УСПЕХИ ФИЗИЧЕСКИХ НАУК

536.764:538.114

ФАЗОВЫЕ ПЕРЕХОДЫ ВТОРОГО РОДА В ФЕРРОМАГНЕТИКАХ В СЛАБЫХ МАГНИТНЫХ ПОЛЯХ ВБЛИЗИ ТОЧКИ КЮРИ

И. К. Камилов, Х. К. Алиев

СОДЕРЖАНИЕ

1.	Введение	639
2 .	Фазовые переходы в изотропных ферромагиетиках во внешнем магнитном	
	поле	640
.3.	Фазовые переходы в анизотропных ферромагнетиках в магнитном поле. Маг-	
_	нитные свойства	647
4.	Скейлинговское описание критического поведения анизотропных ферромаг-	
-	нетиков	654
5.	Фазовые переходы в анизотропных ферромагнетиках в приближении теории	
~	ренормализационной группы	657
ю.	Немагнитные свойства анизотропных ферромагнетиков в слабых магнитных	
	xRIOH	660
7.	Осооенности некоторых динамических критических явлении в слабых маг-	
тŤ	нитных полях	664
ЦИ	итированная литература	669

1., ВВЕДЕНИЕ

В физике фазовых переходов и критических явлений получены результаты, имеющие фундаментальное значение для выяснения природы критического состояния вещества. Многие из них установлены на основе изучения критических особенностей фазовых переходов типа ферромагнетикпарамагнетик в отсутствие внешнего магнитного поля. Исследования фазовых переходов в ненулевом магнитном поле начаты сравнительно недавно.

В магнитном поле парамагнетик по своей магнитной структуре принципиально не отличается от ферромагнетика, ибо симметрия в расположении спинов в них оказывается одинаковой. Обе фазы по магнитной структуре становятся идентичными. Следовательно, магнитное поле разрушает фазовый переход ферромагнетик-парамагнетик. Именно по этой причине принято считать, что точка или температура Кюри является изолированной точкой на $H \rightarrow T$ -диаграмме^{1, 2}. Это утверждение справедливо только для идеальных изотропных ферромагнетиков неограниченного размера. Реальные ферромагнетики из-за наличия как анизотропных обменных, так и релятивистских взаимодействий всегда анизотропны (анизотропия формы, магнитокристаллографическая и обменная анизотропия).

В таких ферромагнетиках, как было показано в работах последних двадцати лет^{3~39}, фазовый переход в области температуры Кюри имеет место даже в присутствии магнитного поля, меньшего полей анизотропии и размагничивания. Впервые сингулярное поведение ферромагнетиков в ненулевом магнитном поле было обнаружено в работе Тенея, Ван-дер-Ховена и Моррузи ³, посвященной изучению поведения теплоемкости EuS в магнитном поле в области точки Кюри. Они пришли к заключению, что критическая точка ферромагнитного сульфида европия не является изолированной точкой на H - T-диаграмме. В последующем Аррот ⁴ указал, что появление линии на H - T-диаграмме ферромагнетика в экспериментах указанных авторов может быть объяснено, если допустить, что однородно намагниченное ферромагнитное состояние не является единственно возможным основным состоянием. Аррот пришел к такому заключению на основе теории Гриффитса ⁵, рассматривающего модель ферромагнетика, состоящего из локализованных в узлах решетки спинов, между которыми существует обменное и диполь-дипольное взаимодействие. Переход осуществляется из ферромагнитного состояния с неоднородной намагниченностью в однородно намагниченное парамагнитное состояние. Дальнейшее развитие идея Аррота получила в работах ⁶⁻¹³.

Исследованию фазовых переходов в анизотропных ферромагнетиках в слабых магнитных полях посвящены работы ⁷⁻²⁴, в которых на основе термодинамической теории Ландау ¹⁴ изучены особенности магнитных свойств не только одноосных магнетиков, но и ферромагнетиков с легкой осью вдоль [100] и [111]. Основной результат этих работ — появление фазовых переходов второго рода вблизи точки Кюри при определенном направлении магнитного поля по отношению к оси легкого намагничивания — подтверждается теоретическими расчетами, основанными на гипотезе подобия ⁸, ¹⁰, ²⁴, ²⁵ и исследовании ренормализационной группы ¹², ¹³, ²⁶, 43-50

Таким образом, изучение магнитных фазовых переходов в точке Кюри в слабых магнитных полях привело к формированию новой области научных исследований. Здесь уже получены принципиально новые и важные результаты. К ним прежде всего относятся эффекты резкого изменения температурной зависимости магнитных, магнитоупругих, магнитооптических и других свойств ферромагнетиков, наблюдаемые в слабых магнитных полях. Изучение этих эффектов дает возможность определения самопроизвольной намагниченности и спонтанной магнитострикции, ряда критических индексов и амплитуд на основе кинк-явления и т. д. Эти эффекты представляют существенный интерес не только для дальнейшего развития теории фазовых переходов, но и для практики.

Несмотря на большой интерес, проявляемый в настоящее время к исследованию фазовых переходов в ферромагнетиках в слабых магнитных полях, все еще отсутствуют достаточные экспериментальные данные, однозначно подтверждающие теоретические выводы, а имеющиеся экспериментальные и теоретические результаты не обобщены и нет их сравнения. В связи с этим в настоящем обзоре сделана попытка восполнения этого пробела и рассматриваются особенности магнитных свойств изотропных и анизотропных ферромагнетиков в слабых магнитных полях в окрестности точки Кюри. При этом большое внимание уделяется влиянию флуктуаций намагниченности на формирование фазового перехода второго рода в магнитном поле. Кроме того, в обзоре рассматриваются особенности немагнитных свойств ферро- и ферримагнетиков, впервые изученные авторами обзора и их сотрудниками.

2. ФАЗОВЫЕ ПЕРЕХОДЫ В ИЗОТРОПНЫХ ФЕРРОМАГНЕТИКАХ ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ

Гриффитс ⁵ доказал теорему, согласно которой система магнитных диполей в кристаллической решетке с магнитным диполь-дипольным и обменным взаимодействиями, в термодинамическом пределе очень больших объемов обладает определенной объемной свободной энергией, не зависящей от формы образца при H = 0. Непосредственным следствием этой теоремы является то, что в отсутствии внешнего магнитного поля наинизшим энергетическим состоянием изотропной матнитной системы не является состояние с однородной намагниченностью. Для иллюстрации этого вывода Appor⁴ рассмотрел модель тонкого изотропного ферромагнитного тороида, для которого в отсутствие магнитного поля основным состоянием является неоднородно намагниченная мода. Он показал, что при намагничивании образца слабым магнитным полем, приложенным перпендикулярно плоскости тороида, происходит фазовый переход второго рода из неоднородно намагниченного ферромагнитного в однородно намагниченное парамагнитное состояние, а температура перехода квадратично зависит от напряженности магнитного поля. Предполагая, что нижайшим энергетическим состоянием системы является состояние с неоднородной намагниченностью, Аррот нашел условия, при которых она претерпевает фазовый переход II рода в магнитном поле⁴.

Из-за диполь-дипольного взаимодействия, которое приводит к появлению размагничивающего поля, неоднородно намагниченным состоянием тороида (N-состояние) является состояние, при котором вектор намагниченности будет располагаться в плоскости тороида. Однородно намагниченным (U-состояние) является состояние, при котором вектор намагниченности будет параллелен магнитному полю, приложенному перпендикулярно плоскости тороида. Задача определения условий, при которых N-состояние преобразуется в U-состояние, подобна задаче определения перпендикулярной восприимчивости антиферромагнетика^{2, 6}.

В поле H = Hz, перпендикулярном плоскости тороида, разложение намагниченности элемента объема будет иметь вид

$$\xi \mathbf{M} = M\mathbf{m} = M_z \mathbf{z} + M_\theta \theta_s \tag{2.1}$$

где единичные векторы: z — перпендикулярен к плоскости тороида; a m направлен касательно к окружности в плоскости тороида для рассматриваемого элемента объема. Тогда в приближении молекулярногополя общее поле, действующее на локализованный спин, равно результирующему от внешнего поля, обменного и разманичивающего полей, т. е.

$$H_{\mathtt{b}\check{\boldsymbol{\Phi}}\check{\boldsymbol{\Phi}}} = H\mathbf{z} + \gamma M\mathbf{m} - DM_{z}\mathbf{z}. \tag{2.2}$$

Условие равенства нулю момента сил, действующих на магнитные моменты $([\mathbf{MH}_{a\phi\phi}] = 0)$, приводит к уравнению

$$\mathbf{M}_{\boldsymbol{\theta}} \left(H - DM_{\boldsymbol{\theta}} \right) = 0. \tag{2.3}$$

Это уравнение позволяет найти условия реализации U- или N-состояния. Для U-состояния $M_{\theta} = 0$ и $M_z = M$. В этом случае измерения вдоль Hприводят к обычной температурно зависящей намагниченности. Для Nсостояния $M_{\theta} \neq 0$ и $M_z = H/D$ и, следовательно, намагниченность, измеренная вдоль поля H, пропорциональна полю и не зависит от температуры, подобно перпендикулярной восприимчивости антиферромагнетика.

Впервые на линейную зависимость намагниченности конечных ферромагнетиков от поля обратил внимание Неель ¹⁵, а затем Фалло ¹⁶ экспериментально подтвердил эту зависимость для многих ферромагнетиков. Последующие экспериментальные исследования ¹⁷⁻²³ магнитных свойств поликристаллических ферро- и ферри-магнетиков в слабых магнитных полях ($H < H_p$) не только подтвердили линейную зависимость M от H, но и показали температурную независимость намагниченности вплоть до $T = T_c$ (H), выше которой M резко уменьшается. Это явление, получившее название «кинк» для ряда ферритов, впервые было обнаружено Камиловым ²² и использовано для определения T_c . Эксперименты по исследованию теплоемкости EuS³ в окрестности T_c показали, что с увеличением магнитного поля температура, на которую приходится максимум теплоемкости, смещается в сторону низких температур.

Вышеперечисленные факты и соображения легли в основу теоретических расчетов, проведенных в приближении молекулярного поля.

Области устойчивости U- и N-состояний можно найти по разности свободных энергий этих состояний как функции температуры и внешнего поля. Войтович и Рэйл дали соответствующий расчет для случая $S = 1/2^6$. Здесь мы приведем их вывод. В U-состоянии эффективное поле

$$\mathbf{H}_{\mathsf{a}\phi\phi} = (H + \gamma M - DM)_{\mathbf{z}}. \tag{2.4}$$

В *N*-состоянии внешнее и размагничивающее поля направлены по оси *z*, и поэтому $\mathbf{H}_{a\phi\phi} = \gamma \mathbf{m} M$. Соответствующие свободные энергии обоих состояний (в единицах γM^2) имеют вид

$$F_{\rm U} = F_{0\rm j}(\tau) - \tau \ln \{ 2 \, \rm{ch} \, [(h - d\sigma_{\rm U} + \sigma_{\rm U}) \, \tau^{-1}] \} - \frac{1}{2} \, d\sigma_{\rm U}^2 + \frac{1}{2} \, \sigma_{\rm U}^2, \qquad (2.5)$$

$$F_{\mathbf{N}} = F_{0i}(\boldsymbol{\tau}) - \boldsymbol{\tau} \ln\left(2\operatorname{ch}\frac{\sigma_{\mathbf{N}}}{\frac{\sigma_{\mathbf{N}}}{\sigma_{\mathbf{N}}}}\right) - \frac{1}{2}\frac{h^{2}}{d} + \frac{1}{2}\sigma_{\mathbf{N}}^{2}, \qquad (2.6)$$

где $h = H/\gamma M_0$, $d = D/\gamma$, M_0 – намагниченность при T = 0, приведенная температура $\tau = T/T_c(0)$, а $T_c(0)$ – температура Кюри. В качестве параметров порядка используются $\sigma_N = M_N/M_0$ и $\sigma_U = M_U/M_0$. Минимизируя F_U и F_N относительно σ_U и σ_N при постоянных τ и H, получим

$$\sigma_{\rm U} = \text{th} \left[(h - d\sigma_{\rm U} + \sigma_{\rm U}) \tau^{-1} \right], \tag{2.7}$$

$$\sigma_{\rm N} = \text{th} \, \frac{\sigma_{\rm N}}{\tau} \,. \tag{2.8}$$

Условием перехода из состояния N в U является равенство свободных энергий ($F_{\rm N}=F_{\rm U}$), что соответствует условию

$$\sigma_{\rm U} = \sigma_{\rm N} = \frac{h}{d} \,. \tag{2.9}$$

Приведенную температуру, при которой происходит переход из N в Uсостояние, обозначим через τ_c (h), а саму температуру через T_c (H). Тогда из (2.7) и (2.9) легко показать, что

$$\mathbf{r}_{c}(h) = \frac{h}{d} \left(\operatorname{arcth}^{*} \frac{h}{d} \right)^{-1}.$$
 (2.10)

В случае слабых магнитных полей выражение (2.10) принимает вид

$$\tau_{c}(h) = 1 - \frac{\Gamma}{2} \frac{1}{3} \left(\frac{h}{d}\right)^{2}.$$

Для $T < T_c(H)$, $F_N < F_U$ устойчивым является неоднородно намагниченное состояние; для $T_4 > T_c(H) \sigma_N$ меньше, чем h/d, и устойчиво только U-состояние. При температуре $T_c(H) M_N = M_U$. Выше $T_c(H)$ измеряемая на опыте компонента намагниченности $M_z = M_0 \sigma_U$, а ниже $T_c(H) M_z = H/D$.

Таким образом, температура $T_{\rm c}(H)$, которая квадратично зависит от поля H, разделяет состояние с неоднородной и однородной намагниченностью. Она получила название «кинк»-температуры. Результаты численного решения уравнений (2.7) и (2.8) в различных внешних магнитных полях показаны на рис. 1, *а.* Точки излома $T_{\rm c}(H)$ как точки фазового перехода принципиально не отличаются от $T_{\rm c}(0) \equiv T_{\rm c}$. Случай произвольного S был рассмотрен Дюрчевским⁷. В неоднородно намагниченной фазе компоненты намагниченности вдоль поля σ_N^1 и перпендикулярно полю $\sigma_N^{''}$ подчиняются следующим законам:

$$\sigma'_{\mathbf{N}} = \frac{h}{d}, \quad \sigma''_{\mathbf{N}} = \pm \sqrt{\sigma^2_{\mathbf{N}} - \left(\frac{h}{d}\right)^2}.$$
 (2.12)

В окрестности температуры фазового перехода $T_{\rm c}$ для случая $S=^{4}/_{2}$

$$(\sigma_{\rm N}'')^2 \approx 3 \left(1 - \frac{T}{T_{\rm c}(H)} \right) \tag{2.13}$$

и, следовательно, намагниченность неоднородной моды непрерывно стремится к нулю при $T = T_c$ (H), подтверждая наличие фазового перехода второго рода. Расчеты Дюрчевского показали, что в области температуры

Рис. 1. Температурная зависимость намагниченности в слабых магнитных полях. *a*) Теоретические кривые ⁶ во всех случаях d = 0,04, для верхней кривой h/d = 1), *б*) экспериментальные данные для феррита-граната Dy₃Fe₅O₁₂ 1 — 49, 2 — 69, 3 — 89, 4 — 109, 5 — 129, 6 — 13,59, 7 — 169, 8 — 209, 9 — 309, 10 — 409

 $T_{\rm c}$ (H) должны наблюдаться не только особенности теплоемкости, но и восприимчивости неоднородной моды в пределе слабых полей, тогда как восприимчивость по направлению поля согласно (2.12) постоянна,

$$\chi = \frac{1}{d} \,. \tag{2.14}$$

Полученные в приближении молекулярного поля ^{4, 6, 7} закономерности (2.10—2.14) показывают, что в изотропных ферромагнетиках с диполь-дипольными взаимодействиями магнитное поле не разрушает фазовый переход 2-го рода. Таким образом, характерными особенностями перехода из неоднородно намагниченного состояния в однородно намагниченное являются: 1) линейная зависимость намагниченности от H; 2) температурное постоянство намагниченности и восприимчивости в неоднородно намагниченной фазе вплоть до температуры $T_c(H)$, которая квадратично зависит от H; 3) наличие особенностей намагниченности и восприимчивости неоднородной моды в $T_c(H)$.

Многочисленные экспериментальные данные для поли- и монокристаллов качественно подтверждают эти особенности магнитных свойств ^{17–22}. В качестве примера на рис. 16 приведены данные температурной зависи-

⁷ УФН, т. 140, вып. 4

мости намагниченности в различных полях для ферромагнетика $Dy_3Fe_5O_{12}$. Однако характерный для теории молекулярного поля недостаток — отсутствие учета флуктуаций приводит к тому, что нет количественного согласия между теорией и экспериментом. В частности, линия фазовых переходов II рода на H — T-плоскости описывается степенной зависимостью с критическим индексом $\omega = 1/\beta$, а не квадратичной зависимостью (2.11). На рис. 2 приведены наши экспериментальные данные по смещению T_c (H) в слабых магнитных полях для феррита $Gd_3Fe_5O_{12}$ очевидно, что отклонение от квадратичной зависимости возрастает при приближении к T_c (0). Эти данные свидетельствуют о существенной роли флуктуаций намагниченности на формирование перехода из неоднородно намагниченного состояния в однородно намагниченное в изотропных ферро- и ферримагнетиках с диполь-дипольными силами. Необходимо отметить, что до

Рис. 2. Смещение точки Кюри в слабых магнитных полях для $Gd_3Fe_5O_{12}$ ²². ¹ — точки излома на H - T-плоскости, ² — точки на $H^2 - T$ -плоскости

сих пор нет работ теоретического характера, учитывающих флуктуации в неоднородно намагниченных ферромагнетиках.

Тем не менее теоретически предсказанные и экспериментально обнаруженные особенности магнитных свойств в изотропных ферромагнетиках конечных размеров представляют значительный интерес. В частности, имеется возможность использования «кинк»-явления для точного определения температурного хода самопроизвольной намагниченности и температуры Кюри ферро- и ферримагнетиков.

Как известно, для определения M_s и T_c разработаны многочисленные

методы ¹, ². Однако до сих пор прецизионное определение этих параметров остается все еще нерешенной проблемой. В настоящее время для определения M_s и T_c используются также ядерные методы, такие, как ЯМР, дифракция нейтронов и эффект Мёссбауэра, которые не требуют приложения внешнего магнитного поля. Однако эти методы имеют свои недостатки, к которым, прежде всего, следует отнести то, что при определении M_s и T_c необходимо учесть характерные времена релаксационных процессов. При приближении к T_c время релаксации растет и может оказаться равной характерному времени эксперимента ядерных методов, что приводит или к размытию картины фазового перехода, или к переоценке T_c , например в случае проявления суперпарамагнетизма. В некоторых случаях ядерные методы дают и значительно заниженные значения T_c ²⁸. В этой связи непосредственные магнитные измерения, на наш взгляд, позволяют определить M_s и T_c более точно, несмотря на то, что эти измерения проводятся в конечных магнитных полях ²².

В магнитных методах экспериментально получают набор точек M - H - T-данных и их экстраполяцией к значению полю H = 0 находят $M_{\rm s}$ и $T_{\rm c}$. На сегодняшний день существуют несколько методов экстраполяций — это хорошо известный метод термодинамических коэффициентов Белова ²⁹ и эквивалентный ему метод Аррота ³⁰ и модифицированный метод Белова, разработанный Поповичем ³¹, который эвристически учитывает флуктуации. Эти методы достаточно подробно описаны в литературе, и поэтому остановимся только на кинк-методе, получившем развитие в последние годы.

В основе этого метода лежит простая идея, основанная на изложенных выше соображениях. В ферромагнетике конечных размеров, находящемся в магнитном поле H, создается размагничивающее поле $H_p = DM$, и внутреннее поле, действующее на образец, определяется выражением

$$H_1 = H - DM. \tag{2.12}$$

В слабых магнитных полях, как было показано выше, намагниченность зависит линейно от поля, так что размагничивающее поле равно внешнему и $H_1 = 0$. При этом, как следует из (2.12), максимально возможная намагниченность не может быть больше H/D. С другой стороны, максимальная намагниченность, соответствующая полному магнитному насыщению при температуре T, равна самопроизвольной намагниченности M_s (T). Отсюда

следует возможность определения M_s (*T*). Нарушение условия $H_1 = 0$ может быть обнаружено двумя путями:

меняя магнитное поле при фиксированной температуре и
 меняя температуру при фиксированном поле.

В первом случае экспериментально строят изотермы намагниченности. С увеличением поля Н намагниченность изотропного ферромагнетика при выполнении условия $\chi \gg 1/D$ будет возрастать пропорционально полю H до тех пор, пока $H < DM_{\rm s}$. Выше определенного критического значения поля $H_{\rm k} = DM_{\rm s}$ внутреннее поле $H_{\rm i}$ перестает быть равным нулю и на изотерме наблюдается излом. По точке излома определяется величина M_s, соответствующая температуре, рассматриваемой изотермы (рис. 3). Для построения температурной зависимости М, строят набор изотерм. В реальных ферромагнетиках излом выражен не четко, как видно из экспериментальных изотерм намагниченности магнетита, снятых нами вблизи Т. (рис. 3). Во втором случае снимается температурная зависимость намагниченности при $H < H_p$. Наведенная полем намагниченность будет оставаться постоянной и равной M(T) = H/D, пока $M(T) < M_s(T)$. При некоторой температуре $T = T_{\rm c}(H)$ наблюдается резкое уменьшение намагниченности (кинк-явление). Из условия $M(T) < M_s$ следует, что темпера-турная область $T < T_c$ (H) соответствует фазе с неоднородно распределен-ной намагниченностью. В точке излома $H_1 = 0$, а $M = M_s$ при температу-ре, соответствующей температуре излома. Начиная с точки излома перестает выполняться условие $H_i = 0$. При дальнейшем увеличении температуры намагниченность уменьшается, но при каждой температуре М (Т) будет больше $M_{\rm s}$ на величину ΔM из-за наличия парапроцесса во внешнем поле, уменьшенном на величину $\Delta H_i = D \Delta M$. Для построения $M_s(T)$ строится набор кривых M(T) при различных полях H. На рис. 16 приведены кривые температурной зависимости намагниченности феррита-граната диспрозия. Температура излома с увеличением поля \hat{H} смещается в сторону низких температур. При всех температурах $T > T_c$ (H) поле H обеспечивает однородное намагничивание ферромагнетика, и поэтому эта температурная область соответствует однородно намагниченной фазе. Точка излома T_c (H) является точкой фазового перехода в магнитном поле.

Таким образом, снимая зависимость M(T) в различных полях на образцах с правильной геометрической формой: сфера, тонкий диск и т. д., для которой точно известен размагничивающий фактор D, имеем набор

Рис. 4. Температурные зависимости самопроизвольной намагниченности Dy₃Fe₅O₁₂²², восстановленные различными экстраполяционными методами. 1 — кинк-метод, 2 — по Белову ²⁹, 3 — по Поповичу ³¹

определяющий зависимость точек, $M_{\rm s}$ от T. Температура обращения $M_{\rm s}$ в нуль соответствует температуре Кюри. Для сравнения на рис. 4 приведены кривые $M_{\rm s}(T)$, восстановленные различными экстраполяционными методами. В отличие от других методов кинк-метод, не связанный с какими бы то не было предположениями модельного или другого характера и который базируется на экспериментальных фактах, чисто позволяет наиболее корректно определять M_s и T_c²².

Необходимо отметить, что теоретическое обоснование кинк-метода на основе теории молекулярного поля, несмотря на присущие ей недостатки, достаточно корректно описывает общую картину фазового перехода 2-го рода, наблюдаемого в изотропных ферромагнетиках конечных размеров, для которого характерно неоднородно намагниченное состояние.

В работах Дюрчевского ⁷ отмечено, что для описания кинк-явления вовсе не обязательно исходить из допущения неоднородно намагниченного состояния в ферромагнетиках, а достаточно рассмотреть анизотропию (в данном случае анизотропию формы). Однако эксперименты по дифракции нейтронов позволили обнаружить неоднородно намагниченные области вблизи точки Кюри ферромагнетиков конечных размеров ³² и в связи с этим, видимо, следует различать фазовые переходы в изотропных и анизотропных ферромагнетиках в магнитном поле.

Неоднородно намагниченное состояние с помощью нейтронов наблюдалось пока только в одной работе. Между тем ферромагнетик конечных размеров обычно разбивается на домены. Все рассуждения о переходе из неоднородного состояния в однородное справедливы и для перехода ферромагнетика, разбитого на домены в однородное состояние, который тоже проявляется как фазовый переход II-го рода. Таким образом, кривые, подобные приведенным на рис. 1 и З, как, впрочем, и многие последующие получаются во всех случаях: 1) для модели анизотропного ферромагнетика с полем, перпендикулярным оси анизотропии, 2) для перехода из неоднородной фазы в однородную и 3) для перехода из многодоменного в однородное состояние. А. С. Боровик-Романов указал на то, что последний переход должен наблюдаться и для одноосного ферромагнетика с магнитным полем, направленным вдоль легкой оси.

3. ФАЗОВЫЕ ПЕРЕХОДЫ В АНИЗОТРОПНЫХ ФЕРРОМАГНЕТИКАХ В МАГНИТНОМ ПОЛЕ. МАГНИТНЫЕ СВОЙСТВА

Фазовые переходы в анизотропных ферромагнетиках рассмотрим, следуя работам $^{8-11}$, на основе термодинамической теории Ландау. В этом приближении свободная энергия анизотропного ферромагнетика в окрестности T_c может быть записана в виде

$$F = F_0 + \sum_i a_i M_i^2 + \sum_{i, h} b_{ih} M_i^2 M_h^2 - (\mathbf{HM}), \qquad (3.1)$$

где a_i и b_{ik} — термодинамические коэффициенты, M_i — компонента вектора намагниченности на оси координат, H — магнитное поле.

Легко показать, что (3.1) описывает все возможные случаи анизотропии:

1.
$$a_x = a_y = a$$
, $a_x - a_z = K_1 > 0$,
 $b_{xx} = b_{yy} = b_{zz} = \frac{1}{2} b_{xy} = \frac{1}{2} b_{zx} = b$ (3.2)

- ферромагнетик типа «легкая ось».

2.
$$a_x = a_y = a, \quad a_x - a_z = K_1 < 0,$$

$$b_{xx} = b_{yy} = \frac{1}{2} b_{xy} = b, \quad b_{zx} = b_{zy}$$
 (3.3)

- ферромагнетик типа «легкая плоскость».

3.
$$a_i = a, \quad b_{ii} = b, \quad b = \frac{1}{2} b_{ik} = K_2 > 0$$
 (3.4)

- кубический ферромагнетик с легкой осью вдоль [III].

4.
$$a_i = a, \quad b_{ii} = b, \quad b = \frac{1}{2} b_{ik} = K_2 < 0 \quad (i \neq k)$$
 (3.5)

-- ферромагнетик с легкой осью вдоль [100].

Из выражения для свободной энергии (3.1) найдем условия сохранения фазового перехода II рода в магнитном поле для четырех случаев анизотропии.

Для одноосного кристалла, используя (3.2), равновесные значения намагниченности можно найти, минимизируя (3.1) по M_x и M_y . В результате, когда ось анизотропии совпадает с осью z, а поле направлено по оси x, имеем

$$0 = M_{z} \left[2 \left(a - K_{1} \right) + 4bM_{x}^{2} + 4bM_{z}^{2} \right], \tag{3.6}$$

$$H_{x} = M_{x} \left[2a + 4bM_{x}^{2} + 4bM_{z}^{2} \right]. \tag{3.7}$$

Уравнение 3.6 имеет два решения:

$$M_z = 0, \qquad (3.8)$$

$$M_z^2 = -\left[(a - K_1) + 2bM_x^2\right] \frac{1}{2b}.$$
 (3.9)

Первое решение соответствует парамагнитной фазе, а второе — магнитной. Переход из одной фазы в другую осуществляется, если

$$(a - K_1) + 2bM_x^2 = 0. (3.10)$$

Из уравнения (3.7) следует, что M_x не обращается в нуль ни при каких температурах. Однако в точке, соответствующей (3.10), наблюдается излом в зависимости M_x (T). Действительно, если $M_z = 0$ и выполняется

условие (3.10), то, как следует из (3.7),

$$M_x = \frac{H_x}{2K_1},\tag{3.11}$$

Это решение соответствует минимуму энергии не только в точке перехода, но и во всей ферромагнитной фазе, если

$$(a - K_i) + 2bM_x^2 < 0, (3.12)$$

тогда как в парамагнитной фазе (
 $a-K_1+2bM_x^2>0)\;M_x$ определяется уравнением

$$H_x = M_x \left(2a + 4bM_x^2\right). \tag{3.13}$$

Как видно из рис. 5, где представлены графики температурной зависимости M_x и M_z в различных магнитных полях ($H < H_p$), M_z непрерывно уменьшается при $T \rightarrow T_c$ (H), а M_x остается постоянной до температуры,

Рис. 5. Схематические кривые температурной зависимости M_x и M_z $(H_1 < H_2 < H_3)$ для одноосного ферромагнетика ¹⁰.

Рис. 6. Линия фазовых переходов II рода для одноосного ферромагнетика ¹⁰.

при которой совершается переход из ферромагнитного состояния в парамагнитное. В поперечном поле, как следует из (3.8) — (3.11), одноосный ферромагнетик совершает фазовый переход II рода при температуре

$$T_{c}(H) = T_{c}(0) - \frac{2b}{a^{1}} \left(\frac{H_{x}}{2K_{1}}\right)^{2},$$
 (3.14)

где a' > 0 определяется из разложения $a - K_1 = a (T - T_c)$. Согласно (3.14), при увеличении $H T_c (H)$ смещается в сторону низких температур по квадратичному закону, а сама температура $T_c (H)$ разделяет фазы с $M_z \neq 0$ и $M_z = 0$ (рис. 6).

Рассмотрим поведение восприимчивости в одноосном ферромагнетике. Тензор восприимчивости имеет четыре компоненты: χ_{zz} , $\chi_{xz} = \chi_{zx}$, χ_{xx} . В поперечном поле имеют смысл только компоненты χ_{xz} и χ_{xx} . Для ферромагнитной фазы из (3.8), (3.9) и (3.11) можно показать, что

$$\chi_{xz} = \frac{H_x}{4K_1^2 (a^{1/2b}) \sqrt{T_c (H) - T}} \sim [T_c (H) - T]^{-1}$$
(3.15)

и при $T \rightarrow T_{c}$ (H), $\chi_{xz} \rightarrow \infty$, тогда как

$$\chi_{xx} = \frac{k_1}{2K_1}$$
(3.16)

648

не зависит от T и H вплоть до $T = T_{c}$ (H). В парамагнитной фазе $\chi_{xz} = 0$, так как $M_{z} = 0$, а

$$\chi_{xxx} = \frac{1}{2 \left[a^1 \left(T - T_c \right) + 6b M_x^2 + K_1 \right]}$$
(3.17)

стремится к бесконечности при температуре

$$T = T_{\rm e} - \frac{6bM_{\rm x}^2}{a^1} - \frac{K_1}{a^1} \,. \tag{3.18}$$

Следует отметить, что полученные здесь результаты не зависят от природы анизотропии и справедливы как для случая магнито-кристаллографической анизотропии, так и для обменной.

Несмотря на значительное число работ теоретического характера ⁸⁻¹¹, посвященных изучению фазовых переходов II рода в одноосных ферромагнетиках, экспериментальные исследования все еще крайне редки. Нам

Рис. 7. Зависимость M_x от H для Gd при различных T.

известны только три работы ³³⁻³⁵, ставящие основной целью изучение свойств одноосных ферромагнетиков в слабых магнитных полях. Анализ этих работ показывает, что, действительно, в ферромагнетиках типа «легкая ось» Cu(NH₄)₂Br₄·2H₂O ³³, ³⁵ CuK₂Cl₄·2H₂O ³⁵, MnP ³⁶ наблюдается фазовый переход II рода, если магнитное поле приложено перпендикулярно легкой оси. Согласно нашим экспериментальным данным, полученным для одноосного ферромагнетика Gd, как видно из рис. 7, в ферромагнитной фазе намагниченность линейно растет с увеличением H и компонента намагниченности M_x не зависит от T в соответствии с формулой (3.11), а компонента M_z обращается в нуль при $T = T_c$ (H). Температура перехода смещается в сторону низких температур с увеличением H, следуя закономерности

$$T_{\rm c}\left(H\right) = T_{\rm c} - AH_x^{\omega},\tag{3.19}$$

где A — постоянная, которая не зависит от T и H, а ω принимает значения 2.5 ± 0.1^{34} и 2.63 ± 0.1^{33} для $Cu(NH_4)_2Br_4 \cdot 2H_2O$ 2.6 ± 0.1^{35} для $CuK_2Cl_4 \cdot 2H_2O$ и 2.51 ± 0.1 для Gd (по нашим данным).

649

Компонента восприимчивости, параллельная полю, согласно экспериментальным данным и в соответствии с (3.16), слабо зависит от T и Hв ферромагнитной фазе, тогда как в парамагнитной фазе вблизи T_c (0) наблюдается максимум, который с увеличением H смещается в сторону высоких температур) рис. 8) ³⁴. Что касается χ_{xz} , то все еще нет прямых

Рис. 8. Температурная зависимость восприимчивости для Cu $(NH_4)_2$ Br₄·2H₂O в магнитном поле при p = 7.5 кбар³⁴.

экспериментов, но косвенные данные, в частности, по поглощению ультразвуковых волн в MnP, показывают сингулярность χ_{xz} при $T = T_c (H)$ ³⁶. Все эти данные свидетельствуют о возможности качественного описания

фазового перехода II рода в одноосных ферромагнетиках в поперечном поле на основе теории Ландау, но отсутствие количественного согласия

Рис. 9. Фазовая диаграмма ферромагнетика типа «легкая плоскость».

между теорией и экспериментом указывает на необходимость учета флуктуаций компоненты намагниченности вдоль легкой оси.

Впервые учет флуктуаций в рамках теории Ландау для одноосных ферромагнетиков был проведен Шнайдом ¹⁰, и им показано, что радиус корреляции флуктуаций компоненты намагниченности вдоль легкой оси в поперечном поле обладает расходимостью при $T_c(H)$ такой же, как и в теории Орштейна — Цернике (см. ¹⁴).

В ферромагнетиках типа «легкая плоскость» в разложении свободной энергии (3.1) будут присутствовать все три компоненты намагниченности, а $K_1 < 0$. Если магнитное поле приложено пер-

пендикулярно легкой плоскости, то критическим поведением будут обладать M_x и M_y , а M_z не обращается в нуль при любых конечных температурах. Следовательно, температурная и полевая зависимости намагниченности и восприимчивости такие же, как и у одноосных ферромагнетиков. Однако, как показывают расчеты Шнайда ¹³, Никитина и др. ^{37,38} линия фазовых переходов II рода на H - T плоскости определяется выражением

$$H = \sqrt{A - T_{c}(H)} [T_{c}(0) - T_{c}(H)], \qquad (3.20)$$

из которой следует, что имеется область магнитных полей, где $T_c(H)$ растет с увеличением H (см. рис. 9). В достаточно слабых полях линия фазовых переходов описывается такой же закономерностью, что и для одноосных ферромагнетиков. Экспериментальные исследования магнитных свойств сплавов $\mathrm{Tb}_x\mathrm{Gd}_{1-x}$ показали, что, действительно, в полях до 12 кэ T_c (H) смещается в сторону низких температур с ростом $H^{37, 38}$.

Как и в ферромагнетиках типа «легкая ось» и «легкая плоскость», в кубических многоосных кристаллах возможны фазовые переходы 2-го рода при соответствующем выборе направлений магнитного поля относительно кристаллографических осей. Теоретические исследования проведены на основе теории Ландау в ферромагнетиках с осями легкого намагничивания вдоль [100] и [111] при Ĥ || [111], [110] и [100] ^{12,40} и когда *H* направлено произвольно в плоскости [100] ¹⁰⁻¹³. В этих работах показано, что фазовый переход II рода в слабых магнитных полях имеет место только в том случае, когда магнитное поле лежит в плоскости, образованной двумя легкими осями под углом $\pi/4$ к этим осям или параллельно трудной оси (кристаллы с легкой осью [100]). В ферромагнетиках с осью легкого намагничивания вдоль [111] ФП II рода не разрушается слабым магнитным полем, направление которого лежит в плоскости, образованной двумя трудными осями, или же при Н || [100].

Согласно термодинамической теории Ландау, свободная энергия кубического ферромагнетика вблизи точки Кюри в пределе слабых магнитных полей может быть записана в виде

$$F = F_0 + a^4 \left(T - T_c \right) M_1^2 + b M_1^2 M_h^2 + K_2 \left(M_x^4 + M_y^4 + M_z^4 \right) - (\mathbf{HM}). \quad (3.21)$$

Из анализа этого выражения на необходимые условия существования минимума следует, что

$$2M_{i} [a^{1} (T - T_{c}) + 2bM^{2} + 2K_{2}M_{i}^{2}] = H_{i}, \qquad (3.22)$$

а достаточные условия максимума определяются неравенствами

$$|\Delta| = \begin{vmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{vmatrix} > 0, \quad \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} > 0, \quad f_{xx} > 0, \tag{3.23}$$

где

$$f_{ii} = \frac{\partial^2 F}{\partial M_{i}^2} = 2 \left[a^1 \left(T - T_c \right) + 2bM^2 + 2 \left(2b + 3K_2 \right) M_{i}^2 \right], \qquad (3.24)$$

$$f_{ik} = \frac{\partial^2 F}{\partial M_i \partial M_k} = 8bM_i M_{k\bullet}$$
(3.25)

Рассмотрим сперва ферромагнетик с легкой осью вдоль [111], который описывается (3.21) с $k_2 > 0$. Приложим внешнее магнитное поле так, чтобы его направление лежало в плоскости *ху*. При этих условиях из уравнения (3.22) следует, что

$$M_z^2 = -\frac{a^1 \left(T - T_c\right) + 2b\left(M_x^2 + M_y^2\right)}{2\left(b + k_2\right)},\tag{3.26}$$

 $a M_i$ определяется уравнением

$$4\boldsymbol{M}_{i}(bM_{z}^{2}+K_{2}M_{i}^{2})=H_{i}, \quad i=x, \ y.$$
(3.27)

Эти решения удовлетворяют условиям минимума, если

$$a^{1}(T-T_{c})+2b(M_{x}^{2}+M_{y}^{2})<0.$$

В противном случае условиям минимума удовлетворяют решения:

$$M_z = 0, \qquad (3.28)$$

$$2M_{i} \left[a^{4} \left(T - T_{c}\right) + 2bM^{2} + 2K_{2}M_{1}^{2}\right] = H_{i}.$$
(3.29)

Состояния ферромагнетика с легкой осью вдоль [111], описываемые выражениями (3.26), (3.27) и (3.28). (3.29), будут иметь одинаковые энергии при выполнении условия

$$a^{1} (T - T_{c}) + 2b (M_{x}^{2} + M_{y}^{2}) = 0.$$
(3.30)

Откуда, подставляя (3.28) и (3.29), получим выражение для температуры. при которой осуществляется фазовый переход:

$$T_{\rm c}(H) = T_{\rm c} - \frac{2b}{a^1} \left(\frac{1}{2K_2}\right)^{2/3} (H_x^{2/3} + H_y^{2/3}).$$
 (3.31)

Как следует из выражений (3.26), (3.30) и (3.31), M_z при $T \to T_c(H)$ непрерывно стремится к нулю, указывая на наличие фазового перехода II рода. Для окончательного выяснения рода перехода рассмотрим поведение восприимчивости.

Тензор восприимчивости ферромагнетика с легкой осью вдоль [111] определяется соотношением

$$\chi_{ih} = \frac{A_{ih}}{|\Delta|}, \qquad (3.32)$$

где A_{ik} — соответствующий минор матрицы | Δ |, определяемой (3.23). Анализ шести компонент восприимчивости показывает, что при $T \rightarrow$ → T⁺_c (H) (со стороны высоких температур) сингулярным поведением

обладает только компонента χ_{zz} , которая стремится к бесконечности по степенному закону

$$\chi_{zz} \sim [T - T_{\rm c} (H)]^{-1}.$$
 (3.33)

Остальные компоненты χ_{ik} при $T = T_c$ (H) принимают конечные значения,

за исключением $\chi_{xz} = \chi_{yz}$, которые равны нулю. Таким образом, при переходе из состояния (3.26), (3.27) в состояние (3.28), (3.29) наблюдается $\Phi\Pi$ II рода, так как M_z изменяется непрерывно, а χ_{zz} расходится. Линии ФП II рода описываются уравнением (3.31) и на H - T-диаграмме могут быть представлены кривыми, приведенными на рис. 10.

В кубическом ферромагнетике с осью легкого намагничивания вдоль [100] ($K_2 < 0, b > | K_2 |$) фазовые переходы II-го рода предсказаны для двух направлений магнитного поля:

1. Направление Н лежит в плоскости x, y под углом п/4 к этим осям. 2. **Н** || [111] (трудной оси).

Рассмотрим первый случай. Для удобства введем новую координатную систему, которая получается после преобразований:

$$X \to \frac{\sqrt{2}}{2} x + \frac{\sqrt{2}}{2} y, \quad Y \to -\frac{\sqrt{2}}{2} x + \frac{\sqrt{2}}{2} y, \quad Z \to z.$$
(3.34)

652

В новой координатной системе $H_y = H_z = 0$, а $H_x \neq 0$, и из (3.21) получим три типа решений:

1.
$$M_y = M_z = 0$$
, $2M_x [a^4 (T - T_c) + (2b + K_2) M_x^2] = Hx;$ (3.35)
 $[a^4 (T - T_c) + 2bM^2]$

2.
$$M_y = 0, \quad M_z^2 = -\frac{[a^2 (T - T_c) + 2\delta M_x]}{2(b + K_2)},$$

$$\frac{2K_2 M_x}{b + K_2} [a^4 (T - T_c) + 3(b + K_2) M_x^2] = Hx, \quad (3.36)$$

3.
$$M_{z} = 0$$
, $M_{y}^{2} = -\frac{\left[a^{1}\left(T - T_{c}\right) + \left(2b + 3K_{2}\right)M_{x}^{2}\right]}{2b + K_{2}}$,
 $\frac{4 \mid K_{2} \mid M_{x}}{2b + K_{2}} \left[a^{4}\left(T - T_{c}\right) + 4\left(b + K_{2}\right)M_{x}^{2}\right] = H_{x}.$ (3.37)

Как видно из (3.35), стабильному состоянию соответствует фаза с $M_x^{(1)} \parallel H_x$, когда $a^1 (T - T_c) + (2b + 3K_2) M_x^2 > 0$. В фазах, соответст-

Рис. 11. Полевая зависимость *М* при **H** || оси *x*. *a*) *М_z*-компонента намагниченности параллельна легкой оси, б) *М_x*-компонента параллельна **H**.

Рис. 12. Фазовая диаграмма трехосного ферромагнетика. 1 — линия ФП I рода; 2 — линия ФП II рода.

вующих решениям (3.36) и (3.37), намагниченность не совпадает с направлением поля. Из условий минимума следует, что при

$$a^{1}(T-T_{c})+3(2b+K_{2})M_{x}^{2}<0$$

фазы, описываемые решениями (3.36) или (3.37), могут быть стабильны. А при

$$a^{1}(T-T_{c})+3(2b+K_{2})M_{x}^{2}=0$$
 (3.38)

появится ФП I рода между этими состояниями, так как этот переход сопровождается скачком намагниченности (рис. 11). Если же

$$a^{1}(T-T_{c})+3(2b+K_{2})M_{x}^{2}>0 \quad \text{m} \quad a^{1}(T-T_{c})+(2b+3K_{2})M_{x}^{2}<0,$$

то только фаза, описываемая уравнением (3.37), стабильна. В этом случае возможен фазовый переход в состояние (3.35), когда

$$a^{1}(T-T_{c}) + (2b+3K_{2})M_{x}^{2} = 0,$$
 (3.39)

что соответствует температуре

$$T_{c}(H) = T_{c} - \frac{3b + 3K_{2}}{a^{1}} \left(\frac{H_{x}}{4 | K_{2} |}\right)^{2/3}.$$
 (3.40)

При этой температуре нет скачка намагниченности, как видно из рис. 11, δ , и из расчета аналогичного случаю ферромагнетика с легкой осью [111] следует, что компонента восприимчивости χ_{yy} расходится при $T \rightarrow T_c$ (H),

$$\chi_{yy} = \{2 \left[a^{1} \left(T - T_{c}\right) + (2b + 3K_{2})\right] M_{x}^{2}\}^{-1} \rightarrow \left[T - T_{c} \left(H\right)\right]^{-1}.$$
(3.41)

Следовательно, при $T = T_{c}(H)$ наблюдается фазовый переход II-го рода. Фазовая диаграмма этого случая приведена на рис. 12.

В случае, когда Н || [111], соответствующий анализ показывает, что возможен только фазовый переход II-го рода при температуре

$$T_{c}(H) = T_{c}(0) - \frac{b + |K_{2}|}{2a^{1}} \left(\frac{3H}{|K_{2}|}\right)^{2/3}.$$
 (3.42)

Таким образом, в кубических многоосных ферромагнетиках в слабых магнитных полях фазовый переход II рода наблюдается при определенной ориентации *H* относительно кристаллографических направлений. В отличие от одноосных ферромагнетиков, для которых намагниченность зависит линейно от поля и остается независимой от *T*, для многоосных кристаллов

$$M_{i} = \frac{1}{4 | K_{2} |} (H_{i})^{1/3}, \quad (i = x, y)_{\bullet}$$
(3.43)

Более того, M_x и M_y зависят от температуры, так как при H = 0 существует отличная от нуля компонента M_i . При увеличении температуры эта компонента уменьшается по абсолютной величине и в точке перехода на кривой M_i (T) наблюдается излом.

Полученные из теории Ландау закономерности температурной и полевой зависимости намагниченности и восприимчивости пока еще не нашли экспериментального подтверждения, но очевидно, что и в многоосных ферромагнетиках при рассмотрении ФП 2-го рода в слабых магнитных полях необходимо принимать во внимание критические флуктуации намагниченности.

4. СКЕЙЛИНГОВСКОЕ ОПИСАНИЕ КРИТИЧЕСКОГО ПОВЕДЕНИЯ АНИЗОТРОПНЫХ ФЕРРОМАГНЕТИКОВ

В предыдущих параграфах в приближении среднего поля было показано, что в анизотропных ферромагнетиках фазовый переход 2-го рода в T_c не разрушается слабым магнитным полем, направленным определенным образом по отношению к оси анизотропии. Вдоль этой оси сильно развиты флуктуации намагниченности. Феноменологически учесть флуктуации можно в приближении теории подобия (скейлинга)⁴¹, которое постулирует, что равновесные свойства в области температуры фазового перехода II-го рода могут быть описаны простыми степенными закономерностями. Эти закономерности приведены в табл. I.

В таблице G и \overline{G} — термодинамические цотенциалы, конкретный вид которых будет дан позднее, а

$$\varepsilon = \frac{T - T_{c}(h)}{T_{c}(0)} = \varepsilon_{0} + \varepsilon_{h}, \quad \varepsilon_{0} = \frac{T - T_{c}(0)}{T_{c}(0)}. \quad (4.1)$$

Многие степенные закономерности, приведенные в этой таблице, экспериментально подтверждены для одноосных ¹⁷⁻²² и типа «легкая плоскость» ^{37, 38} ферромагнетиков. Однако теоретические значения критических индексов, вытекающие из теории среднего поля, значительно расходятся с экспериментальными данными (табл. II).

654

Равновесные свойства	$h_{\perp} = h = 0,$ $\varepsilon \to 0$	$\varepsilon = 0, \ h_{\perp} = 0, \\ h \neq 0$	$\begin{aligned} \varepsilon &= 0, \ h = 0, \\ h_{\perp} \to 0 \end{aligned}$
1. $M = -(\partial G/\partial h)$	$-\epsilon^{\beta}$	$\sim h^{1/\delta}$	
2. $\chi = (\partial M / \partial h)$	$\sim \epsilon^{-\gamma}$	$\sim h^{-\lambda}$	
3. $s_h = -(\partial G/\partial \varepsilon)_h$	$\sim \epsilon^{\psi}$	$\sim h^{-\phi}$	
4. $c_h = T (\partial S_h / \partial \varepsilon)_h$	$\sim e^{-\alpha}$	$\sim h^{-\alpha}h$	
5. $M_{\perp} = (\partial \overline{G} / \partial h_{\perp})$	=0		$\sim h_{\perp}^{1/\delta}$
6. $\chi_{\perp} = (\partial M / \partial h_{\perp})$	$\sim \epsilon^{-\gamma_{\perp}}$		$\sim h_{\perp}^{-\lambda_{\perp}}$
7. $s_{h_{\perp}} = -(\partial \overline{G}/\partial \varepsilon)_{h_{\perp}}$	$\sim \epsilon^{\psi}$		$\sim h^{\Psi_{\perp}}$
8. $c_{h_{\perp}} = T (\partial S / \partial \varepsilon)_{h_{\perp}}$	$\sim \epsilon^{-\alpha}$		$\sim h^{\alpha} \bot$
9. $\varepsilon_h = \frac{T_c(0) - T_c(h)}{T_c(0)}$			$\sim h_{\perp}^{\omega}$

Таблица I

\mathbf{T}	a	б	л	и	ц	a	п

	Теори	я средне	го поля	Эксперимент	
Ферромагнетиь	И :0- троп- ный	Одно- осный	Много- осный	Изотрон- ный	Одноосный
Критические индексы:					
α	0	0	0		
β	1/2	1/2	1/2		x
γ	1	1	1		
δ	3	3	3	4,622	6,7530
δ,	1	1	3	110	1 ³⁰
ພື	2	2	2/3	$2,63^{22}$	2,53-2,63
Ϋ́́ι	1				
ψ					
λ					
λ,	0	0	0		
α_h	0	0	0		
α					
φ [±]	2/3	2/3	2/3		

Впервые на основе скейлинговской теории фазовые переходы в анизотропных ферромагнетиках были рассмотрены Вагнером и Риделом ²⁵. Конкретные соотношения между критическими индексами были получены Клямутом и Шнайдом ⁸, Шнайдом ²², Гаунтом и Бакером ⁴⁰, используя представления Каданова ⁴¹. На основе представлений, развитых в этих работах рассмотрим применение скейлинг-теории к описанию анизотропных ферромагнетиков в слабых магнитных полях.

Прежде всего остановимся на соотношении, которое связывает параметры подобия и критический индекс ω. В частности, из масштабных преобразований Каданова⁴¹

$$\widetilde{\epsilon} \sim L^y \epsilon, \quad \widetilde{h} \sim L^x h$$
 (4.2)

легко показать, что

$$\omega = \frac{x}{y}.$$
 (4.3)

Из основного предположения скейлинговской теории следует, что

$$F(L^{x}h_{\perp}, L^{y}\varepsilon) = L^{d}(\varepsilon, h_{\perp}), \qquad (4.4)$$

которое справедливо при любом L. Преобразовав выражение (4.4) к виду

$$F(\varepsilon, h_{\perp}) = \varepsilon^{\alpha/y} f(\varepsilon, h_{\perp}^{-y/x})$$
(4.5)

и дифференцируя (4.5) по h_{\perp} , получим с учетом конечности M и $M_{\perp} \neq 0$ при $h_{\perp} = 0$, что полевая зависимость M_{\perp} при $\varepsilon = 0$ определяется законо-мерностью

$$M_{\perp} \sim h^{(d-x)/x} \equiv h_{\perp}^{1/\delta_{\perp}}.$$
(4.6)

Отсюда следует равенство

$$\delta_{\blacktriangle} = \frac{x}{d - x}.$$
(4.7)

Если теперь использовать известное равенство 41

$$\beta = \frac{d-x}{y}, \qquad (4.8)$$

то, исключая из (4.3), (4.7) и (4.8) x и y, получим новое скейлинговское соотношение

$$\omega \delta_{\perp} \beta = 1, \tag{4.9}$$

которое было впервые выведено Клямутом и Шнайдом ⁸.

Дифференцируя (4.4) по h_{\perp} , можно получить соотношение, которое связывает ω с критическим индексом для полевой зависимости энтропии при; $\varepsilon = 0$:

$$\delta_{\perp} (\omega - 1 + \varphi_{\perp}) = 1. \tag{4.10}$$

Другие соотношения между критическими индексами, характеризующих критическое поведение анизотропного ферромагнетика, получены Шнайдом ²⁴, используя параметрическое представление Скофильда ⁴². При этом вводятся новые переменные r, ϑ и θ , которые связаны с переменными h, h_{\perp} , ε (поле, параллельное и перпендикулярное оси, и температура соответственно) следующими соотношениями:

$$\begin{split} h &= r^{h} \vartheta^{2h} \theta, \\ h_{\perp} &= r^{h*} \vartheta^{2h*} (1 - \theta), \\ \varepsilon &= r (1 - a \vartheta^{2}) + r \vartheta^{2} \delta_{\theta, 0}. \end{split}$$
 (4.11)

Выберем термодинамический потенциал в виде

$$G(h, \epsilon) = F(h, \epsilon) - F(0, 0) - Mh.$$
 (4.12)

Рассмотрим два случая: 1) магнитное поле направлено вдоль оси анизотропии, т. е. $\theta = 1$, и 2) магнитное поле перпендикулярно легкой оси ($\theta = 0$). Соответственно термодинамические потенциалы для этих случаев в новых переменных имеют вид

$$G(r, \vartheta) = r^l g(\vartheta), \qquad (4.13)$$

$$\overline{G}(r, \,\vartheta) = r^{l_1} \overline{g}(\vartheta). \tag{4.14}$$

656

Далее, используя известную технику ⁴¹, можно получить следующие соотношения между критическими индексами (законы подобия):

1. $\alpha + 2\beta + \gamma = 2$,	8. $\lambda_{\perp} + \beta \omega = 1$,
2. $\beta (\delta - 1) = \gamma$,	9. $\varphi_{\perp} + \omega (1 - \beta) = 1$,
3. $\psi = 1 - \alpha$,	10. $\varphi_{\perp} - \alpha_{\perp} = \omega$,
4. $\psi = \beta \varphi \delta$,	11. $-\omega (\gamma_{\perp} - 2 + \alpha) = 2$,
5. $\gamma = \beta \delta \lambda$,	12. δ_{\perp} $(1 - \lambda_{\perp}) = 1$,
6. $\alpha = \beta \delta \alpha_h$,	13. $\delta_{\perp} (2\varphi_{\perp} - \alpha_{\perp} - 1) = 1.$
7. $\beta \delta_{\perp} \omega = 1$,	

) Соотношения 1—6 были получены в работе ⁴⁰ и справедливы для изотропных ферромагнетиков. Остальные соотношения между критическими индексами 7—13 характеризуют критическое поведение анизотропных или неоднородно намагниченных ферромагнетиков. Из них в теории среднего поля выполняются соотношения 7, 8 и 12 (см. табл. II). О справедливости других соотношений говорить нет возможности, так как отсутствуют теоретические значения критических индексов φ_{\perp} и α_{\perp} . К сожалению, экспериментальная проверка соотношений скейлинга для анизотропных ферромагнетиков не проведена, так как из всех критических индексов пока определены только ω и δ_{\perp} (см. табл. II).

5. ФАЗОВЫЕ ПЕРЕХОДЫ В АНИЗОТРОПНЫХ ФЕРРОМАГНЕТИКАХ В ПРИБЛИЖЕНИИ ТЕОРИИ РЕНОРМАЛИЗАЦИОННОЙ ГРУППЫ

Метод ренормализационной группы, который является микроскопическим обоснованием теории подобия и который базируется на преобразованиях Каданова⁴¹, был применен для описания фазовых переходов в одноосных ¹²⁻⁴³ и тетрагональных⁴⁴, кристаллах в магнитном поле, приложенном перпендикулярно легкой оси. В кубических ферромагнетиках эта теория была применена для исследования фазовых переходов в кристаллах с легкой осью вдоль [100] (Н лежит в плоскости, образованной двумя трудными осями и [111] ^{44, 45}) и с легкой осью вдоль [111] (при Н || 100 ^{12, 44}. В этих работах показано, что в анизотропных ферромагнетиках имеет место фазовый переход II рода при соответствующем выборе направления магнитного поля.

Общая теория ФП II рода в анизотропных ферромагнетиках в условиях $H \neq 0$ в приближении ренормализационной группы рассмотрена Ритером и Шнайдом ²⁶. Ими на основе трехкомпонентной векторной модели показано, что во внешнем поле анизотропный ферромагнетик может иметь или одну, или же две критические переменные, так как переменная, совпадающая с направлением поля, не обращается в нуль при любых конечных температурах. Тем самым данная задача сводится к рассмотрению поведения модели Изинга (одна переменная) или XY-модели (две переменные) в поперечном магнитном поле.

Условие существования фазового перехода II рода находится из гамильтониана Ландау — Гинзбурга — Вильсона ⁴⁶, который при наличии внешнего поля имеет вид

$$\mathscr{H} = -\frac{1}{2} \sum_{i=1}^{3} \int_{q} (r_{i}^{0} + q^{2}) \sigma_{q}^{i} \sigma_{-q}^{i} + \sum_{i=1}^{3} h^{i} \sigma_{0}^{i} - \sum_{i, j=1}^{3} u_{ij}^{0} \int_{q} \int_{q_{1}} \int_{q_{2}} \sigma_{q}^{i} \sigma_{q_{1}}^{i} \sigma_{q_{2}}^{j} \sigma_{-q-q_{1}-q_{2}}; \quad (5.1)$$

здесь σ_q^i — трехкомпонентный классический спин с волновым вектором q, а

$$r_{i}^{0} = a_{i} \left(T - T_{c}^{i} \right), \tag{5.2}$$

где T_c^i — критическая температура для σ^i при H = 0. Очевидно, что выбором параметров взаимодействия r_i^o и u_{ij}^o в гамильтониане (5.1) мы можем описать все случаи анизотропии ферромагнетиков:

1.
$$r_i^0 = r^0$$
; $u_{ij}^0 = u^0 > 0$ — изотропный ферромагнетик,
2. $r_1^0 \neq r_2^0 = r_3^0$; $u_{ij}^0 = u^0 > 0$ — одноосный ферромагнетик,
3. $r_1^0 \neq r_2^0 \neq r_3^0$;
 $u_{ij}^0 = u^0 > 0$ — орторомбический ферромагнетик,
4. $r_i^0 = r^0$, $u_{ij}^0 = u^0 > 0$, $i \neq j$; $u_{ij}^0 = u^0 + v^0$,
 $i = j$ — кубический ферромагнетик,
5. $r_1^0 \neq r_2^0 = r_3^0$, $u_{ij}^0 = u^0 > 0$, $i \neq j$; $u_{ij}^0 = u^0 + v^0 > 0$,
 $i = j$ — тетрагональный ферромагнетик.
(5.3)

Используя] преобразование

$$\sigma_q^i \to \sigma_q^i + M_i \delta_{q_s} \tag{5.4}$$

а затем вращение спиновой компоненты s_{q_1} вдоль направления, задаваемого полярными углами, из (5.1) получим гамильтониан в новых спиновых переменных

$$\mathscr{H} = -\frac{1}{2} \int \sum_{i, j} (r_{ij} + q^2 \delta_{ij}) s_q^i s_{-q}^i - \int_q \int_{q_1} \sum_{i, j} w_{ij} s_q^i s_{q_1}^i s_{-q-q_1} - -2w \int_q \int_{q_1} S_q^{(1)} S_{q_1}^{(2)} S_{-q-q_1}^{(3)} - \int_q \int_{q_1} \int_{q_2} \sum_{i, j} u_{ij} s_q^i s_{q_1}^i s_{q_2}^j s_{q-q_1-q_2}^j - -4 \int_q \int_{q_1} \int_{q_2} \sum_{i \neq j} v_{ij} s_{q_2}^i s_{q_1}^j s_{q_2}^j s_{-q-q_1-q_2}^j - \int_q \int_{q_1} \int_{q_2} \sum_{i \neq j=h} m_{ijk} s_q^i s_{q_1}^i s_{q_2}^j s_{-q-q_1-q_2}^j, \quad (5.5)$$

где w_{ij} и m_{ijk} — новые постоянные взаимодействия.

Рассмотрим условия существования фазового перехода II рода для *ХУ*-модели. Будем считать, что критическим поведением не обладает компонента $s_q^{(1)}$, т. е. направление магнитного поля совпадает с этой компонентой. Тогда $s_{q_2}^{(2)}$ и $s_q^{(3)}$ будут критическими переменными. Используя формализм Вильсона — Фишера — Нельсона ⁴⁷, гамильтониан (5.5) можно привести к хорошо известному гамильтониану

$$\mathscr{H}_{XY} = -\frac{1}{2} \int_{q} \sum_{i=2}^{3} (r_{ij} + q^2) \, s_q^i s_{-q}^i - \int_{q} \int_{q_1} \int_{q_2} \sum_{i, j=2}^{3} \overline{u}_{ij} s_q^i s_{q_1}^i s_{q_2}^j s_{-q-q_1-q_2}^j, \quad (5.6)$$

где

$$\overline{u}_{ii} = u_{ii} - \frac{w_{ii}^3}{2r_{11}}, \quad \overline{u}_{23} = \overline{u}_{32} - \frac{2w^2 + w_{12} + w_{13}}{2r_{11}}.$$
(5.7)

Критические свойства магнетика, описываемого гамильтонианом (5.6), были изучены многими авторами ⁴³⁻⁵⁰; показано, что фиксированная точка XY-типа устойчива, если

$$r_{11} > r_{22} = r_{33} \tag{5.8}$$

для любых значений *h*. Кроме того, для устойчивости этой фиксированной точки, как показали Вильсон и Фишер ⁴⁶, необходимо выполнение условий

$$r_{ij} = 0$$
 $(i \neq j), \quad w_{ij} = 0$ $(i, j = 2, 3).$ (5.9)

Пусть теперь компоненты $s_q^{(1)}$ и $s_q^{(2)}$ не обладают критическим поведением. После известных преобразований гамильтониан (5.5) можно привести к хорошо изученному изинговскому гамильтониану

$$\mathscr{H}_{u} = -\frac{1}{2} \int_{q} (r_{33} + q^{2}) \, s_{q}^{(3)} s_{-q}^{(3)} - \int_{q} \int_{q_{1}} \int_{q_{2}} \overline{u}_{33} s_{q}^{(3)} s_{q_{1}}^{(3)} s_{q_{2}}^{(3)} s_{-q-q_{1}-q_{2}}^{(3)}, \quad (5.10)$$

где

$$\overline{u}_{33} = u_{33} - \sum_{i=1}^{2} \frac{(w_{i3})^2}{2r_{ii}^{(1)}}.$$
(5.11)

При переходе к гамильтониану (5.11) были использованы соотношения $r_{33} < r_{11}^{(1)}, r_{33} < r_{22}^{(1)}, r_{13}^{(1)} = r_{23}^{(1)} = w_{23} = r_{12}^{(1)} = 0.$ (5.12)

Гамильтониан (5.11) имеет изингоподобную фиксированную точку, если

$$\bar{u_{33}} > 0.$$
 (5.13)

Таким образом, рассмотрение анизотропных ферромагнетиков на основе трехкомпонентной модели при H = 0 показывает, что гамильтониан Ландау — Гинзбурга — Вильсона имеет два типа фиксированных точек: XY и изинговского типа. Следовательно, фазовые переходы 2-го рода в анизотропных ферромагнетиках можно описать критическими индексами, соответствующими этим моделям, которые при использовании \in -разложения ⁴² определяются выражениями

$$\alpha = -\frac{(n-4)}{2(n+8)} \in -\frac{(n+2)}{4(n+8)^3} (n+28) \in^2 + O(\mathbb{C}^3), \tag{5.14}$$

$$\beta = \frac{1}{2} - \frac{3}{2(n+8)} \in + \frac{(n+2)(2n+1)}{2(n+8)^3} \in + O(\epsilon^3),$$
(5.15)

$$\gamma = 1 + \frac{n+2}{2(n+8)^2} \in + \frac{n+2}{4(n+8)^3} (n^2 + 22n + 52) \in^2 + O(\epsilon^3), \quad (5.16)$$

$$\delta = 3 + \epsilon + \frac{1}{2(n+8)} (n^2 + 14n + 60) \epsilon^2 + O(\epsilon^3);$$
(5.17)

здесь $\in = 4 - d$, n - число спиновых компонент (размерность спина), d -размерность решетки.

Трехмерные модели Изинга и XY-модель характеризуются соответственно значениями n = 1 и n = 2 (d = 3), а соответствующие им значения критических индексов приведены в табл. III. Приведенные здесь значения

Моцель	α	β	γ	δ	ω
Изинга ХҮ	$^{0,0772}_{-0,02}$	0 ,34 0 0 ,36 0	1,244 1,300	$4,46 \\ 4,46$	$\substack{2,94\\0,622}$

Таблица III

8 УФН, т. 140, вып. 4

ω рассчитаны из соотношения подобия 7. Непосредственный расчет этого индекса для модели Изинга был проведен Гунтоном и др. ⁴³, используя (-разложение. Ими показано, что

$$\frac{1}{T_{\rm c}(H)} = \frac{1}{T_{\rm c}(0)} - k \, \frac{\Delta \cdot H^2}{(zJ)^3}, \qquad (5.18)$$

где k — постоянная Больцмана, Δ — порядок \in , J — обменный интеграл. Аналогичные результаты были получены Сузуки ⁴⁸ 1/*n*-разложением и Эллиотом и др. ⁴⁹. Для одномерных магнитных систем с упорядочением типа «легкая плоскость» подобный результат получен в работе ⁵⁰.

Таким образом, теоретические расчеты, приведенные как на основе теории молекулярного поля, так и на основе различных модельных представлений, а также экспериментальные данные указывают на существования фазового перехода II рода флуктуационного типа в анизотропных ферромагнетиках в слабых магнитных полях.

6. НЕМАГНИТНЫЕ СВОЙСТВА АНИЗОТРОПНЫХ ФЕРРОМАГНЕТИКОВ В СЛАБЫХ МАГНИТНЫХ ПОЛЯХ

Как было установлено в предыдущих параграфах, матнитные свойства анизотропных ферромагнетиков, находящихся в магнитном поле, при определенной температуре $T_c(H)$ претерпевают аномалий, характерные для фазового перехода II рода. В связи с тем, что особенности температурной и полевой зависимости немагнитных свойств ферромагнетиков определяются магнитным состоянием, то, очевидно, что в $T_c(H)$ должны наблюдаться также аномалии тепловых, упругих, электрических, гальваномагнитных, оптических и других свойств. В частности, могут быть предсказаны постоянные в широком интервале температур эффекты магнитострикции ⁵² и вращения плоскости поляризации света ⁵¹, которые представляют большой интерес для практического применения.

Для удобства рассмотрения все свойства ферромагнетиков можно подразделить на три группы:

1. Линейные по намагниченности свойства.

2. Квадратичные по намагниченности свойства.

3. Свойства ферромагнетиков пропорциональные температурному коэффициенту намагниченности.

1. К линейным по намагниченности свойствам прежде всего следует отнести магнитооптические эффекты Керра и Фарадея. Известно, что угол вращения плоскости поляризации прошедшего через кристалл или отраженного от его поверхности света пропорционален намагниченности

$$\varphi_{\Phi,\mathbf{I}\mathbf{K}} = \sqrt[6]{2} VM, \tag{6.1}$$

где V— постоянная Верде или Кундта соответственно для эффектов Фарадея и Керра, которая не зависит от T и H. В области точки Кюри намагниченность остается постоянной до T_c (H) (см. формулу (2.9)) и

$$\varphi_{\Phi, K} = \frac{VH}{D}.$$

Отсюда следует, что в слабых магнитных полях $\phi_{\Phi, K}^{\infty}$ линейно зависит от H и остается постоянным вплоть до температуры $T = T_c$ (H), так как M = const. При $T = T_c$ (H) наблюдается характерное для кинк-явления резкое уменьшение ϕ_{Φ} . Действительно, экспериментальные исследования Литстера и Хо⁵¹, проведенные на ферромагнетиках CrBr₃ и Y₃Fe₅O₁₂, а также наши измерения для эпитаксиальных слоев Y₂BiGa_{1, 2}Fe_{3,8}O₁₂ показали, что угол вращения плоскости поляризации при эффекте Фарадея остается постоянным в широком интервале температур и при всех $T < < T_c$ (H) линейно зависит от H (см. рис. 13).

2. Особенности квадратичных по намагниченности свойств ферромагнетиков мы рассмотрим на примере магнитострикции ⁵². Рассмотрим изотропный неоднородно намагниченный ферромагнетик. В таком ферромагнетике в слабых магнитных полях магнитострикция λ вблизи T_c обусловлена изменением направления M, и поэтому эффектами, связанными

Рис. 13. Зависимость ϕ_{\oplus} от *T* и *H* для Y₂BiGa_{1, 2}Fe_{3,8}O₁₂. **2** — 17 Э, 2 — 25 Э, 3 — 37 Э, 4 — 55 Э.

с изменением абсолютной величины M, можно пренебречь. В этом приближении магнитоупругая энергия вблизи может быть записана в виде 53

$$F_{\mathrm{N},\mathrm{U}} = \lambda_{xx}\sigma_{xx}M^2 \ (\mathrm{N}, \ \mathrm{U}); \tag{6.3}$$

здесь индексы N и U относятся к неоднородно и однородно намагниченным фазам соответственно, а M (N) и M (U) определяются выражениями (2.8) и (2.9), λ_{xx} и σ_{xx} — компоненты тензоров магнитострикции и упругих напряжений.

При учете магнитоупругой энергии фазовый переход из неоднородно намагниченного состояния в однородное произойдет только в том случае, если $F_N = F_U$. Тогда из (6.3) и (2.9) следует, что

$$\hat{\lambda} = -\frac{\partial F_{\rm N}}{\partial \sigma_{xx}} = -\frac{\partial F_{\rm U}}{\partial \sigma_{xx}}, \quad \lambda_{\rm N} = \lambda_{\rm U}, \tag{6.4}$$

где λ_N , λ_U^F — величины магнитострикции неоднородной и однородной фаз при $T = T_c$ (*H*). В рассматриваемом квадратичном по намагниченность 8* приближении магнитоупругой энергии λ определяется выражениями

$$\lambda_{\rm N} = \lambda_{xx} \left(\frac{H}{D}\right)^2, \tag{6.5}$$

$$\lambda_{\mathrm{U}} = \sigma_{xx} M_{\mathrm{U}}^2 \qquad (s = 1/2) \tag{6.6}$$

для фаз N и U соответственно (где M_U определяется формулой (2.7)). Таким образом, как следует из формул (6.4)—(6.6), в ферромагнетиках

с размагничивающим фактором D в слабых магнитных полях λ обладает следующими особенностями: 1) в неоднородно намагниченной фазе λ не зависит от T и квадратично зависит от H, 2) значения λ , соответствующие T_c (H), определяют температурную зависимость самопроизвольной

магнитострикции вблизи T_{c} (*H*). Следует отметить, что эти особенности справедливы и для одноосных ферромагнетиков.

Экспериментальная проверка указанных закономерностей нами была проведена на поликристаллическом никеле (чистота 99,99%) и ферритахгранатах иттрия и гадолиния. В окрестности точки Кюри емкостным дилатометром, чувствительностью которого не хуже 10^{-8} , снято более 50 изотерм для каждого образца. Измерения в полях до 500 э подтвердили наличие кинк-явлений для магнитострикции. Как видно из рис. 14, где представлены кривые температурной зависимости λ в различных полях, магнитострикция в области температур $T < T_c$ (H) остается постоянной в пределах экспериментальной ошибки 1%. При $T = T_c$ (H) на кривой $\lambda = f$ (τ) наблюдается излом, а температура излома в соответствии с (2.10) смещается в сторону низких температур с ростом H. В интервале температур $T < T_c$ (H), как видно из рис. 15, экспериментальные точки хорошо ложатся на прямую, представляющую зависимость $\lambda = f$ (H^2). Следует отметить, что кинк-явление магнитострикции может быть использовано для определения температурной зависимости спонтанной магнитострикнии ⁵².

3. Теплоемкость и магнитокалорический эффект. Пожалуй, наиболее полно как теоретически ⁶, ¹⁰, ¹¹, так и экспериментально ³, ⁴¹ исследовано влияние слабого магнитного поля на поведение теплоемкости вблизи T_c . Еще в первой экспериментальной работе Ван-дер-Ховена и др. ³, посвященной изучению влияния H на теплоемкость изотропного ферромагнетика EuS, было показано, что с увеличением H максимум теплоемкости смещается в сторону низких температур. Такое поведение теплоемкости c_p было

662

объяснено Арротом ⁴ и Войтовичем и Рейлом ⁶ в приближении теории молекулярного поля на модели тонкого тороида. Согласно представлений, развитых в этих работах, теплоемкость неоднородно намагниченного ферромагнетика в фазах N и U определяется выражениями

$$C_{\rm U} = \underbrace{C_0}_{\tau^2 - \tau} + \frac{(1 - \sigma_{\rm U}^2) (h - d\sigma_{\rm U} + \sigma_{\rm U})^2}{\tau^2 - \tau (1 - \sigma_{\rm U}^2) (1 - d)}, \qquad (6.7)$$

$$C_{\rm N} = C_0 + \frac{(1 - \sigma_{\rm N}^2) \,\sigma_{\rm N}^2}{\tau^2 - \tau \,(1 - \sigma_{\rm N}^2)},\tag{6.8}$$

из которых следует, что при $T = T_c(H)$ наблюдается скачок теплоемкости. С ростом H скачок Δc_p смещается в сторону низких температур

точки Кюри.

ο¹5¹10⁴32¹⁵0⁴0,40,40 Рис. 15. Зависимость λ от H² вблизи Рис. 16. За

Рис. 16. Зависимость теплоемкости от температуры в различных магнитных полях ⁶.

$$1 - h/d = 0,2; \quad 2 - 0,4; \quad 3 - 0,6; \quad 4 - 0,9;$$

 $5 - 5,0 \quad (d = 0,04).$

и уменьшается по абсолютной величине. При $h/d \approx 1$ наблюдается широкий максимум выше T_c , а скачок исчезает (см. рис. 16). Указанные особенности температурной зависимости теплоемкости в слабых магнитных полях подтверждается расчетами, основанными на теории фазовых переходов II-го рода Ландау, для анизотропных ферромагнетиков. В частности, в T_c предсказывается скачок теплоемкости, который определяется выражением

$$\left[\Delta c_p = \frac{1}{2b} \left[\tau_{c_n}(h) - \left(\frac{h_x}{2k_1}\right)^2 \right].$$
(6.9)

Характерные для теплоемкости особенности температурной зависимости подтверждены экспериментальными работами ³, ⁵⁴. На рис. 17 приведены кривые зависимости c_p (T) в различных магнитных полях для Gd. Экспериментальные данные указывают на наличие особенности c_p в T_c (H), однако предсказываемый теорией среднего поля скачок отсутствует. Аномалию, приходящуюся на T_c (H) (но не скачок), следует объяснить большим влиянием на температурную зависимость c_p флуктуаций компоненты намагниченности, перпендикулярной полю, или неустойчивостью неоднородно намагниченной моды.

Магнитокалорический эффект в слабых магнитных полях рассмотрен только в работах ^{37, 38}, в которых показано, что в ферромагнетиках типа «легкая плоскость» ΔT -эффект растет с увеличением поля, оставаясь отрицательным. Начиная с некоторого критического поля, соответствующего фазовому переходу II рода, появляется положительная составляющая магнитокалорического эффекта. Эти особенности магнитокалорического

Рис. 17. Температурная зависимость теплоемкости Gd в слабых магнитных полях ⁵⁴.

Рис. 18. Зависимость магнитокалорического эффекта от T и Hсплава $\mathrm{Tb}_{0,2}\mathrm{Gd}_{0,8}$ ³⁸. 1 - 5,0 кЭ, 2 - 9,1 кЭ, 3 - 12 кЭ.

эффекта подтверждаются экспериментальными данными (рис. 18) для сплавов Tb_xCd_{1-x}, которые являются ферромагнетиками с осью трудного намагничивания вдоль гексагональной оси.

7. ОСОБЕННОСТИ НЕКОТОРЫХ ДИНАМИЧЕСКИХ КРИТИЧЕСКИХ ЯВЛЕНИЙ В СЛАБЫХ МАГНИТНЫХ ПОЛЯХ

Изучению критической динамики ферромагнетиков в слабых магнитных полях посвящены работы ⁵⁵⁻⁶⁸.

Так как чаще всего для изучения критической динамики спиновой системы ферромагнетиков используют эксперименты по изучению распространения ультразвуковых УЗ волн и восприимчивости в переменных магнитных полях (динамическая восприимчивость), вкратце рассмотрим особенности этих динамических параметров в анизотропных ферромагнетиках при $H \neq 0$.

Из экспериментальных и теоретических работ известно, что в магнитоупорядоченных кристаллах при H = 0 вблизи T_c наблюдается пик поглощения и минимум скорости распространения продольных УЗ волн ⁵⁶⁻⁶¹. Было установлено, что эти аномалии обусловлены наличием спин-фононного взаимодействия магнитострикционной природы. Спин-фононное взаимодействие, ответственное за эти критические аномалии, возникает из-за модуляции обменного взаимодействия упругими деформациями. В результате спиновые флуктуации создают случайные силы, влияющие на нормальные акустические моды и приводящие к аномальным потерям энергии упругой волны. Согласно теории Мори ⁶⁰, коэффициент поглощения $\alpha_{\rm k}$ и относительное изменение скорости $\Delta v/v$ выражаются через временную корреляционную функцию случайных сил и пропорциональны четырехспиновой корреляционной функции, которая несет всю информацию о динамике спиновой системы. В магнитном поле из-за подавления спиновых флуктуаций критические аномалии снимаются. Однако в чистом виде подавление флуктуаций наблюдается не во всех ферромагнетиках. В некоторых веществах во внешнем магнитном поле происходит увеличение $\alpha_{\rm R}^{36, 62, 63}$, тогда как в других наблюдается его уменьшение ^{36, 61}. Для объяснения различного характера влияния H на $\alpha_{\rm R}$ был предложен поляризационный механизм аномального поглощения ³⁶. С учетом этого механизма $\alpha_{\rm R}$ в магнитном поле $H \parallel z$ определяется выражением ³⁶

$$\alpha_{\rm R} = (2\rho V v_l)^{-1} \operatorname{Re} \left[4g_0^{z^*}(k) g_0^z(k) \langle s_0^z \rangle \int_0^\infty (s_{\rm R}^z(t), s_{\rm R}^z(0)) \exp(-i\omega_{\rm R}t) dt + \right. \\ \left. + \sum_{\rm R} g_q^{\alpha^*}(k) g_{q'}^{\alpha'}(k) \int_0^\infty (s_q^\alpha(t) s_{-q-{\rm R}}^\alpha(t), s_{-q'}^{\alpha'}(0) s_{q'+{\rm R}}^{\alpha'}(0)) \exp(-i\omega_{\rm R}t) dt \right], \quad (7.1)$$

$$g_q^{\alpha}(k) = \sum_{i} \exp\left(iq R_{ij}\right) \left[\exp\left(ikR_{ij}\right) - 1\right] e_{\kappa} \frac{\partial J_{ij}}{\partial R_i}, \qquad (7.2)$$

тде ρ , V — плотность и объем кристалла, v_l — скорость распространения продольных волн, $e_{\rm R}$ и $\omega_{\rm R}$ — вектор поляризации и частота фононов, J_{ij} — обменный интеграл, R_i —

радиус-вектор *i*-го узла, $\langle s_0^z \rangle$ — статическая спиновая поляризация. Первый член в этом выражении, состоящий из произведения спиновой поляризации и двухспинокорреляционной функции, вой приводит к увеличению коэффициента поглощения в пределе сламагнитных полей. бых Второй член, определяемый четырехспиновой корреляционной функцией, обусловливает уменьшение α_к, так как магнитное поле подавляет флуктуации.

Рис. 19. Зависимость $\alpha_{\rm K}$ от T для MnP ⁶³.

Таким образом, в магнитном поле присутствуют два конкурирующих механизма аномального поглощения Y3-волн, и может оказаться, что при некоторой температуре их вклады в $\alpha_{\rm K}$ будут равны друг другу эта температура, получившее название температуры компенсации, определяется протяженностью обменного взаимодействия. Ниже температуры компенсации преобладает механизм подавления критических флуктуаций магнитным полем и с ростом H коэффициент поглощения $\alpha_{\rm K}$ уменьшается. Выше этой температуры $\alpha_{\rm R}$ определяется спиновой поляризацией, и поэтому магнитное поле в этом случае способствует росту $\alpha_{\rm R}$.

В анизотропных ферромагнетиках наличие фазовых переходов II рода, индуцируемых магнитным полем, определяет интересные особенности в полевой и температурной зависимости коэффициента поглощения и скорости распространения Y3-волн. В MnP экспериментально было показано, что в магнитном поле, перпендикулярном легкой оси (ось c), наблюдаются два пика поглощения Y3-волны. Один из них локализован вблизи и выше T_c (0) и при увеличении H смещается в сторону высоких температур. Другой пик поглощения наблюдается ниже T_c (0) и обусловлен переходом ферромагнетик — парамагнетик. Температура, на которую приходится этот пик поглощения, смещается в сторону низких температур с увеличением H (рис. 19). О наличии фазового перехода II-го рода в MnP при Н <u>1</u> с свидетельствуют и данные по полевой зависимости $\alpha_{\rm K}$. Ниже $T_{\rm c}(0)$, если при фиксированной температуре изменять внешнее магнитное поле, при некотором значении $H = H_{\rm KP}$ коэффициент поглощения проходит через максимум. При удалении от $T_{\rm c}(0)$ в область $T < T_{\rm c}(0)$ этот максимум смещается в сторону высоких полей, качественно подтверждая

Рис. 20. Полевая зависимость $\Delta \alpha_{\kappa}$ для Gd вблизи T_c.

H — *Т*-диаграмму для одноосных ферромагнетиков. Аналогичные особенности в температурной и полевой зависимости поглощения звука были обнаружены нами в гадолинии (см. рис. 20), а для скорости звука в работе ⁶⁴.

Как следует из (7.1), для количественного описания особенностей $\alpha_{\rm K}$ и $\Delta v/v$ необходимо рассчитать температурную и полевую зависимости двух- и четырехспиновой корреляционной функции. Для расчета четырехспиновой корреляционной функции можно использовать расцепление, которое позволяет выразить эту функцию через двухспиновые корреляторы:

$$(ab, cd) \sim (a, b) (c, d) + (a, c) (b, d) + (a, d) (b, c) - (a, b) (c, d).$$
 (7.3)

Такого рода расцепление справедливо до тех пор, пока радиус корреляции будет меньше, чем радиус обменного взаимодействия. В магнитных металлах, где обменное взаимодействие является дальнодействующим, расцепление (7.3) работает хорошо во всем температурном интервале, исключая очень близкую к $T_{c}(H)$ область. Применив (7.3) к (7.1) и используя известное соотношение между двухспиновой корреляционной функцией

и восприимчивостью

$$(s_a^{\alpha}, s_{-a}^{\alpha}) = (g\mu_{\sigma})^{-2} \chi_a^{\alpha}, \qquad (7.4)$$

а также формулу (2.13), выражение для $\alpha_{\mathbf{r}}$, например для орторомбического кристалла, можно преобразовать к виду (**H** || *b*-оси, $\omega_{\mathbf{r}} \tau_{\mathbf{r}} \ll 1$, $\tau_{\mathbf{r}} -$ время релаксации)

$$\alpha_{\rm R}^{b} = F_{\rm R} \tau \left\{ \left(\frac{\sigma \left(1-b\right)}{\tau - \left(1-k_{b}\right)\left(1-b\right)} \right)^{2} + \left(\frac{1-b/3}{\tau - \left(1-k_{b}\right)\left(1-b\right)} \right)^{3/2} + \left(\frac{1-b/3}{\tau - \left(1-k_{a}\right)\left(1-b/3\right)} \right)^{3/2} + \left(\frac{1-b/3}{\tau - \left(1-b/3\right)} \right)^{3/2} \right)^{3/2} \right\} \right\}.$$
(7.5)

Аналогично можно получить выражение и для изменения скорости звука:

$$\Delta v = -F_{k} \frac{3B}{\frac{1}{4}s(s+1)k^{2}} \left\{ \sigma^{2} \left(\frac{1-b}{\tau-1+b} \right) + 8G\tau \left[\sqrt{\frac{1-b}{\tau-1+b}} + \sqrt{\frac{1-(b/3)}{\tau-(1-k_{a})\left(1-(b/3)\right)}} + \sqrt{\frac{1-(b/3)}{\tau-(1-k_{b})\left(1-(b/3)\right)}} \right] \right\}; \quad (7.6)$$

вдесь $k_i = (J_0^c - J_0^i)/J_0^c$ — константа анизотропии (i = a, b), $F_{\rm R}$ п G — постоянные, характеризующие магнитоупругость и протяженность обменного взаимодействия соответственно, B — константа, характеризующая материал, k — волновое число, σ — спиновая поляризация, нормализованная посредством s, b определяется выражением (2.13a), а остальные обозначения совпадают с прежними. Эти выражения позволяют количественно описать экспериментально обнаруженные особенности температурной и полевой зависимости $\alpha_{\rm R}$ и $\Delta v/v$. В частности, из (7.5) следует, что низкотемпературный пик $\alpha_{\rm R}$ (см. рис. 19) обусловлен четвертым членом, который при $T = T_c$ (1 — (b/3)) обращается в бесконечность, а широкий максимум выше T_c (0) обязан первому и второму членам. Физической же причиной возникновения двух аномалий $\alpha_{\rm R}$, как следует из (7.5), является взаимодействие звуковых волн с флуктуациями спиновых компонент вдоль осей c и b, радиусы корреляций которых при $T = T_c$ (H) и T_c (0) проходят через максимумы в соответствии с расчетами, проведенными Шнайдом ¹⁰. Подобным же образом, используя 7.6, могут быть объяснены и аномалии скорости распространения продольных звуковых волн в Gd.

Рассмотрим теперь особенности поведения динамической восприимчивости вблизи температуры фазового перехода 2-го рода, наблюдаемого в слабом магнитном поле. Динамическая восприимчивость, как известно, является комплексной величиной

$$\chi = \chi' + i\chi''. \tag{7.7}$$

Действительная часть восприимчивости χ' , когда $\omega \tau_{\rm K} \ll 1$, примерно равна статической, и поэтому в магнитном поле ее температурная зависимость будет определяться выражением (2.13), из которого следует, что χ' в ферромагнитной фазе не зависит от температуры. При $T = T_{\rm c}(H) \chi'$ начинает резко уменьшаться и выше $T_{\rm c}(0)$ согласно (3.17) проходит через максимум, который при увеличении H смещается в сторону высоких температур. Такой характер температурной зависимости χ' был обнаружен экспериментально в Y₃Fe₅ O₁₂ ⁶⁵⁻⁶⁷ (рис. 21). Мнимая составляющая восприимчивости χ'' , характеризующая мощ-

Мнимая составляющая восприимчивости χ'' , характеризующая мощность поглощения спиновой системой радиочастотного поля, пропорциональна коэффициенту поглощения продольных звуковых волн ³⁶. Действительно, при распространении звуковой волны происходит диссипация энергии в спиновой системе, которая определяется выражением

$$P = \alpha_{\rm R} V \rho \omega_{\rm K}^2 u_0^2 v_l, \tag{7.8}$$

где u₀ — смещение атома, вызываемое звуковой волной. Диссипация же

энергии радиочастотной волны определяется мнимой составляющей восприимчивости

$$P = \frac{\omega_{\mathbf{k}}}{2} \chi'' H_{\sim}^2. \tag{7.9}$$

Из (7.8) и (7.9) следует пропорциональность χ'' и $\alpha_{\rm K}$, и в магнитном поле, перпендикулярном оси анизотропии на кривой $\chi''(T)$, должны наблюдаться два максимума, соответствующие температурам $T_{\rm c}(H)$ и $T_{\rm c}(0)$.

На рис. 22 приведены экспериментальные данные для сферического образца Y₃Fe₅O₁₂, которые подтверждают наличие двух максимумов. Динамика этих пиков в постоянном магнитном поле такая же, что и для α_к.

Таким образом, исследование распространения ҮЗ воли и динамической восприимчивости позволяют подтвердить наличие фазовых переходов II-го рода в слабых магнитных полях в анизотропных или неоднороднонамагниченных ферромагнетиках. Более того, эти эксперименты позволяют наиболее корректно восстановить фазовую H - T-диаграмму, так как при $T = T_c(H) \alpha_{\rm R}$ и χ'' проходят через ярко выраженный максимум (см. рис. 20 и 22), в связи с чем ощибки определения $H_{\rm Rp}$ или $T_c(H)$ значительно меньше по сравнению с магнитными и другими измерениями.

В заключение мы приносим глубокую признательность А. С. Боровик — Романову за ряд ценных замечаний.

Дагестанский государственный университет им. В. И. Ленина

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. Вонсовский С. В. Магнетизм.— М.: Наука, 1971. Белов К. Ц. Магнитные превращения.— М.: Физматгиз, 1959.
- Воровик Романов А. С. Лекции по низкотемпературному магнетизму. Новосибирск, 1976.
 Yan der Hoeven B. J. C., Теапеу D. T., Moruzzi V. L. Phys.
- Rev. Lett., 1968, v. 20, p. 719. Teaney D. T., van der Hoeven B. J. C., Moruzzi V. L.- Ibid., p. 722.
- 4. Arrott A.— Ibid., p. 1029. 5. Griffits R. B.— Phys. Rev., 1968, v. 176, p. 655; J. Appl. Phys., 1969, v. 40,
- p. 1542.
 Wojtowicz P. J., Rayl M. Phys. Rev. Lett., 1968, v. 20, p. 1489.
 Durczewski K. Phys. Lett. Ser. A, 1970, v. 31, p. 56; Acta Phys. Polon. Durczewski K. — Phys. Lett. Ser. A, 1970, v. 31, p. 56; Acta Phys. Polon. Ser. A, 1970, v. 38, p. 855.
 K lamut J., Sznajd J. — Phys. Lett. Ser. A, 1970, v. 31, p. 6.
 Thomas H. — Phys. Rev., 1969, v. 187, p. 630.
 Sznajd J. — Acta Phys. Polon. Ser. A, 1971, v. 40, p. 637; 1975, v. 47, p. 61.
 Sznajd J. — Ibid., 1977, v. 51, p. 145.
 Клямут Я., Шнайд Ю. — В кн. Тезисы докл. симпозиума по фазовым пере-уюлти и критинским и пристики и найд Ю. – В кн. Тезисы докл. симпозиума по фазовым пере-уюлти и критинским у пристики.

- Клямут Я., ШнайдЮ. В кн. Тезисы докл. симпозиума по фазовым переходам и критическим явлениям. Новосибирск, 1977. Москва, 1977. С. 14.
 Ландау Л. Д., Лиф и и ц Е. М., Статистическая физика. М: Наука, 1974.
 Neel L. Ann. de Phys., 1932, t. 18, р. 1.
 Fallot M. Ibid., 1936, t. 6, р. 305.
 A rais S., Colvin R. V. J. Appl. Phys., 1964, v. 35, p. 2424.
 Colvin R. V., Arais S. J. Phys. and Chem. Sol., 1965, v. 26, p. 435.
 A rais S. J. Appl. Phys., 1965, v. 36, p. 1136.
 A rott A., Noakes J. E. Ibid. (Suppl.), 1959, v. 30, p. 975.
 Noakes J. E., Arrott A. Ibid., 1964, v. 35, p. 931.
 Kamu no B И. К. Автореферат кандидатской диссертации. М.: МГУ, 1964. Автореферат докторской диссертации. М.: МГУ, 1975.
 K Iamut J., Durczewski K. Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. and Phys., 1970, v. 53, p. 53.
 Ritter G., Sznajd J. Acta Phys. Phys. Polon. Ser. A, 1980, v. 57, p. 819; v. 58, p. 283.

- v. 58, p. 283.
- 27. Тябликов С. В. Методы квантовой теории магнетизма М.: Наука, 1965. 28. Камилов И. К., Алиев Ш. М., Алиев Х. К., Анохина Л. К.— Письма ЖЭТФ, 1979, т. 30, с. 582.

- Письма ЖЭТФ, 1979, т. 30, с. 582. 29. Белов К. П., Горяга Л. Н.— ФММ, 1956, т. 2, с. 441. 30. Коиvel J. S., Fisher M. E.— Phys. Rev. Ser. A, 1964, v. 136, p. 1626. 31. Ророvici М.— Rev. Roum. Phys., 1971, v. 16, p. 565. 32. Драбкин Г. М., Забидаров Е. И., Касман Л. А., Окоро-ков А. И.— ЖЭТФ, 1969, т. 56, с. 478. Драбкин Г. М., Окороков А. И., Волков В. И., Шебетов А. Ф.— Письма ЖЭТФ, 1971, т. 13, с. 3. 33. Suzuki H., Watanabe T.— J. Phys. Soc. Japan, 1971, v. 30, p. 367.