reaction mixture that differs from
passive diffusion.

As we know (see, e. g. , Ref. 70), transport of chemi-
cal agents through a cell membrane can occur by one of
three mechanisms: 1) Passive diffusion— this is made
possible by the presence of special diffusion channels
in the outer cell membrane.27 2) Facilitated diffusion,
in which special molecules of carriers synthesized by
the cell participate in transport. Just like passive
diffusion, facilitated diffusion is directed to the size
opposite to the concentration gradient of the reagents.
3) Active transport. Here the flux of the substance
proves to be directed against its gradient owing to
coupled reactions.

Let us take up the mechanism of facilitated diffusion.
Let us assume the molecular scheme of transport of the
reagent C! through the cell membrane with participa-
tion of the carrier P1 proposed in Ref. 74:

(56)

Here the index * pertains to the number of the cell in the
one-dimensional ensemble. If we assume that the sizes
of the individual cells are small in comparison with the
characteristic scales of the variations of the concen-
trations C1 and P1 and, as usual, transform the discrete
index j to the continuous spatial coordinate x = idctll,
then we obtain the following kinetic equations for the
concentration C1:

3Ci — pi (57)

6>However, such systems nevertheless manifest a limited size
invariance within a small range of variation of size.72'75
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It has the form of a diffusion equation with the diffusion
coefficient

Upon adding a " reaction" term of general form to the
kinetic equation (57), we obtain:

•£-) • (58)

It is precisely in the dependence of the diffusion coef-
ficient on the local concentration P*(x) that the source
of the coupling of Vs to the overall size L might lie.
For this to happen it suffices that the molecules P'
should succeed in diffusing within the characteristic
times of variation of the concentration C1 throughout
the volume at whose boundaries the definite conditions
on P1 have been set.

Othmer and Pate73 have obtained the necessary form
of the dependence P1 ~l? by assuming that the dynamics
of the distribution of P1 obeys a closed equation of mo-
tion

aps
et : (59)

and that it occurs rapidly in comparison with the evolu-
tion of C1. In the presence of a rapid outflux of Ps into
the external reservoir the boundaries of the reaction
volume can be regarded as absorbing, i.e., P' — O.
Consequently the,stationary profile of the concentration
P1 is established:

Pi(l) = L*-^(l-l?). (60)

Here we have already introduced the dimensionless
coordinate £=x/L. Thus the diffusion coefficient
in the kinetic system proves to be proportional to the
square of the lineal dimension, which yields the size
invariance of all the solutions Cj(x, t). As regards the
possibility of spontaneous appearance of dissipative
structures, this is not eliminated by the appearance
in a reaction-diffusion system of a spatially depen-
dent diffusion coefficient.73

Interestingly, for a long time after the publication of
Turing's study, the mechanisms that he proposed for the
appearance of morphogenetic structures was disputed by
biologists on the grounds that it cannot explain the pro-
perties of size invariance (see, e.g., the very intelli-
gent book by Waddington76). As we see from this sec-
tion, in fact these objections can be easily answered.

8. SELF-ORGANIZATION OF SPATIAL FORM

Nowhere above have we been interested in the spatial
displacements of cells. Our treatment was restricted
only to the process of appearance of stratification of the
cellular ensemble into types of specialization of cells
(positional differentiation). As the concrete examples
discussed in Sees. 3-5 show, in such cases there is no
need to adduce cellular movements. However, clearly
the processes of positional differentiation do not exhaust
the entire variety of pattern-forming processes in the
development of multicellular organisms. The bulk
forms of the organs of the embryo cannot take shape
without the participation of movement of both single
cells and of entire groups of cells.

FIG. 19. Phases of the life cycle of the slime mold Dictyo-
stelium discotdeum. a) Single dividing amoebae; b) initial
stage of aggregation (the characteristic spiral front of the cells
moving toward the center of aggregation can be seen; this front
coincides with the front of the cAMP wave propagating from the
center84); c) later stage of aggregation (Figs, a-c are not to
the same relative scales); d) hemispherical mound of early
aggregate; e) migrating slug; f) fruiting body (sporangium with
with spores at top).

The phenomenology of the morphogenetic movements
is extremely varied. Despite the fact that the macro-
scopic pattern of these movements has been described
in detail for many embryonic systems, the motive
forces and mechanisms remain unelucidated in most
cases.

In this section we shall present a treatment of the
morphogeneis in a system where it takes on perhaps
its simplest form. This system is a slime mold
(Dictyostelium discotdeum (Dd)). Owing to the pres-
ence of typical features of multicellular organisms with
a relative simplicity of organization, this object has
become in recent years one of the most popular objects
of the biology of development. It presents a unique
model for biophysics in which one can obtain answers,
not only to the question " how and where do the cells
move?" but also "precisely why in that way and to that
place?".

Figure 19 shows schematically the total life cycle of
Dd. Three characteristic quasistationary phases are
distinguished.

I. Solitary noninteracting amoebae. This unicellular
phase is accompanied by active cellular divisions and
continues as long as the medium is rich in food. The
collective form of existence of the amobae sets in upon
exhaustion of the nutrients. Here individual (random)
cells becomes centers of aggregation, collecting from
the surrounding territory (~1 cm2) about 105 cells per
each center.71

n. Quasistationary, now multicellular, form of exis-
tence—migrating slug. The slug possesses a character-
istic cartridge-like shape and certain features of be-
havior completely uncharacteristic of the isolated amoe-
bae. For example, it can move as a whole in the direc-
tion of a light source. This phase of the life cycle of
Dd can extend up to several days. It is supplanted by:
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FIG. 20. Consecutive stages of transformation of the spatial
shape of the aggregate from a hemispherical mound to a mi-
grating slug.

IE. A stationary state called the fruiting body. The
formation of the fruiting body completes the life cycle
of Dd. Here the previously started stratification of the
cells into two types is completed—generative cells
(spores) and vegetative cells (stalk). One can find
more detailed information on the development of Dd in
Ref. 71.

Two transitional pattern-forming processes lead to
the two multicellular phases—the slug and the fruiting
body. We shall be interested in the former. This
process includes a hemispherical sound as the initial
state and the cartridge shaped slug as the final state
(Fig. 20).

For a qualitative understanding of the process, we
must elucidate the origin of the motive forces for the
individual cells and the reason for the directional con-
certed displacements in the cellular mass.

a) On movement

In this case the type of movement is the same as for
many motile bacteria, namely—chemotaxis. Chemo-
taxis is the directional movement of cells induced by a
concentration gradient of a certain substance (attrac-
tant) in the external medium. For Dd cells the attrac-
tant is the well known compound cAMP, which has al-
ready been mentioned in Sec. 1 in connection with inter-
cellular communications. If the drop in concentration
of cAMP on diametrically opposite sides of a cell ex-
ceeds a certain threshold value,77 then the cell begins
to "flow" in the direction of increasing concentration.
One can describe this movement by introducing the
" chemotactic" force78-79

^ch = ^V^- (61)

Here C is the concentration of cAMP outside the cell.
Thus, in order to substantiate the displacement of the
Dd cells in the shape transformations of the aggregate,
we must know how to trace the distribution of cAMP
in it.

b) Distribution of attractant

In the aggregate of Dd the distribution of cAMP is
established by the action of:

1) local synthesis; cAMP is produced in an enzymatic
process induced in several spatially close cells80;

2) diffusion through the volume of the aggregate; one
usually uses the estimate D ~ 10"5 cm2/s for the diffusion
coefficient79;

3) linear decay; the decay, just like the synthesis of
cAMP, arises from the activity of a certain enzyme.
The characteristic time for this process amounts to
T~10 S.al

The given values of the parameters D and T yield an
estimate of the characteristic length scale

rch ~ Yin w 100 urn.

With such a scale, the presence of the attractant pro-
duced in a localized source is appreciable.

The above verbal description corresponds to the fol-
lowing kinetic equation for the evolution of the concen-
tration distribution C(r, f)82:

dC
at (62)

Here rA is the position vector of the source cell (below
termed for brevity an A-cell).

The boundary conditions for C stem naturally from the
physical formulation of the problem. The flux of cAMP
through the aggregate-air phase boundary must be zero,
since cAMP is nonvolatile. Hence we have at this suf-
face

dC
dn

= 0. (63)

On the contrary, the absorption condition is satisfied
at the surface of contact of the aggregate with the
substratum:

C|s2 = 0. (64)

This corresponds to outflux and dilution of cAMP in the
substratum.

The characteristic time scale of the transformation of
the form of the aggregate amounts to hours.71 This
greatly exceeds the characteristic time of evolution of
the C(r, t) distribution, which, as we have stated,
amounts to 10 s. Hence we can restrict the treatment
to a quasistationary form of the distribution C(r).

c) Movement of A-cells

Evidently, at any point within the aggregate, the con-
centration gradient VC has a non-negative component in
the direction of the A-cell. Hence particles of the
aggregate not too remote (within the radius r^) are at-
tracted to the A-cell. If the latter is fixed, then we
should expect a shape of the aggregate close to spheri-
cal. It is precisely the capability of the A-cells for
chemotaxis and a certain asymmetry of the distribu-
tion C(r) arising from the boundary conditions that
cause the directional displacement of the A-cell, and
the rest of the cells with it.82

In order to demonstrate the effect of the boundary,
let us examine two simplified situations.82 Let us
pose the problem of diffusion in a half-space bounded
by the plane S. In the plane S let us impose the fol-
lowing boundary conditions for the concentration C:
a) absence of a flux 3C/3n|E = 0, and b) absorption
C|r = 0.

We can easily find the stationary solution of the prob-
lem (62) under the given boundary conditions by the
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method of images. Let us place at the point rj, which
is mirror-symmetric with the original point, an image
source. In the former case the intensity of the image
must be the same as that of the original source—pre-
cisely in this case the condition is satisfied of zero
flux across the plane 2. In the latter case, in order
to satisfy the condition C|i=0, we must assume an in-
tensity of the image equal in magnitude and opposite in
sign to that of the original source. Consequently the
distributions of C in the two cases will be

I'- 'A I

|r-r* |

.-I'-in
I'-rJI J'

(65)

The first term, which is the same in both expressions,
represents the " intrinsic field" of the source—this is
precisely the distribution C(r) for an isolated source.
The second term is the "field" of the image, which al-
lows for the effect of the boundary.

Evidently the intrinsic field cannot make the A-cell
move, since it is symmetric. The image field
breaks.this symmetry. The existence of a grad-
ient of the concentration C at the site of the original
source is caused by the image source. The vector of
the gradient lies along the normal toward the plane un-
der the condition of zero flux through it, and away from
the plane under the condition of absorption.82 Corre-
spondingly an A-cell is attracted to a surface impene-
trable to the attractant and repelled from an absorbing
surface. Upon recalling now the boundary conditions
of the aggregate of Dd, we conclude that an A-cell must
float to the top of the hemisphere, regardless of its
initial position. Actually this surfacing reveals itself
in the movements of the other cells of the aggregate,
which are directed toward its top.83 The described
displacements of the A-cell create the necessary and
sufficient prerequisites for the subsequent shape trans-
formations of the aggregate.

d) Collective movements in the aggregate

The visible shape transformations of the cellular
aggregate of Dd occur in two stages. First a nipple
is formed at the top of the hemipshere (see Fig. 20).
Its characteristic dimensions amount to 100 fim, while
its time of formation is T <1 hr. Elongation occurs in
the next stage—extension in the vertical direction with
unchanged volume of the aggregate. It is characteristic
here than the extension and correspondingly the nar-
rowing do not occur uniformly throughout the volume,
but two extreme states coexist at each intermediate
instant of time, as in Fig. 20.

The characteristic dimension of the nipple, which
coincides with the characteristic scale of length for the
concentration distribution of cAMP, indicates that
chemotaxis is responsible for this phase of the spatial
transformations of the aggregate. It is precisely in the
region of characteristic dimension rch surrounding the
source of cAMP that the gradient of the concentration
C (chemotactic force) is still appreciable.

The stage of spatial transformations following nipple
formation—elongation—now encompasses the entire
aggregate, including the regions where chemotaxis
cannot be the motive force (removed from the cAMP
source by distances r>100 j-tm).

The interpretation of this process faces no difficulties
if we restrict the treatment to a "minimal" physical
model that treats the cellular aggregate as a continuous
medium having a hydrostatic pressure and a surface
tension.79>82

The curvature of the surface in the region of the nip-
ple determines the hydrostatic pressure:

= + —

Here P0 is the atmopsheric pressure, cr is in the sur-
face-tension, andRt is the radius of curvature. The
pressure distribution in the remaining mass of the
aggregate is determined by the condition of equilibrium.
In a relatively narrow transition region (as compared
with the maximum lineal dimension of the aggregate)
in which the concentration gradient of cAMP differs
from zero, the chemotactic force F^ must equilibrate
with the pressure gradient,

Hence we can find the pressure in that part of the
aggregate where the concentration of the attractant is
zero:

Pi, = Pt — Mcf

Here Ct is the concentration level C in the region of
the nipple. This pressure unequivocally determines
the curvature of the surface bounding this region:

Pt, — Pa = °K-

Finally, having in mind the definite total volume of the
aggregate, we can find its shape. Evidently the two
conditions: fixed volume and constant radius of curva-
ture (l/K) correspond to a shape of the surface close
to cylindrical (this is true when IT3 «V), which it
actually is (see Fig. 20).

In the treatment that we have carried out the process
of pattern formation is presented as the result of
" interaction of mechanical and chemical" degrees of
freedom. The outlining of the boundaries of the cel-
lular mass in terms of the boundary conditions affects
the form of distribution of cAMP. In turn the distribu-
tion of cAMP fixes the field of the chemostatic forces
that alter the outlining of the boundaries of the aggre-
gate. The component phases of this process—mi-
gration of the A-cell from the bulk to the surface of the
aggregate, nipple formation, and elongation—amount to
nothing other than successive stages of evolution of the
system toward equilibrium.

In general, as it turns out, a simple model that treats
the cellular mass as a "physical" continuum with only
the specific feature that the mechanical movements are
coupled via chemotaxis with a certain "chemical" sys-
tem suffices for interpreting the process of self-organi-
zation of the spatial form.
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9. CONCLUSION.

The main idea that this review has aimed to convey
can be expressed as follows. The complexity and unique-
ness of biological structures is the result of a
"complex" response to "simple" controlling factors.

The "complex" response means that both the genetic
constitution of the cells of the given ensemble and the
path of development that they follow in embryogenesis
are essential. The spatial plan or map for the struc-
ture being formed is " simple". This plan is fixed by
the inhomogeneous distribution of physical parameters
(such as the concentrations of certain molecules) that
affect the dynamics of the intracellular processes, i. e.,
the physiological state of the cells.

An important point is that the spatial plan of ordering
of the cellular ensembles is, first, insensitive to the
nature and individual features of the cells. The rules
for its establishment are similar in quite different sys-
tems. Precisely in this regard it is "simple" and
hence accessible to physiochemical treatment. Second,
the spatial plan of a morphogenetic structure is not
contained in any form and is not coded in the individual
cells. It arises specifically as the product of the col-
lective process of self-organization, which is expressed
in the spontaneous appearance of dissipative structures.

In the past several years our knowledge concerning
dissipative structures has been considerably deepended
and broadened. Progress in the field of biological
pattern formation is far from being appreciable to the
same degree. The reason for the existing lag is in the
lack of reliable information on the code that matches
the "physiochemical" spatial map of the cellular en-
semble with the morphogenetic structure.

On the basis of only such general physical character-
istics as the geometry of the region and the boundary
conditions, we can predict the form of the dissipative
structure (map). Yet experimentally we are already
presented with a structure in which a cellular reaction
is imposed on the map. Without a knowledge of the
corresponding code, neither does the observed mor-
phogenetic structure tell us anything about the map,
nor does the map determine the structure.

Among the variants of a code for reading the map,
we should single out the so-called combinatorial
code (this was discussed in Sec. 3 of this article).
Cogent arguments have recently been obtained for it
experimentally, in addition to convincing logical argu-
mentation (see Ref. 85).

This review has not claimed to encompass totally
the theory of dissipative structures and their application
to biology. Certain aspects of the problem not touched
on here are illuminated in a special publication on
these problems.86

The author expresses his deep gratitude to M. V.
Vol'kenshtein and M. A. Livshits for interest in the
work and for fruitful discussions.
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