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A review is given of the present state of theoretical and experimental research on second-order phase
transitions in anisotropic and nonunifonnly magnetized ferromagnetic and ferrimagnetic materials and on
phenomena observed near the Curie point in weak magnetic fields (If < H A H d , where HA and Hd are the
anisotropy field and demagnetizing field, respectively). The nature of these transitions is examined, and it is
shown that for anisotropic and nonunifonnly magnetized ferromagnetic materials the Curie point is not an
isolated point on the H-T plane. The experimental and theoretical data indicate the existence of a line of
second-order phase transitions in a magnetic field applied in certain definite directions with respect to the
anisotropy axis. This line of transitions is described by the law Tc (H) = Tc (0) (1 —AH"}; theoretical
estimates in the molecular-field approximation yield values <a = 2 for ferromagnetic materials of the easy-axis
and easy-plane type and <o = 2/3 for cubic ferromagnetic materials. The experimental results on the
equilibrium properties (the magnetization, susceptibility, specific heat, magnetostriction, Faraday effect, etc.)
and dynamic properties (the speed and attenuation rate of ultrasonic waves, the dynamic susceptibility) not
only confirm the existence of a line of phase transitions but also indicate that spin fluctuations play a decisive
role in the formation of the transition between ferromagnetic and paramagnetic phases in a weak magnetic
field.
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1. INTRODUCTION

The physics of phase transitions and critical pheno-
mena has produced results of fundamental significance
for elucidating the nature of the critical state of mat-
ter. Many of these results are based on studies of the
critical anomalies for phase transitions of theferro-
magnet-paramagnet type in the absence of an external
magnetic field. Research on phase transitions in non-
zero magnetic fields began comparatively recently.

In a magnetic field the magnetic structure of a para-
magnetic material is not fundamentally different from
that of a ferromagnetic one, for the symmetry in the
spin distribution is the same in the two objects. The
two phases become identical in their magnetic struc-
ture. Consequently, the magnetic field destroys the
ferromagnet-paramagnet phase transition. It is for
this reason that it is usually assumed that the Curie
point or Curie temperature is an isolated point on the
H-T diagram.l-2 This assertion is valid only for ideal
isotropic ferromagnetic materials of unbounded size.
Real ferromagnetic materials, on account of both the
anisotropic-exchange and relativistic interactions, are
always anisotropic (have shape, magnetocrystallo-
graphic, and exchange anisotropy).

In nonideal ferromagnetic materials, as has been
shown in studies over the past twenty years,3"39 a phase

transition occurs in the region of the Curie tempera-
ture even in the presence of a magnetic field smaller
than the anisotropy and demagnetizing fields. Singu-
lar behavior of ferromagnetic materials in a nonzero
magnetic field was first detected by Teaney, van der
Hoeven and Moruzzi3 in a study of the behavior of the
specific heat of EuS in a magnetic field in the region of
the Curie point. Those authors came to the conclusion
that the critical point of the ferromagnetic europium
sulfide is not an isolated point on the H-T diagram.
It was subsequently pointed out by Arrott4 that the be-
havior of the line on the H-T diagram of a ferromag-
netic material under the experimental conditions of
Ref. 3 can be explained by supposing that the uniformly
magnetized ferromagnetic state is not the only possi-
ble ground state. Arrott reached this conclusion on the
basis of the theory of Griffiths,5 who considered a mod-
el ferromagnetic substance consisting of spins localized
at lattice sites and interacting by exchange and dipole-
dipole forces. A transition occurred from a ferro-
magnetic state with a nonuniform magnetization to a
uniformly magnetized paramagnetic state. Arrott's
idea was developed further by a number of authors.5"13

Phase transitions in anisotropic ferromagnetic ma-
terials in weak magnetic fields were studied in Refs.
7-24, in which the thermodynamic theory of Landau14

was used to investigate the features of the magnetic
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properties not only of uniaxial magnetic materials but
also of ferromagnetic materials having an easy axis
along [100] or [ill]. The main result of these stud-
ies—the occurrence of second-order phase transitions
near the Curie point for certain definite directions of
the magnetic field with respect to the axis of easy mag-
netization—was confirmed by theoretical calculations
based on the scaling hypothesis8-10'24'25 and on renor-
malization-group studies. 12.13.28.43"5°

The study of magnetic phase transitions at the Curie
point in weak magnetic fields has thus led to a new field
of scientific research which has already yielded funda-
mentally new and important results. These results
include, first of all, the abrupt changes observed in the
temperature dependence of the magnetic, magneto-
elastic, magnetooptic, and other properties of ferro-
magnetic materials in weak magnetic fields. By
studying these effects one can determine the spontaneous
magnetization and spontaneous magnetostriction and
obtain a number of critical exponents and amplitudes on
the basis of kink phenomena, etc. These effects are of
important interest not only for the further development
of the theory of phase transitions but for practical
applications as well.

In spite of the great interest currently shown in the
study of phase transitions in ferromagnetic materials in
weak magnetic fields, the experimental data are not as
yet sufficient to confirm the theoretical deduction con-
clusively, and the existing experimental and theoretical
results have not been generalized or compared. In the
present review we have therefore undertaken to fill this
gap and examine the features of the magnetic properties
of isotropic and anisotropic ferromagnetic materials in
weak magnetic field in the vicinity of the Curie point.
Much of our attention is devoted to the effect of fluctua-
tions of the magnetization on the formation of a second-
order phase transition in a magnetic field. In addition,
we consider the features of the nonmagnetic properties
of ferromagnetic and ferrimagnetic materials, a sub-
ject that was first studied by the authors of this review
and their co-workers.

2. PHASE TRANSITIONS IN ISOTROPIC
FERROMAGNETIC MATERIALS IN AN EXTERNAL
MAGNETIC FIELD

Griffiths5 proved a theorem which states that a system
of magnetic dipoles in a crystal lattice with magnetic
dipole-dipole and exchange interactions has, in the
thermodynamic (large-volume) limit, a definite bulk
free energy for H = 0 that does not depend on the shape
of the sample. An immediate consequence of this
theorem is that in the absence of an external magnetic
field the lowest energy state of an isotropic magnetic
system is not a state of uniform magnetization. To
illustrate this conclusion Arrott4 considered a model
of a thin isotropic ferromagnetic toroid, for which the
ground state in the absence of magnetic field is a non-
uniformly magnetized mode. He showed that when the
sample is magnetized by a weak magnetic field applied
perpendicular to the plane of the toroid, a second-or-
der phase transition occurs from the nonuniformly mag-

netized ferromagnetic state to a uniformly magnetized
paramagnetic state, with the transition temperature
depending quadratically on the strength of the magnetic
field. Assuming that the lowest energy state of the
system is a state with nonuniform magnetization,
Arrott found the conditions under which the system
undergoes a second-order phase transition in a mag-
netic field."

Because of the dipole-dipole interaction, which gives
rise to a demagnetizing field, the nonuniformly magnet-
ized state of the toroid (the N state) is one in which the
magnetization vector lies in the plane of the toroid.
The uniformly magnetized state (the U state) is one in
which the magnetization vector is parallel to a mag-
netic field applied perpendicular to the plane of the
toroid. The problem of determining the conditions
under which the N state converts to the U state is
similar to the problem of determining the perpendi-
cular susceptibility of an antiferromagnetlc material.2'6

In a field K=Hz perpendicular to the plane of the
toroid, the magnetization of a volume element will
have the decomposition

M = Mm = MZL + Mee, (2.1)

where the unit vector z is perpendicular to the plane of
the toroid and the unit vector m is tangential to the cir-
cumference in the plane of the toroid for the volume
element under consideration. Then in the molecular-
field approximation the total field acting on a localized
spin is equal to the resultant of the external, exchange,
and demagnetizing fields:

#e + - DMj,. (2.2)

The condition that there be no net torque acting on the
magnetic moments (MXHe t, = 0) implies the equation

Me (H - =0. (2.3)

This equation yields the conditions under which the U
or N state is realized. For the U state M8 =0 and
MZ = M. In this case measurements along H yield the
usual temperature-dependent magnetization. For the
N state one has Me±Q and M, = H/D and, consequently,
the magnetization measured along the field H is pro-
portional to the field and independent of the tempera-
ture, like the perpendicular susceptibility of an anti-
ferromagnetic material.

The linear field dependence of the magnetization of
finite ferromagnetic material samples was first noted
by Neel,15 and then Fallot16 verified this dependence
experimentally for many ferromagnetic materials.
Subsequent experimental studies17"23 of the magnetic
properties of polycrystalline ferromagnetic and ferri-
magnetic materials in weak magnetic fields (H<Hd) not
only confirmed the linear dependence of M on H but al-
so showed that the magnetization remained independent
of temperature all the way up to T = rc(H) [M falls off
sharply above this temperature]. This phenomenon,
which in the ferrites has come to be called the "kink,"
was first observed by Kamilov22 and used to determine
Tc. Experimental studies3 of the specific heat of EuS in
the vicinity of Tc showed that the specific-heat peak
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shifted to lower temperatures with increasing magnetic
field.

These facts and considerations served as a basis for
theoretical calculations carried out in the molecular-
field approximation.

The stability regions of the U and N states can be
found from the difference in the free energies of these
states as functions of the temperature and external
field. Wojtowicz and RayIs gave the corresponding
calculation for the case S= 1/2. Here we shall pre-
sent their derivation. In the U state the effective field
is

He = (H + DM)*. (2.4)

In the N state the external and demagnetizing fields are
directed along the z axis, and therefore H,,, =ymM.
The corresponding free energies of the two states (in
units of yM2) are of the form

a2,, (2.5)

(2.6)

where h=H/yM0, d=D/y, M0 is the magnetization at
T = 0, T = r/Tc(0) is the reduced temperature, and
Tc(0) is the Curie temperature. The quantities
crN =MN/M0 and <TD =MU/M0 are taken as the order
parameters. By minimizing F„ and Fv with respect
to CT,, and CTN at constant T and H, we obtain

On = th l(h — dav + av) (2.7)

(2.8)

The condition for a transition from state N to state U is
the equality of the free energies (FN =FB), which corre-
sponds to the condition

h fn Q\"u — ON = —j-, \£i. y t

The reduced temperature at which the transition from
state N to state U occurs is denoted by rc(/0, and the
actual transition temperature is denoted by TC(H).
Then it is easily shown from (2. 7) and (2.9) that

,,. hi ., h \-l /o i n\

In the case of weak magnetic fields expression (2.10)
assumes the form

t.(fc) = l—Hx)2- (2.1D

For T <rc(#) we have FN <FV, and the nonuniformly
magnetized state is stable; for T>TK(H) the parameter
aN is smaller than h/d, and only the U state is stable.
At the temperature T,.(H) the magnetizations are equal:
MN =MD. Above TC(H) the experimentally measured
component of the magnetization is Mt=M0crlI, while be-
low TC(H) it is Mt=H/D.

The temperature TC(H), which depends quadratically
on the field H, thus separates states having nonuniform
and uniform magnetization. This temperature has come
to be called the "kink" temperature. Figure la shows
the results of a numerical solution of equations (2. 7)
and (2. 8) in various magnetic fields. As phase-transi-
tion points, the kink points Tc(#) are not fundamentally

FIG. 1. Temperature dependence of the magnetization in
weak magnetic fields, a) The theoretical curves6 (in all cases
d=0.04, for the upper curve h/d<=l); b) the experimental data
for the ferrite garnet Dy3Fe5Olj: 1) 4 Oe, 2) 6 Oe, 3) 8 Oe. 4)
10 Oe, 5) 12 Oe, 6) 13.5 Oe, 7) 16 Oe, 8) 20 Oe, 9) 30 Oe,
10) 40 Oe.

different from Ta(0) = Tc.

The case of arbitrary S was considered by Durczew-
ski.7 In the nonuniformly magnetized phase the magnet-
ization components along the field (aj,) and perpendicu-
lar to the field (cr^) obey the following laws:

(2.12)

In the vicinity of the phase-transition temperature Tc

one has for the case S = 1/2

(2.13)

and, consequently, the magnetization of the nonuniform
mode goes continuously to zero at T = TC(H), confirm-
ing the presence of a second-order phase transition.
The calculations of Durczewki showed that for temper-
atures near T0(/0 one should observe anomalies not
only in the specific heat but also in the weak-field sus-
ceptibility of the nonuniform mode, while the suscepti-
bility in the field direction, according to (2.12), is con-
stant:

X = T- (2.14)

The laws (2.10)-(2.14) obtained in the molecular-
field approximation4'6'7 show that in isotropic ferro-
magnetic materials with dipole-dipole interactions the
magnetic field does not destroy the second-order phase
transition. The characteristic features of the transi-
tions from the nonuniformly magnetized state to the
uniformly magnetized state are thus: 1) the magnetiza-
tion depends linearly on H; 2) the magnetization and
susceptibility are independent of temperature in the
nonuniformly magnetized phase all the way up to the
temperature TC(H), which depends quadratically on H;
3) the magnetization and susceptibility of the nonuni-
form mode are anomalous at TC(H).

The large body of experimental data for polycrystal-
line and single-crystal samples qualitatively confirms
these features of the magnetic properties.17"22 As an
example we show in Fig. Ib the data on the temperature
dependence of the magnetization in various fields for the
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ferromagnetic material Dy3Fe5O12. However, the
characteristic shortcoming of molecular-field theory—
the neglect of fluctuations—leads to quantitative dis-
agreement between theory and experiment. In particu-
lar, the line of second-order phase transitions in the
H-T plane is described by a power-law dependence with
critical exponent o> = l//3, and not by the quadratic de-
pendence (2. 11). Figure 2 shows our experimental
data on the shift TC(H) in weak magnetic fields for the
ferrite Gd3Fe5Ol2; it is readily apparent that the devia-
tion from a quadratic dependence grows as the temper-
ature approaches Tc(0). These data imply that fluctua-
tions of the magnetization play an important role in the
formation of the transition from the nonuniformly mag-
netized to the uniformly magnetized state in isotropic
ferromagnetic and ferrimagnetic material with dipole-
dipole forces. It must be noted that as yet there have
been no theoretical papers taking fluctuations into ac-
count for nonuniformly magnetized ferromagnetic ma-
terials.

Nevertheless, the theoretically predicted and ex-
perimentally observed features of the magnetic proper-
ties in isotropic ferromagnetic materials of finite size
are subjects of significant interest. In particular, it
should be possible to use "kink" phenomena to deter-
mine accurately the temperature dependence of the
spontaneous magnetization and also the Curie temper-
ature of ferromagnetic and ferrimagnetic materials.

As is well known, many methods have been develop-
ed1-2 for determining M, and Tc. However, the prob-
lem of determining these parameters to high precision
remains unsolved to this day. At the present time the
techniques for determining Ms and Tc also include nu-
clear methods such as NMR, neutron diffraction, and
the Mossbauer effect, which do not require the applica-
tion of an external magnetic field. However, these
methods also have certain shortcomings, chiefly that
to determine M, and T0 one must take into account
the characteristic times governing the relaxation pro-
cesses. As rc is approached the relaxation time in-
creases and can become equal to the characteristic
experimental times for the nuclear techniques, this
leads either to a smearing out of the phase-transition
picture or to an overestimate of T0, as, for example,
in the case when superparamagnetism arises. In
certain cases28 nuclear methods also give an appre-
ciably understated value of Tc. For this reason we
believe that direct magnetic measurements yield more

ssa.it 5SO.O T,K

accurate values of M8 and Tc in spite of the fact that
these measurements are made in finite magnetic
fields.22

In making magnetic measurements one usually ob-
tains from the experiment a set ofM-H-T data points
and extrapolates them to the field value H = 0 to find
M, and T0. At the present time several methods of
extrapolation are used: the well-known Belov29 method
of thermodynamic coeffficients and an equivalent meth-
od die to Arrott,30 and a modification of the Belov
method developed by Popovici,31 which heuristically
makes allowance for fluctuations. These methods are
described in sufficient detail in the literature, and we
shall therefore discuss only the more recently develop-
ed kink method.

The kink method is based on a simple idea that stems
from the considerations discussed above. When a fer-
romagnetic sample of finite size is located in a magnet-
ic field H, a demagnetizing field HA = DM arises in the
sample, and the internal field acting on the sample is
given by the expression

H, = H -DM. (2.15)

In weak magnetic fields, as was shown above, the mag-
netization depends linearly on the field, so that the de-
magnetizing field is equal to the external field, and
H{ = 0. It follows from (2.15) that in this case the
maximum possible magnetization cannot be greater
than H/D. On the other hand, the maximum magneti-
zation corresponding to total magnetic saturation at
temperature T is equal to the spontaneous magnetiza-
tion .MS(T). This circumstance makes it possible to
determine M 3 ( T ) . The breakdown of the condition
H{=0 can be detected in two ways:

1) by varying the magnetic field at fixed temperature;

2) by varying the temperature at fixed field.

In the first case one experimentally constructs the mag-
netization isotherms. With increasing field H the mag-
netization of an isotropic ferromagnetic sample under
the condition x » 1/D will grow in proportion to the
field H as long as H <DMS. Above a certian critical
field HI =DM, the internal field Hl ceases to be zero
and a kink appears on the isotherm. From the point of
the kink one determines the value of Ma corresponding
to the temperature of the isotherm in question (Fig. 3).
To construct the temperature dependence of Ma one

I — 848,16 K; 2 — 347,16 K'
846,66 K; 4 — 846,16 K;
845,16 K; 6 — 844,16 K;
843,16 K; * — 843,16 K;
842,66 K; 10 — 842,66 K-
842,16 K; 12 — 841,66 K;
841,16 K; 14 — 840 66 K-
840,16 K; 16 — 839,66 K;
839,66 K; IS — 839,16 K;
838,66 K; So — 838,16 K;
837,16 K; 22 — 836.16 K;

835,16 K.

FIG. 2. Shift of Curie point22 in weak magnetic fields for
Gd3Fe5O,2. 1) The kink points on the H-T plane, 2) the points
on the if-T plane.

FIG. 3. Isotherms of the field dependence of the magnetization
of Fe3O4 for various temperatures22.
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plots a set of isotherms. In real ferromagnetic ma-
terials the kink is not clearly expressed, as can be
seen from our experimental magnetization isotherms
for magnetite above Tc (Fig. 3). In the second case
one records the temperature dependence of the mag-
netization for H < Hd. The field-induced magnetiza-
tion will remain constant and equal toM(T)=H/D as
long as M(r)<Ma(T). At a certain temperature
T = T^H) a sharp decrease in the magnetization (the
kink effect) is observed. The condition M(T)< M, im-
plies that the temperature region T < T^(H) corresponds
to the phase with a uniform distribution of the magneti-
zation. At the kink point one has H, =0, and M =Ma

when the temperature reaches the kink temperature.
After the kink point the condition Hi = 0 is no longer
satisfied. As the temperature is raised further the
magnetization decreases, but at each temperature
M(T) it will be greater than Ms by an amount AM on
account of the presence of a paraprocess in the ex-
ternal field, which is diminished by an amount AH,
= DAM. To construct MS(T) one plots a set of curves
M(T) for various fields H. Figure Ib shows the mag-
netization versus temperature curves for dysprosium
ferrite garnet. The kink temperature is shifted to
lower values with increasing H. At all temperatures
T > Ta(H) the field H produces a uniform magnetiza-
tion of the ferromagnetic sample, and so this region
corresponds to the uniformly magnetized phase. The
kink point TC(H) is the point of the phase transition in
the magnetic field.

Thus, by recording the curves M(T) in various fields
for samples with a regular geometric shape—spheres,
thin disks, etc.—for which the demagnetizing factor D
is known exactly, we have a set of points which deter-
mines the dependence of M, on T. The temperature
at which MB goes to zero corresponds to the Curie
temperature. For comparison we give in Fig. 4 the
curves of M3(T) reconstructed by various extrapola-
tion methods. Unlike the other methods, the kink
method is not associated with any kind of assumptions
(particular models, etc.) but is based on purely ex-
perimental facts, and therefore gives the most correct
determination22 of Ms and T0.

It must be said that the theoretical formulation of the
kink method based on molecular-field theory, despite
the shortcomings of the latter, gives an adequate de-

s, G-cm

f.f

fS3 55ff 5S7 T,K

FIG. 4. Temperature dependence22 of the spontaneous mag-
netization of Dy3Fe5Oi2 reconstructed by various extrapolation
methods. 1) kink method, 2) Belov method,29 3) Popovici
method.31

scription of the general character of the second-order
phase transition, characterized by the presence of a
nonuniformly magnetized state, that is observed in iso-
tropic ferromagnetic samples of finite size.

In the papers of Durczewski7 it was noted that the
kink effect could be described without necessarily re-
sorting to the hypothesis of a nonuniformly magnetized
state in ferromagnetic materials, and that it was suf-
ficient to consider anisotropy (in this case the shape
anisotropy). However, neutron-diffraction experi-
ments32 have revealed nonuniformly magnetized regions
near the Curie point in ferromagnetic samples of finite
size, and so one should apparently differentiate between
phase transitions in isotropic and anisotropic ferro-
magnetic samples in a magnetic field.

The nonuniformly magnetized state has so far been
observed with the aid of neutrons in only a single
study. At the same time, a ferromagnetic sample of
finite size usually breaks up into domains. All our
arguments concerning the transition from the nonunv-
form to the uniform state are also valid for the transi-
tion of a ferromagnetic sample to a uniform state from
a state broken up into domains, which also occurs as
a second-order phase transition. Thus curves similar
to those given in Figs. 1 and 3 (and, incidentally,
many subsequent curves as well) are obtained in all
cases: 1) for the model of an anisotropic ferromagnetic
material with a field perpendicular to the anisotropy
axis, 2) for the transition from a nonuniform phase to
a uniform phase, and 3) for the transition from a
multidomain state to a uniform state. It has been
pointed out by A. S. Borovik-Romanov that the last
of these transitions should also be observed for a uni-
axial ferromagnetic sample with a magnetic field di-
rected along the easy axis.

3. PHASE TRANSITIONS IN ANISOTROPIC
FERROMAGNETIC MATERIALS IN A MAGNETIC
FIELD. MAGNETIC PROPERTIES

Following Refs. 8-11, we base our treatment of phase
transitions in anisotropic ferromagnetic materials on
the thermodynamic theory of Landau. In this approxi-
mation the free energy of an anisotropic ferromagnetic
substance in the vicinity of Te can be written in the
form

(3.1)

where of and bik are thermodynamic coefficients, M{

are the components of the magnetization vector along
the coordinate axes, and H is the magnetic field.

One can easily show that (3.1) describes all the pos-
sible cases of anisotropy:

(3.2)

describes a ferromagnetic sample of the easy-axis
type,

(3.3)
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describes a ferromagnetic sample of the easy-plane type.

3. 6, & = - (3.4)

describes a cubic ferromagnetic sample with easy axis
along [ill], and

4. a, = a, bti = b, b = -^-bik = K2<0 (i=£k) (3.5)

describes a ferromagnetic sample with easy axis along
[100].

From the expression (3.1) for the free energy we find
the conditions under which the second-order phase tran-
sition continues to exist in a magnetic field for the four
cases of anisotropy.

For a uniaxial crystal one can, using (3. 2), obtain
the equilibrium values of the magnetization by minimiz-
ing (3.1) with respect to Mx and My. As a result, for
the case when the anisotropy axis is along z and the
field is directed along x, one finds

(3.6)
(3.7)HX = M., [2a + 46A/J + fibMl}.

Equation (3.6) has two solutions:

Mz =0, (3.8)

(3.9)

The first solution corresponds to the paramagnetic
phase, the second to the magnetic phase. The transi-
tion from one phase to the other occurs if

(a-K,) + 2bMi = 0. ( 3 . 1 0 )

From equation (3. 7) it follows that Mx does not go to
zero at any temperature. However, at the point cor-
responding to (3.10) there is a kink on the MX(T) curve.
In fact, if Mz = 0 and condition (3.10) is satisfied, it
follows from (3. 7) that

Mx = -j±. (3.11)

This solution corresponds to the minimum of the energy
not only at the transition point but also throughout the
entire ferromagnetic phase if

/ o 1 o ^
(a — Kt) + 2bMi < Q, \ •* • -1* I

while in the paramagnetic phase (a -Kt + 26MX>0) Mx is
determined by the equation

(3.13)

As is seen from Fig. 5, which shows the curves of the
temperature dependence of Mx and Mz in different mag-
netic fields (H< 7/d), M, decreases continuously as
T — Tc(/y), while Mx remains constant up to the temper-
ature at which the system undergoes a transition from
the ferromagnetic to the paramagnetic state. In a
transverse field, as follows from (3. 8)-(3. 11), a
uniaxial ferromagnetic sample undergoes a second-
order phase transition at a temperature

(3-14)

FIG. 5. Schematic curves for temperature dependence of Mx

and Mt (Ht < #2 < H3) for a uniaxial ferromagnetic material.10

= al(T - Tc). According to (3.14), TC(H) is shifted to
lower temperatures with increasing H in accordance
with a quadratic law, and the temperature TC(H) sepa-
rates phases with M,*0 and M, = 0 (Fig. 6).

Let us consider the behavior of the susceptibility in a
uniaxial ferromagnetic sample. The susceptibility
tensor has four components: \tl, x*z = X«-> and Xn-
In a transverse field only the components Xx2

 and x«
have meaning. For the ferromagnetic phase it can be
shown from (3.8), (3.9), and (3.11) that

1_ yi-i/s • (3.15)

for T ~~ Te(H) we see that x x t — °°, while

1
:-2K7 (3.16)

does not depend on T and H up to T = TC(H). In the
paramagnetic phase we have x%z = 0 because Mz = 0,
while

i

goes to infinity at the temperature

(3. 17)

(3.18)

It should be noted that the results obtained here are
independent of the nature of the anisotropy and are valid
for the case of both magnetocrystallographic and ex-
change anisotropy.

Despite the considerable number of theoretical stud-
ies of second-order phase transitions in uniaxial ferro-
magnetic materials,8"11 experimental studies are still
extremely rare. We know of only three studies33"35

whose main purpose was to investigate the properties
of uniaxial ferromagnetic materials in weak magnetic
fields. Analysis of these papers shows that the easy-
axis ferromagnetic substances Cu(NH4)2Br4 • 2H2O (Refs.

where a1 > 0 is defined from the expansion a — K^
FIG. 6, Line of second-order phase transitions for a uniaxial
ferromagnetic material.10
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33 and 35), CuK2Cl4-2H2O (Ref. 35), and MnP (Ref,
36) do in fact display a second order phase transition if
the magnetic field is applied perpendicular to the easy
axis. According to the experimental data obtained in
the present study for the uniaxial ferromagnetic ma-
terial Gd (shown in Fig. 7), in the ferromagnetic phase
the magnetization increases linearly withH; the com-
ponent MX is independent of T in accordance with for-
mula (3.11), while the component M, goes to zero at
T = T0(H). The transition is shifted to lower tempera-
tures with increasing H in accordance with the law

f (#) — y AH® (3 19)

where A is a constant independent of T and H, and w
has the values 2. 5±0.1 (Ref. 34) and 2. 63±0.1 (Ref.
33) for Cu(NH4)2Br4. 2H2O, 2. 6±0.1 (Ref. 35) for
CuK2Cl4 • 2H2O, and 2. 51 ±0.1 (present study) for Gd.

According to the experimental data, the component
of the susceptibility parallel to the field, depends weak-
ly on T and H in the ferromagnetic phase, in agreement
with (3.16), whereas in the paramagnetic phase near
ro(0) it displays a maximum which shifts to higher tem-
peratures with increasing H (Fig. 8).34 For xlz there
are as yet no direct experiments, but indirect data—in
particular, the data on ultrasonic attenuation in MnP—
show that xlz is singular at T = TC(H).

All these data indicate that the second-order phase
transition in uniaxial ferromagnetic samples in a trans-
verse field can be described qualitatively on the basis
of Landau theory, but the lack of quantitative agree-
ment between theory and experiment indicates that it
is necessary to make allowance for the fluctuations of
the easy-axis component of the magnetization.

Fluctuations were first incorporated into the frame-
work of the Landau theory for uniaxial ferromagnets
by Sznajd,10 who showed that the correlation length of
fluctuations of the easy-axis component of the mag-
netization in a transverse field has the same diver-
gence at Tc(tf) as is found in the Ornstein-Zernike
theory (see Ref. 14).

In ferromagnetic materials of the easy-plane type the
free-energy expansion (3.1) will include all three
components of the magnetization, and/C1<0. If the
magnetic field is applied perpendicular to the easy

H-10Z, arb. units

Ed
• ~2g2.06K Hlc-axis
1-292.2S
v-292.33
•-2S2.3S

„ S

0.5 1.0 1.5 2.0 T.K

FIG. 8. Temperature dependence of the susceptibility34 for
Cu(NH4)2 Br4 -2H20 in a magnetic field atp = 7.5 kbar.

plane, Mx and My will display critical behavior, while
M, will not go to zero at any finite temperature.
Consequently, the temperature and field dependence
of the magnetization and susceptibility are the same
as in uniaxial ferromagnets. However, as the calcula-
tions of Sznajd13 and of Nikitin et aZ.37-38 show, the
line of second-order phase transitions in the H-T
plane is given by the expression

, (0)- (3.20)

which implies that there is a region of magnetic fields
in which Tc(#) grows with increasing H (see Fig. 9).
In sufficiently weak fields the line of phase transitions
is described by the same law as in the case of uniaxial
ferromagnets. Experimental studies37'38 of the magnet-
ic properties of Tb^Gd^., alloys have shown that indeed
TC(H) is shifted to lower temperatures with increasing
H for fields up to 12 kOe.

As in ferromagnetic materials of the easy-axis and
easy-plane type, second-order phase transitions are
possible in cubic multiaxial crystals for a suitable
choice of direction of the magnetic field with respect
to the crystallographic axes. Theoretical studies
based on Landau theory have been carried out for
ferromagnetic materials with axes of easy magnetiza-
tion along [100] and [ill] in fields H II [ill], [110], and
[100] (Refs. 12 and 40) and in fields H with arbitrary
direction in the (100) plane.10"13 These studies showed
that second-order phase transitions occur in weak
magnetic fields only in cases where the magnetic field
lies at an angle Tt/4 to the two easy axes in the plane
formed by these axes or is parallel to the hard axis
(crystals with easy axis [100]). In a ferromagnetic
material with easy axis along [111] the second-order
phase transition is not destroyed by a weak magnetic
field lying in the plane formed by the two hard axes or
for H II [100].

According to the thermodynamic theory of Landau,
the free energy of a cubic ferromagnetic material near
the Curie point in the limit of weak magnetic fields can
be written in the form

" 2ff 50 75 H,Qe

FIG. 7. Dependence of M, on H for Gd at various T.

TeW T

FIG. 9. Phase diagram of a ferromagnetic material of the
easy-plane type.
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!)-U-M. (3.21)

Analysis of this expression for the necessary conditions
for the existence of a minimum implies that

2Af, [a1 (T - rcj + 2fcAP + 2KiM\) = #„ (3.22)

while sufficient conditions for a minimum are given by
the inequalities

| A |

where

I / X I

I,*
fxx /*„

/.« /»B

>0, /„><), (3.23)

i = —i- = 2 (a1 (T— Tc) + 2iAP + 2 (2* + 3#2) M\],

7ife ftM • 3 I/..

(3.24)

(3.25)

Let us consider first the case of a ferromagnetic
sample with easy axis along [ill], which is described
by (3. 21) with K2 > 0. We apply an external magnetic
field in such a way that its direction lies in the xy
plane. Under these conditions equation (3. 22) implies
that

(3.26)

while M,. is determined by the equation

Hi, i = x, y. (3.27)

These solutions satisfy the conditions for a minimum
if

In the opposite case the conditions for a minimum are
satisfied by the solutions

Mz = 0, (3.28)
;Hl. (3.29)

The states described by expressions (3. 26), (3. 27) and
(3. 28), (3. 29) for a ferromagnetic material with easy
axis along [ill] will have the same energy under the
condition

Substituting (3. 28) and (3. 29) into this equation, we ob-
tain an expression for the temperature at which the
phase transition occurs:

It follows from expressions (3.26), (3.30), and (3.31)
that M; goes continuously to zero as T — TC(H), indi-
cating the presence of a second-order phase transition.
To determine conclusively the order of the phase
transition, let us consider the behavior of the suscep-
tibility.

The susceptibility tensor of a ferromagnetic material
with easy axis along [ill] is given by the relation

(3.32)

where Aik is the corresponding minor of the matrix
| A | defined in (3. 23). Analysis of the six components
of the susceptibility shows that as T — T*(/f) (from the

high-temperature side) only the component x« is singu-
lar, going to infinity according to the power law

X z z ~ IT - ro <#)!-'. (3.33)

The remaining components x^ have finite values at
T = TK, except for X*. = Xy»> which are equal to zero.

Thus, the transition from the state (3.26), (3.27)
to the state (3.28), (3.29) is a second-order phase
transition, since M, changes continuously and x« di-
verges. The lines of second-order phase transitions
are described by equation (3. 31) and can be represented
on the H-T diagram as the curves shown in Fig. 10.

In a cubic ferromagnetic material with axis of easy
magnetization along the [100] direction (K2(Q,b) \K2\),
second-order phase transitions are predicted for two
directions of the magnetic field:

1. H lies in the xy plane at an angle of n/4 to the x
and y axes.

2. H II [111] (the hard axis).

Let us consider the first case. For convenience we
introduce a new coordinate system obtained from the
old by the transformations

, Z-»-z. (3.34)

In the new coordinate system Hy = H, = Q, while #x* 0,
and from (3.21) we obtain three types of solutions:

(3.35)

-ov-v<

'-rc) +3 (6+ £,)« = #,, (3.36)

4 * W1A = HX. (3.37)

As we see from (3. 35), the stable state corresponds to
a phase with Af < * > }\HX when al(r-Tc) + (26 + 3#2)M*>0.
In the phase corresponding to solutions (3. 36) and
(3. 37), the magnetization does not coincide with the field
direction. The conditions for a minimum imply that
for

a' (T - fc) + 3 (26 + K2) Ml < 0

the phases described by solution (3. 36) or (3. 37) can
be stable, and for

a phase transition of first order arises between these
states, since it is accompanied by a jump in the magnet-
ization (Fig. 11). If, on the other hand,

FIG. 10. Line of second-order phase transitions of cubic
four-axis ferromagnetic materials.
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Hlf>

FIG. 11. Field dependence of M for H \ \x axis, a) Mt com-
ponent of the magnetization, parallel to the easy axis; b) M,
component, parallel to H.

fJ>0 and a^(T-

then only the phase described by equation (3.37) is sta-
ble. In this case a phase transition can occur to the
state (3. 35) when

«' (T - TJ + (2* + 3K2) Ml = 0,

corresponding to a temperature

(3.39)

(3.40)

At this temperature there is no jump in the magnetiza-
tion, as can be seen from Fig. lib, and it follows from
a calculation for the analogous case of a ferromagnetic
material with easy axis along [111] that the sus-
ceptibility component x«, diverges as T~TK(H):

«-v[r_7'e(^)]-«. (3.41)

Consequently, for T = T0(#) one observes a phase tran-
sition of the second order. The phase diagram for this
case is shown in Fig. 12.

In the case when H II [ill] the corresponding analysis
shows that only a second-order phase transition is pos-
sible, at the temperature

(3.42)

Thus in cubic multiaxial ferromagnetic materials in
weak magnetic fields a second-order phase transition
is observed for a certain definite orientation of H with
respect to the crystallographic directions. In contrast
to the case of uniaxial ferromagnetic materials, for
which the magnetization depends linearly on the field
and remains independent of T, for multiaxial crystals

M,-- i = x, y). (3.43)

Moreover, Mx and My are temperature dependent,

FIG. 12. Phase diagram of a three-axis ferromagnetic mater-
ial. 1) Line of first-order phase transitions; 2) line of second-
order phase transitions.

since for H = Q there exists a nonzero component M{.
As the temperature is increased this component de-
creases in absolute value, and at the transition point a
kink appears on the M,(T) curve.

The general laws obtained from Landau theory for
the temperature and field dependence of the magnetiza-
tion and susceptibility in the case of multiaxial ferro-
magnetic materials have not as yet been confirmed ex-
perimentally, but it is clear that here too it will be
necessary to take the critical fluctuations of the mag-
netization into account when considering second-order
phase transitions in weak magnetic fields.

4. SCALING DESCRIPTION OF THE CRITICAL
BEHAVIOR OF ANISOTROPIC FERROMAGNETIC
MATERIALS

In the preceding paragraphs it was shown in the
mean-field approximation that the second-order phase
transition at Tc in anisotropic ferromagnetic materials
is not destroyed by a weak magnetic field applied in a
certain definite direction with respect to the aniso-
tropy axis. The magnetization in this direction fluctu-
ates strongly. The fluctuations can be taken into ac-
count phenomenologically in the approximation of scal-
ing theory,41 which postulates that the equilibrium pro-
perties in the region of a second-order phase transi-
tion temperature can be described by simple power
laws. These power laws are given in Table I.

In Table I the quantities G and G are thermodynamic
potentials whose specific form will be given later, and

_r-r,,(0) (4.1)

Many of the power laws given in this table have been
confirmed experimentally for uniaxial17"22 and easy-
plane37'38 type ferromagnetic materials. However, the
theoretical values of the critical exponents obtained by
mean field theory differ appreciably from the experi-
mental data (Table n).

The phase transitions in anisotropic ferromagnetic
materials were first examined on the basis of scaling
theory by Riedel and Wegner.25 Concrete relations
between the critical exponents were obtaind by Klamut
and Sznajd8-22 and Gaunt and Baker40 using the Kadanoff

TABLE I.

Equilibrium properties

2. f = (dM/Sli)

3. Sf t=_ (as/SB),,

4. ch = T (dShlde)h

',: r;:Z;!
i ̂  ™-™D- C;'- rc(0)

E- .0

-.»

~e*

~s-a

= 0

~8-a

e= 0, h± = 0,

h - 0

~H

~k->
~h-«»

K = 0, h = 0,
hj_ - 0

~ *->u^

"'I'
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TABLE II.

Ferromagnetic
material

Critical
exponents

a

P
V
&
8
Q

Vj.

^
<*ft

9

Mean field theory

Iso-
topic

0
1/2
1

3

1
2
1

0
0

2/3

Uni-
axial

0
1/2
1

3

1
2

0
0

2/3

Multi-
axial

0
1/2
1

3

3
2/3

0
0

2/3

Experiment

Iso-
topic

4.6"
110

2.6322

Uni-
axial

6.751°
JSO

2.53-2.63

representation.41 On the basis of the ideas developed
in these papers, let us consider how scaling theory is
applied to the description of anisotropic ferromagnetic
materials in weak magnetic fields.

First of all, let us discuss the relations between the
scaling parameters and the critical exponent u>. In
particular, from the scaling transformations of Kada-
noff1

e ~ £»e, ft ~ L*h

it is easy to show that

(4 .2)

(4.3)

The basic assumption of scaling theory implies that

F (L*hj_, L"e) = L" (e, ftj, (4. 4)

which is valid for any L. After transforming expres-
sion (4.4) to the form

s, ftj.) = <**/»/(g, (4.5)

differentiating (4. 5) with respect to hL, and taking into
account that M is finite and M^O for feA = 0, we find
that the field dependence of M± for E =0 is given by the
relation

This relation implies the inequality

If we now use the familiar equality41

o d— x

(4.6)

(4.7)

(4.8)

and eliminate x and y from (4. 3), (4. 7), and (4. 8), we
obtain the new scaling relation

<o8j.p = 1, (4.9)

which was first derived by Klamut and Sznajd.8

Differentiating (4.4) with respect to hit one can ob-
tain an equation relating oj with the critical exponent
for the field dependence of the entropy at S =0;

Other relations between the critical exponents char-
acterizing the critical behavior of an anisotropic ferro-
magnetic material have been obtained by Sznajd24 using
the parametric representation of Schofield.42 This was
done by introducing the new variables r, 3, and d,
which are related to the variables h, h^, and E (the
field parallel and perpendicular to the axis and the
temperature, respectively) by

h = r"dMe,

fc± = r>"W" (1 — 6),

e = T (1 - a*2) + rd266.0.

We choose the thermodynamic potential in the form

(4.11)

G (h, e) = F (h, e) — F (0, 0) — A/ft. (4.12)

Let us consider two cases: 1) magnetic field directed
along the anisotropy axis, i. e., 6 = 1, and 2) magnetic
field perpendicular to the easy axis (9 = 0). In the new
variables the thermodynamic potentials for these two
cases are, respectively:

(4.13)

(4.14)
G (r, 0) = r'g (*),

Gj(r, *) =n'/(d).

Then, using a familiar technique,41 one can obtain
the following relations among the critical exponents
(scaling laws):

1. a + 20 + Y = 2,
2. p (8 - 1) = v,
3. i|> = 1 — a,
4. 1)] = p<p6,

6. a = p8aft,
7. p6j.co = 1,

8. X± + p<» = 1,
9. <pj. + to (1 — P) = 1,

10. cp± — aj. = (o,
11. -Q)(YJ. -2 + a) = 2,
12. 6± (1 - Xj.) = 1,
13. 6j. (2cpj_-aj. — 1) = 1.

<o> - 1 + <PI) = (4. 10)

Relations 1—6 were obtained by Gaunt and Baker40

and hold for isotropic ferromagnetic materials. The
remaining relations 7-13 among the critical exponents
characterize the critical behavior of anisotropic or
nonuniformly magnetized ferromagnetic materials. Of
these relations, 7, 8, and 12 hold in mean field theory
(see Table II). The validity of the other relations can-
not be ascertained owing to the lack of theoretical values
of the critical exponents <pL and aL. Unfortunately,
there have been no experimental checks of the scaling
relations for anisotropic ferromagnetic materials,
since of all the critical exponents so far only w and 6X

have been determined (see Table II).

5. PHASE TRANSITIONS IN ANISOTROPIC
FERROMAGNETIC MATERIALS IN THE
RENORMALIZATION-GROUP APPROXIMATION

The renormalization-group method, which provides a
microscopic justification for scaling theory and is
based on the Kadanoff transformations,41 has been ap-
plied to the description of phase transitions in uni-
axial12"43 and tetragonal44 crystals in a magnetic field
applied perpendicular to the easy axis. In cubic ferro-
magnetic materials this theory has been applied to the
study of phase transitions in crystals with easy axis
along [100] (with H lying in the plane formed by the two
hard axes and along [ill])44-45 and with easy axis along
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[ill] (for H II [100]). 12>44 It was shown in these papers
that in anisotropic ferromagnetic materials there is a
second-order phase transition for the corresponding
choices of the magnetic -fie Id direction.

The general theory of second-order phase transitions
in anisotropic ferromagnetic materials for H#0 was
analyzed in the renormalization-group approximation by
Ritter and Sznajd.26 On the basis of the three-compo-
nent vector model those authors showed that an aniso-
tropic ferromagnetic sample in an external field can
have either one or two critical variables, since the
variable coinciding with the field direction does not
go to zero at any finite temperature. The problem
thereby reduces to one of considering the behavior of
the Ising model (for the case of one variable) or the XY
model (for the case of two variables) in a transverse
magnetic field.

The existence condition for a second-order phase
transition is found from the Landau-Ginzburg-Wilson
Hamiltonian,46 which has the following form in an ex-
ternal field:

3 3

se = - 4 2 j <r' + «2> a'a-» + 2 h>^
i=i q i=i

= * (5.1)
here crj is a three-component classical spin with wave
vector q, and

Ti), (5.2)

where T ^ is the critical temperature for a* at H = 0.
By suitably choosing the interaction parameters r ° and
u 1) in the Hamiltonian (5.1) we clearly can describe all
types of anisotropy in ferromagnetic materials:

1. r3 = r0; u\, = it" > 0 — isotropic ferromagnetic material,

2. r° =^= rJ = rj; u°t — u" > 0 — uniaxial ferromagnetic material,
3. rJ^rJ^fcrS;

u}y = u°>0 —orthorhombic ferromagnetic material, (5 3)

i = i~ cubic ferromagnetic material,
5.

i = / —tetragonal ferromagnetic material.

Using the transformation

"J-»X+AfA, (5-4)
and then a rotation of the spin component sal about the
direction specified by the polar angles, we obtain from
(5.1) the Hamiltonian in the new spin variables:

— f 1 2 ( -,- j 1 2

where

-* H12 <>»t4<*V9,-9,-j j J 2 ^
(5.5)

are the new interaction constants.and

Let us examine the conditions for the existence of a
second-order phase transition in the XY model. We
shall assume that the component s^1' does not display
critical behavior, i .e. , this component is in the direc-

tion of the magnetic field. Then sJ2> and s<3) will be
the critical variables. Using the Wilson-Fisher-Nel-
son formalism,47 one can reduce Hamiltonian (5. 5) to
the well-known form

= - T j 2 (r«
S i=2

3

... 2 ;
5 9i i,i,i=2

where

"Ji -

5.6)

(5.7)

The critical properties of the magnetic material de-
scribed by the Hamiltonian (56) have been studied by
many authors,43"50 and it has been shown that the fixed
point of the XY type is stable if

rii >raa = '•33 (5.8)

for any values of h. In addition, as was shown by Wil-
son and Fisher,46 stability of this fixed point requires
satisfaction of the conditions:

r,i = 0 (i =£ /), w,, = 0 (i, i = 2, 3). (5. 9)

Let us now suppose that the components s*11 and s*21

do not display critical behavior. Following familiar
transformations the Hamiltonian (5. 5) can be reduced
to the well-studied Ising Hamiltonian

where

jJ>

«i"CCs-5-,,-,,,. (5. 10)

(5.11)

In going over to the Hamiltonian (5.11) we have used the
relations

_ ^ _ll> y. -̂ r(lj -CD U> ,„ -.(11 f\ 1C 1 O\rs3<-r« > rss<;r,2' rv — rM =«>23 = ria =U. (5.12;

Hamiltonian (5.11) has an Ising-like fixed point if

B«>O. 0.13)

Thus, analysis of anisotropic ferromagnetic mater-
ials on the basis of the three-component model for
H = 0 shows that the Landau-Ginzburg-Wilson Hamil-
tonian has two types of fixed points—of the XY and Is-
ing types. Consequently, second-order phase transi-
tions in anisotropic ferromagnetic materials can be de-
scribed by the critical exponents corresponding to these
models, which are given in terms of the e expansion by
the expressions:

(n-4)

(5.17)

here e=4- r f , n is the number of spin components (the
spin dimensionality), and d is the dimensionality of the
lattice.

The three-dimensional Ising and XY models are
characterized respectively by the values n = 1 and
n = 2 (d = 3), and the values of the critical exponents
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corresponding to these models are given in Table III.
The values of u> given here were calculated from scal-
ing relation 7. This exponent for the Ising model was
calculated directly by Burkhard and Gunton43 using the
e expansion. They showed that

A - f f 2

(5.18)

where k is the Boltzmann constant, A is of order e, and
J is the exchange integral. Analogous results were ob-
tained by Suzuki48 in the 1/n expansion and by Elliot,
Pfeuty, and Wood.49 A similar result was also obtained
by Stinchcombe30 for one-dimensional magnetic systems
with ordering of the easy-plane type.

In summary, theoretical calculations based on both
molecular field theory and various model representa-
tions and also the results of experiments point to the
existence of a second-order phase transition of the
fluctuational type in anisotropic ferromagnetic mater-
ials in weak magnetic fields.

6. NONMAGNETIC PROPERTIES OF ANISOTROPIC
FERROMAGNETIC MATERIALS IN WEAK MAGNETIC
FIELDS

As we have established in the preceding sections, the
magnetic properties of anisotropic ferromagnetic ma-
terials in a magnetic field display anomalies characte-
ristic of second-order phase transitions at a certain
temperature TC(H). Inasmuch as the features of the
temperature and field dependence of the nonmagnetic
properties of ferromagnets are determined by the
magnetic state, it is clear that at T^(H) there should
also be anomalies of the thermal, elastic, electrical,
galvanomagnetic, optical, and other properties. In
particular, one can predict over a wide range of
temperatures the constants characterizing the magnet-
ization52 and the rotation of the plane of polarization of
light,51 which are effects of great interest for practical
applications.

For convenience of discussion all the properties of
ferromagnetic materials can be divided into three
groups:

1. Properties linear in the magnetization.
2. Properties quadratic in the magnetization.
3. Properties proportional to the temperature coeffi-

cient of the magnetization.

1. The properties linear in the magnetization include,
first of all, the Kerr and Faraday magnetooptic ef-
fects. The angle of rotation of the plane of polarization
of light passing through a crystal or reflected from its
surface is proportional to the magnetization:

T F, K = VAf, (6.1)

TABLE III.

"Model

Ising
XY

a

0.0772
—0.02

P

0.340
0.360

V

1.244
1.300

6

4.46
4.46

.

2.94
0.622

where V is the Verdet or Kundt constant for the Fara-
day or Kerr effect, respectively; this constant is inde-
pendent of T and H. In the region of the Curie point
the magnetization remains constant up to T,,(H) [see
formula (2.9)] and

<PF.K=-
VH (6.2)

It follows from this relation that in weak magnetic fields
<PP|K depends linearly on H and remains constant to
temperatures all the way up to T = T,,(H), since M
= const. For T = TC(H) one observes the sharp decrease
in ify characteristic of the kink effect. In fact, exper-
imental studies of the ferromagnetic substances CrBr3

and Y3Fe5O12 carried out by Litster and Ho51 and our
measurements for epitaxial films of Y2BiGa! 2Fe3 aO12

have shown that the angle of rotation of the plane of
polarization in the Faraday effect remains constant
over a wide range of temperatures and depends linearly
on H at all r<Tc(J?) (see Fig. 13).

2. Let us consider the features of the properties
which are quadratic in the magnetization for the
illustrative case of magnetostriction.52 Let us consider
an isotropic, nonuniformly magnetized ferromagnetic
material. In weak fields the magnetostriction A of such
a ferromagnetic near Tc is due to a change in the direc-
tion of M , and one can therefore neglect effects which
are due to a change in the absolute value of M. In this
approximation the magnetoelastic energy near Tc can
be written in the form53

^N.U — (N, U); (6.3)

here the subscripts N and U refer to the nonuniformly
and uniformly magnetized phases, respectively, M(N)
and M(U) are given by expressions (2.8) and (2.9),
and X,.,. and ax:l. are the components of the magnetostric-
tion and elastic strain tensors.

When the magnetoelastic energy is taken into account
the phase transition from the nonuniformly magnetized
state to the uniform state will occurr only in the case
Fy=Fv. It then follows from (6. 3) and (2.9) that

dF-tf dF^J 1 1 1C A \
'^= ~~~fa—— —-=r— , A N ^ A U , (o .4)

P-.arb. units
zoa

10

3S3 4O3 413 4Z3

FIG. 13. Dependence of <p¥ on T and H for Ir
2BlGai_2Fe3_8Oi2.

1) 17 Oe, 2) 25 Oe, 3) 37 Oe, 4) 55 Oe.

707 Sov. Phys. Usp. 26(8), Aug. 1983 I. K. Kamilov and Kh. K. Aliev 707



where XN and \v are the values of the magnetostriction
of the nonuniform and uniform phases at T — TC(H). In
our quadratic (in the magnetization) approximation the
magnetoelastic energy X is given by the expressions

AN = X«(i)2, (6.5)

for the N and U phases, respectively [where MD is given
by formula (2.7)].

Thus it follows from formulas (6.4)-(6. 6) that for a
ferromagnetic sample with demagnetizing factor D the
electrostriction X has the following features in weak
fields: 1) in the nonuniformly magnetized phase X is in-
dependent of T and depends quadratically on H, 2) the
values of A. corresponding to TC(H) determine the tem-
perature dependence of the spontaneous magnetostric-
tion near TC(H). It should be noted that these features
are also present in uniaxial ferromagnetic materials.

We have made an experimental check on the indicated
behavioral features in polycrystalline nickel (99. 99%
pure) and in yttrium and gadolinium ferrite garnets. In
the vicinity of the Curie point a capacitive dilatometer
with a sensitivity not worse than 10"8 was used to re-
cord over 50 isotherms for each sample. The mea-
surements in fields up to 500 Oe confirmed the pres-
ence of kink phenomena for the magnetostriction. As
is seen in Fig. 14, which shows the curves of X versus
the temperature in different fields, the magnetostric-
tion in the temperature region T >TC(H) remains con-
stant to within the experimental error of 1%. For
T = TC(H) a kink appears on the X = /(T) curve, and the
kink temperature shifts to lower temperatures with
increasing!? in accordance with (2.10). As is seen in
Fig. 15, in the temperature range T<TC(H) the exper-
imental points conform well to the straight line repre-
senting a dependence of the form X = /(H2). It should
be noted that the kink effect in the magnetostriction can
be used to determine the temperature dependence of the
spontaneous magnetostriction.52

3. Specific heat and magnetocaloric effect. The ef-
fect that is perhaps the most thoroughly studied from
both the theoretical6'10'11 and experimental3-41 standpoint
is the influence of a weak magnetic field on the be-
havior of the specific heat near Tc, Already in the first
experimental study of van der Hoeven, Teaney, and

t,s

«A»

Zf
1 *

ers
FIG. 14. Temperature dependence of X for nickel in various
fields. 1) 60 Oe, 2) 150 Oe, 3) 200 Oe, 4) 250 Oe, 5) 300 Oe,
6) 350 Oe, 7) 400 Oe.

£ 10 0
2 4 2

FIG. 15. Dependence of X on H2 near the Curie point.

Moruzzi,3 who investigated the influence of H on the
specific heat of the isotropic ferromagnetic sub-
stance EuS, it was shown that the peak of the specific
heat is shifted to lower temperatures with increasing
H. This behavior of the specific heat cp was explained
by Arrott4 and Wojtowicz and Rayl6 in the molecular-
field approximation for the model of a thin toroid. Ac-
cording to the ideas developed in these papers, the
specific heat of a nonuniformly magnetized ferromag-
net in the N and U phases is given by the expressions

(6.7)

(6.8)

from which it follows that there is a discontinuity in
the specific heat at T = Te(H). As H increases, the dis-
continuity Ac, shifts to lower temperatures and decrea-
ses in absolute value. For h/d~ 1 there is a broad
peak above Tc, and the discontinuity disappears (see
Fig. 16). These features of the temperature depen-
dence of the specific heat in weak magnetic fields have
been confirmed for anisotropic ferromagnetic materials
by calculations based on the Landau theory of second-
order phase transitions. In particular, the theory pre-
dicts that the specific heat at Tc will suffer a discon-
tinuity given by the expression

The characteristic specific-heat anomalies in the tem-
perature dependence have been confirmed by exper-
imentc.l studies.3'54 Figure 17 shows the c,(T) curves
for Gd in various magnetic fields. The experimental
data indicate that there are anomalies in cf and Te(fl),
but the discontinuity predicted by mean field theory
does not appear. The anomaly (but not a discontinuity)

0.6 0,8 1.0 1.1 /.* f

FIG. 16. Temperature dependence of the specific heat in
various magnetic fields.6 1) h/d=0.2, 2) 0.4, 3) 0.6, 4) 0.9,
5) 5.0 W=0.04).
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FIG. 17. Temperature dependence of the specific heat of Gd
in weak magnetic fields.54

occurring at Te(H) should be attributed to the circum-
stance that fluctuations in the perpendicular (to the
field) component of the magnetization exert a large in-
fluence on the temperature dependence of c f , or to an
instability of the nonuniformly magnetized mode.

The magnetocaloric effect in weak magnetic fields
has been examined only by Nikitin and co-workers,37'38

who showed that in easy-plane ferromagnetic materials
the AT effect grows in size with increasing field and re-
mains negative. Starting at a certain critical field cor-
responding to a second-order phase transition, a posi-
tive component of the magnetocaloric effect appears.
These features of the magnetocaloric effect are con-
firmed by the experimental data {Fig. 18) for the
alloys Tb^Cdj.,., which are ferromagnetic substances
whose axis of hard magnetization is along the hexa-
gonal axis.

7. FEATURES OF CERTAIN DYNAMIC CRITICAL
PHENOMENA IN WEAK MAGNETIC FIELDS.

The critical dynamics of ferromagnetic materials in
weak magnetic fields was studied in Refs. 55-68.

Because the critical dynamics of the spin systems of
ferromagnetic materials is most often studied in ex-
periments on the propagation of ultrasonic waves and
on the susceptibility in alternating magnetic fields (the
dynamic susceptibility), let us briefly discuss the fea-
tures of these dynamical parameters in anisotropic
ferromagnetic materials at H*Q.

It is known from experimental and theoretical stud-
ies56"61 that magnetically ordered crystals exhibit an

ultrasonic absorption peak and velocity minimum near
Tc for H = Q, It has been established that these anoma-
lies are due to the presence of a spin-phonon interac-
tion of a magnetostrictive nature . The spin-phonon in-
teraction responsible for these critical anomalies
arises on account of the modulation of the exchange in-
teraction by elastic strains. As a result, the spin
fluctuations give rise to random forces which affect
the normal acoustic modes and lead to an anomalous
attentuation of elastic waves. According to the theory
of Mori,60 the absorption coefficient aK and the rela-
tive change in the speed &v/v are expressed in terms
of the temporal correlation function of the random
forces and are proportional to the four-spin correla-
tion function, which carries all the dynamical informa-
tion about the spin system.

A magnetic field suppresses the spin fluctuations and
removes the critical anomalies. However, the sup-
pression of fluctuations is not observed in pure form in
all ferromagnetic materials. In some materials aK

increases in a magnetic field, 36>82>63 while in other ma-
terials it decreases. 36'61 To explain the different na-
ture of the effect of H on aK, a polarization mechanism
has been proposed for the anomalous absorption.36

With allowance for this mechanism, the absorption
coefficient aK in a magnetic field H II 2 is given by the
expression36

t (7. 1)

t) it],

(7. 2)

+ 2 «?* ; (k) (s« (t) S«,_K (j), #>;, (0) ^;+K (0)) exp ( - i
0

gj (*)= 2 exp (iq Rtl) [exp (lkR,,)-\]eK -,

FIG. 18. Dependence of the magnetocaloric effect on T and H
for the alloy Tb0 2Gd0 8 (Ref. 38). 1) 5. 0 kOe, 2) 9.1 kOe,
3) 12 kOe.

where p and V are the density and volume of the crys-
tal, v, is the speed of propagation of longitudinal waves,
eK and u>K are the phonon polarization vector and fre-
quency, Jjy is the exchange integral, Ri is the position
vector of the i-th lattice site, and (s0*) is the static
spin polarization. The first term in this expression,
consisting of the product of the spin polarization and
the two-spin correlation function, leads to an increase
in the absorption coefficient in the limit of weak mag-
netic fields. The second term, which is governed by
the four-spin correlation function, causes a decrease
in as on account of the suppression of fluctuations by
the magnetic field.

There are thus two competing mechanisms for the
anomalous absorption of ultrasonic waves in a magnetic
field, and it can turn out that their contributions to QK

are equal at a certain temperature— this so-called com-
pensation temperature is determined by the range of
the exchange interaction. Below the compensation
temperature the suppression of critical fluctuations
by the magnetic field is the dominant mechanism, and
the absorption coefficient «K decreases with H . Above
this temperature QK is determined by the spin polari-
zation, and a magnetic field therefore leads to an in-
crease in aK.

In anisotropic ferromagnetic materials the presence
of second-order phase transitions induced by the mag-
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netic field leads to interesting features in the field de-
pendence and temperature dependence of the absorption
coefficient and speed of ultrasonic waves. It has been
shown experimentally in MnP that two ultrasonic ab-
sorption peaks appear in a magnetic field perpendicular
to the easy axis (the c axis). One of them is located
just above Tc(0) and is shifted to higher temperatures
with increasing H. The other absorption peak is ob-
served below Tc(0) and is due to the ferromagnetic-
paramagnetic transition. This absorption peak is
shifted to lower temperatures with increasing H (Fig.
19). The presence of a second-order phase transition
in MnP for H ic is also indicated by the data on the
field dependence of QK. If the temperature is fixed at
a value below Tc(0) and the external magnetic field is
varied, the absorption coefficient will pass through a
maximum at a certain value H=Hn. As the tempera-
ture is decreased further below Tc(0), this peak shifts
toward higher fields, qualitatively confirming the H-T
diagram for uniaxial ferromagnetic materials. Analo-
gous features in the temperature and field dependence
of the acoustic absorption have been observed by the
present authors in gadolinium (see Fig. 20), and for
the speed of sound by Jiles and Palmer.M

It follows from (7.1) that for a quantitative descrip-
tion of the features of o>K and Aw/v it is necessary to
calculate the temperature and field dependence of the
two- and four-spin correlation functions. For calculat-
ing the four-spin correlation function one can use the
following decoupling, which enables one to express this
function in terms of the two-spin correlators:

(oft, cd) ~ (a, ft) (c, d) + (a, e) (ft, d) + (a, d) (ft, c) - (a, b)(c, d ) .

(7.3)

This decoupling is valid as long; as the correlation length
is smaller than the range of the exchange interaction.
In magnetic metals, where the exchange interaction is
of a long-range character, the decoupling (7. 3) works
well over the entire temperature range except very
close to TC(H). Applying (7. 3) to (7.1), using the
familiar relation between the two-spin correlation
functions and the susceptibility

, . . . , „ in A\
(*?' ^«) = (*(*») x?> n-4)

one can transform the expression for aK for, say, an
orthorhombic crystal (H II b axis, u>KTK«l, where TK

is the relaxation time) to the form

i~b \3/2 i I l~b/3 \3

T-(!-*„) (1-6) / "M t-(l-*<,)(l-»/3) I

1-6/3

(7.5)

a/ft dB/cm

2.2-
Hi j-axis

-0.3

FIG. 20. Field dependence of AaK in Gd near Tc.

In an anlogous way one can obtain an expression for the
change in the speed of sound:

:>=-n 3B

_L
2SO 2">0 280 2.30 300 T,K

FIG. 19. Temperature dependence63 of aK in MnP.

/3) -n .
i-((,/3» J / 1

(7.6)
here k{ =(«/£- Jj)/J|; is the anisotropy constant (i = a, b),
F K and G are constants characterizing the magneto-
elasticity and the range of the exchange interaction.
respectively, B is a constant characterizing the ma-
terial, fe is the wave number, a is the spin polariza-
tion normalized by s, 6 is defined by Eq. (46) of Ref.
36, and the remaining notation is as before. These
expressions permit a quantitative description of the
experimentally observed features of the temperature
and field dependence of aK and &v/v. In particular
it follows from (7. 5) that the low-temperature peak in
aK (see Fig. 19) is due to the fourth term, which goes
to infinity at T = Tc[l - (6/3)], and the broad peak
above Tc(0) is due to the first and second terms. The
physical cause of the two anomalies in aK, as follows
from (7. 5), is the interaction of the sound waves with
fluctuations of the spin components along the c and b
axes, the correlation lengths of which, according to
the calculations of Sznajd,10 pass through maxima at
T = Tc(#) and Tc(0). In a similar way one can also ex-
plain the anomalies in the speed of longitudinal sound
waves in Gd on the basis of (7. 6).

Let us now consider the features in the behavior
of the dynamic susceptibility at temperatures near the
second-order phase transition observed in a weak
magnetic field. The dynamic susceptibility as we
know, is a complex quantity:

When WTK « 1 the real part x' of the susceptibility is
approximately equal to the static susceptibility, which
implies that x' in the ferromagnetic phase does not
depend on the temperature. At T = TC(H) the compo-
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FIG. 21. Temperature dependence67 of x* in an external mag-
netic field for a spherical sample of YjFejO^ at a frequency
of 1 MHz. 1)0, 2) 3.4 Oe, 3) 8 Oe, 4) 40 Oe, 5) 60 Oe, 6)
128 Oe.

magnetic field is the same as that of %.

In summary, studies of the propagation of ultrasonic
waves and the dynamic susceptibility confirm the pres-
ence of second-order phase transitions in weak magnet-
ic fields in anisotropic or nonuniformly magnetized
ferromagnetic materials. Furthermore, these experi-
ments yield the most correct reconstruction of the
H-T phase diagram, since aK and x" pass through
clearly defined peaks at T = TC(H) (see Figs. 20 and
22), and for this reason the error in determining #cr

or TC(H) is significantly smaller than for magnetic
and other types of measurements.

In closing, we wish to express our deep appreciation
to A. S. Borovik-Romanov for a number of valuable
comments.

nent x' begins to decrease sharply, and above T0(0),
according to (3.17), it passes through a maximum
whose position is shifted to higher temperatures with
increasing H. Behavior of this nature for the tem-
perature dependence of x' has been observed experi-
mentally65'67 in Y3Fe5O12 (Fig. 21).

The imaginary component x" of the susceptibility,
which characterizes the power absorbed by the spin
system from an rf field, is proportional to the absorp-
tion coefficient of longitudinal sound waves.36 In fact,
the propagation of a sound wave is accompanied by dis-
sipation of energy in the spin system:

, (7.8)

where u0 is the atomic displacement caused by the
sound wave. The dissipation of the rf-wave energy,
on the other hand, is determined by the imaginary
component of the susceptibility.

P=-%-z'ffl. (7.9)

It follows from (7.8) and (7. 9) that x" is proportional
to aK, and in a magnetic field perpendicular to the
anisotropy axis the x"(T) curve should display two
peaks, corresponding to the temperatures TK(H) and
Tc(0). Figure 22 shows the experimental data for a
spherical sample of Y3Fe5O12, confirming the presence
of two peaks. The dynamics of these peaks in a static

fffO T,K

FIG. 22. Temperature dependence67 of x" in an external mag-
netic field for a spherical sample of Y3Fe5O12 at a frequency
of 1 MHz. 1)0, 2) 8 Oe, 3) 40 Oe, 4) 60 Oe, 5) 128 Oe.
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