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INTRODUCTION

The physics of disordered systems—amorphous and
vitreous semiconductors, amorphous magnetic materi-
als, metallic and nonmetallic alloys, etc.—is now en-
joying heightened attention. As often happens in such
cases, there are two reasons for this. One of them in-
volves the inner logic of development of science—the
current stage of development of the physics of con-
densed media is characterized by transition from crys-
talline materials to materials whose atomic structure
lacks long-range order. The other reason arises from
the demands of modern electronics. Since B. T. Kolom-
iets and N. A. Goryunova®? discovered the semiconduc-
tor properties of chalcogenide glasses, photoelectron-
ics has had at its disposal a new class of highly inter-
esting materials whose practical value is now generally
known. In recent years amorphous silicon has moved
to the forefront (especially its alloys with hydrogen or
fluorine). Owing to its unique characteristics (conven-
ient width of the forbidden band, high dark resistance,
and long lifetime of the minority charge carriers), this
material appears highly promising for applications in a
number of photoelectric devices, including solar cells.
Half of all the papers at the 9th International Conference
on Amorphous and Liquid Semiconductors (Grenoble,
July 1981) were devoted to different aspects of the
physics, technology, and application of this material.
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A number of review articles has been published in re-
cent years, devoted to both fundamental and applied as-
pects of the physics of disordered semiconductors.3%?
However, this branch of physics has developed at such
a tempo that not a single review has managed to keep
pace with it. Consequently new reviews appear; they
share the fate of the preceding ones, and it is not yet
clear whether this series converges at all.

This review is designed more for experimentalists
than for theoreticians. To a certain extent it can serve
to supplement the book,?® which was published in 1981,
but was submitted for publication in 1978. In line with
the style of this textbook, the list of references here
also does not claim completeness; the references to the
original studies are given only in limited amount, since
they are essentially not of priority-setting type, while
the references to the reviews mainly encompass only
the studies published no earlier than 1977.1)

We shall study three problems that have attracted
great attention recently.

VNote added in proof (January 1983). As should have been
expected, since the time that this review was submitted for
publication, a considerable number of studies has appeared
on the same topic. Even brief annotations of them would
considerably enlarge the scope of the review, which has
already grown profusely. Some references have still been
made in the appropriate place in the review (Sec. 2).
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1) The nature of the electron states in disordered
semiconductors of different dimensionalities (the prob-
lem of localization).?

2) The role of interelectron interaction in forming the
energy spectrum of the electrons (the problem of the
Coulomb gap).

3) The frequency-dependence of the light-absorption
coefficient in the “tail”—the region of quantum energy
smaller than the width of the forbidden band.

The first of these problems is relatively new, the
second already has a relatively long life (about 11
years), but is still a topic of discussion, while the third
problem has recently become again very current in con-
nection with the experimental studies on amorphous
silicon.

1. NATURE OF THE ELECTRON STATES IN
DISORDERED SEMICONDUCTORS OF DIFFERENT
DIMENSIONALITIES

1. Introduction. Criterion of localization

A condensed system of particles is termed d-dimen-
sional (d=1, 2, 3) if the electrons, holes, or other ele-
mentary excitations under the conditions of interest to
us can move freely in d dimensions. Thus, for exam-
ple, organic crystals based on TCNQ@, now so fashion~-
able, are one-dimensional systems, while an inversion
layer arising at the surface of a semiconductor be-
comes a two-dimensional system when the bending of
the bands is great enough. This makes it clear that the
study of the behavior of elementary excitations (hence-
forth we shall speak only of electrons and holes) in sys-
tems of different dimensionalities is not at all of only
abstract theoretical interest. In particular, the prob-
lem of how disorder caused, e.g., by radiation affects
the characteristics of thin-film devices reduces to this
problem.

The energy spectrum of electrons and holes in weak-
ly doped® three-dimensional crystalline semiconductors
has been well studied: we have here two regions of con-
tinuous spectrum—the conduction and hole bands—and
a forbidden band separating them, in which only individ-
ual discrete levels involving impurities are allowed.
The regions of the continuous spectrum correspond to
delocalized wave functions—the probability of finding an
electron (or hole) in any unit cell of the crystal differs
from zero and is the same in all cells. The states of
the continuous spectrum are current-bearing states:
the electrons and holes occupying them can participate
in charge and energy transport at arbitrarily low tem-
peratures, even in the absence of illumination. On the

2)An interesting review® has been devoted to this problem.
However, it was designed mainly for theoreticians. More-
over, already more than two years have passed since its
publication.

3)The term “weakly doped” is understood in the sense indi-
cated in the book of Ref. 24, The word “impurity” can de-
note any point defect of the structure. We shall not treat
problems here involving extended defects in order not to
complicate the presentation with details that will not be
essential below.
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other hand, the discrete levels possess wave functions
localized around the corresponding impurity atoms
(randomly situated). The states of the discrete spec-
trum in a specimen of arbitrarily large dimensions
(macroscopic) are current-free states: the electrons
(or holes) occupying them can participate in charge and
energy transport throughout the entire macroscopic
specimen only in the presence of thermal or optical
activation (hopping conductivity). When 7~ 0 and in the
absence of illumination, the contribution of the local-
ized electrons to the charge and energy fluxes vanishes.

With increasing impurity concentration, the pattern of
the energy spectrum in the forbidden band becomes
complicated. However, the separation into the regions
of continuous and discrete spectrum, which correspond
to current-bearing and current-free states, remains in
force here also (Ref. 23, Chap. IV).

These results, which stem from a large set of ex-
perimental data on the electrical and optical properties
of matter, are obtained naturally in the electron theory
of crystals. Here one need not at all formulate the lat-
ter as a one-electron theory: the statements expressed
above have also an exact multielectron meaning (Ref.
24, Chap. XVII). The conclusion that the spectrum has
a band structure remains in force also for ideal crys-
tals of lower dimensionality.

However, the situation changes as soon as we go to
real crystals containing impurities randomly distribut-
ed in space, and all the more so as we go to amor-
phous, liquid, or vitreous semiconductors. When d= 3,
the pattern of the energy spectrum here still resem-
bles to a certain degree that existing in crystals. Ac-
tually, the experimental data®®:?® irrefutably indicate
the existence in three-dimensional disordered semi-
conductors of regions of a continuous spectrum of elec-
trons and holes that correspond to current-bearing
states, These regions are analogous to the conduction
and hole bands (as they are often called), but in con-
trast to ideal or almost ideal crystals, here one cannot
speak of dispersion laws of electrons and holes: in the
absence of spatial periodicity in the arrangement of the
atoms, one cannot introduce the components of the
quasimomentum as ‘“good” quantum numbers. There
is a region between the conduction and valence bands
occupied by discrete levels corresponding to current-
free states of electrons and holes. However, in con-
trast to weakly doped crystals, these levels can lie
arbitrarily close to one another in energy (a discrete
spectrum everywhere dense).*) For this reason, their
energy distribution can be conveniently characterized
by a continuous function, the density of states E),
which indicates the mean number of these levels per
unit volume and per unit energy interval about a given
point E (according to Ref. 23 this is the smoothed densi-
ty of states averaged over all configurations of the ran-
dom field). In disordered materials (in contrast to ideal
or almost ideal crystals), the density of states does not

4)The discrete character of the levels is maintained because
states close in energy generally correspond to localization
centers situated far apart.
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vanish at the boundaries of the conduction and valence
bands, but extends rather deeply into the forbidden band
to form “tails” (first studied in the theory of heavily
doped semiconductors; see Ref. 24, Chap. XIX). In this
situation the very term “forbidden band” becomes not
entirely fitting; instead one often speaks of the “mobil~
ity gap”, while the bottom of the conduction band E=E_
and the top of the valence band E = E, denote the mobil-
ity thresholds.

The reason for the appearance of tails of the density
of states is well known. The point is that the random
nature of the arrangement of atoms (impurity atoms, or
in the case of amorphous, liquid, and vitreous semi-
conductors, the atoms of the main material) leads also
to a random character of the potential energy of the
electrons. In particular, potential wells of varying
depth and shape arise that correspond to local levels of
different energies. These levels are called fluctuational
levels. A nontrivial feature of the system is that these
levels remain discrete, despite their perhaps large con-
centration. This is called Anderson localization.?®

The difference of the density of states from zero at
the mobility threshold leads to posing of the question of
how the static conductivity o of the specimen (as T —0)
behaves when the Fermi level F approaches the mobil-
ity threshold from the side of the continuous spectrum.

This question is not at all abstract in nature, since
one can control the position of the Fermi level at a giv-
en temperature by varying, e.g., the potential V_ at the
gate of a field transistor (Fig. 1). A metal (e.g.,
aluminum) is shown in Fig. 1; also some other dielec-
tric can be used instead of silicon dioxide.

In principle there are two possibilities here, schema-
tically drawn in Fig. 2,a~c: the conductivity can either
reach some finite value o, as F~ E_+ 0, and then fall to
zero in a jump (Fig. 2a), or it can fall to zero continu-
ously, while the derivative do/dF can either remain
bounded as F—~ E + 0 (Fig. 2b), or become infinite (Fig.
2c). An especially essential point is the difference be-
tween the situations shown in Fig. 2a, on the one hand,
and Figs. 2b,c on the other. The guantity ¢, has been
called the minimum metallic conductivity. It can be de-
termined theoretically under certain assumptions. It
seemed at one time that the experimental problem was
almost solved in favor of the conductivity shown in Fig.
2a, However, in the past two years the problem of the

—
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FIG. 1. Standard diagram of an experiment to measure the
electrical conductivity of an inversion layer. The voltage V,
controls the position of the Fermi level in the semiconductor.
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FIG. 2. Possible types of behavior of the conductivity at the
mobility threshold.

minimum metallic conductivity has been the object of
serious discussion: we shall return to it in Sec. 5.

We note that, under conditions of strong degeneracy
of the electron gas, o is effectively determined in the
conduction band only by the electrons of energies close
to F. This enables one to introduce the concept of the
conductivity (and mobility) for a given electron energy
E, by taking it to be represented by the functions
o F) [or u(F)]. One can keep this concept also at any
arbitrary temperature and arbitrary degree of degener-
acy (including also a nondegenerate gas) by assuming
that by definition

o

a(T):Sa(E, ) (-~ o ) dz.
EC

(1.1)

Here n(E) is the Fermi function, ofE, T) is a function
of the temperature and energy, while the upper limit
has been replaced by infinity owing to the rapid decline
of n; with increasing energy argument E. When T—~0,
Eq. (1.1) acquires the form o(0) = o(E); .. In a one-
electron formulation of the problem, the relationship
(1.1) directly stems from the formula of Kubo,?® with
ol E, T) expressed explicitly in terms of the correspond~
ing Green’s functions. One can also write an analogous
formula for holes. The concept of a conductivity de~
pendent on the energy enables one to formulate a criter-
ion of localization of electron states based only on using
quantities directly measured experimentally.?” Namely,
one can naturally call states of energy E delocalized
(or localized) if, as T~ 0, the static electrical conduc-
tivity o{ E) differs from zero (or equals zero). We shall
henceforth treat the following equation as the criterion
of localization:®
limo (£, Tj=0. (1.2)
I-0

However, we should note that the criterion (1.2),
while theoretically irreproachable, appears inconvenient
for numerical calculations. The point is that in such
calculations one always—of necessity—treats systems
of limited dimensions. But, strictly speaking the con-
cept of electrical conductivity as a self-averaging quan-
tity®? is justified only in the case of a transition to the
thermodynamic limit. It is not fully clear to what ex-
tent the potentialities of modern computers allow one to
approximate the latter operation. For this reason other
criteria have been proposed?® ® in the hope that they
will prove more convenient computationally. Apparent-
ly their equivalence to the criterion (1.2) has not been
strictly proved, but it seems rather likely.

5’Appa.!‘ently it is equivalent to the criterion proposed in Ref.
28.
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The existence of potential wells and humps of random
height, width, and shape distributed at random in the
specimen leads to especially important consequences in
the case of specimens of lower dimensionality. The
idea had already been expressed®-3* rather long ago
that all states of an electron in a one-dimensional dis-
ordered lattice are current-free, i.e., there is no mo-
bility threshold. A rigorous proof of this statement
was first derived in Refs. 35 and 36. In particular, it
yields rather serious consequences in the physics of
one-dimensional “crystals”, and also in the physics of
crystals with one-dimensional defects, e.g., disloca-
tions. It is known® that edge and screw dislocations
having no impurity atmosphere lead to the appearance of
one-dimensional dislocation bands. In a crystal ideal in
other respects, the charge carriers occupying these
bands, being localized near the dislocations, can move
freely along them—in this sense they are delocalized.
However, since their motion is one-dimensional, an
arbitrarily weak random field will lead here to com-
plete Anderson localization. Correspondingly, in real
materials with a low concentration of dislocations, the
conductivity in the dislocation bands at low tempera-
tures must be of a hopping type.® The same is true for
long organic molecules. A detailed theory of hopping
conductivity of one-dimensional systems has been con-
structed in recent years® 2 (see also the review®?),

For a long time the pattern of the energy spectrum in
a two-dimensional disordered semiconductor remained
not entirely clear. Now the opinion has become wide-
spread that, just as for 4= 1, all electron states in
these materials are current-free (in any case, if the
dimensions of the specimen are large enough). This
problem will be treated in greater detail in the next
section.

2. Scaling theory of localization

The shift from the regime characteristic of the case
F>E, to the regime F<E_ is to a certain extent analo-
gous to a phase transition. Hence it is not surprising
that attempts have been made to study the problem of
presence or absence of a mobility threshold in disorder-
ed systems by using the methods of the modern theory
of critical phenomena (Ref. 44).” Apparently this for-
mulation of the problem was first proposed by F. Weg-
ner;*"%® gee also Ref. 43. An elegant approach using the
renormalization group has been proposed.®:*! However,
here the equations of the renormalization group obtained
essentially by guessing. One can find a systematic
derivation of them within the framework of a rather
general model in Ref. 52.

The presentation of the material in this section fol-
lows to a considerable extent the method of Refs. 50 and
51, although differing in individual points.

65We note that the hopping nature of the conduction does not
necessarily entail a strong temperature-~dependence of it
(of exponential type). Cases are known?” in which conduction
of clearly hopping type depended on the temperature accord-
ing to a power law.

"We can recommend the book of Ref. 45 for an initial acquain-
tance with this theory.
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The central idea of the scaling theory of localization
consists of the following. For a specimen of finite di-
mensions one defines a certain quantity associated with
the conductivity, and generally dependent on the dimen-
sions of the specimen. Then one studies the behavior
of this quantity with increasing dimensions of the speci-~
men and ultimately carries out a transition to the ther-
modynamic limit. Apparently the problem of choosing
this quantity is not completely trivial. The first stud-
ies® %! adopted as such a quantity the reciprocal resis-
tance (conductance), which can be connected with the
mean shift of the energy levels upon replacing the peri-
odic boundary conditions at the “ends” of the specimen
with antiperiodic conditions. (Calculation?® shows that
this quantity is expressed by the same quantity as the
ordinary reciprocal resistance, R™, which appears in
Ohm’s law.) We can naturally expect that the energy
levels corresponding to the localized states should prac-
tically not be altered by this substitution. On the other
hand, the eigenvalues of the energy corresponding to
the delocalized wave functions must be shifted by this
substitution, however large are the dimensions of the
specimen. The criterion of localization proposed in
Ref. 29 is based on this argument.

Subsequent studies®:* have proposed the reciprocal
localization length as the quantity undergoing the scaling
transformation. However, it appears to be more natur-
al to use a quantity directly measurable experimentally.
As such one can still use the reciprocal resistance of
the specimen as defined by Ohm’s law. Apparently the
use of this self-averaging quantity in physically realis-
tic systems need not lead to the complications pointed
out in Ref. 53.

We should expect that, as the dimensions of the speci-
men increase without limit, its shape will not play an
essential role in the problem of interest to us. Hence
we are justified in treating a specimen of any shape,
e.g., cubic (or when d= 2, square; henceforth for brev-
ity we shall use the term “cube” for any dimensional~
ity). Here the standard formula for the resistance of
the specimen has the form

R-t = gL?#-2 (2.1)

Here L is the length of the cube edge.

It is convenient to introduce the dimensionless re-
ciprocal resistance g by setting

25
g Rt g =2 Lo,

PEl

(2.2)

In employing this formula, we must consider the fact
that the length L has a lower bound: it must exceed the
other characteristic lengths that appear in the problem
under discussion. There are at least three of them.
The first of them arises in treating phenomena of trans-
port by free charge carriers, i.e., in the region of the
continuous energy spectrum. This is the mean free path
with respect to momentum; under the conditions of in-
terest to us it is also the mean free path for elastic col-
lisions. The second characteristic length appears (or
its presence is implicitly understood) when one treats
transport phenomena in the region of the discrete spec-
trum. This is the quantum correlation length R, which
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defines the smallest possible distance between levels of
the same energy. The point is that, as T=0, charge
transport in a given region of energies can occur only
by isoenergetic tunneling. However, in view of the ef-
fect known from quantum mechanics of “repulsion of
levels”, levels close in energy directly correspond to
wave functions localized near points sufficiently remote
from one another (Ref. 23, Chap. I, Sec. 3). If the
levels did not possess an intrinsic width 3, then the
length R, would become infinite—the specimen could
not contain two identical discrete levels with a finite
distance between the corresponding centers of localiza-
tion.? However, actually the value of § always differs
from zero, at least for levels lying above the Fermi
level. There are two reasons for this. One of them
stems in principle from the irremovable interaction of
the electrons with the electromagnetic vacuum (as in the
atom) and with the heat bath,™ the other arises from the
current passing through the specimen.®*%® Indeed, the
very fact of passage of current implies that the levels,
which are stationary in its absence, become nonsta-
tionary when it arises. That is, they acquire a finite
width. When 6+#0, the length R, proves to be finite. It
is not easy to derive an exact expression for it; How-
ever, one can obtain an orientational estimate by using
the very simple argument of Mott (Ref. 25, Chap. 2).
For levels close to a Fermi level situated in the
mobility gap, we have

Bo=-%~ln—§-; (2-3)
Here « is the reciprocal localization length (assumed to
be the same for both levels being studied, in view of
their closeness), and V is the characteristic energy of
interaction of an electron localized near one of the cen-
ters with the other center.?

Evidently, isoenergetic tunneling can occur only if
L= R,. For an orientational estimate of R,, we shall
assume that

a=10cm?', tl1=6/h =10*s!, ¥V =1.4 eV.

Then B;= 10" cm. Apparently this value is somewhat
excessive, since the values of @ and 77 that we have
used are too low. Yet it gives a certain orientation.
We note that the third characteristic length—the corre-
lation length of the random field y™-—~can prove to be of
the same order of magnitude (or larger). It defines the
distance at which the binary correlation function of the
fluctuations of the potential energy of an electron U de-
clines appreciably:

8)strictly speaking, with a number of atoms greater than two,
one can choose a configuration of them such that certain
levels are not split. However, the probability of reallzing
such a configuration in a system of many particles is very
small.

®n the presence of a mobility threshold £, the energy V
agrees in order of magnitude with the difference E,~ F.
Here one obtains from Eq. (2.3) the expression given in
the book of Ref. 23. We note that Eq. (2.3) 1s based on
the concept of an exponential decline of the wave functlons
at a great enough distance from the corresponding localiza-
tion centers.
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¥ (r) = WO U (2.4

Here the angle brackets denote averaging over the ran-
dom field, (I/)=0. In particular, if the random field is
created by a set of charged impurities situated at ran~
dom in the specimen, then the screening radius plays
the role of ¥™'. In a system like amorphous silicon it
can amount to about 1073 cm.

Henceforth we shall be dealing with specimens of di-
mensions considerably exceeding both R, and y™.!®
Here the latter lengths need not enter into the expres-
sion for the reciprocal resistance, and the equation for
the function g{L) can be written by the same method as
in Refs. 50 and 51.

Let us take b? cubes, each of edge length L, and men-
tally build from them a new cube of edge length bL.
This cube will correspond to a new value of the dimen-
sionless reciprocal resistance g(bL). The fundamental
assumption of the scaling theory consists of the idea
that, under the conditions being discussed, the function
g(bL) can depend only on its former value and on the
number b:!V)

g(bL) = f1lb, g (L)) (2.5)

Now let us assume that

b=1+ ¢,

e~ 0,

and expand the function g{bL) in a power series in ¢:

g(b, L) =g (L) +eg (L) —2E_ 10 (e, (2.6)
After elementary transformations, we obtain;
NI )] 2.7

Here L' is a variable which upon completing the calcu-
lation must be identified with the length L of the speci-
men, and we have

' i A 16, g (L'
Ble (L)) =g (L) LLEN)

(2.8)
Equation (2.7), which has been derived in Refs. 50 and
51, is fundamental in what follows. It is autonomous—
its right-hand side contains the argument L’ only im~
plicitly~—only via the sought function g{(L’). In other
words, Eq. (2.7) describes a one-parameter group of
transformations—the renormalization group.'? By

19The problem of short specimens requires special atudy®®
that we shall not take up here. We note only that under
these conditions the static conductivity can prove to differ
from zero for any energy of the electron. It is more con-
venient to define the localized states here as those whose
contribution to the static conductivity declines monotonically
with increasing L for a sufficiently large dimension of the
specimen.

1The role of the other lengths was not treated in Refs. 50 and
51. If they were comparable with L, then one would have to
generalize Eq. (2.5) by also including the quantities LR and
yL among the arguments of the function f.

'2)Kf the lengths R, and v were comparable with L, then the
equation analogous to (2. 8) would prove to be nonautonomous,
and the discussions would become somewhat complicated. 5
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studying the behavior of its solutions as L —~«, which
corresponds to taking the thermodynamic limit, we can
determine whether the static electrical conductivity of
a large enough specimen is zero or not as 7—0. That
is, we can establish whether the wave functions of the
charge carriers are localized or delocalized.*®

3. Limiting forms of the function 5( g). Thermal and
nonohomic effects

In order to extract any information from Eq. (2.7),
one must formulate a concept of the behavior of the
function B(g), i.e., ultimately of the behavior of the di-
mensionless reciprocal resistance as L varies.

First of all we note that the function & for finite val-
ues of L describes the grouping of a finite number of
cubes of finite dimensions. For this reason, we can
naturally expect that it will behave sufficiently regular-
ly. This expectation is expressed in the following two
hypotheses:5¢-%

a) The function B8(g) is continuous and differentiable.
b) The function B(g) is monotonic.

There is as yet no complete, rigorous proof of these
hypotheses, but they seem quite plausible. We note al-
so that their consequences for 4= 2 have been confirm-
ed also by the results of Ref, 52, which was carried out
by another method.

As soon as we have adopted the hypotheses (a) and (b),
for a qualitative study of Eq. (2.7) it suffices to deter-
mine only how the function Jg) behaves in the limiting
cases g>» 1 and g<« 1. In the former case we have rela-
tively weak scattering; this can be the situation in a
system of free charge carriers. In the limit as L =,
this corresponds to the region of the continuous energy
spectrum, i.e., to delocalized electrons. The latter
case corresponds to a system of localized electrons,
i.e., the region of the discrete energy spectrum,

First let us examine the case g> 1. Here we can use
the ordinary Boltzmann kinetic equation for calculating
g. Here the dependence of ¢ on L generally vanishes in
the limit of L —», However, when we take into account
the corrections to the results of the kinetic equation,
such a dependence arises. As we shall soon see, it
proves substantial in treating a two-dimensional sys-
tem. The appropriate calculations have been perform-
ed®°-%% ynder the assumption that the electrons are scat-
tered by impurities having short-range forces. For

d= 2 the answer is
c=05—%1n—f;—, (3.1)

Here o is the result obtained from the kinetic equa-

tion, while 7 is the mean free path with respect to mo-

mentum. Formula (3.1) holds as long as the first term

13)Generalizations were derived in Refs. 208 and 209 of Eq.
2. 7) to the case of conduction in an alternating field and to
the question of taking into account the interaction between
the charge carriers. Naturally the theory here becomes
complicated, but the fundamental conclusions presented in
the following subsections remain in force.
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on the right-hand side is large in comparison with the
second, i.e., as long as g>1; a schematic derivation
of this is given in Appendix I1.}9

In the general case for delocalized states we obtain
(see Appendix I)

(3.2)

As before, d denotes here the dimensionality of the sys-
tem, while the ¢, are positive constants; in particular,
when only potential scattering exists (without spin re-
versal), we have ¢, = 772,

p=d—2-2L, g>1.

Now let us turn to the case g<< 1. The probability of
an isoenergetic tunneling transition through a distance
R =R, is proportional to exp(-2aR). If L> R, such
transitions can occur at distances considerably less
than L; charge transport throughout the specimen will
occur only as the result of a chain of isoenergetic
transitions of this type, while the resulting value of g
will be determined by considerations of percolation and
will depend only relatively weakly on L. At the same
time, tunneling transitions can also occur “throughout
the specimen”; their probability is proportional to
exp(-2aL). Thus, when g« 1, we have%®

g(L) = g (L) + & (L) exp (—2al). (3.3

The first term here corresponds to the chain of transi-
tions pointed out above, while the second term corre-
sponds to tunneling percolation of electrons throughout
the specimen,

In line with what we have said above, the functions g,
and g, depend on L far more weakly than exp{-2cL).
One can neglect their derivatives with respect to L in
the following differentiation. In other words, they can
be treated as parameters in the equation of the renor-
malization group. At the same time, the very fact of
dependence of g, on L can be important in another re-
spect: if, as we shall soon see, in a two-dimensional
system we have g(L) —~ 0 as L ~, then the quantity
g L) must vanish here.

According to Egs. (2.8) and (3.3), we now obtain

f=— 2algyexp(—2aLl) __  E—& In—81

go-tg1exp(—2al) — g £—80 (3.9)

Since the quantities g, and g, appear here as parame-
ters, this relationship agrees with the assertion of the
autonomousness of Eqgs. (2.7).

In the next section we shall employ Egs. (3.3) and
(3.4) for a qualitative study of the function g{(L). Here
it is appropriate to make some remarks on the temper-
ature- and field-dependence of the electrical conduc-
tivity of a two~-dimensional system at a low, but finite
temperature (one can be dealing, e.g., with an inver-
sion layer arising under certain conditions near the
contact of a semiconductor with a dielectric in a metal-

WAn analogous result’ is also obtained on calculating the
real component of the conductivity at a frequency w > 0:
in the two-dimensional problem a correction arises to the
result of the kinetic equation that is proportional to —~ln w7,
where 7, is the relaxation time for momentum. It is assumed
that wr, «1,
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dielectric-semiconductor structure (see Fig. 1). Under
these conditions the conductivity of the specimen is
known to be finite (though perhaps small), since ther-
mal excitation ensures the possibility of displacement
of the electrons throughout the specimen. For an orien-
tation in the possibilities that arise here, let us inte-
grate Eq. (2.7), using here the formula (3.2) for B.
When d= 2 we obtain the following, taking into account
the definition (2.2):
t]

u=a,,'—-'—c¢ln%a. (3.5)
Here g, and L, are constants. Of course, for weak
scattering this expression is a tautology, while one
must take respectively for o, and L, the result of the
kinetic equation and the mean free path with respect to
momentum. However, another point is important.
When T #0, the lower limit of the integral in (I.11)
fi.e., the numerator in the argument of the logarithm
on the right-hand side of (3.5)] can be determined not
only by the dimensions of the specimen, but also by in-
elastic scattering of electrons by phonons—as soon as
the corresponding mean free path [, is less than L.%'*
Under these conditions we must replace L in the inte-
gral in (I.11) with V7,772 (Ref. 203).'

Further, we have the following expression for the re-
laxation time 7, for inelastic scattering:%

[ ~T9 ¢g>0.

Thus, when [, <L, the second term in Eq. (3.1) is re-
placed by ¢q InT, where ¢ is a positive constant. At the
same time, the quantity o5 practically does not depend
on the temperature, being governed mainly by elastic
scattering of charge carriers by impurities.

Such a logarithmic variation of the static conductivity
has actually been observed experimentally.%?-%* How-
ever, as we shall see in Sec. II, this fact alone does not
yet imply an experimental confirmation of the correct-
ness of the concepts that we have presented above.

We note that,® as soon as we are dealing only with
processes of emission of phonons at a low lattice tem-
perature, we can also take the temperature to be the
electron temperature T,, which is defined as a measure
of the mean energy of the charge carriers. Thus the
problem arises of the dependence of o on the voltage ap-~
plied to the specimen (or on the strength of the measur-
ing current).

Another possible reason has been pointed out® for
nonohmicity of specimens having localized charge car-
riers. It involves the “current” broadening of the
levels. In fact, when T #0 the diffusion coefficient D of
the electrons also becomes non-zero. Consequently a
localized state of an electron becomes nonstationary.
The corresponding energy uncertainty AE is connected
with the time 7, in which an electron diffuses over a

15)1; the presence of a magnetic fleld, and also when the inter-
action between the electrons is taken into account, other char-
acteristic lengths arise {e.g., the well known magnetic length
JEc¢/Be, where B {s the magnetic induction). A certain com~
bination of them can also appear instead of L.
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distance of the order of /,. Evidently we have 7,=I3/D,
and hence, AE~iD/I%. On the other hand, the energy
acquired by an electron in moving over the distance [,
in a homogeneous electric field of intensity €is e¢#7,.
This quantity has meaning if it is larger than AE, i.e.,
if

AD Y113

)

< ( r (3-6)

=lg.

In the converse case in which [, >/, the maximum dis-
tance that an electron can traverse without changing en-
ergy must be identified with J,. This is the situation at
sufficiently low temperatures, If, moreover, we have

(3.7

then we must take as the lower limit of the integral in
(I.11) the quantity [;}. The inequality (3.7) implies that
the voltage on the specimen #L exceeds iD/eL?. For
macroscopic specimens this condition is satisfied ap-
parently under all realistic experimental conditions.
Thus, if we assume for an estimate that D= 10 cm?/s
and L= 0.1 cm, we find that the voltage #Z must exceed
0.6x1072 y,

lg< L,

Evidently Eq. (3.1) must be rewritten under the condi-
tions being discussed in the form!®

¢ = op + bo. (3.8)
Here we have
L
&:-%ln%:const-lng (3.9)

(const >0), The formulas (3.8) and (3.9) remain valid as
long as 1 <!,(T) and [pg< L. It is not yet fully clear to
what extent this effect is appreciable againgt the back-
ground of the heating of the electron gas by the electric
field.

4. Qualitative study of Eq. (2.7). Localization of states
ford=1,2

According to hypothesis (a) of Sec. 3, the singular
points of Eq. (2.7) can be only the zeros of the function
Blg), while hypothesis (b) implies that there is no more
than one of these zeros. Formulas (3.2) and (3.4) give:

a) when g > 1:

§>0, d=3 p<0, d=1,2. (4.1)
b) When g «<1;
B<0, d=1, 2, 3. (4.2)

We note that when d= 1 and d= 3, the inequalities (4.1)
arise from purely “geometric” considerations, being
determined only by the dimensionality of the system.
Here the small corrections to the results of the kinetic
equation play no role. On the other hand, when d= 2 it
1s important in principle to take these corrections into
account. In their absence we would obtain 8= 0.

The inequalities (4.1) and (4.2) enable one to con-
struct a qualitative picture of the behavior of the func-
tion B(g) for different values of g (Fig. 3). We see that,

16)0f course, the ideas presented above on the role of the
electric field are justified only when I, (T,) >, and I, > I,
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FIG. 3. Schematic form of the function 8(g) in systems of
different dimensionalities.

when d = 3, the singular point g= g_exists, as is known
[although Egs. (3.3) and (3.4) do not enable one to find
g. exactly], while it does not exist for 4= 1 or 2. One
can understand the physical meaning of the singular
point of Eq. (2.7) by employing the concepts of the mod-
ern theory of critical phenomena.** In this theory the
unstable singular points of equations like (2.7) are criti-
cal points. We can easily convince ourselves that in our
case something similar is taking place. In fact, let us
study the curve for d=3; let 8(g) = 0 when g=g_, and let
the value of g deviate slightly from g.. Then, accord-
ing to (2.7), we have
sign S —sign (g—go)- (4.3)

This implies that the singular point being studied is
unstable: when g<g_the values of g{(L) will decline with
increasing L. That is, in the limit of an infinitely large
specimen we obtain g{L)—~ 0. This is the region of local-
ized states. On the other hand, when g >g  the function
g{L) will increase with increasing L. In the limit of an
infinite specimen, we obtain the asymptotic form (2.2)
for the conductivity ¢, which does not depend on L.
This is the region of delocalized states.

Thus the singular point of Eq. {(2.7)—the zero of the
function B(g)—defines nothing other than the mobility
threshold. As we see from Fig. 3, Eq. (2.7) combined
with the hypotheses adopted above yields the following
conclusions:

a) When 4= 3 there is a mobility threshold, i.e., the
system being studied possesses both localized and de-
localized states.

b) When d=1 and d = 2, a mobility threshold is absent
everywhere, i.e., all states are localized.!” We should
note that, when ¢= 2, this conclusion [cf. the remark
following Eq. (4.2)] is essentially based on the existence
and sign of the correction term on the right-hand side
of (3.2).

However, the sign of this term depends on the nature
of the interaction forces between the electrons and the
scattering centers. Only potential scattering of charge
carriers was treated in Refg. 59 and 60. Taking into ac-
count scattering by magnetic impurities®® can lead to
disappearance of a dependence of the conductivity on the
dimensions of the specimen. Actually, another charac-
teristic mean free path, I = vV 77_ is manifested here

1"The same result was obtained also in Refs. 101 and 102.
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(see Appendix I). Here vy is the Fermi velocity, and 7
and 7 are respectively the decay times of one-electron
states in scattering by nonmagnetic and magnetic im-
purities (with short-range forces in both cases). If [
<L, it is precisely the quantity [} that determines the
lower limit of the integral in (1.11). Here the function
Ag) for d= 2 generally ceases to vary upon reaching
zero. Since there are no reasons to assume that g,

> 1, generally the case g> 1 is not realized here, and
the entire approach based on treating an electron gas
with weak scattering proves to be incorrect.

A zero of Ag) for g> 1 does not arise, even in an ex-
ternal magnetic field, if scattering by magnetic impuri-
ties takes place.®® In this situation, localization of all
the electron states in a two~dimensional system arises
apparently only in a sufficiently strong random field.
This implies that one should observe negative magneto-
resistance in the system being studied: by causing a
delocalization of the charge carriers, however partial,
a magnetic field thus increases the electrical conduc-
tivity of the specimen.

Thus we see that the answer to the question of
whether all the states in a two-dimensional system are
localized depends on the concrete nature of the forces
acting on the electrons and holes, i.e., not only on the
geometry, but also on the dynamics.

On the other hand, the conclusion that, when d=1,
all the states prove to be current-free in an arbitrarily
weak (but not zero) random field does not involve the
concrete nature of the latter. In this sense the scaling
theory of localization supplements the prior results
only to a certain extent.

The physical reason for the difference between the
three-dimensional system, on the one hand, and the
two- and one-dimensional systems, on the other, ap-
parently involves the character of the random fluctua-
tions in these systems.5%:®*® According to a well-known
theorem of Polya,®”'%® when d= 1 and d = 2, these fluc-
tuations cause a particle to return again and again ar-
bitrarily close to the initial point. Correspondingly,
the scattering at each center unavoidably proves to be
multiple, while the interaction of the electron with each
individual scattering center proves strong, even at low
amplitude of scattering per unit event. On the other
hand, in a three-dimensional system such multiple re-
turns can be insubstantial.

5. The problem of the minimal metallic conductivity
(d=3)

An attempt was also made in Refs. 50 and 51 to study
the problem of the minimal metallic conductivity on the
basis of Eq. {2.7). For this purpose, one must solve
this equation in the region of values of g close to g,
and then associate the scaling parameter L with the
quantity

n=E— E, (>0). (5.1)
Thereupon Eq. {2.2) will determine of7).

It is convenient to rewrite Eq. (2.7) in the form
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L —£ 80

(5.2)
In line with the hypotheses adopted in Sec. 3, the
authors of Refs. 50 and 51 assume that
(e =-EEe (5.3)

Here, as we see from Fig. 3, we have v>0 for either
sign of the difference g—g,. Henceforth in this section
we shall be interested in the case g>g,. Near the point
g.,» one can replace the factor g on the left-hand side of
(5.3) by g.. Thus Eq. (5.2) acquires the form

L e £—gc

dzZ vée

(5.2%)

Let us integrate this equation from some point g,

= g(L,) arbitrarily close to g, {corresponding to the en-
ergy E) to an arbitrary point g(L) [within the limits of
applicability of the approximation (5.3)]. We obtain

E—fe _ymtjn L,

In
go—8c L,

That is, we have

(5.4)

In order to obtain from this an idea of the form of the
function o(n), we must make some assumptions on the
dependence of g on the energy E of the electron. In
Refs. 50 and 51 the very simple linear relation

d
g—gc=(d—ir)g=gc (E—~E,), (5.5)
was used. Then, according to (5.4), we have
L~n (5.6)
Then Eq. (2.2) yields (for n«1):
O =g L ()t ~ =29, (5.7)

Thus, when 4=3, we obtain 6~7*~0 when E~E_.
The concept of a nonzero minimal metallic conductivity
is not confirmed. Here, depending on the magnitude of
the critical index v, one of the two cases shown in Figs.
2b, c is realized.

However, this conclusion seems not completely con-
vincing for two reasons,%®

First,®® even if we adopt the general approach adopted
in Refs. 50 and 51, it remains unclear whether the re-
lationships (5.3) and (5.5) are always valid. Actually, if
the assumption of the existence of a minimal metallic
conductivity is valid, then when 5= 0, the function o(n)
must have a first-order point of discontinuity.

If it seems natural in the spirit of the scaling theory
to assume the function L(n) to be continuous, then also
the dimensionless reciprocal registance g(n) [or g{ L)}
must undergo a discontinuity; in essence this is what
makes it risky to integrate Eq. (5.2¢) directly from the
point g = g.. Hence, when g =g, the function Kg) must
have a singularity, and we must write Eq. (2.7) separ-
ately for g>g_and g <g. Here we must understand the
left-hand side of (2.7) as being the right- or left-hand
derivative.

Upon introducing, as before, a point g, close to g,

672 Sov. Phys. Usp. 26(8), Aug. 1983

we obtain the following from (2.7) in the region g>g,:
L=Lyexp[ - fﬁ-* () dg]. (5.8)
4]

However, in contrast to (5.3) and (5.5), now we assume
that?®

g=gc+a™, ﬁ=(g:—:c°)"~ (5.9
Here we have a>0, m >0, 12#%>0.
Then we find (when #<1)
L~exp[ = (an™]. (5.10)
Hence, when d= 3, we have
o ~exp[ = (@™ (5.11)

As =0, this expression remains nonzero. Thus we
see that the agsumption of some particular analytic
structure of the function Ag) as g =g, is essentially
equivalent to the g priori assumption of the existence or
absence of a finite minimal metallic conductivity. In
other words, solution of the problem posed here re-
quires independent information of dynamic character.

Second, the statement was made in Ref. 58 that no
characteristic physical length is involved in the quan-
tity g -—the zero of the function 8. For this reason, the
integration of Eq. (5.2) with account taken of (5.3) yields
the following when g —-g < g

()"

(5.12)
Here L, is nothing other than an integration constant.'®
Hence, according to Ref. 58, one can draw no conclu-
sions on the value of o{E,). Actually the equality o(E,)
= 0 for d= 3 would mean that g remains finite as

L—~w. However, it is clearly impossible to take the
limit as L =« in Eq. (5.12). In the opinion of the auth-
ors of Ref. 58 (with which the author of this review con-
curs), the latter can involve the inadequacy of the ap-
proximate relationship (5.3) as L ~.

The statement that one cannot find from Eq. (5.2) the
value of o( E,) without defining the constant of integra-
tion, i.e., without supplementing (5.2) with some bound-
ary condition, can hardly arouse doubts. However,
perhaps the solution of the problem of whether this val-
ue is zero or not requires somewhat lesser informa-
tion. At present the problem gseems open.

Another formulation of the problem has been present-
ed in the studies of N. F. Mott™™ and M. Pepper.?®*
The idea consists of taking into account the large-scale
fluctuations of the potential energy of an electron in the
random field. Here it proves possible to associate the
problem of the minimal metallic conductivity with cal-

. culating the localization length characterizing the wave

functions of the electrons in the discrete spectrum.

18y Ref. 69 the parameter v was defined in a different way:
in the notation adopted here it corresponds to 1/ vg,.

19n Ref. 58, » appears lnstead of 1/ in the exponent on the
right-hand side of the equation corresponding to (5.12).
Apparently this is a misprint. However, it does not affect
the subsequent discussions.
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FIG. 4. Smooth band bending in a semiconductor with a ran-
dom field. The marks denote discrete levels,

One can describe these fluctuations as a smooth ran-
dom bending of the bands (Fig. 4; one can find a more
detailed treatment in the book of Ref. 23, Sec. 11.12).
The mean value of this bending can be small or large,
depending on the concrete nature of the field, but in
principle it always exists. The existence of this bend-
ing makes it necessary to distinguish the local bound-
aries of the conduction and valence bands, E; and E,
from the boundaries of the bands taken as the mobility
thresholds E_ and E,. In a macroscopically homogene-
ous specimen, the latter do not depend on the coordin-
ates, while the former do. Upon denoting by 8U(x) the
smooth component of the random field, we can write

Ei(x) = B+ 8U (x). (5.13)

One can understand the role of the smooth bending of
the bands in the problem in which we are interested by
using the following qualitative arguments, mainly due to
Mott.

Initially let 5U(x)= 0. We should expect that here the
wave function of a conduction electron ¢ will vary rela-
tively slowly in space as the energy approaches the mo-
bility threshold. The exact meaning of this expression
consists of the following: Let us represent § as an ex-
pansion in the atomic wave functions ¢, as is done in
the well-known method of strongly bound electrons:®

b= ants (5.14)

With a random distribution of atoms in space, the
phases of the coefficients g, can be random. However,
in the sense of the delocalization concept, the ampli-
tudes as E—~ E_+ 0 must not fluctuate strongly upon go-
ing from one volume containing many atoms to another
such volume. In other words, there are no factors here
that could hinder the free translation of electrons of the
stated energy throughout the specimen.

However, when 6U #0 the situation can change. In-
deed, let us denote by E the energy of any electron,
localized or delocalized. With a large enough value of
[ 6U(x)| the differences E - E, and E — E. can prove to
differ in sign. In this sense one can say that the smooth
bending of the bands mixes the “localized” and “delocal-
ized” states.?® Here, evidently, smooth large-scale

2076 avoid misunderstanding, we stress that we are here deal-
ing with spatial delocalization of electrons and holes within
the limits of a region in which the functions E (x) and E (x)
remain approximately constant. Of course, the tlassification
of states into localized and delocalized in the sense of the
condition ¢=0 (¢ =0) at T— = is determined only by the dif-
ferences E,—E and E~E,.
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fluctuations of the potential energy of the electron must
lead to large-scale fluctuations of the amplitudes (a,|.
In other words, regions can arise here as E~E_+ 0
that are practically inaccessible to electrons. Thus we
arrive at a standard percolation problem, and we should
expect (Ref. 23, Chap. IV) that the contribution to
charge transport of states having the given energy E
will be vanishingly small.

Now let us examine the wave functions that would be-
long, for §U =0, to the discrete spectrum as E~E_- 0.
Just as in the case of the continuous spectrum, we can
represent them in the form (5.14). However now we
have

ag ~ exp (—ar),

(5.15)

Here a is the reciprocal localization length, and the
coordinate v is measured from the localization center.
(Henceforth we shall be interested in values of » con-
siderably exceeding the interatomic distances; hence
the exact position of the localization center is not es-
sential.) The functions under consideration are of in-
terest for our problem because, in the presence of
smooth bending of the bands, the levels of the discrete
spectrum must be measured from the local boundaries
of the bands E! and E!. Then the radius of localization
of an electron with energy E <E’ is determined by the
difference E!(x) - E. Near the mobility threshold we
can assume that o obeys

@~ (E:— E), (5.16)

Here s is a non-negative number. In contrast to the
deep levels, s depends here on the parameters charac-
terizing the random field in the specimen; in general
we have s #1/2.

Now if we assume that E—~E,, we obtain from (5.16)
and (5.13)

a ~ 68U (x)°. (5.17)

We are interested in the case 6U>0. Indeed, then for
E>E!-0, the difference E— E = E—~E/+ dU proves to
be positive. That is, in the given region of space the
level being studied lies above the mobility threshold.
We note that the exponential (non-oscillating) form of
the wave function does not mean now that the state with
energy E is actually localized: the condition 6U(x) >0 is
obeyed only within the limits of certain restricted vol-
umes. However, this is just why great and large-scale
fluctuations of | |2 can arise in going to other regions
of space. Now the problem consists of understanding
when such fluctuations actually arise. For this purpose
we note that, in the absence of non-point structural de-
fects (of the type of radiation defects), the large-scale
fluctuation of the potential energy of an electron cover-
ing a volume having a large number of atoms directly
arises from the fluctuations of the number of atoms in
this volume. Let us denote the characteristic linear
dimension of the latter as R, and the mean distance be-
tween atoms as ¥. Then the mean number of atoms in
the given volume is N~(R/7)°. We are interested in the
case N>> 1. Here we have the following expression for
the rms fluctuation of the number of particles in the giv-
en volume ON:
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P (5 (5.19)
We can naturally expect that, under the conditions of
(5.18), the rms value of 6U will satisfy the relationship
6N

U ~ .
That is, according to (5.17) and (5.18) we have
aR ~(R/7)*(32/2 ~(51)*(2/3), Hence, when E ~E,~ 0,
we have

aR ~ |E — E, |*-™, (5.19)

If we wish to estimate how strongly |{|? fluctuates, we
must substitute this expression for ay into Eq. (5.15).
Thus we see that, when s =2/3, the magnitude of | |2
does not fluctuate too strongly, and does not succeed
in decaying within the bounds of the volume that we are
studying. In line with what we have said above, we can
expect here a nonzero value of the minimal metallic
conductivity.

On the other hand, when s <2/3, the magnitude of R
increases without limit as E— E_~0. Hence 9|2 varies
rapidly in space, and decays without reaching the bounds
of the volume being studied. This is the second of the
cases pointed out above; we should expect that o= 0
here.

Thus, in this approach the problem of the presence or
absence of minimal metallic conductivity is reduced to
the problem of the relationship between the actual ex-
ponent s and its critical value s.= 2/3. According to
K. F. Freed™ and S. F. Edwards,™ the value of s is 2/3.
Other values of s have also been indicated. However,
the essential point is that all these results pertain only
to a special type of random field for which the binary
correlation function of (2.4) has a 6-function form:

¥ (£) = Db ().

With other types of random field, the situation appar~
ently proves to be more complicated, since the corre-
sponding correlation functions are no longer character-
ized by a single parameter &, but by at least two. The
concrete values of the index s here are yet to be ob-
tained. Yet it appears clear that the results will depend
on the characteristics of the random field being studied.
In other words, we arrive at the previous conclusion:
the eventual conclusion concerning a zero or nonzero
value of o, is not of universal character—it involves the
dynamic features of the system.

6. Power-law localization in a two-dimensional
system

As we have seen in subsections 4 and 5, complete
localization of all states of electrons and holes can
occur in a two-dimensional disordered system. Appar-
ently the same is true of other elementary excitations—
phonons, magnons, etc. However, a set of experimen-
tal data (see the review of Ref. 74) compels us to think
that in a two-dimensional system, as in a three-dimen-~
sional one, there is a certain critical energy E_ that
separates states of different types. Electrons occupy-
ing states of different types make substantially different
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contributions to charge transport. Namely, hopping
conduction of the usual type occurs at energies E<E_,
and depends exponentially on the temperature, whereas
the temperature-dependence of the static conductivity
due to electrons of energies E >E_ must be consider-
ably weaker.

What we have said implies that, when E,<E<E_, dis~
crete energy levels of the usual type most likely have
the following distributions at a large distance r from
the given center of localization, the wave function ¢ of
the electron has the following asymptotic form, apart
from possible (but inessential) power-law factors:

P ~ exp (—ar). (6.1)

Here we have a ~(E,—-E)* or a~(E - E)° (the values of
the non-negative number s can vary). This is termed
exponential localization. Several years ago it was as-
sumed that, when E>E_ (or when E <E,; hereinafter
this possibility will always be understood), the elec-
tron states in the system being studied are delocalized,
just as when d=3. Now one must acknowledge this
viewpoint to be nonuniversal. The problem naturally
arises: what will happen in a two-dimensional system
when E>E ? The idea was advanced in Ref. 75 that
power-law localization of charge-carriers occurs in this
region, rather than exponential: at large distances
from the center of localization, the wave functions of the
electrons fall off asymptotically according to a power
law?'? (this is sometimes termed weak localization).

In principle the possibility of power-law localization
of the solutions of the Schridinger equation has been
known for a very long time;™ it has also been treated in
the current monograph literature.” ™ In connection
with the physics of disordered materials, this possibil-
ity has been discussed in the articles of Refs. 79, 80 and
in the book of Ref. 23 (for d= 3). However, all these
studies treat the case of a single potential well respon-
sible for the appearance of wave functions of the type
being studied. Evidently, the problem in which we are
interested requires generalization of these results to
the case of a finite concentration n, of wells, and also
to the case of taking into account the total random field
(we shall understand the latter term to denote the com-
ponent of the random potential energy of an electron
that does not reduce to a set of wells responsible for the
power-law localization).®

Still it is convenient to start with studying the two-
dimensional problem of an individual well (at low
enough values of n,, this might have a real meaning).
Let us set the origin of coordinates (for 4= 2) at the
center of the given well and denote by » and ¢ the polar
coordinates in the plane, while V7, ¢) is the potential
energy of the electron in the given well. In line with
what we have said above, we shall seek solutions of the
Schrodinger equation for the potential energy V that
have the following form at sufficiently large distances
from the center:

2The hypothesis of the possibility of power-function localiza~
tlon has also been advanced in Refs. 103 and 104 on the basis
of numerical calculations.
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b= Nrt(r, o). (6.2)

Here N is a normalizing factor, and f(r, ¢) is a dimen-
sionless function that is periodic in ¢ with the period
27. As r—~, it either has a finite bound, f,.(¢)#0, or
it oscillates (with an amplitude independent of ). The
character of the approach of f to the limit can vary, we
note only that, since the point “¥ =« is not singled out
physically in any way, the derivatives 8f/8» and 8%f/8y*
must be bounded as » ~«. It will also be evident from
the material below that the condition that the states be-
ing studied be current-free reduces to the condition that
f should be real.

Let us denote by a the distance from the center at
which the function fits the asymptotic form (6.2) to an
acceptable accuracy.

For simplicity we shall assume that this is the sole
characteristic length in the problem (with a single
well). Then considerations of dimensionality imply that
we have N~a"* when n>1. When n=1 (this case has
been treated in Ref. 75), the function (6.1) is normal-
izable only in a restricted volume, and we have
N~ -In(an, 72y,

Evidently, the treatment of solutions of the type of
(6.2) can have a meaning only when

a< it (6.3)

This inequality defines the exact meaning of the words
“sufficiently low concentration of wells”.

Upon substituting the function (6.2) into the corre-
sponding Schridinger equation, we obtain

o n—1 ﬂ_iﬂ_ﬂfzi_?(g_v)f,

T r ar r? op? r2

(6.4)

When ¥ >> g, the function V{7, ¢) must approach some
constant value V,. In the contrary case the concept of
a single potential well would make no sense in the sys-
tem being studied.

What we have said earlier on the asymptotic behavior
of the derivatives of f implies that a nontrivial solution
of the type of (6.2) exists only for the single eigenvalue
of the energy E= V,. Finally, by choosing the refer-
ence origin of the energy just as in the case of (6.1),
we see that V,= E_, a discrete level belonging to the
solution (6.2), coincides with E,. This is a well known
result,”™™7%8:23 Now we should treat Eq. (6.4) as the
definition of the potential energy V{r, ¢) for an
a priori imposed function f(r, ¢). Evidently a function
V{7, ¢) defined in this way actually falls off toward in~
finity. Owing to the great arbitrariness of choice of f
and n, there can be quite a number of such wells.
However, we should note that such a situation is unsta-
ble: even small perturbations of the potential energy
can lead to a shift in the energy and correspondingly to
disappearance of solutions of the type of (6.2). These
perturbations can be associated with either the pres-
ence of other potential wells of the same type as in
(6.4), or with a total random field in the disordered
material. First let us examine the role of the first of
the stated factors. The main role here is played by the
known effect of “repulsion” of levels; under the condi-
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tions of (6.2) it evidently should be even more notice-
able than in the case of (6.1).

Conveniently we can start with treating two wells
lying at the points r=0and r=R(r={r,¢}). This ap-
proach is justified if R>> @, but on the other hand, the
rest of the wells are even more remote from the two
that are being explicitly studied. This is possible under
the conditions of (6.3) as long as R <n;*/2, The essence
of the matter can be understood most simply on the ex~
ample of identical wells, in which V(r)= V(r+ R). Let
¥, and ¥, be the wave functions of the single-well prob-
lem, respectively lying at the points r=0 and r=R. By
definition, these functions are identical in form, but
centered at different points. As always in such prob-
lems, we can seek the wave function of an electron in
the system of two wells in the form

Y = ey + cqWs. (6-5)

Here ¢, and ¢, are constant coefficients. Upon substi-
tuting this expression into the Schréddinger equation with
the potential energy V(r) + V(r + R), we easily obtain a
system of equations for the coefficients ¢, and ¢,. By
solving it, we can find the eigenvalues of the energy of
the electron moving in the field of the two wells.

Let us assume that

A=S¢§(r)V(r+R) dr, s:Sw, () ¥, (r 4+ R) dr,

(6.6)
B= {4 )V e+ R) 4, (r+ R dr.
We note that it is convenient to choose an orthogonalized
combination of the type of (6.5) as the basis system of
functions when calculating the electrical conductivity.
As the temperature 7~ 0, the static electrical conduc-
tivity o is determined by isoenergetic transitions.
Hence on the given basis only the diagonal elements of
the current density figure in the formula for 0. For
this reason, the condition adopted above that f should be
real implies a current-free character of the electron
states being studied.

We can easily derive in the standard way the two
eigenvalues of the energy of the electron:

E.=4E2 (6.7)
Here we have

g\ _ _ 1

(2),=%1 beale=le s =Gy (6.8)

(The coefficient v2 in the denominator is for normal-
ization.)

Thus the former level E = V, is split into two separ-
ated by the amount

_2(B—AS)

lA(H):E,,——E__ — (6.9)

(Here AR can have either sign.)

Upon employing the expression pointed out above for
the normalizing factor N (for n>1), we can easily de-
rive the asymptotic estimates

IBl~ RV, [Al~IV@®] S~ (%)  (6.10)
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This implies that | A(R)! declines more rapidly with
increasing R than y(R), which essentially justifies this
whole calculation.

Formally we have a(R) #0 for any R. However, as
we have already noted in Sec. 4, “discrete” levels lying
above the Fermi level always have a finite intrinsic
width. Let the total intrinsic width of the levels being
studied be 4. Just as in Sec. 4, we shal] define the cor-

relation length R, by the equation
[A(Ro) | =38 (6.11)

Then, when R>R,, the levels under consideration must
be considered isoenergetic. We see that, when

s Ry<n'? (6.12)
there is an interval of values of R in which
a) the splitting of levels is negligibly small,
b) one can single out two asymptotic regions:
a<r<—§-, —Rz—<r<R—a (6.13)

and
c) the effect of the other wells is insignificant.

We can easily generalize these conclusions to the
case of several wells. Thus, under the conditions (6.12)
and with neglect of the effect of the total random field,
the concept of power-law localization has a literal
meaning, but it can hardly explain the character of the
transport phenomena observed™ when the Fermi level
lies in the region E>E..

Actually, under the conditions being treated, the
states with power-law localization occupy only a very
narrow band of energies around E..

However, the situation changes when we reject the
conditions (6.12) and/or when we take into account the
component of the random field U, that does not reduce
to the summation

V=§!_‘, V,@®+R). (6.14)

Here the subscript i numbers the centers of power-law
localization situated at the points R,. Indeed, let us ex-~
amine first what happens if, while still neglecting the
term U, in the potential energy of the electron, we turn
to the case of a rather large concentration of wells of
the form V(r+ R,), in which n3 254 (and g fortiori,

nt /zsRo). Here we must treat the problem of an elec-
tron in the field of (6.14) and correspondingly seek a
wave function in the form

‘P=§i‘4 (7A7R (6.15)
Here the summation is performed over all the wells,
rather than two, of the type being studied. The function
¥, has the same meaning as in the case of (6.4).

The system of equations for the coefficients ¢, can
prove no simpler than the initial Schrédinger equation.
However, the result in which we are interested is clear
without calculations: since none of the asymptotic re-
gions of (6.13) exist under the conditions being consid-
ered now, the arguments that led us to the conclusion
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of a single eigenvalue E = E_ become unsound. In par-
ticular, one must not neglect the effect of repulsion of
levels. In combination with the usual considerations of
the small probability of having wells similar in depth
and form in close-lying regions of space, it must lead
to spread of the levels in a finite (at least!) region of
energy values.

These conclusions are even more strengthened if we
bear in mind the term U, in the potential energy of the
electron. In order to have the concept of an individual
potential retain its meaning, we require here not only
the inequality (6.3), but also the condition that the vari-
ation of the random field in space is sufficiently slow on
the average: the characteristic length over which the
function U,(7) varies appreciably must be large in com-
parison with R and n;'/2. In the converse case the
asymptotic regions of (6.13) cannot be distinguished for
any values of an* /2 and gR™. Apparently we should ex-
pect here the appearance of an ordinary® everywhere-
dense energy spectrum, while we can retain the concept
of power-law localization only in a certain conventional
sense: we are speaking of states having wave functions
that would have the asymptotic behavior of (6.2) if some
region existed in which such behavior is possible. How-
ever, actually one obtains here something like “tissues”
of wave functions occupying the entire specimen.

Yet the fundamental idea of Kaveh and Mott™ remains
in force: there is a region of energies of an electron
that corresponds to current-free states having wave
functions of nonexponential type. It is not yet fully clear
what will be the temperature-dependence of the static
electrical conductivity associated with these states.
However, evidently we should not expect here the
strong dependence characteristic of hopping conduction
of the usual type.

Another treatment of the electron states with energies
above E, has been proposed by 1. P. Zvyagin.*®* He pro~
posed a simple interpolation formula for the function
Blg) that covers both limiting cases pointed out in Sec.

3. The solution of Eq. (2.7) with this function on the
right-hand side led to the conclusion of exponential lo-
calization of all electron states for d= 2. However,
there is a critical energy E_, above which the localiza-
tion length increases very rapidly with the energy.
When this length becomes comparable with the dimen-
sions of the specimen, the corresponding states become
practically delocalized. Apparently, in the sense of
answering the question posed at the beginning of this
section, this idea is no worse than the concept of power-
law localization. At the same time, the comments made
above on the actual lack of asymptotic regions in a ma-
terial with a not too low concentration of localization
centers and/or a random field of general type also per-
tain to it.

Il. MULTIELECTRON EFFECTS IN THE PHYSICS OF
DISORDERED SYSTEMS

7. Introduction

The multielectron problem in the physics of disor-
dered systems has two aspects. First, the question in-
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volves taking into account the interaction between de-
localized charge carriers. It had already been not-
ed®* % rather long ago that, in the presence of a random
field, the role of the interelectron interaction must in-
crease in comparison with what happens in an ideal
crystal. Actually, in the latter case the joint action of
the laws of conservation of energy and quasimomentum
appreciably restrict the probability of electron-elec-
tron scattering—so much so that it becomes arbitrarily
small near the Fermi surface (and upon this, strictly
speaking, the very concept of a Fermi surface is
grounded). However, in a nonperiodic force field, the
components of the quasimomentum can no longer be
treated as “good” quantum numbers. That is, the law
of conservation of quasimomentum does not hold, and
hence, the restrictions cited above are lifted.

Correspondingly it becomes topical to study the effect
of interelectron interaction on the kinetic and other
characteristics of a system of delocalized charge car-
riers. This problem will be treated briefly in Sec. 8.

Second, the role of interaction between the localized
charge carriers may prove to be very substantial. This
situation is well known in the physics of crystalline,
weakly doped semiconductors.?* Coulomb repulsion can
render the localization of two electrons near the same
impurity atom energetically unfavorable, provided only
that here we do not gain the energy of a chemical bond
or the energy of deformation (in particular, polariza-
tion) of the atomic matrix. The latter reservation is
essential: the effects that we have just pointed out can
radically alter the situation, by allowing, e.g., local-
ization of up to three extra electrons on gold and copper
atoms in crystalline germanium. Moreover, the resul-
tant potential energy of interaction of the electrons can
prove to be negative, i.e., the electrons in a solid can
undergo mutual attraction rather than repulsion®? 3#7
Yet another effect has attracted serious attention in re-
cent years that is due to interaction between electrons.
It consists of a substantial change in the density of
states near the Fermi level whenever the latter is situ-
ated in a region of energies occupied by discrete levels
(“Coulomb gap”). We shall turn to the problems asso-
ciated with this effect in Sec. 9.

8. Interaction between delocalized electrons or only
impurity scattering

A quantitative study of the role played by interaction
between delocalized electrons in a not fully ordered
system was apparently first carried out with the neces-
sary degree of completeness in Refs. 88-90 (for the
case d= 3). There the behavior was studied of a degen-
erate gas of electrons interacting with one another and
undergoing elastic scattering at point structural defects
(impurities). The interaction forces between the elec-
trons and the impurities are assumed to be of short-

27Thig effect can also occur for free electrons. It is well
known in the theory of superconductivity. However, in the
case of localized electrons it can prove to be far stronger,
being manifested even in the region of relatively high tem-
peratures.
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range.?® The scattering by an impurity was assumed to
be weak in the sense of the usual condition

kelp > 1. (8.1)

Here [ is the corresponding mean free path with re-
spect to momentum, and & is the Fermi wave number.
At the same time, the values of I, and T—the corre-
sponding time of free flight—were considered still to
be not too large, such that the electrons could undergo
multiple scattering by the impurity within the charac-
teristic time of interelectron interaction. This means
that, in addition to (8.1), the following inequalities
must be satisfied:

g, g1 (8.2)

Here 7iq and #g, are the momentum and energy trans-
ferred in a single event of inelastic scattering of an
electron by an electron.?¥

Under the conditions (8.2), interference of the two
scattering mechanisms occurs. Consequently correc-
tions arise for the density of states, the electronic heat
capacity, the resistivity, and other electronic charac-
teristics of the material. These corrections depend on
the temperature (for T<« #/7) and, for the resistivity,
on the frequency of the external field w (for wr«1).

The results of Al’tshuler and Aronov have been gen-
eralized® to the case d= 2 (under the assumption that it
makes sense to speak of delocalized electrons). It
turned out that the temperature correction to the conduc-
tivity is given by the same formula (3.1) with a different
numerical coefficient in front of the logarithm: the fol-
lowing expression appears instead of e?/2n%:

(8.3)

Here n is the concentration of delocalized electrons,
while we have
2

1 . -1
F:z—ﬂ5 de[1+ 2kpnt sm%] .
(]

g = F (m)].

Here k; is the same as in Eq. (8.1), and »™ is the
screening radius. Since k~n'/? for a degenerate gas,
while n~n/%12® we find F~ 0 for a sufficiently high
electron concentration. In the absence of scattering
with spin reversal, even the coefficients prove to be
the same.?® Thus the question arises: just what do the
experimental data confirm?%:%® A detailed calculation
of the numerical coefficient in Eq. (3.1) (and the analo-
gous equation) unavoidably involves using some ap-
proximations. Hence it is more convenient to turn to
studying other effects—magnetoresistance and the Hall
effect,%% 1In the presence of a magnetic field with the

%’Apparently the last restriction plays no fundamental role,
It only simplifies the calculations by enabling one to identify
the transport relaxation time {time of free flight) with the
time for departure of the electrons from a state having a
given momentum.

2“Formally this means that the vertex component describing
the interelectron interaction must be renormalized with the
aim of taking impurity scattering into account. Here it be-
comes dependent on g and g.

)0One can find a simple derivation of this result in Ref. 92.

V. L. Bonch-Bruevich 677



induction @, another characteristic length appears in
the problem, Lg= (kic/®e)'’?. Consequently the formu-
la for 4o is modified. The general expression for 6¢
proves to be somewhat unwieldy. However, it is sim-
plified if the length Lg is comparable with the length L
of the specimen or smaller.®® Then (with [, > L), one
obtains the previous formula (3.1) with a replacement
of the length of the specimen by

Lp= (L4 L)', (8.3

Evidently this implies the appearance of a negative
magnetoresistance in any magnetic field, even a weak
one.?® An essential point is that, in a theory based on
the concept of localization of electrons, the role of the
magnetic field consists of its effect on the orbital mo-
tion of the charge carriers.® This implies that we
should understand % in the expression for Lgto be the
component of the magnetic induction normal to the
plane of the specimen.

The formula of the type of (3.1) also becomes modi~
fied in a theory based on taking into account the interac-
tion between the electrons: the factor 1 - ¥ is replaced
by 1~ F/2 (according to Ref. 97 this result is due to
Lee and Ramakrishnan). However, here the effect in-
volves the influence of the magnetic field on the spin of
the electron, and is appreciable only when gBg > T
{g is the gyromagnetic ratio, and B8 is the Bohr magnet-
on). Moreover, this effect does not depend on the ori-
entation of the vector . Thus, one can find out by
studying the magnetoresistance of a specimen which of
the two mechanisms being discussed plays the major
role.

The same possibility is offered by studying the Hall
effect. According to Ref. 98, in a theory based on a
picture of localized electrons, a correction to the
standard formula of the Hall constant R does not arise,
while the Hall mobility declines logarithmically with
decreasing temperature. On the other hand, the inter-
action between the electrons leads® to appearance of
the correction

Here 7 is the resistance of the specimen, and the Hall
mobility increases logarithmically with decreasing
temperature,

In both cases the role of the temperature can also be
played by the electron temperature. This enables one
to employ a study of the dependence of the kinetic co-
efficients on both the magnetic and electric fields® to
discriminate between the two mechanisms being studied.

Experimental data®”® obtained in experiments with
inversion layers at a temperature T=85 mK and with a
magnetic induction in the range from zero to =1 tesla

28)An additional effect can also appear in a strong magnetic
field.'" Indeed, let the maguetic length Lg be considerably
smaller than the characteristic length over which the random
field varies appreciably on the average. Then a force exerted
by the random field will practically not act on an electron
magnetically localized in a region with linear dimensions of
the order of Ly
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FIG, 5. Exciton instability in a crystal. If the binding energy
of an electron and a hole Wy > E,, then spontaneous formation
of electron-hole pairs bound into excitons becomes energeti-
cally favorable.

apparently indicate the existence of both mechanisms
that give rise to a logarithmic variation of the type of
(3.1). In relatively weak magnetic fields (up to #~0.1
tesla), the localization effect dominates. With further
increase in the magnetic induction, the well~-known de-
localization of electrons takes place, and the interac-
tion between them begins to play the main role.

9. The probiem of the Coulomb gap

The problem of the influence of the interelectronic
interaction on the energy spectrum, the thermodynam-
ics, and the Kkinetics of localized charge carriers in
disordered semiconductors began to attract attention at
the beginning of the seventies.'®*™%" It has been studied
subsequently in the aspect in which we are interested in
Refs. 108-127. The essence of the matter consists of
the fact that (see Ref. 23, Sec. II.16), in the presence
of localized states of acceptor and donor types, the
Coulomb attraction between the localized electrons and
holes can lead to a phenomenon analogous to a certain
extent to ordinary exciton instability (Figs. 5 and 6).
Evidently, instability with respect to spontaneous crea-
tion of “bound electron-bound hole” pairs (see Fig. 6)
must lead to rearrangement of the energy spectrum of
the system: owing to the Coulomb interaction, the
density of states o(E) changes in such a way that the
aforementioned instability cannot arise. Namely, the
value of p(E) must decrease sharply near the energy E
= F,—the Fermi level at absolute zero temperature.?”

48 L36)
Acceptors
£
& £ %

FIG. 6. Instability leading to formation of a Coulomb gap.
As T— 0, the levels of acceptor (donor) type lying above
(below) the Fermi level are filled with holes (electrons);
these states are electrically neutral. One of the types of
excitation of the system consists in transfer of an electron
from a donor (with E=F; <F') to an acceptor (with E =E,> F ),
If the energy of mutual attraction that arises here between
the “ extra” electron in the aceceptor and the hole in the
donor is greater than the difference of “single-electron™
energies E, —Ey, then spontaneous formation of such pairs
becomes energetically favorable.

2UHere and henceforth we shall use the term *““density of states”
in the sense of its exact multielectron definition (see Ref. 23
and Appendix ITI). Here the energy argument E need not coin~
cide with any ‘single-electron’” energy.
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This is commonly referred to as the appearance of a
Coulomb gap—a region with a sharply decreased densi-
ty of states.!%

According to Refs. 108, 111, 112, 117, 120, 121,
113, 115, and 116, at 7= 0 the density of states,
calculated with account taken of the interaction between
electrons, vanishes at E= F,. However, at values of E
arbitrarily close to F,, the function o(E) already differs
from zero (“soft gap”''?). On the other hand, in Refs.
106, 109, and 119, the value of p(E) was still found to
be finite, though diminished in comparison with the val-
ue obtained upon neglecting the interaction between
electrons. Apparently, the difference in results in-
volves the differing treatment of the random nature of
both the “single-electron” energies and the distance be-
tween the localization centers; complete agreement
here has not yet been attained.

In a three-dimensional system (in the sense of Ref.
23), the density of states p(E) as E~ E, is approximated
by the following expression!? 113;2®

(9.1)

Apparently this is confirmed also by numerical calcula-
tion.12®

PUE) =507 (B) (E—FoP+ ...

However, we note that this result is most likely of a
modeling nature. On the other hand, the conclusion that
o(F,) is zero has been derived'!®*!% without any assump-
tions of a modeling nature. The only essential point
was that in a condensed medium the electric field is un-
avoidably screened, e.g., by the spatial redistribution
of the delocalized or localized charge carriers. We
should note in this regard that one can approach the
question of taking account of screening in two ways.

First, one can formally sum all the diagrams for
which the ordinary loops play the role of skeletal
loops, e.g., by calculating the potential of a point
charge. This approach, which was adopted in Refs. 113
and 115 and in the book of Ref. 23, is apparently conven-
ient for proving general theorems. However, it can
prove ineffective in concrete calculations if one does not
restrict the treatment to some particular form of per-
turbation theory.

Second, one can explicitly solve the ordinary self-
consistent Poisson equation, the right-hand side of
which involves the bulk charge density, the latter de-
pending on the sought potential. Probably this approach
is useful for numerical calculations. However, being
essentially approximate, it can lead to extra complica-
tions in discussions of a general nature. Which of the
two cited approaches one should choose in any particu-
lar problem is a question of convenience.

28)0f course, the notation of the density of states in this form
does not at all imply its analyticity as a function of E — F,
even if we add to the right-hand side of (9.1) another con-
stant!!? or several of the next terms of the expansion.!'> We
assume only the possibility of such an approximation of p(E)
in the region E ~ F,, but not at all the possibility of expanding
the density of states in an absolutely convergent series in
powers of (E —Fg).
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Naturally, the appearance of a Coulomb gap should
affect the thermodynamic and kinetic characteristics of
the system of electrons being discussed. First let us
turn to the thermodynamics.

As is well known, one can find the thermodynamic
characteristics of a material by specifying the number
of particles as a function of the temperature, the mag-
netic induction, and other quantities of this type. On
the other hand, the following general formula holds?:

N—

_V__Sp(E) nr (E) dE. (9.2)

Here V is the volume of the system, while
nF=[exp ( E;F )—{— 1]'1

is the Fermi function. The smoothed density of states
p(E) is given by the formula

0 (E) =2 (SpIm Gy (E)) =p (E, T, F). (9.3)
Here G, denotes the Fourier transform of the retarded
single-particle Green’s function, while the angle brack-
ets indicate the need to average over the random field.

The formulas (9.2) and (9.3) are exact. They hold for
any system of interacting particles, and do not involve
any assumptions whatever of modeling type nor classi-
fication of elementary excitations in the system, etc.
However, using them in concrete problems can face
serious difficulties, since the density of states defined
by Eq. (9.3) generally depends itself on the temperature
and on the Fermi level. The situation is eased only for
low enough temperatures when—under certain condi-
tions—a theorem holds that was proved in Ref. 128.

For convenience we have presented its proof in Appendix
II together with certain supplements. This theorem
states that one can take as p(E) the value of the density
of states calculated for 7= 0 with an accuracy no worse
than quantities of the order of T*. Here the tempera-
ture-dependence of the number of particles (using the
thermodynamic variables T and F) is determined only
by the argument T, which explicitly enters into the
Fermi function. The conditions for applicability of the
theorem are pointed out in Appendix II. These condi-
tions are fulfilled in the problem of the thermodynamics
of a system with a Coulomb gap. This implies, in com-
bination with Eq. (9.1), that the electronic heat capacity
of the (three-dimensional) system under consideration

(at constant volume) is a cubic function of the tempera-
ture23,115,116:

ey~ T3

(9.4)

We note that this conclusion is based solely on a single
assumption of modeling type, which is Eq. (9.1).

On the other hand, a different relationship was derived
in Ref. 125 for the heat capacity at low temperatures:

ey ~ T |InT |, (9.5)
Here the following formula was used:
p{E) ~ (1 g25-) 7" (9.6)

The latter was derived by the authors by using their
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self-consistent equation for the density of states®® (our
notation is not the same as the one used in Ref. 125).
Apparently it would be premature to enter here into a
detailed discussion of this equation (the authors them-
selves!?® gave a preliminary evaluation in the cited arti-
cle). However, we should note that the derivation of Eq.
{9.6) seems to be not entirely free of objections, even
within the framework of this equation. One of these
consists of the following. In Ref. 125 the probability
F(r, w) of formation of a “pair” excitation is first intro-
duced, i.e., the probability that there is a node occupied
by an electron in the interval dr, about the point r,, and
an empty node in the interval dr, about the point r,, with
the energy w needed to transfer the electron from the
latter to the former node assumed to be fixed. Then
the interaction of these pairs (“dipole excitations” in
the terminology of Ref. 125) is examined. To do this
one writes the self-consistent equation for the function
FAr,w), where r=r, —r,. Here the latter is implicitly
identified with the conditional probability of creation of
a pair of excitations with the parameters r’ and w’ at
the distance s from the coordinate origin when the pair
indicated above is situated near the origin. However,
as is known, this conditional probability differs from
F|r,w] by the factor of the correlation function. Thus,
the latter is considered constant in Ref. 125. Is the
singularity of (9.6) [and hence of (9.5)] conserved when
one rejects this assumption, and also takes into account
the unavoidable screening of the interaction between the
dipoles?

The experimental situation is as yet not fully clear.
On the one hand, perhaps the cubic relationship (9.4)
is difficult to distinguish against the background of the
heat capacity of the atomic matrix. On the other hand,
as yet (December 1981) no experimental indications
have appeared of a singularity of the type of (9.5), inso-
far as the author of this review knows.

On proceeding to the role of the Coulomb gap in kine-
tics, we note first of all that it is essentially assumed
in the standard theory of hopping conductivity with a
variable hop length that the density of states at the
Fermi level differs from zero. Here the temperature-
dependence of the hopping conductivity o, is given by
the expression

dp ~ exp [— (-—TTL)”‘] .

Here the “Mott temperature” varies as T,~p™! (see Ref.
23, Sec. IV.10; at a low enough temperature we can here
replace F with F,). Under the conditions of (9.1), in-
stead of (9.7), the standard percolation procedure
leads!07-111.126.131 t4 the relationship

(9.7)

Ty

Gy ~ exp (_(T)i/z—-

I (9.8)

Here we have Tj+T,.

2)An analogous result was obtained 1*¢ by a numerical method.
Unfortunately, owing to the unavoldable approximations
adopted in this study, the degree of reliability of the extra-
polation made there is not fully clear. Also the relationship
of the density of states studied there to that appearing in
Eq. (9.2) is not fully clear.
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However, it has been noted!*®119.123,127 that gnother
factor can play a role in addition to the change in densi-
ty of states: simultaneous correlated displacement of
many electrons. One can distinguish two types of such
hops.

First, when an electron hops between two centers of
localization (atomic sites), a redistribution of the other
electrons in space also occurs near the starting and end
points. Usually this is referred to as the polaron effect,
with the idea that “polaron” hops are occurring, rather
than “pure electron” hops.® According to Mott,'*? one
again obtains here the formula (9.7) with the former
value of T,, but with a diminished {and temperature-
dependent) coefficient in front of the exponential.

Second, a cascade process'?*!27 can occur, which
amounts to a set of simultaneously occurring “single-
polaron” hops. According to Pollak,'?” here the tem-
perature-dependence of the hopping conductivity proves
to follow a power law:

oy ~ TP (9.9

with an exponent p difficult to determine.

However, we note that both Mott and Pollak did not
employ the density of states in the form (9.1), while ap-
parently assuming that, when E= F,, the density of
states has only a dip, but is not zero. Further, as was
noted in Ref. 123 itself, the result (9.9) was obtained by
a simple maximization of the probability of hopping with-
out taking percolation considerations into account. All
this renders the theoretical situation not entirely clear
at present. The experimental situation is also not very
clear. Apparently the relationship (9.8) was discovered
in Ref, 132, and the power-law relationship in Refs. 133
and 134. Nevertheless, for a final assurance that these
effects involve precisely the existence of a Coulomb gap,
one would wish to have experimental data on other char-
acteristics of the specimen—the electronic heat capaci-
ty and the magnetic susceptibility, as well as the tem-
perature- and frequency-dependences of the hopping
conductivity in an alternating field, o,{ w). According to
Ref. 116, one should expect here the following relation-
ships (at low temperatures and high enough frequencies,
at which one can restrict the treatment to phononless
transitions):

T4, T>»ho,

Reah(m)~ao(m)(m‘ T < ho (9.10)

We have here denoted by o,(w) the real component of
the hopping conductivity at the frequency w that would
have been obtained in the absence of the Coulomb gap.
The explicit expressions for oy (w) are well known,2%13%

"'°’Apparently, if we employ the term “polaron” here, we should
add to it the word “electronic,” since an ordinary polaron,
as we know, amounts to an elementary excitation caused by
the interaction of charge carriers with the lag polarization
of the atomic matrix.
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lll. THE “TAIL” OF THE INTERBAND LIGHT-
ABSORPTION COEFFICIENT IN A DISORDERED
SEMICONDUCTOR

10. Introduction

One refers to a “tail” of the absorption coefficient
(“optical tail”} when photons are absorbed with energies
smaller than the optical width of the forbidden band E .
In the physics of weakly doped crystalline semiconduc-
tors one usually understands here that the concept of
the “tail” does not include light-induced electron transi~
tions between discrete levels and the conduction or hole
bands. However, in a disordered semiconductor, in-
cluding a heavily doped one, strictly speaking, the
spectrum of discrete levels in the mobility gap becomes
everywhere dense, and this reservation can lose sense.

The light-absorption coefficient a in the region of the
tail is very often described by a formula that has be-
come called the Urbach rule:

Eg—h
a=amexp(__ﬂ__w_“‘)A (10.1)
Here W is a parameter independent of the frequency,
while the pre-exponential coefficient o depends on the
frequency relatively weakly.

Apparently this relationship was first established by
an empirical method in Ref. 137, in which light absorp-
tion was studied in alkali-halide crystals. Subsequently
a relation of the form of (10.1) has been repeatedly ob-
served in the most varied materials and under different
experimental conditions.3

According to Ref. 137, in ionic crystals the parame-
ter W is approximately proportional to the temperature
T. This conclusion has been confirmed also in a num-
ber of other studies; it has proved to be valid also as
applied to crystals of a different type if the temperature
is not too low. Thus, in strongly doped (and not too well
compensated) p-type gallium arsenide,'®®*'% a linear
temperature-dependence of W was observed down to
~100 K, becoming considerably weaker with a further
decrease in temperature. In strongly doped and com-
pensated semiconductors and also in amorphous ma-
terials'#*1% and glasses,!*”"'" the temperature-depend-
ence of W is also not very substantial, although some-
times appreciable.®’ On the other hand, a dependence
of W on the concentration of impurity is clearly visi-
ble.¥? As the latter declines, W also declines, and the
effect becomes very small. The dependence of W
on the conditions of preparation of the specimen is also
very appreciable'*3:144 (ip the cited studies the absorp-
tion of light in amorphous silicon films was studied).
This suggests the conclusion that W declines as the con-
centration of structural defects in the material de-
clines.?

3)0ne can find a rather complete review of the experimental
data accumulated up to 1971 in Ref. 138,

3241 line with what we have said in the Introduction, we are
restricting ourselves to the minimum of literature refer-
ences, and the author of this review hopes that those inter-
ested will not anathematize him for it: just a list of the last
names would occupy more than a page here.
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A substantial role played by structural defects in the
formation of the optical tail is also evident from experi-

ments on light absorption in radiation-damaged materi-
als.”‘-”"’

Recently the problem of the light-absorption coeffi-
cient in amorphous materials, especially in amorphous
silicon, has become rather pressing in connection with
the prospects of applying them in various photoelectric
devices, including solar cells.!™ For this reason it
seems expedient to summarize briefly here the funda-
mental theoretical results obtained up to now.

11. Phonons and static disorder

Apparently the first convincing theory that allows one
to explain the Urbach rule in ionic crystals was pro-
posed in Ref. 174. The idea is very simple: one as-
sumes that the photon supplies only a part of the energy
needed for transition of the electron from the valence
band to the conduction band, while the energy deficit
E,—hw is covered by simultaneous absorption of pho-
nons. Consistent application of the theory of many-pho-
non transitions indeed allows one to derive an expres-
sion for a{w) that satisfactorily approximates Eq.
(10.1)*7%

e

(11.1)
Here ¢, and ¢, are constants characterizing the energy
of interaction of the electrons with phonons and the form
of the phonon spectrum. As T —~0, naturally, the effect
vanishes owing to the disappearance of phonons that
might be absorbed. Subsequently the ideas of Ref. 174
were transferred'™ also to the case of optical transi-
tions between the conduction (or valence) band and local
levels lying in the forbidden band.3

On the other hand, one can hardly explain the low-
temperature component of the absorption coefficient in
strongly doped (compensated) amorphous and vitreous
semiconductors, nor its dependence on the conditions
of specimen preparation, without taking into account
the effect of the static disorder in the arrangement of
atoms on the energy spectrum of electrons and holes.
In other words, one must study the absorption of light
in a random field. Here, as always happens in such
problems,® the formula for the experimentally ob-
served absorption coefficient can contain only quantities

34)

3 mportant studies*®'2? have recently appeared that are de-
voted to a more detailed treatment of the Urbach rule on the
basis of the concept of multiphonon transitions, However,
we note that the following remarks apply to them as well.

3Ap attempt was made in Ref. 158 to explain the tail of the
absorption coefficient in vitreous arsenic sulfide by the in-
fluence of the zero-point vibrations of the atomic matrix.

In the range of phonon energies of about 0.3 eV, the experi-
mentally observed o {w) was satisfactorily matched. How-
ever, this study dealt with absorption involving transitions
between the conduction band and a local level lying near the
middle of the mobility gap. The problem of the dependence
of a on the conditions of specimen preparation is blurred
here to a considerable extent.
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averaged over all configurations of the random field.%®
They are all expressed in terms of correlation func-
tions of the form:3®

Wolry o) = U@) ... Ul (11.2)

Here the angle brackets denote the averaging noted
above, while as before, U(r) is the fluctuation in the
potential energy of an electron at the point r: U=V
-(V), where V{(r) is the potential energy of the electron
for some fixed configuration of the atoms. We note that
the “effective” potential energy remaining after remov-
ing the periodic component V_ . describing some auxil-
iary ordered system is used most often for ¥(r). For a
strongly doped crystalline semiconductor, V  is sim-
ply the potential energy of an electron in an ideal crys-
tal (as derived, e.g., in some particular variant of the
single-electron theory). The choice of V. for an
amorphous or vitreous semiconductor is less unequivo-
cal.?® In essence, by subtracting V,er W€ are using the
same method as in the theory of polarons!™; here the
final expression for the experimentally observed quan-
tities contains only quantities of the type of the effective
masses corresponding to the problem with the potential
energy V... One must treat them as parameters of the
theory to be determined experimentally (for more de-
tails, see Ref. 23, Sec. I1.8).

An essential point below is that the effective potential
energy can depend on the band index. Correspondingly,
one sometimes writes U (r) instead of U{r), where ! is
the band index. Similar indices appear for the function
¥,. For example, we face a situation of this type when
the random field stems from elastic stresses produced
in the atomic matrix when structural defects of some
particular type arise in it: generally the deformation
potentials for the conduction and valence bands differ
and can even have opposite signs.

In the macroscopically homogeneous system treated
in this section and the next two sections, the function
¥ _can depend on only n» -1 differences r, - r , etc. We
shall be especially interested in the binary correlation
function of the random field ¥, (r,,r) =¥(r, - r,), since
only quantities associated with it enter into the results
obtained up to now. Its explicit form (just like the form
of all the rest of the functions ¥ ) depends on the nature
of the forces acting on the electrons, or as one says,
on the nature of the random field. General considera-
tions imply only that the function ¥(r) must be bounded
and must fall off to zero as r—=.

Three fundamental types of static random fields have
been treated up to now in the theory of disordered sys-
tems.

3)Further, to a considerable extent this section repeats the
content of one of the sections of the book of Ref. 23, so that
we have omitted the detailed conclusions and literature refer-
ences glven in the cited book. At the same time, for the
reader’s convenience, it seemed reasonable to repeat here
the fundamental physical arguments and results,

38)gometimes these functions are not introduced explicitly by
employing directly the distribution function of any of the
quantities of physical interest (e.g., the value of the in-
tensity of the random field). Of course, these two approaches
are completely equivalent.
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a) Coulomb field.*” This is commonly taken to mean
a screened field created by a set of point charges situ-
ated at random throughout the specimen (with or without
some correlation between the coordinates of the charged
centers). For example, such a field is created by the
ions of a foreign dopant whenever no role is played by
relatively small distances between them such that the
ions cannot be treated as point charges. Here the
screening arises either as a result of a spatial redis-
tribution of the free or (in a compensated specimen)
bound charge carriers, or because of spatial redistri-
bution of the donors and acceptors themselves that
arises in the process of specimen preparation. The ex-
pressions for the corresponding screening radius, 7,
=« are well known in a number of cases ?%12%:177 Be-
low we shall treat » simply as a phenomenological pa~
rameter. Evidently in such a field the function V, and
hence also ¥, does not depend on the number of the
band. Let us restrict the treatment to the very simple
case in which the impurity ions are uncorrelated in
space, while the potential energy V, of an electron in
the field of an individual ion is given by the ordinary
Debye expression

Zqe?
Vo(r)= E: exp (—xr) »

(11.3)

Here the subscript a specifies the type of impurity, e

is the charge of an electron, and Z is the charge of the
ion in units of e, while ¢ is the static dielectric per-
mittivity of the material. The overall potential energy
V of the electron is given here by the summation of the
expressions (11.3) over all the ions, while we obtain the
following expression for the binary correlation func-
tion:

‘F(r):znnf:‘" exp(_rLu). (11.4)
Here
n==2nazz (11.5)

is the effective concentration of the charged impurity.

Also the intrinsic (in the sense indicated in Ref. 23,
Sec. I1.8) random field in disordered semiconductors
proves to be of Coulomb nature when the chemical bond-
ing has even partially ionic character and only short-
range order exists. In particular, such materials in-~
clude the vitreous chalcogenide semiconductors—arsen-
ic selenide and sulfide, etc. In general one cannot use
Eq. {(11.4) in this case, since correlation unquestion-
ably exists in the arrangement of the intrinsic (non~
impurity) atoms of the material. However, in contrast
to crystals, the corresponding correlation length r_ is
finite in noncrystalline materials. If it is small in com-
parison with the screening radius, then if we neglect
quantities of the order of ».r;', we again obtain
Egs. (11.4) and (11.5). Here, in contrast to doped
crystalline semiconductors, the subscript a specifies
the chemically different types of atoms of the main ma-
terial, and we must take n, to mean the concentration of

3D7o avoid misunderstanding, we stress that the term “Cou-
lomb” is used here only in the narrow sense pointed out
below.
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atoms of the given type, while Z  is the corresponding
fractional ionic bond character.

b) Smooth field. This is what a field from any source
is called if on the average it varies sufficiently smooth-
ly in space. Namely, let us introduce the quantities

Py = (U (r)),
s — , (11.6)
Y2=VeVe ¥ [(r—1) [erme = (VU)D).
Their physical meaning is obvious; we note that they do
not depend on r in the macroscopically homogeneous
system that we are treating. Further, let us denote by
m the smallest of the effective masses corresponding
to the auxiliary problem pointed out above. Then the
condition for “sufficient smoothness” is reduced to the
inequality
A2y
4m\pf/2

<1. (11.7)

The explicit form of ¥(r) plays no role here. The ex-
perimentally measurable quantities are expressed only
in terms of the parameters ¥, and ¥,.

A smooth field arises, for example, under conditions
in which one can replace a system of point charges with
a continuous charge distribution, i.e., shift to a formu-
lation of the problem characteristic of Lorentz elec-
trodynamics.?® In particular, this is the situation when
the random field is created by a system of three-dimen-
sional extended defects of technological origin chaotical-
ly arranged in the specimen or by defects of the type of
clusters arising in the specimen (including crystalline
defects) due to neutron irradiation.7®7?8

Defects of this type also arise in crystals.?**?** For
this reason many specimens that had previously been
considered pure and “defect-free” actually may not be
so. We note that, precisely because of its smoothness,
the random field being discussed may not—in a certain
temperature region—affect too strongly the mobility of
the charge carriers (the appropriate formulas were de-
rived in Refs. 215-217). At the same time, the influ-
ence of this field can affect the more subtle effects, in
particular the magnitude of the optical tail. In this
sense perhaps one must include even many crystalline
specimens—and not at all only those strongly doped—
among the disordered materials.

Thus the study of effects involving the existence of a
smooth random field (e.g., the discovery of a tail of the
absorption coefficient in a weakly doped crystal) can
serve for non-destructive quality control of specimens.
As we shall see below (Sec. 13), the same is true of
“pure” amorphous silicon, i.e., not doped with hydro-
gen, fluorine, etc.

Finally, a smooth field of any origin can appear in
the presence of intermediate-range order in the ar-

%¥)Non-random force fields of this type are very well known in
semiconductor physics. They arise in nearly every n—p
junction if the Debye length is great enough in comparison
with the de Broglie wavelength (in this case one must simply
insert the potential energy of an electron and the modulus of
its gradient into (11.7) instead of ¢}/? and ¥1/?),
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rangement of the atoms.!® 39

We note that the Coulomb field is not smooth, what-
ever the screening radius 7, is. Actually, we can easi~
ly convince ourselves that in the case of (11.4) the pa-
rameter i, diverges [owing to the singularity of the po-
tential in (11.3) at small distances]. Formally this in-
volves the singularity of the second derivatives of ¥
with respect to the components of the vector r. The
binary correlation function of a smooth isotropic ran-
dom field can contain only integral powers of r2.

¢) Field of short-range forces. The meaning of this
term in this case needs no explanation. A random field
of this type arises, e.g., as a result of a not fully or-
dered—including random disorder—arrangement of
atoms in a homopolar material. Upon considering the
potential energy (or the pseudopotential) of an electron
in the random field as the sum of its energy V_ in the
field of the individual atoms, we can easily convince
ourselves that the bindary function ¥(r) differs appre-
ciably from zero only if the distance » does not exceed
the range of the corresponding forces. If the latter is
considerably smaller than the other characteristic
lengths of the problem (e.g., the wavelength of the light,
if one is referring to light absorption, the localization
radius of an electron, etc.), then one can approximate
the function ¥ with the expression

¥ (r) = @b (r) (11.8)

(the “white-noise” case). Under certain conditions the
same formula also characterizes the field of elastic
deformations arising from fluctuations of composition
in an inhomogeneous solid solution. Here &, depends on
the band indices ¢ and v. One can find explicit expres-
sions for the parameter $, for the two stated cases in
the book of Ref. 23.

The function (11.8) is the “most singular” one of those
that we have treated. For it, one can determine neither
the parameter i, nor . The role of the latter is played
by the guantity

0, = S ¥ (r) dr.

We note that the correlation functions of Coulomb and
smooth fields are characterized by at least two inde-
pendent parameters, of which one determines the mean
length of the fluctuations, and the other determines the
correlation radius, i.e., the distance at which the func-
tion ¥(7) falls off rather rapidly. In a smooth field
these are i /2 and (¢,/¢,)*/2, and in a Coulomb field
they are 4}/%=(2mnfe*r,c™)'/? and 7,. On the other
hand, only one parameter enters into the right-hand
side of (11.8): &,. The correlation radius was formal-
ly assumed to be zero. The latter circumstance deter-
mines the special simplicity of the function in {11.8),

3%'The somewhat vague term “intermediate-range order” that
we have just used has been defined up to now in a more or
less intuitive way. It means only that we are dealing with a
distribution of atoms that are ordered, e. g., within a region
with linear dimenslons of tens of mean atomic distances,
rather than within one or two coordination spheres or
throughout the specimen.
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which has for this reason enjoyed great popularity
among theoreticians. There are problems in which the
approximation (11.8) is admissible and quite sufficient.
However, in studying the density of states or the light-
absorption coefficient, the form of the correlation func-
tion, and especially its analytical structure, affects the
result,

12. The random field and the Urbach rule

The frequency-dependence of the light-absorption co-
efficient of semiconductors having a random field has
been calculated in a number of studies. Table I sum-~
marizes the results obtained®® under the assumption that
E_> W, neglecting the interaction of the electrons and
holes with phonons, and without taking into account the
creation of excitons. The latter effect hardly plays a
role in semiconductors with a Coulomb random field,
since at large impurity concentrations the screening
radius proves to be small. If it is smaller than the
Bohr radius of an exciton (as happens under conditions
of strong doping), then the exciton does not exist at all
as a stationary state. In a material with a smooth field
that does not depend on the band number, excitons can
exist if the value of W is smaller than the energy of ion-
ization E; of an exciton. In the converse case the forces
exerted on the electron and hole by the random field
‘“tear the exciton apart” (under the stated conditions
they are oppositely directed). As soon as the inequality
W <E, holds, one must replace the quantity W with

L)

W= Time WG

(12.1)

Here we have
mpet
Wo = o -
The “tail” corresponds here to the region of energies
lying below the unperturbed exciton level:

TABLE I. Frequency-dependence of the light-absorption
coefficient in a disordered semiconductor for fw<E,.

Random field a w
Coutomb (withour cor- | Eq. (10.1) 2,2W g (n}ag)/®
relation in the distri- o eht
bution of point charges) - =
Wa 2eap B mpe?
Ao 19
Smooth Eq. (10.1) (Tn‘f:) , mpt=mot b mid

— 2 2 —_—
Short-range forces ~ exp (-— l/‘E‘T—ﬁB) (@%3%0—"") s m =V mamy

Do, c.v=(Do,cPo,v)!'2

1. The symbols €, mp, and mp respectively denote the dielectric permittivity of the mate}'ial
and the effective masses of the electrons and holes corresponding to the auxiliary prpbl{:m with a
periodic field. For similicity we have assumed isotropic dispersion laws; the general.xzauon to the
anisotropic case'*? reduces to replacing my and m,, by some combinatic;n of effective masses.

2. In strongly doped semiconductors a tail of tﬁe absorption coefficient can be observed onlyv
with strong enough compensation. In the opposite case one will observe the well known Burshtein-
Moss shift instead of a tail (Ref. 24, Sec. XVIII, § 7).

3. The formula for W in a Coulomb field was derived under the assumption that mp <mip.

With the opposite sign of the inequality one must replace ), by mp. )

4. In a Coulomb random field the absorption coefficient is described by Eq. (10.1) only in the
region Eg-tw g 2. Upon further decrease in the photon energy lht? a(w) relationship proves to
be sharper. When E!- two > W, one obtains the following expression instead of (10.1):

a~ expl~((Eg~ ma)lW) » 1115/,
The result obtained for a field of short-range forces holds agymptotically for W Eg—tw.

5. The Tesult for a smooth field has been derived under the assumption that it is Gaussian.*®
The generalization to the non-G case®? red to replacing ¥, with her parameter
of analogous type.
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ro < Eg — Wg.

The problem of the role of excitons in light absorp-
tion in a disordered semiconductor with a random field
of short-range forces has not yet been studied with the
requisite completeness, insofar as we know.

In connection with the results presented in Table 1,
we should make two remarks.

First, in Coulomb or smooth random fields, the fre-
quency-dependence of the absorption coefficient for
Fw<E_does not at all match the density of states (E)
as a function of the energy E in the tail formed below
the bottom of the conduction band or above the ceiling
of the valence band, nor the combined density of states
(for more details, see Ref. 23, Chap. V). Only in a
material having short-range forces do the functions
p(E) and of w) prove to be asymptotically of the same
form, while differing only in the coefficients of VE, - E
and YE,= 7w.? This makes it obvious that the attempts
to employ the data on the absorption coefficient directly
for studying the density of states in the mobility gap that
unfortunately are occasionally being undertaken even
now seems extremely risky.

Second, in recent studies!®:!% using the model of a
semiconductor with a random field of short-range
forces, an expression of the type of {(10.1) has been de~
rived (numerically), both for the absorption coefficient
and for the density of states in the tails near the con-
duction and valence bands (with replacement of E, ~ 7w
by the absolute value of the energy at a given point of
the mobility gap as measured respectively from the
bottom of the conduction band or the top of the valence
band). Since the formula indicated in Table I, just like
the analogous expressions for the density of states,
amounts to an exact asymptotic form of the explicit
analytic expression, we should suppose that the results
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of Refs. 184 and 185 are valid only in a certain re-
stricted energy region. Of course, this does not de-
prive them of interest; on the other hand, it is hardly
possible to accept these results as universal, and ap-
parently it is not justified to compare their calculations
with Coulomb or smooth random fields: the point is
that the systems are physically essentially different.
We also note that the cited studies still have no a priori
estimate of the parameter W (in the notation of Refs.
184 and 185, the parameter I').

It has proved necessary to generalize the results in
order to take into account the interaction of electrons
and holes, not only with the random field, but also with
phonons, first of all in the problem of the optical
tail in crystalline semiconductors.?®® We are dealing
with materials in which indirect transitions would
dominate in the absence of the random field. As the
above-cited studies of B. Esser have shown, the formu-
las indicated in Table I for the Coulomb and smooth
fields remain in force in this case as well; only the
pre-exponential factor a  is changed in Eq. (10.1). In
particular, this factor becomes temperature-depend-
ent—owing to the number of phonons absorbed in indi-
rect transitions. On the other hand, a certain tempera-
ture-dependence also of the parameter W is observed
in chalcogenide glasses.!!:1%7.158 Thig has required
generalization of the theory in order to take into account
jointly both the effect of the random field and of the
possibility of electron transitions with simultaneous ab-
sorption of phonons. Such a generalization has been
proposed in two series of studies (Refs. 186-188 and
189, 190). The former of these studied transitions be-
tween deep local levels lying in the mobility gap, and
between these levels and regions of the continuous spec-
trum (both light absorption and luminescence). The na-
ture of the random field was not specified explicitly—
instead of this assumptions were made on the spectrum
of the discrete levels. They either could be connected
with some type of inherent defects or with fluctuational
defects. In the former case the role of the random
field consisted, by hypothesis, simply of a Gaussian
“smearing” of the peaks of the density of states. In the
latter case an exponential form of the density of states
in the tails was postulated.*® Upon combining these
ideas with the standard theory of many-phonon transi-
tions in solids,'® the authors constructed graphs for the
temperature-dependence of the light-absorption coeffi-
cient in the tail and for the frequency-dependence of the
luminescence intensity of disordered semiconductors
for transitions of different types. Apparently these re-
sults still await comparison with experiment.

The second series of studies dealt with light absorp-
tion in smooth and Coulomb random fields with simul-
taneous emission of an arbitrary number of phonons.
The influence of the random field was treated within the

40guch a semiphenomenological way of taking the random field
into account might cause a certain degree of discontent.
However, it is not superfluous to note that, according to
model calculations,'8!% 3 relationship of this type actually
can approximate the course of the density of states p(E)
over a rather broad interval of energies E.
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framework of the same approximations as in Ref. 23
(both without and with taking exciton effects into ac-
count). Here it proved possible in the Condon approx-
imation to employ the ordinary theory of many-phonon
transitions. As a result, the expression (10.1) was
again obtained for the absorption coefficient (under the
same conditions as in the absence of many-phonon tran-
sitions), but with a function W that depended on the heat-
release parameter and on the temperature. The calcu-
lation was carried out to completion in the case of dis-
persion-free optical {or local) phonons characterized
by the frequency w,. As should have been expected, the
temperature-dependence of W becomes weaker as the
dimensionless {in units of 7iw,) heat-release parameter
decreases and as the following parameter increases:

[=

b=

=t

)

At low enough temperatures, T <« #w,, this dependence
almost vanishes, as should have been expected—hardly
any phonons of the type being discussed remain. At
higher temperatures the curve w(T) proves to be al-
most linear. Thus, apparently one can'® quantitatively
explain the experimentally observed!®”.1%® temperature-
dependence of the characteristic energy W in vitreous
arsenic selenide and sulfide (in line with what we have
said in Sec. 11, the random field in these materials
was assumed to be a Coulomb field).

13. The Urbach rule in amorphous silicon

Upon examining the experimental data on amorphous
silicon, we should note first of all that the problem of
determining experimentally the optical width of the for-
bidden band in a disordered semiconductor is more
complex than in a crystal. Actually, the optical width
of the forbidden band is taken to mean (see Ref. 23,
Secs. 11.12 and V.1) the energy spacing between the
local boundaries of the conduction and valence bands.
However, outside these boundaries the density of states
does not at all vanish—a dense spectrum of discrete
levels lies everywhere there (the tail of the density of
states). Ultimately this gives rise to the appearance
of the tail of the absorption coefficient (“optical tail”)
in the absence of phonon effects. The absence of a
sharp red absorption edge compels us to define E, more
or less arbitrarily. Sometimes the frequency region in
which the light-absorption coefficient is less than 10*
cm™ is assigned to the optical tail. In other studies the
following formula is used for defining £ :

o~ (ho — Ep).

This is often justified when #w>E ?° by extrapolating it
to ziw—E, However, in both cases it remains not en-
tirely clear whether one is attributing here a fraction of
the states to the conduction band {or the valence band
or both) that actually belong to the discrete spectrum.

Further, the very term “amorphous silicon” still
does not characterize the specimen fully. The question
is not only of the natural dependence of many character-
istics of the material on the composition and concentra-
tion of doping impurities and on the method of prepara-
tion, but also of the fact that amorphous alloys of sili-
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con with hydrogen or fluorine {or chlorine) have al-
ready been of special interest for several years. Re-
cent mention has been made of alloys of silicon with
other elements—tin or germanium. Here the concen~
tration, e.g., of hydrogen can amount to 20% or more.
The properties of these alloys and of “pure” amorphous
silicon prove to differ substantially.

It was shown even in the early studies'** 4% that
amorphous silicon (1971 specimen, i.e., not specially
doped), manifests an absorption tail or not, depending
on the conditions of preparation. Here the former pos-
sibility was realized, as a rule, in specimens annealed
insufficiently long (for several hours), but it disappear-
ed on longer annealing. This naturally led to the con-
clusion that the absorption of photons with frequency
ws Eg/ﬁ is not an “intrinsic” property of amorphous
silicon, but a property of a specimen with some type of
structural defects. In later studies (see, e.g., Refs.
146-156) on the alloy of amorphous silicon with hydro-
gen, light absorption in this frequency region was regu-
larly found even under different conditions of prepara-
tion. In specimens containing hydrogen but not especial~
ly doped with boron or phosphorus, the logarithm of
the absorption coefficient & proved to be an almost lin-
ear function of the frequency [i.e., Eq. (10.1) is con-
firmed in the interval of values of a from <10* em™ to
~1 cm™ (this corresponds to photon energies from E,_
~1.7eV tos 1.3 eV). Atthe same time the value of W
varies in the range from =0.05 eV to ~0.09 eV—depend-
ing on the conditions of preparation of the film (in par-
ticular, on the temperature of the substrate maintained
while depositing the film from a glow discharge and on
the temperature of the subsequent annealing). At the
same time, the most frequently employed value W
~0.06 eV%) is obtained also for films produced by sput-
tering. Thus it is not yet entirely clear precisely on
what conditions of preparation does W depend.*® In this
connection we should note that this characteristic ener-
gy depends only weakly on the concentration of hydro-
gen. The idea naturally arises that the fundamental re-
sponsibility for the formation of the optical tail is borne
by the random field, which is not associated with hy-
drogen per se, but with structural defects of technologi-
cal origin, perhaps including also non-point defects,
that constantly and stably arise in the process of forma-
tion of the film. Correspondingly, one can hardly be
amazed at the relationship established experimentally
in the cited studies between the quantities E, and W:

)The value W=0.06+0.01 eV was given in Ref. 154b (the
film was prepared by deposition from a glow discharge}.

21yith a relatively low temperature (100°C) of the substrate
in the specimen-preparation conditions, the Urbach rule
holds in a narrower energy region~—from 1.7 eV to ~1.3—
1.4 eV (depending on the annealing temperature); the latter
energy corresponds to @ = 10> cm™. Beyond this a smoother
dependence sets in—there is a broad absorption band some-
times extending (depending on the annealing temperature) to
0.9 eV. According to Ref. 154a, the light-absorption coef-
ficient in this band involves the concentration of unpaired
spins as determined in experiments on electron paramagnetic
resonance (it can attaln values of 10'® cm™). Apparently
this means that, under the given conditions of preparation,
hydrogen does not block all the ““dangling bonds.”
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the former declines linearly as the latter increases.
One of the possible reasons for this has been pointed out
at the beginning of this section: as the density of states
increases in the tail, the danger also increases of as-
signing them, e.g., to the conduction band. The essen-
tial point here is that the characteristic energy that
determines the density of states in the tail differs from
W only by a factor that either does not depend on the ef-
fective concentration of defects (the case of short-range
forces) or depends on it only very weakly. Thus, in a
smooth field, and also in a Coulomb field with the cor-
relation function (11.4), the corresponding character-
istic energy is ¥}/2= [{0)]*/2. Upon using the expres-
sion for W from Table I, we can easily convince our-
selves that we have the following expression in the case
of (11.4):

VT ~ (a2 (a0 V.

The screening radius », can also depend on »}. Here,
depending on the screening mechanism, one obtains
different powers of n} on the right-hand side of the lat-
ter relationship, but none of them exceeds 3/20 in
modulus. An analogous situation arises also in a
smooth field.

With all the attractiveness of this viewpoint, appar-
ently it still is not the only possible one. The point is
that amorphous-silicon films containing hydrogen prove
to be spatially inhomogeneous on scales that cannot be
taken as microscopic.*®® They can not only contain
internal cavities and/or inhomogeneities resembling
pebbles in shape (with linear dimensions about 1000 A),
but also possess “columnar” structure: a film obtained
by the glow-discharge method is penetrated throughout
by columns with transverse linear dimensions of the or-
der of 10 um. A more complicated structure of inho-
mogeneities is also possible, but only one point is es-
sential in principle: amorphous silicon containing hy-
drogen amounts to an essentially two-phase system.
Here the spatial distribution of either phase is to a cer-
tain extent random. The hydrogen concentration n, in
these two phases proves to be different,'® although it is
not yet fully clear to what extent. However, let the
value of n,; in one of the phases be rather large—so
much so that, despite the small ionic character of the
Si-H bond, the Coulomb random field becomes sub~
stantial, arising from the disordered distribution of
these bonds in space. The expression for W given in
Table I can prove in this case to be rather inaccurate,
since the possibility of neglecting the correlation in the
distribution of Si~H bonds is at best not evident. For
orientation, let us try to use it nevertheless. In the
SiH, molecule the effective charge of an H atom amounts
to —0.05]e|, while correspondingly, that of the silicon
atom is 0.20 |¢}.%® These values can change somewhat
in a condensed medium, but hardly so much that it
would make sense to take this into account in such a
rough orientational estimate. Asthe Bohr radius g,
we shall take the “crystal” value g, =1.5x107 cm. We
note that @i’* enters into the formula for W. That is,
the numerical coefficient here plays no special role.
Then we can easily convince ourselves that one obtains
the value W= 0.06 eV if the concentration of bound hy-
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drogen amounts to about 3x10%2, 2x102% and 1.5 x 1022
cm™ if one is speaking respectively of monohydride
(8i-H), dihydride (Si-H,) and trihydride (Si-H,) groups.
Apparently the first of these values corresponds to the
alloy 8i:H with 20 atomic percent hydrogen. We note
that, if one putatively increases the hydrogen concen-
tration by a factor of five, then W increases by a factor
of only 1.9. This makes it clear that the value of W
found above is not so far from the maximum attainable
in the material that we are studying. If (as seems
probable) the formation of such bonds is energetically
favorable, then the concentration of hydrogen in the
given phase can prove to depend only weakly on the
mean experimentally measured concentration of hydro-
gen in the given specimen.

Apparently both the study of the nature and the role of
structural defects obtained in a stable manner and care-
ful examination of the two-phase system merit more
serious attention on the part of theoreticians than has
been paid up to now. At the same time we should point
out another circumstance that arises in connection with
the optics of a spatially inhomogeneous material. The
point is that both the expressions presented in Table I
and the standard phenomenological formulas of electro-
dynamics employed in processing the experimental data
on light absorption have been derived within the frame-
work of the problem of propagation of light in a macro-
scopically homogeneous medium. What we have said
above makes it clear that this assumption is not fully
justified as applied to films of amorphous silicon. Ap-
parently one can still use the formulas of Table I within
the limits of each phase, but the electrodynamic part of
the problem must be reexamined. Such an attempt has
recently been undertaken®:2® in connection with the
problem of light absorption in films of ¢-Si: H having a
columnar structure. The heart of the matter is evident
from Fig. 7, where such a film is schematically shown
in plan view. The hatched circles are the ends of the
columns, assumed cylindrical for simplicity. Accord-
ing to Ref. 196 the columns consist of “real” amorphous
silicon containing hydrogen, while a medium of not en-
tirely clear composition (“fabric”) lies between them.
We see that we are essentially dealing with a system of
waveguides randomly distributed in space, the columns
playing this role. From the standpoint of ordinary
radiotechnology these are rather strange waveguides,
since they are filled with and surrounded by matter that
absorbs the electromagnetic radiation, but still they
are waveguides with their inherent features.

Let the thickness of the film be L. Then the intensity
S of a wave that has passed through the film in a direc-

FIG. 7. An a-Si:H film as a system of randomly distributed
waveguides.
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tion perpendicular to the plane of Fig. 7 (i.e., along the
columns) is not given by a single exponential function
e™*L, as would happen in a homogeneous medium, but by
an infinite series

S= 3 epe-onL, (13.1)
n=1
Here the ¢, are coefficients that depend on the boundary
conditions at the illuminated surface, while the quanti-
ties o are expressed in terms of the eigenvalues of the
boundary value problem of the propagation of waves in
the system of waveguides being studied (we are select-
ing the numbers @ in increasing order). The essential
point is that they depend also on the light-absorption
coefficients, both in the column (a,) and in the tissue
(a,) calculated as though we were dealing with the cor-
responding homogeneous medium:

_ 4k m
cVeErm

Here o,(0,) and ¢,(¢c,) are the real components of the
electric conductivity and the dielectric permittivity of
the material of the columns (or the medium) at the fre-
quency of the light being absorbed. If we have

(13.2)

@, m

al > 1, anl>1, (13.3)

then only one term, c,e”®%, remains in the series
(13.1). Here the quantity a, is proportional to the less-
er of the coefficients o, and a,. Here we formally re-
turn to the problem of a homogeneous medium. How-
ever, actually a, can depend on the radius of the col-
umns. Thus, if all the columns are identical, a,<« a,,
and the mean distance between the columns is large in
comparison with a;!, then calculation yields®°°

o =y [ 1—0.086 Rl}a )z]“”.

Here R is the radius of the columns, while A is the
wavelength of the light in vacuo. We assume that the
expression in brackets is large in comparison with
210,/ we, and that 0.086)*R™2¢ ! <1,

(13.4)

We see that, even in this relatively simple case, an
attempt to interpret the results obtained in transmission
experiments by using the ordinary formulas of electro-
dynamics entails errors in determining the frequency-
dependence of the light-absorption coefficient. In fact,
under conditions in which the Urbach rule holds, this
can be not very essential, since then a, depends ex-
ponentially on the frequency, i.e., far more strongly
than the second factor in Eq. (13.4). However, the situ-
ation can become very serious if even one of the in-
equalities of (13.3) is not satisfied. Then the right-hand
side of (13.1) does not reduce to a single term, and the
description of the experimental data in the ordinary
language of a homogeneous medium can yield complete-
ly erroneous results. Thus, if we assume, “by defini-
tion”, that

S ~ exp (—al),

we would draw the “conclusion” that the light-absorp-
tion coefficient depends on the thickness of the film in
the absence of any real cause of it.

We note in closing that, as was noted in Ref. 200,
Eq. (13.1) in essence is not necessarily associated with
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the columnar structure model discussed above, Ap-
parently the only essential point is the presence of in-
ternal phase boundaries. It is this circumstance that
gives rise to the boundary value problem, which gener-
ally admits more than one eigenvalue.
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M. Qlivier and F. Boucher, M. Pepper, J. L. Pichard,
and J. Sarma, M. Pollak, and T. Tanaka for kindly
sending preprints.

APPENDIX |. CORRECTIONS TO THE RESULTS OF
THE KINETIC EQUATION FOR 7-0

A dependence of the static electrical conductivity o
on the dimensions L of the specimen can arise also
within the framework of the kinetic equation. This can
happen if, e.g., the charge carriers are scattered by a
charged impurity and the Debye screening radius is
comparable with L (see Sec. I.5). However, we shall
be interested here in the dependence of ¢ on L that
arises when we take into account the corrections to the
kinetic equation. It will suffice below to treat the case
of weak scattering (g > 1) by randomly distributed point
centers that interact with the electrons via short-range
forces,%"52.59.80,85 1,6t ug denote the concentration of
the centers, the concentration of electrons, and the
amplitude of elastic scattering of an electron by an in-
dividual center respectively by n,, n, and ». It is con-
venient to use the graph method; here the dotted lines
in the diagrams will correspond to the factors v, and
the solid lines to the averaged single-electron Green’s
functions calculated with account taken of elastic scat-
tering; each circle corresponds to a factor n,, The
static electrical conductivity (at T= 0) is given by the
expression

k ey
o3 || g ew| G| (L)
Here W(k,k') denotes the two-particle Green’s function:
k K

v [T =8 + B+ 0T

& g

(1.2)

Here, since we are dealing with elastic scattering, we
have k%= k' under conditions of weak interaction. As
one can show,3.%.%% in the higher orders in n with d= 2,
the essential contribution to W(k, k’) proves to arise
from the graphs in which all the dotted lines intersect.
This contribution has the form

%= Q0 +“O>dlz,ﬁ A (L.3)

The contribution from the graph having s dotted lines
is given by the expression

[ 27p (F) ]1
Vir+ofk+k)

W = (nv3)?

(L.4)

Here p(F) is the density of states at the Fermi level,
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v, is the Fermi velocity, and T' is the imaginary com-
ponent of the mass operator associated with the single~
electron {averaged) Green’s function.*® Within the
framework of the model that we have adopted, the ex-
pression for I' is well known:

T = xp (F) nvd (I. 5)

The summation of all such graphs (over s) forms a
geometric progression. Upon summing it, we obtain
Wk, k)= W (k, k')=nu3J (k, k') 1 —nv?/ (k, KO} (1.6)

22
Here we have

2np (F)
Vit og kky (L.7)
Evidently the contribution being discussed is especially
large when (k+ k) ~0, i.e., in back-scattering. Actu-
ally, if we agsume
4Ty vh (k4 k), (1.8)

Jk, k)=

we obtain

r 1+ 58 atKp)
np (F) nv?

'ﬁ’=nu‘[_1+ ]-1_ (1.6')

Here !=(1.2) v T is the mean free path for momen-
tum. In view of (I.5), this gives

= (L.9)
Correspondingly, the second term on the right-hand
side of (I.1) is proportional to

, _tk k)® . k2

Sdkgdk wz’—gdkgdk ST (1.10)
We can conveniently perform a substitution of variables
by taking k+ k‘’=p. Then the following integral appears
on the right-hand side of (1.10):

J=——S dp (L11a)

The upper limit here is not essential for our purposes:
it determines the finite (and independent of L) contribu-
tion to ¢ and g involving the breakdown of the approxi-
mate equation k+ k/ = 0. The lower limit as T—~0 is
determined by the condition—apart from the factor
27—that the wave number must not be smaller than the
reciprocal length of the specimen.?®’ Thus we obtain
(writing out only the value of the integral at the lower
limit and denoting by c,, ¢,, ¢, and 6, some positive
constants and the value of the conductivity obtained
from the kinetic Boltzmann equation):

43) We have omitted the real part of the mass operator on ac-
count of its smallnegs. The valldity of neglecting it is not
always evident, but it does not affect the appearance of the
singularity treated below.

UWhen T =0, another lower bound 1s imposed on the minlmum
value of the wave number. In fact, inelastic scattering be-
comes possible here. Consequently the treatment adopted
above is valid only as long as the length of the specimen is
smaller than the characteristic distance L,y to which an
electron can diffuse in the field of an impurity without under-
going inelastic scattering. When L> L., the lower limit
of the integral in {I.11) must be replaced with Lg;,. Accorad-
ing to Ref. 203, we have L., =y1];/2, where [, is the mean
free path for inelastic scattering.
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a)d=1:

J=—L, g= Loy —c. (L.12a)
Hence we have
¢y dp _ ¢
p=—i——L, Framlr (L.13a)
b) d=2:
J=—lnL, g=ag—clnl. (IIZb)
Hence we have:
c dB»_i_ .
p=—=2, GE=1t- (1.13b)
c)d=3
J =LV, g= Loy + ¢ (L12¢)
Hence we have
g 4B o
p=1 Z Y (I.13¢)

We see that in the three-dimensional case the depend-
ence of ¢ on L is quite insignificant; it vanishes in the
limit as L —«., On the other hand, it is important for
d= 2. This dependence would prove to be even more
important in a one-dimensional system. However, it
is already clear there?®'3® that as 7= 0 the case g>>1 is
not realized, and the entire approach employed in this
Appendix is inapplicable. The appearance of the loga-
rithm of a dimensioned quantity in Eq. (1.12b) need not
cause confusion: we were interested only in the singu-
larity of the function g as L ==, without paying atten-
tion to the upper limit of integration. It turns out in an
exact calculation that ¢, = 772, while InL in (1.12b) is re-
placed by InL/l, where 1, is the mean free path for mo-
mentum [here one can calculate it by taking into account
only the first term in (I.1)].

APPENDIX iI. ON THE ROLE OF THE TEMPERATURE-
DEPENDENCE OF THE DENSITY OF STATES AT LOW
TEMPERATURES

The calculation of the thermodynamic characteristics
of a system of many particles at low temperatures is
considerably facilitated if one employs the identities
that arise under certain conditions from the fact of
equivalence of two definitions of the number of particles
N.!1*® On the one hand, the latter is given by the ther-
modynamic relationship*#®

--(2),

(11.1)

Here § is the thermodynamic potential in the Gibbs
grand ensemble, T is the temperature in energy units,
and F is the chemical potential (Fermi level). On the
other hand we have

= o) ne ;). (11.2)

Here we have ny(E) = [expE - F)+1]?, 8= T, and
Pl E) is the density of states as defined by the equation
(IL3)

Here V and G, denote respectively the volume of the
system and the retarded one-particle Green'’s function.

2
0 (E)=—-SpImG; (E),
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The integral over the energy variable E on the right-
hand side of (II.2) is taken over the entire energy range
in which p(E) #0. The formula (I1.2) is exact; it holds
when applied to any system of interacting particles.
The effects of interaction are described by the mass
operator M, that eaters into the expression for the
Green’s function. Namely, in an arbitrary representa-
tion given by the quantum numbers », we have'*®

Gl A E)=21(A [ E—~Fy— M [ A7), (11.4)

Here 2, is the additive component of the complete
Hamiltonian # of the system.?s) Naturally, the mass
operator generally depends on any intensive variables
that characterize the given system of particles, includ-
ing the concentration of particles and the temperature.

Let us denote by #” the Hamiltonian of the system, in

which we have included the term —-FN:
H' = 5 — FN. (I1.5)

We obtain from the condition of normalization of the

total density matrix:
Q = —TlIn Sp exp (—P3¢’). (II. 6)

Let us differentiate this equation with respect to T for
F= const, and then with respect to F with T= const,
using the thermodynamic relationships (II.1) and

sa= (2,0 (3),=(45),.

Here S is the entropy. We obtain the following identi-
ties:

(11.7)

T()p=o——rr (55, (11.8)
and

(HE2) 4v=—rr(25) (IL.9)
or as is equivalent,

(2572 )= (5 )= (5 ), (1.9

Here and below, the angle brackets denote averaging
both over the Gibbs grand ensemble and over the random
field, if such exists.

We note that, as T'=0, the right-hand sides of Egs.
(I1.9) and (I1.9%) approach zero faster than linearly.*®

One can write the expression for {(#%) in a system of
particles having a binary interaction in the form*®*

45 contrast to Ref. 130, where the variable E was measured
from the Fermi level, we shall not specify here the reference
origin of the energy.

4)Here we use the Nernst theorem. This requires clarifica-
tion when studying disordered materials, since the con-
figuration of atoms in a glass and in an amorphous ma-
terial is metastable, rather than being in full equilibrium.
However, we shall be interested here only in electronic
processes. Since the relaxation times of the atomic struc-
ture are large in comparison with the characteristic elec~
tronic times, we are justified in treating the states of the
electronic subsystem in a given external field as determined
by some particular configuration of atoms.
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+oo
<w')=—;;‘1*n_no § dme'“"§
x{EGc M, A5 mH—;(k' | Sy—F | A) Go (A, A3 m)}_

(11.10)
Here G, is the causal Green’s function, we have w= E
~ F, while the integration over w extends over all the
region where the integrand differs from zero. The ap-~
parent lack here of a second Green’s function need not
cause surprise. It has been eliminated by using the
equations of motion for G_; actually this function deter-
mines the mass operator that appears in Eq. (IL.4).

It is convenient to choose the system of eigenfunctions
of the operator #; as the basis system; we shall denote
its eigenvalues by W,. Then, upon expressing the func-
tion G in terms of G,, we can convert Eq. (II.10) into

the more convenient form;'?®

4o

(216")=(56’)—NF=-§-2 S Ak Im Gy (M; E) np (EY(E+W)—NF. (I1.11)
A —w

We must substitute this expression into the identities

(11.8)—(I1.9). Since we envision using them to study the

temperature-dependence of the number of particles and

of the density of states, we note that the chemical po-

tential and the temperature enter into Eq. (II.11) both

explicitly—via the Fermi function, and implicitly—via

the mass operator.*” Consequently we have

(25 )= (55)

o )e= ("o o (5 )

T.M,+'5._v, “F

(I1.12)

The second term on the right-hand side of (11.12)
amounts to a contracted notation of the rather unwieldy
expression

+oo
§()  (aMi(h,ALE)
S dEle' TRyl S

—oo

According to (I11.9), as T~ 0 the first term on the right-
hand side of (II.12) is =N. Hence we can rewrite the
identity (11.9) in the form

8 (a%’) ( M 8

~si (G =T (57 )y (1L.13)

Since generally we have (8M,/8F), #0, this implies that

8(H')
M, TS0 (IL.14)
In view of (II.7) and (11.8), this implies that
50 3
Sy 00 (W;)FE)O 0. (11.15)

This means that, as 7= 0, in calculating N by Eq.
(11.2) we must take into account only the explicit depend-
ence on F contained in the Fermi function.

Now let us turn to the corrections that arise in the
function N{F, T) at a low, but finite temperature owing
to the interaction between the particles. Let us assume
that

M= Mo+ 0M, ()= )+ A(x), N=N,4+ av. (IL16)

Here we understand M,, N,, and (¥), to be the corre-

4UIn principle the single-particle levels W, themselves might
depend on the temperature. Naturally the correction asso-
ciated with this must be taken into account in calculating N.
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sponding quantities at 7= 0, while AM, AN, and a{%)
are the temperature corrections. Below we shall as-
sume that AM « M, (for brevity we shall not write the
absolute-value symbol here and below, albeit under-~
standing it wherever necessary). However, we note
that this assumption may not be fulfilled. Actually,
upon using the formula for finite increments, we can
write

M.

aM = (—(?T_)T:T'T'

Here we have 0 < T* < T. This expression is actually
small in comparison with M, if the mass operator has
no poles (“normal” system) or if the positions of these
poles do not depend appreciably on the temperature.
However, if such a dependence exists, then the “cor~
rection” AM can prove to be arbitrarily large in com-
parison with M,. Here the representation of the mass
operator in the form (II.16) loses meaning, and the con-
clusions that follow below generally prove unwarranted.
We shall discuss the problem of when does such a situa-
tion arise at the end of this Appendix, restricting the
treatment for now to the case aM <« M,. Then the tem-
perature correction to the number of particles associat-
ed with aM is

8N = () p. pg SM+0 (AHP. (IL17)
According to Eq. (II.15) the first term here equals zero.
To estimate the second term we note that, according to
the Nernst theorem, the temperature-derivative of

) must vanish as T~0. In fact, in the variables T
and F we have'?®

o ({§¥) — TS — FN) = —8§dT — N dF,

That is, we have
(?_?TQ);FT (%)F+F (Z_i)r ™"

As T—0, the right-hand side of (I1.18) vanishes no more
weakly than linearly. Now, upon using Eq. (II.11) and
the relationship

ong
(7

(I1.18)

)T*o — T (E—F),

we can easily convince ourselves that, as T—=0, the
derivative (iiMr/iaT)F also declines no more weakly than
linearly. Hence we have

AM = 0(T%), AN =0(TY. (11.19)

We note that this is a “minimal” estimate: in various

special cases AM declines even more strongly with the
temperature. However, for our purposes the estimate
(I1.19) suffices.

Thus, in treating the low~temperature thermodynam-~
ics of a degenerate system of Fermi particles, we are
correct, apart from quantities of the order of T4, in
ignoring a possible temperature-dependence of the den-
sity of states—if the “single-electron” levels W, them-
selves do not depend on the temperature and the poles
of the mass operator do not shift appreciably with the
temperature.

To illustrate under what conditions such a dependence
might arise, it is convenient to treat a simple model
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example—a problem with a very simple Hamiltonian of
the Hubbard type describing the short-range attraction
and repulsion forces. Let us have a system of elec-
trons moving in some atomic matrix, not necessarily
ordered. Let us number the nodes of this matrix with
the subscript g and denote by o the spin quantum num-
ber of the electron. Let us choose as the basis system
one of orthogonalized wave functions describing the
electrons localized at the different nodes (in an ideal
crystal these would be Wannier functions). We shall
denote the corresponding single-electron energies by
W; they can depend both on the number of the node and
on o; one value of ¢ can, generally speaking, corre-
spond to different values of W, corresponding to the
ground and excited single-electron states. Then the
role of A is played by the set of numbers {g, W, ¢}; we
have

Hy= 2 W;axa;,,
A

and the Hamiltonian in which we are interested has the
form

aﬁ:@@.,Jr—;. 2 (o A I VIA, A adada, o, (11.20)

Ay, Ay

A A
Here the symbol Z,‘ can denote either the sum or the
integral, and we have

1
(i Ao | VAL M) =5 Vedg g8

61 J’.g;ﬁs’;g; 5,0180,0;—80,0;80,09)%0,, —04 (11.21)

Here 64’152’ etc., are the Kronecker symbols, while ¥,
is a positive or negative constant.

Let us write in the usual way the equations of motion
for the Green’s functions®®

G, A By=d(anl a)p: Gola, o &y A B)={(agaqay | a}))E:

where a = {g, W,~0}. We obtain

(E—W)G O b B) = — ot Vil (a, i 4, i B, (11.22)

(E—W—V) G (@ a b, & B)=—3= (11.23)
where

na=(83dq). (I1.24)

We note that a third Green’s function does not appear in
Eq. (I11.23). That is, instead of an infinite chain of equa-
tions, we obtain a simple finite system. This involves
the choice of the highly radical approximation (11.21).

For simplicity, let the single-electron energies W,

be independent of the spin orientation. Then we have
ng = ng = n {W). (H.ZS)

Upon solving the system of equations (II.22) and (II.23)
and taking into account the equation

nw =2 dEIm G 4, % B) e (8), (11.26)
we obtain
60 4 Bym — o LW A —m Vo (11.27)

M E-W—TVy(E—W) '

48)The symbols and the normalization of the Green’s functions
are the same as in the book of Ref. 130.
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L (11.28)

n
Ga(@ ai b ks E)=—5—- w7,

ny (W)

W S e ) e W T

(11.29)

Let us denote by p,(W) the density of single-electron
states of energy W. Upon using the formulas (I1.3) and
(I1.27), we find the density of states of the many-par-
ticle system under discussion:

P (E) = 0o (B) (1 — n (B)] 4 py (B — Vo) n (E — V). (11.30)

The right-hand side of (I1.30) depends on the tempera-
ture. However, a simple investigation shows that, if
the Hamiltonian of (I1.20) describes attractive forces,
then at low enough temperatures this affects only the
magnitude of the right-hand side of (II.2), but not its
temperature-dependence. On the other hand, for re-
pulsive forces the situation can change. This fact has
an entirely obvious origin. Indeed, when T «|V,| the
repulsive forces rule out the possibility of two elec-
trons occupying the same node. This is the same situa-
tion as occurs in the problem of the distribution of
electrons over impurity atoms in semiconductors. As
is known,?® in the case of “simple” centers possessing
only one level each and capable of capturing only one
electron, the mean occupancy number of the impurity
level f, has the form

,t:[iluexp (ﬂT:F_)H]“. (I1.31)
Here g, and g, are the statistical weights of the states
of an empty center and a center occupied by an elec-
tron, while E, is the energy of an electron in an im-
purity level. Evidently, we can rewrite the expression
(II.31) in the form of a Fermi function by introducing the
“effective energy” E= E,+ T Ing,/g,. The correspond-
ing density of states is

p(E)= N8 (E—E}).
Here N, is the concentration of centers,

We see that essentially this is the very same case of
temperature-dependence of energy levels that we have
discussed above (see footnote 47).49

Analogous results also prove to be valid in the prob-
lem with anomalous pairings, which are essential,
e.g., in the problem of the Coulomb gap.'** The cited
study employed the concept of an effective attraction be-
tween electrons and holes (V,>0). Here, in the approx-
imation (II.21), the fundamental equations of Ref. 113
take on the form

(E—W)G(R, R; E) — Von'G' (R, R; E) = —1/2x,
(E +~ W)G' (R, R; E) =~ Vor'G (R, R; E) = 0. (IL.32)
Here we have
n' (W)={(araq)={(aja}), G'(R, R; E) = «a} [a} ». (11.33)

This system of equations (apart from the notation) is
well known in the theory of superconductivity. Evident-
ly we have

E4W

ImG(B)=——=-17_____
4(Wern2vp/e

8 (E— VW7V 6 (E+ /W2 L rovi)].
(I1.34)

9 am grateful to I. P. Zvyagin, who called my attention to
this situation,
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For determining n’, we obtain the standard equation

, Von' tmh(ﬁvm )

T Xwi it

(I1.35)

As we can easily convince ourselves, when gV <« 1,
there is no nontrivial solution for n’.
at low temperatures at which §V,> 1, we obtain

w =g (-t — V2 (11.36)
Here we have

q=—2exp(—;’—7".). (I1.37)
A solution of (I1.36) exists as long as

_<1+2“ (11.38)

As we should have expected, we see that the temper-
ature-dependence of »’ proves to be insignificant as
soon as 8V,>> 1. For the mass operator defined as be-
fore by Eq. (II.4), we now obtain

_Vitdn)—w2

wr =T (11.39)

We see that its pole,
the temperature.

E=-W, does not depend at all on

Up to now we have considered the quantity V, as being
fixed. In averaging over the configurations of the ran-
dom field, we run through all the values of V,. How-
ever, under the conditions being studied, a Coulomb
gap arises only from the configurations in which V,>0
and 8V,>1.
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