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This review of some aspects of the magnetoacoustics of ferro- and antiferromagnetic materials has been
written in connection with the 25th anniversary of the rise of this field of physics of magnetic phenomena.
Primary attention is paid to relatively new problems that have not been reflected in the existing monographs
and reviews. The topic is a group of linear magnetoacoustic effects that manifest spontaneous symmetry
breaking caused by magnetic ordering in a system of two coupled fields: the magnetization field M (r) and the
deformation field u,(r). To some extent these effects are analogous to the Higgs effect in the theory of
elementary particles (the Higgs mechanism of the origin of the mass of a particle) or the Meissner effect in the
theory of superconductivity. A direct analog of the stated effects is the so-called magnetoelastic gap in the
magnon spectrum, while an analog of an accompanying effect is the softening of the quasiacoustic modes
interacting with it (up to the vanishing of the corresponding dynamic elastic moduli). However, a
characteristic feature of such effects in crystalline (anisotropic) magnetic materials is that they are manifested
mainly near points of magnetic (spin-reorientation) phase transitions. This review treats the coupled
magnetoelastic waves in ferro- and antiferromagnetic materials of different types that show phase transitions

with respect to temperature, magnetic field, or pressure.

PACS numbers: 75.80. + q, 75.10. — b, 75.30.Kz
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1. INTRODUCTION
a) History of the problem

About 25 years ago (1956-1958) the first studies'™ ap-
peared that predicted the existence of coupled magneto-
elastic (magnon-phonon) waves in ferro- and antiferro-
magnetic materials. These studies actually opened up
a new field in the physics of magnetically ordered ma-
terials (“magnetics”)—magnetoacoustics, which has
subsequently found a number of important applications
(see, e.g., the reviews of Refs. 4, 5).

However, the present article is aimed at discussing a
set of magnetoelastic (ME) effects that also pertain to
this field, but have been discovered consideraly later
and have been hardly reflected in the review (or mono-
graph) literature. The need for such a treatment is
further dictated by the fact that contradictory (and in
some cases just plain wrong) views exist on these ef-
fects. At the same time, the situation here is that the
stated effects are actually of general physical interest
and have analogs in other fields of physics.

The study of the ME phenomena of interest to us be-
gan in 1963-1965 in Refs. 6—11. An effect was discov-
ered’'® almost simultaneously and independently that
has been called respectively in the Soviet and the West-
ern literature the “magnetoelastic-gap’’®''® or the
“frozen-lattice” effect.!??? It was found in experiments
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on antiferromagnetic resonance (AFMR) in hematite
{a-Fe,Q,) that the resonance frequency w, is described
by the formula

(1.1)

2 2
w0y = 0} + 0§

Here the quantity w, corresponded to the AFMR fre-
quency given by the theory existing at that time (and de-
termined by the external magnetic field H and the mag-
netic anisotropy), while the extra term directly repre-
sented the discovered effect.

The very first studies®™ advanced the hypothesis
that this contribution to the AFMR frequency involves
spontaneous magnetostriction, which takes place in the
ground (equilibrium) state of an antiferromagnet. The
striction gives rise to elongation (or contraction) of the
specimen in the direction of the antiferromagnetism
vector, which creates an additional effective anisotropy
field for the spin oscillations. It is important to stress
that the effect under discussion involves the fact that
these spontaneous lattice deformations do not follow the
oscillations of the magnetization excited in AFMR.
They are as though “frozen” (hence one of the names of
the effect). It is important to distinguish this effect
from the renormalization by magnetostriction of the
magnetic-anisotropy constants, which are determined
from static measurements. In contrast to the latter,
the effect in which we are interested does not vanish,
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even in the limiting case of a completely isotropic
mediam, for which w,=0(as H—~0), and hence we have
wy= we. On the contrary, in this case the effect, not
being masked by the anisotropy, is manifested in its
purest form.

The theory of AFMR with account taken of spontane-
ous deformations in the ground state has been developed
in Refs. 6 and 10. Here not only the stated nature of the
effect in hematite was confirmed, but also some new
predictions were made.

It was shown!® that this ME effect is common to all
ferro- and antiferromagnetic materials, while differing
in different cases only in magnitude. It was found that
the existence of “frozen” spontaneous deformation
should be treated, not as a hypothesis, but as the result
of systematic solution of the coupled equations of mo-
tion for homogeneous oscillations of the magnetization
and deformation.

The estimates of Ref. 10 showed that the quantity
wye must have a1 anomalously large value for rare-
earth ferromagaetic substances (Dy and Th) haviag
anisotropy of the “easy-plane” type, for which w,g/¥
~10° Qe (y is the magnetomechanical ratio). This pre-
diction has been confirmed in experiments on inelastic
scattering of neutrons by spia waves in these
metals.”®'* The poiat i3 that the ferro- (or antiferro-)
magnetic resonance frequency w, and also be defined
(with certain exceptions involving demagnetizing fields
of the specimen) as the minimum value of the frequency
w, for the corresponding branch of spin waves in the
limit of the wave vector k= 0: w,= w,,,,. In other
words, tae frequency w, amounts to the gap in the spin
wave spectrum. As has been done in Refs. 13 and 14,
this can be found by extrapolaling the function w, = uw(k)
to #~0. The quantity wy,; gives the ME contribution to
this gap. This is the source of the other name of the
effect.

A lively discussion evolved at one time around the
problem of the spin-wave frequency (as k—0) in the
rare-earth metals and their alloys on the topic of which
of the models is correct here: the “frozen” or “free”
lattice (frozen or free lattice model; see, e.g., Refs.
12-21). Echoes of this discussion are found even
now.?*%* The bases for this discussion were both pure-
ly subjective!) and objective, involving the fact that it
had not been possible to describe the resonancea ia these
metals from the standpoint of a “frozen lattice”. Al-
though it has had the last word, yet the problem of ade-
quate description of the UHF properties of the rare-
earth metallic ferromagnetic materials remains open to
a considerable extent. We shall return again later to
the concepts of the frozen and free lattice from the
standpoint of coupled magnetoacoustic (magnon-phonon)
waves.

Already there are many tens of studies examining
theoretically or experimentally effects that are some-

DHowever amazing this may seem now, a number of physicists
could not believe at all that a lattice can be at rest (frozen
lattice) during homogeneous oscillations of the spins, rather
than following them (free lattice).

6594 Sov. Phys. Usp. 26(7), July 1983

how related to taking into account the spontaneous de-
formations in the ground state. Besides hematite,
which has been rewarding in this respect (in addition to
Refs. 6-9, see also Refs. 25-33), these effects have
been studied in detail in another rhombohedral antifer-
romagnetic material (also with weak ferromagnetism),
FeBOQ,, ?"+#1+*35 in the cubic antiferromagnetic gar-
nets, %' and also in certain orthoferrites (antiferro-
magnetic compounds, often with weak ferromagnetism,
of the type of VFeQ,) (see Refs. 38-42), and in “easy-
axis”-type antiferromagaetic materials (MnF, and
Cr,0,).**"* The difference has been discussed?® between
the magnetic anisotropy constauts of cobalt manganese
ferrite (Co,_,;Mn, ,;Fe,0,), as determined from static
measurements and from ferromagnetic resonance
(FMR), with the aim of detecting a “frozen-lattice”
effect.

It has been found from these studies that the ME gap
amounts to only one (perhaps not the most interesting)
aspect of the phenomenon: it corresponds to.only one
point (k= 0] of the spectrum of one of the branches of
the unitary spectrum of coupled ME waves (specifically
the quasimagnon branch). This gap arises from the in-
fluence of the elastic subsystem on the magnetic sub-
system. Of course, there is the other side of the
coin—the inverse influence of the spin oscillations on
the branch of acoustic oscillations (phonons), which in-
teracts with it. Both these coupled modes of oscilla-
tions (the quasimagnon w (k) and the quasiacoustic mode
w;{Kk)) are shown schematically in Fig. 1 for an anti-
ferromagnetic material in the simplest “pure” case in
which w,, = 0 in (1.1), so that the magnon gap fully re-
duces to the magnetoelastic gap. In this case the inter-
action of the modes proves strongest. The dotted lines
show the spectra without the interaction, while the solid
lines show them with allowance for the ME interaction.
We see that, in addition to the appearance of the gap
wye for w(k), a strong deformation arises in the quasi-
acoustic branch (so that in the asymptotic when Wy
« Wyp, i.e., for small enough values of k, the disper-
sion law for this branch can even change from linear to
quadratic). Experimentally this effect is manifested as
a decrease in the velocity of sound with decreasing w,
in (1.1). In various cases, this can be attained by vary-
ing the magnetic field, temperature, or pressure (see
Refs. 25-27, 34, 39-41). Simultaneously with the de-
crease in the velocity of sound near the point w, =0,
the damping can rise sharply.®
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FIG. 1. Coupled ME waves in an isotropic antiferromagnetic

material. The dotted lines represent the magnons and sound
in the absence of ME interaction.
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b) Analogies and differences with the Meissner-
Higgs effect. Role of phase transitions

Despite the great number of papers cited above and
others in the field under discussion, at times there was
a lack of core ideas reflecting the universality of the
phenomena, as well as of bridges to other branches of
physics that might, in particular, serve as analogies.
To fill this gap, so as to stress the general physical
aspects of the problem, is the fundamental goal of this
article (see also Ref. 51).

The point is that, from the standpoint of interest to
us, a magnetic material amounts to a system of two in-
teracting fields (the magnetization M and the deforma-
tion u,,) in which spontaneous symmetry breaking (SSB)
occurs—ferro- or antiferromagnetic ordering. In this
sense such a system is an analog of the Higgs model in
elementary-particle theory.*

Analogies between the theories of elementary parti-
cles and of the solid state possess both cognitive and
practical importance for their development. The con-
cept of SSB, which arose in the theory of ferromagnet-
ism, has been considerably developed and widely ap-
plied in the gauge theories of elementary particles. We
shall speak here of the analogies with the Higgs effect,
which plays a large role in these theories and which
was discovered (amazing coincidence!) at about the
same time as the effect of the ME gap (1964). However,
one can treat on the same basis the analogies with the
Meissner effect in the superconductivity model of Ginz-
burg and Landau,® since the Higgs model in turn is on-
ly a relativistic analog of this model (see, e.g., Ref.
54).

We have no opportunity to take up even briefly the
models that yield a Meissner-Higgs effect. Yet perhaps
there is no need of this, since a number of excellent
articles on this topic has appeared in recent years in
the journal Uspekhi Fizicheskikh Nauk (in addition to
Ref. 54, see also Refs. 55 and 56). For us it is impor-
tant to recall only the situation that gives rise to the
Higgs model, in which initially massless particles de-
scribed by the vector (e.g., electromagnetic) field A,
(u=0,1,2,3) acquire a non-zero mass by the interac-
tion of the vector with the complex scalar field ¢(x)
= ¢, + i¢,, which corresponds to charged bosons.

This occurs when spontaneous ordering (Bose con-
densation) arises in the ¢ subsystem. The ground state
obtained here {0i¢10)=¢,= ¢,,+ i¢,, proves, on the one
hand, to be degenerate with respect to rotation of the
“vector” (¢,,, ¢, in the (¢,, ¢,) plane. On the other
hand, each given state having concrete values of ¢,,
and ¢,, will no longer possess the circular rotational
symmetry in this plane inherent in the initial Lagrangi-
an for the field ¢; such.a rotation transforms one state
(9105 P20 into any other {¢!,, ¢5,) having the same ener-
gy. The symmetry of the ground state is broken with
respect to that of the Lagrangian.

If we examine the excited states of the complete sys-
tem of the fields ¢ and A , then, upon taking into ac-
count the non-zero vacuum average ¢,, we must rede-
fine the scalar field by setting ¢ = ¢,+ ¢’ (here we have
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(01 ¢*10)=0). Consequently the quadratic form in 4,

and ¢’ in the complete Lagrangian determining the spec-
trum of excitations will contain a term of the form
[¢o1?A%. The latter means that the particles corre-
sponding to the field A, acquire a non-zero rest mass.
In other words, their spectrum will contain an energy
gap—a minimal energy below which these particles do
not exist. This is the Higgs mechanism for the origin
of mass in a system with SSB.

Now let us treat small coupled (via magnetostriction)
oscillations of the magnetization M and the deformations

1 ( du du
u”zi (6_.z;+ 6::’1 )
in an isotropic ferromagnetic material near its ground
state. In addition to the spontaneous magnetization M,,
we also take account in it of the spontaneous deforma-
tions u{ coupled with the latter, so that we have

M= M, + AM and u;; = uf’ + Auy;.

The general form of the ME interaction responsible for
this coupling of M and u , (in the linear approximation
inu,;) will be given later [Eq. (2.1)].

In the absence of magnetic anisotropy, of an external
magnetic field, and without taking account of the ME
coupling, the energy of the oscillations of the vector M
is determined by the exchange interaction, or more
precisely, by its increase caused by the spatial inhomo-
geneity of the oscillations (i.e., oscillations with non-
zero gradients of M). This increase in the exchange
energy is proportional to (VM)?, which yields a gap-
free spectrum with respect to the frequency w,,~k2 for
the spin waves (magnons). Taking account of the ME
coupling gives rise (in the component of the energy
quadratic in the oscillations) to terms of the form
«'® (AM)?, which arise from the spontaneous deforma-
tion uf‘}) in the ground state (homogeneous contraction
or elongation of the specimen in the direction of its
spontaneous magnetization M,). These terms play the
role of an effective magnetic anisotropy for the oscillat-
ing component of the magnetization AM, and thus give
rise to a non-zero gap in the spectrum of the quasi-
magnon branch of the coupled ME waves, even in a
magnetically isolvopic medium. In this sense they are
analogous to the cited term |¢,1?A%, which gives rise
to the non-zero mass of the particles of the vector field
in the Higgs model.

We note that, up to 1964, only the other quadratic
terms of the ME coupling of the oscillations had been
taken into account, namely those of the form M,AMAu.
The latter vanish as £~ 0 because the dynamic com-
ponent (Au”) of the tensor u,; can only be inhomogene-
ous. Therefore they do not contribute to the ME gap.
Henceforth we shall call the terms of the stated two
types the strictive and dynamic terms, respectively.

Thus the ME gap in magnetic materials is just as
generally physical in nature (actually at the level of the
first principles of physics) as the Higgs effect, in the
sense that both arise as the result of SSB in a system of
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interacting fields.?) The ground state of a ME medium
is degenerate with respect to rotation of the spontaneous
magnetization M, together with the deformations “(13)
created by it. In line with the Goldstone theorem, this
degeneracy corresponds to gapless (acoustic) modes of
coupled oscillations (of the type of the lower curve in
Fig. 1). At the same time, the spontaneous deforma-
tions remove the degeneracy with respect to pure spin
rotations, whereby the quasimagnon mode acquires the
gap wy. We note that the problem of the existence of
an ME gap was first treated from the standpoint of sym-
metry in Ref. 57, while the present analogy was noted
in Refs. 58 and 59.

The frequency wy; amounts to the frequency of uni-
form precession of M around the effective field of the
magnetic anisotropy (H,;), which arises from the
breaking of the initial spherical symmetry of the iso-~
tropic medium owing to the spontaneous (“frozen”) de-
formations of the ground state (Fig. 2).

Further we uote the importance in SSB effects of the
fact that the ground states (Mg, %'%) in an isotropic mag-
netic material form a continuous degenerate set that
corresponds to the continuous group of all rotations and
reflections in three-dimensional space (supplemented
by the exchange operation M~ —-M) that leave the energy
(thermodynamic potential) of this magnetic material is
invariant. This is precisely why the magnon gap in an
isotropic magnetic material completely reduces to the
ME gap.

At the same time, the symmetry of crystalline mag-
netic materials is discrete, so that their degenerate
states (corresponding to minimum energy and obtain-
able from one another by applying the discrete set of
symmetry operations of the paramagnetic crystal) are
separated by potential barriers. From the standpoint of
magnetic properties this implies the existence of mag-
netic anisotropy in crystals, which gives rise to the
“easy” and “hard” directions of magnetization of crys-
talline magnetic materials, and by itself leads to a non-
zero gap in the magnon spectrum. Here the overall

FIG. 2.

The spontaneous deformations of an isotropic ferro-
magnetic material give rise to the effective magnetic-aniso-
tropy field Hy,g for homogeneous oscillations of the magneti-
zation with respect to the ground state with these “frozen de-
formations*.

YHowever, the analogy ends with this, since the Higgs effect
consists not only in the creation of mass in the vector field,
but also in the disappearance of the massless component of
the scalar field, which is ‘“expended” in creating the extra
degree of freedom of the vector fleld, which becomes mas-
sive. Of course, for ME oscillations the Goldstone (acoustic)
modes do not vanish. In particular, this difference involves
the fact that the Higgs model belongs to the gauge theories,
which cannot be said of the model of a ME medium (in any
case, for its commonly used form).

596 Sov. Phys. Usp. 26(7), July 1983

magnon gap in many cases is described by a two-term
formula of the form of (1.1). It is not always a simple
problem to separate these two terms experimentally.
However, in the physics of the problem from the stand-
point of SSB effects, one must perform this separation
as follows. The first term (w%) reflects the symmetry
of the equilibrium magnetic properties as determined
by the symmetry group of the paramagnetic crystal
(unbroken symmetry). Theoretically one can easily dis-
tinguish it from u? as being the magnon gap calculated
under the assumption of equilibrium coupling of the os-
cillations of the magnetic moments and the deforma-
tions (AM and Ax,,). Then the residual ;= w2 - w?
will define in pure form the SSB effect, or ME gap.

The contribution wf”: to the gap ;of, is very small in
most cases. Under these conditions, the reverse effect
of the spin waves on the elastic degrees of freedom is
also small. Conveniently one can use the following ra-
tio as a dimensionless parameter characterizing the
effectiveness of ME coupling:

[——ME

(1.2)

In line with what we have said, as a rule under ordinary
conditions, we have {« 1.

And just here we must bring into the scene the mag-
netic phase transitions (PTs). We are here dealing with
PTs of the “order-order” type, in which one ordered
magnetic state transforms into another, e.g., by coher-
ent rotation of all the magnetic moments (orientational
PTs).

The special role of PTs in observing SSB effects con-
sists of the fact that in a PT the above-mentioned po-
tential barriers that separate the degenerate states
vanish: at a second-order PT the initial state immedi-
ately adjoins another and transforms into it continuous-
ly, while at a first-order PT there are points at which
the initial state loses stability. Here, in both cases the
term w? in (1.1) loses its positive definite character
{which arises from the equilibrium nature of the ground
state), so that at these PT points we have w? =0, and
hence, ¢=1. '

Thus, near PT points the ME effects in which we are
interested, that arise from SSB, must be maximal, and
by analogy to the case of an isotropic magnetic materi-
al, not at all small. Therefore the ME spectra in Fig.

1 pertain not only to an isotropic antiferromagnetic sub-
stance, but also to the PT point of an anisotropic anti-
ferromagnetic.

As we shall show in Sec. 2, a very important point is
that the modes of coupled ME oscillations being dis-
cussed are of a type such that, as 2~ 0, the magnetiza-
tion in one of them (quasimagnon mode) oscillates with
respect to “frozen” deformations, while in the other
{quasiphonon mode) AM and Ay oscillate in phase, ac-
companying one another in gquasiequilibrium fashion.
Some analogs are the optical and acoustic lattice vibra-
tions. In this sense the dispute between the “frozen”
and “free” lattice approximations is resolved as being
(when k= 0) frozen—for quasimagnons, and free—for
quasiphonons. Yet for finite %2, of course, neither of
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the approximations fits.

Finally we note that the ME gap cannot be abolished
by any agents acting on the magnetic material (temper-
ature, a field, pressure, or even a change in concen-
tration) until this agent abolishes the magnetic order
itself that breaks the symmetry. (Similarly we cannot
abolish the Meissner effect without abolishing the su-
perconductivity.) This is precisely why a PT in an in-
teraction parameter ensures this impossibility of
abolishing the phenomenon.

In the simplest case we can see this even from the
example of an isotropic ferromagnetic material (see
Fig. 2): an attempt to diminish the ME gap by unilateral
pressure, which eliminates the spontaneous deforma-
tions, or an external magnetic field that compensates
the effective field H,,, must immediately lead to an
orientational PT (to a state of lower energy). After
this the stated agent will no longer diminish the magnon
gap, but increase it. Analogously, in an anisotropic
magnetic material, an external agent that diminishes
the magnon gap w, must cause a PT as soon as the lat-
ter reaches its minimum value, which directly deter-
mines the magnitude of the ME gap w,, (Fig. 3).

The further aim of our article is to demonstrate in
greater detail the general propositions formulated above
on concrete examples of magnetic materials of differ-
ent structures and for different PTs.

2. MAGNETOELASTIC WAVES IN FERROMAGNETIC
MATERIALS '

a) Overall formulation of the problem

The effects in which we are interested arise from the
ME interaction. In the case of a ferromagnetic materi-
al it makes the following contribution to the energy
density (see, e.g., Ref. 60, pp. 774-780):

(2.1)

Eyg (¥) = Bijpimim .

(As usual, one sums over the subscripts that occur
twice, with each of the subscripts ijnl running through
the three values: x, y, and z.) Here B, is the mag-
netoelastic-constant tensor; m= Mr)/M, is the unit
vector of the local magnetization M(r), whose modulus
is considered to be a conserved quantity: MXr) = M2,
so that m®*=1. Finally,

1 dun du
u"’=?( 0z, + Bz,:)
is the deformation tensor, which is defined by a sym-
metric combination of the derivatives of the displace-

FIG. 3. The magnon gap wy=v cbu! +cum.;z as a function of the
temperature near the magnetic phase-transition point 7* at
which wy (T*)=0. The function wy (T) (dotted line) determines
the same gap in the absence of the SSB effect.
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ment u.®’

The overall energy density also includes the magnetic
component E,(r) and the elastic component Eg(r). The
former can be written in the form of the following ex-
pansion in m and 8m/®x :

ém dm
i ax; daxj

p 1
- Kifummm my + . .. —MH — 5 Miy.

Ey(r)=A

+KiPmim,

(2.2)
The first term (with the coefficients 4,) amounts to the
increase in exchange energy due to the spatial inhomo-
geneities of m with respect to directions (“inhomogene-
ous exchange”), while the following terms—the terms
with k") (v=1,2,...) are the energy of magnetic crys-
tallographic anisotropy. The magnitude of the aniso~
tropy constants K usually decreases with increasing
degree 2v of the expansion (actually, in this article,
the terms that we have written out will suffice). The
latter two terms respectively represent the Zeeman en-
ergy in the external field H and the magnetostatic ener-
gy involved with the inhomogeneities of the magnetiza-
tion M (including the energy of the demagnetizing fields
of the specimen surface). The magnetostatic field Hy
is the solution of the equations of magnetostatics:

div (Hy + 4nM) = 0, rot Hy = 0. (2.3)
Finally, the elastic-energy density has the form
Eg =% Cijnttig lin e (2.4)

Here C is the elastic-modulus tensor.

inl

The explicit form and the number of independent com-
ponents of the material tensors B, 4, K, and C are de-
termined by the symmetry of the crystal.

The total energy (thermodynamic potential) is

E=SE(1-) ar- (dr= dzdydz). (2.5
Here '
E (r) = Eq + Eve + Eg, (2.6)

determines both the equilibrium states (the values of
m=m{ and u,,=u!} corresponding to the minimum of
£) and the spectrum of small oscillations about these
states: '

Am=m—m® and Au;;=u;—uf

(2.7

If one is interested in the equilibrium magnetic prop-
erties of a ferromagnetic material (or even the dynamic
properties, but those that conserve the equilibrium
coupling between u; and M), then, by expressing the
equilibrium magnetostrictive deformations u,, in terms
of M from the condition 8E/8y ,= 0, and then substitut-
ing them into Eyg in (2.1) and E in (2.4), one can easi-
ly show (Ref. 60, p. 778, or Ref. 62, p. 57) that the
total energy density in (2.6) in this case acquires the
form of its magnetic component (2.2). The differences

. YFor simplicity we shall not treat the antisymmetric compon-

ent of the overall distortion tensor, which characterizes the
inhomogeneous elastic displacements in a continuous medi-
um. ® Apparently, in most cases taking into account the
terms corresponding to it introduces no substantial changes
into the phenomena in which we are interested.
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will consist only in that the tensor K'2), will be renor-
malized, and will now include a magnetostrictive con-
tribution (determined by combinations of tensors quad-
ratic in B and reciprocal in C). What we have said re-
flects the fact that the symmetry of the equilibrium
macroscopic magnetic properties (“symmetry of direc-
tions”) will be the same after allowing for the spontane-
ous magnetostrictive deformations as when we do not
allow for them. This is determined by the point-group
symmetry of the paramagnetic crystal.?

At the same time, the symmetry of each given ground
state characterized by the equilibrium values m(® and
«'? will be spontaneously broken even for H= 0. (For
example, an isotropic medium will be described by the
symmetry of an axial vector, while a cubic crystal
magnetized along a cube edge acquires tetragonal sym-
metry.)

If we know the concrete form of the energy in (2.6) for
a crystal being studied, we can write in the usual way
(see, e.g., Ref. 63) the coupled equations of motion for
M and u

. 2.8
M=v[M %ET , ( )

o OE 1+8
s =57 s gt - (2.9)
(Here 6/6M is the variational derivative, and 5,,=1 or

0 respectively for i=j and i #5). Upon solving these
equations in the linear approximation in the small os-
cillations of (2.7) about the ground state (m'®, 4{%), we
find as a result the spectrum of coupled ME waves.
Our fundamental problem consists in studying these
spectra for crystals of different symmetries in the
vicinity of magnetic phase-transition points, where the
effects of SSB are most strongly manifested.

However, we must bear in mind the fact that the pat-
tern of the observed ME phenomena can depend substan-
tially on the presence of dissipative processes. In par-
ticular, this pertains to the close neighborhood of PT
points, where the damping of oscillations can increase
strongly. To estimate the role of damping, we shall
respectively add to the right-hand sides of the equations
of motion: for the magnetization in (2.8), a relaxation
term in the Gilbert form®:

-Tf—[M'M] (2.10)
. .
(here r is a dimensionless relaxation parameter),
while for the deformations in (2.9) we shall add a dissi-
pative term of the form?®®
99} (2.11)
ozy
Here 0},= 0,4, i8 the dissipative stress tensor. (The
v1sc031ty tensor 7,,,, has the same symmetry as the
elastic-modulus tensor C;,,.)

$For magnetic materials having two or more sublattices and
a corresponding number of magnetizations, one must take
into account also the spatial position of the symmetry ele-
ments in the unit cell of the crystal, paying attention to which
permutation of the sublattices is performed by each of the
elements. %2
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b) Cubic ferromagnetic material

First let us examine the simplest case of a ferro-
magnetic material of cubic symmetry magnetized to
saturation along one of the cube edges, e.g., [001]]| Z.
Here (and everywhere below for other crystals) we shall
not write out again the energies (2.1)—(2.4) with account
taken of the concrete form of the tensors B, A, K, and
C. We shall only point out the minimal set of compon-
ents of these tensors, which directly converts (2.1)—
(2.4) into the traditionally employed expressions for the
energy of crystals of the corresponding symmetry. We
can easily see that all these tensors possess symmetry
properties with respect to permutation of indices that
allow these indices to be combined in pairs. As is usu-
ally done in the theory of elasticity, we introduce the
following notation:

=2
gz —zz= 15,
(For example, we have K\’ = kW =KV, C__=C

xyx yxyx
= Cryys= Corxy =Cgq)-

=3, yz =
zy = yzr == 6.

zz=1, zy =4,

(2.12)

For crystals of cubic symmetry, in particular, we
have
Ay =ABy, KPP =Kby KR = K8
—RE K —KB KR =K =K =K@ = ¢ K,

By, = By = Byy= B, Bu=Bss=Bu=TB,,
Cu=sz=Cn- C,2=C21=C,,=C,,=C,a=C,,.
Cu=Ces=Cos.
(2.13)
We can assume the remaining components to be zero.

If we are interested in the equilibrium properties,
then we find from the condition of minimum £ in (2.5),
with account taken of (2.2) and (2.4), that

mi® = o; =const ,

B C
N by 1 13
ull Cuy—Ci ((t. Ciut2Cn

)1 u’iJ =57 2C o0 [(E-BIR
(2.14)
Upoa substituting these values of m and «,, into (2.1)-
(2.6), we obtain the following expression for the ther-
modynamie-potential density under the conditions of

equilibrium among them:

E;=const + K* (aza} 4 alai -+ alal) — MaH,
Here we have
B _B
—C 204
Thus, taking account of magnetostriction in equilibrium
processes renormalizes the magnetic anisotropy con-
stant: K~K* Here K* amounts precisely to the aniso-
tropy constant that one measures in static experiments
(from magnetization curves or from rotational mo-
ments). It also governs the orientational magnetic PT.
Thus, if the constant K* changes sign with varying
temperature at some point T*, then the axis of easy
magnetization changes upon passing through this point:
when K*>0 in the absence of an external field, the vec-
tor a lies along one of the edges of the cube, while
when K* <0, it lies along one of the body diagonals.

K‘~K+C“ (2.15)

Now let us study coupled oscillations of AM and Ax,,
about a state having a{|H|| Z, in which, according to
(2.14) the spontaneous deformations are
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_ (Cu+Cis) By
(Cu—C1) (Cr1+2C13)°

C1oB . .
W W — 121 [{ L .
uy =ui =Ui=g—r 5, Ty W0 ()

uP=U,=
(2.16)

In the special case of ME waves propagating along the
direction of magnetization (i.e., with a wave vector

k| @l Z), we obtain the following expressions from the
system (2.8), (2.9):

(0r == ©) ms (k) + thy 3 (k) =0,

A (2.17)
e () + 02— 0} (0] s (1) = O,
(o (k) — @] u, (k) =0. (2.18)
Here
on = (2K + 2B, (U, — Uy -+ 4K*) +vH (2.19)

is the spin-wave frequency with account taken of the
spontaneous deformations of (2.16) in the ground state
(i.e., with account taken of the strictive ME contribu-
tion). Further,

o (k) = stk
o k=5t (st="51)

are respectively the frequencies of transverse and lon-
gitudinal elastic waves; and

my (k) =my (k) £ im, (k) B s (k)=us(k) £ iy, (k)

are the circularly polarized Fourier components of the
oscillations of the magnetization and elastic displace-
ments.

Equation (2.18) implies that a longitudinal elastic
wave with the frequency w, = s & does not interact with
the spin waves, while the two independent systems of
equations of (2.17) give rise to two types of coupled
ME waves:

dextropolarized waves (u - iu, = m, —im, = 0) with
frequencies determined by the dispersion equation
(0g + 0) (0} — 0?) — {0t =0; (2.20)

levopolarized waves (¢ + iu, =yt im, = 0) with the
dispersion equation
(0p— ) (0} — 0?) — fog] =0.

(2.21)

In Eqgs. (2.20) and (2.21) we have introduced the effec-
tive ME coupling parameter

== CoaMyoy, — oy

3 vB} _ “me (2.22)

and the spin-wave gap
(2.23)

_ 2% B2
w0= 3 (K+ g2y ) T -

The frequency w= w, is the only positively definite (and
non-zero) solution of the dispersion equations (2.20) and
(2.21) for homogeneous oscillations (k= 0).

The term with B? in w, amounts to the ME contribu-
tion to the gap arising from the spontaneous deforma-
tions, which break the initial cubic symmetry of the
crystal.

It is important to stress that, as regards equilibrium
(quasistatic) properties, a cubic ferromagnetic materi-
al remains cubic even after we allow for the spontane-
ous deformations of (2.16), which lead only to renor-
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malization of the cubic anisotropy constant: K—K*
(2.15). At the same time, the symmetry of the crystal
is broken with regard to dynamic properties: in the
case being studied with M || H|| [001], the ground state
has tetragonal symmetry (or more exactly, the symme-
try of a tetragonal ferromagnetic material). The term
with B,? in (2.23), that we have pointed out, directly
arises from this tetragonal increment to the aniso-
tropy.®

With a view to studying the region near the PT point,
let us rewrite w, in (2.23) with account taken of (2.15)
as follows:

0o= 3 (K*+ 52t ) +vH. (2.24)
When H= 0, the state with M, || f001] becomes unstable
at the point where

K*=0 or (2.25)
As we have already noted, an orientational PT occurs
when K* changes sign: from the state M, il [001], the
ferromagnetic material goes over to the state M| [L11].
Immediately at the transition point we have

mo=mME:7"%. (2.26)

This is the smallest spin-wave gap, which is charac-
teristic of the PT point, and is the ME gap in its pure
form.

We stress again that, precisely because of the broken
symmetry of the ground state, the magnon gap does not
vanish at the PT point. It is only because of it that the
dynamics (spectrum) is determined not by the “thermo-
dynamic” cubic anisotropy constant K* of (2.15), which
is responsible for the statics (stability), but by the
“mechanical” tetragonal anisotropy constant K*+ B2/
2C,,. It makes no difference whether the term with B,?
is zero or not (and together with it, the strictive defor-
mations in the ground state). Still the equilibrium cubic
constant with allowance for deformations is not K, but
K*. And in the case B, = 0, the tetragonality is intro-
duced into the dynamics by the absence in w, of (2.23) of
the term -BZ/2C,,, that exists in K* in (2.15).

An external magnetic field shifts the PT point, which
at H+ 0 will be determined by the condition

2K*
-+ H =0.

(2.27)

Yet the magnitude of the gap at this point remains as
before that in (2.26).

Now let us study coupled ME waves having frequencies

YSometimes it is said that a dynamic renormalization of the
cubic anisotropy constant occurs here: K —K+B2/(C; ~Cy,),
which differs from the static renormalization. However,
actually this dynamic increment to KX involves lowering the
symmetry of the crystal. The latter proves to be different,
depending on the direction of the magnetization M with re-
spect to the crystallographic axes: when Myl [001] the ground
state of the lattice is tetragonal, while when M,J [111] it will
be rhombohedral, and orthorhombic when Myl [110], etc.

In the formula for the frequency w;, the ME increment to X
also proves to depend on the direction of M. Thus it cannot
be treated as resulting from renormalization of the cubic
constant K.
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determined by Egs. (2.20) and (2.21) with 2 #0. The
second equation gives two positive roots and one nega-
tive root, while the roots of the first equation are ob-
tained from those mentioned merely by a sign change.
The latter implies that it suffices to study the solution
of only one equation, e.g., (2.21). Here the two positive
roots correspond to two ME circular waves with levo-
polarization (L-waves), while the third, or negative
root, taken as the modulus, gives the frequency of a
single dextropolarized wave (D-wave).

Let us assume initially that the ME coupling parame-
ter is §<« 1, which usually corresponds to states far
enough from the PT point. In this case the dispersion
curves are shown schematically in Fig. 4a, from which
we see that the strongest interaction of the magnons
with the transverse elastic waves occurs at the point of
intersection of the original noninteracting branches of
the spectrum, where we have

(2.28)

The approximate part of the equation means that herein-
after we assume that the following condition is satisfied:

(2.29)

sth = 0 = @,

Ay sl o weg < od.

Here wg = A/& is the exchange frequency, and wpisa
characteristic frequency of the order of the Debye fre-
quency (a is the interatomic parameter). The relation-
ship (2.28) is the condition for the so-called magneto-
acoustic resonance.!'*%%-%® The interaction removes
the degeneracy, and splitting occurs at the intersection
point k= w,/s, =k, by the relative amount

=~V

The frequency shift of the dextropolarized wave at this
same point is considerably smaller:

1, (2.31)

of? —ofy

l (2.30)
g h=ko

.
03— OfYy

Wy lk=ho

In the long-wavelength region of the spectrum where
w; << w,, an approximate solution of Eq. (2.21) yields

(2.32)
(2.33)

o 00+ g @B+ L (ak),

on & o & oV 1—1.

@g

kg &
a)

FIG. 4. Coupled ME waves with the wave vector k | M, Il {001)
in a cubic ferromagnetic material. a) Far from the PT point
(¢ <1); b) at the PT point (¢=1). The dotted lines correspond
to magnons (1) and transverse phonons (2) without taking into
account the dynamic ME coupling between them, but with ac-
count taken of the spontaneous (“frozen”) deformations in the
ground state. Solid-lines-quasimagnons (I) and the quasipho-
nons (@I, IM).
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The formula (2.33) determines the decrease in speed of
quasisound (of both levo- and dextropolarization) or of
the corresponding dynamic shear modulus caused by
ME interaction:

S5=sVI=C Cu=Cu(—0. (2.34)

Since, according to (2.22) and (2.23), the parameter
{ depends on the field H, the stated quantities also be-
come functions of H. However, their strongest change
occurs near the PT point, where {~1. Here Eq. (2.34)
no longer holds, and the solution of Eq. (2.21) for ¢=1
in the long-wavelength region k<« g, yields the following
frequencies:®’

wh
= K%, 2.
01 = OME+ Oy (ak) } (Lowaves), (2.35)
o = oz (ak)? (2.36)
o= :;DE (ak)? (D-waves). (2.37)

Thus, at the PT point the long-wavelength components
of all three branches of the spectrum change their form
most radically: for the two quasiacoustic branches the
dispersion law becomes quadratic (with substantially
different coefficients of k* for waves of the L- and D-
types), while for the quasimagnon branch the coefficient
of k? increases considerably (Fig. 4b).

We have introduced the terms ‘“quasiacoustic” and
“quasimagnon” only arbitrarily, starting with the ab-
sence or presence of a gap in the spectra, and taking
into account the fact that, as k=0, the frequency w,
= wyp corresponds to oscillations of the magnetization
with “frozen” deformations. As soon as we gotoa
finite value of &, the arbitrariness of these names be-
comes evident: thus, for L-type waves the dispersion
of quasimagnons in (2.35) is governed by the elastic
forces (w,), while the dispersion of quasisound in (2.36)
is governed by the exchange forces {wg).

In order to elucidate to what degree the oscillations
pertaining to any of the branches of the spectrum affect
the magnetic and elastic subsystems, one must find
from Eqs. (2.17) the ratio for this branch of the corre-
sponding amplitudes of oscillations m, and »,.- For the
long-wavelength region (¥ «< k,) we have respectively for
the three studied normal waves:

for quasimagnons”

wi By . 2.38
—am (2.39)

for quasiphonons
(2.39)

C .
m,= —{-ﬁ (ikuy).

In the former case (2.38) the elastic displacements u
are relatively small, so that the name “quasimagnon
branch” is to some degree justified, although as we
have noted, its dispersion is no longer associated with

8)We recall that wyyy is the negative root of Eq. (2.21) with its
modulus being used.

UThe intensity of the elastic oscillatlons can be conveniently
characterized by the dimensionless quantity (kz), which de-
fines the ratio of the displacement to the wavelength, We re-
call that u, are the dynamic components of the elastic dis-
placements.
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the exchange forces. As k—~0, the amplitude of the dy-
namic displacements u for this branch vanishes for a
nonzero value of the quantity m_, which corresponds to
uniform precession of the magnetization about the state
with broken symmetry.

Now let us turn to quasiphonons. According to (2.39),
the amplitude of the relative oscillations of the magnet-
ization for them (precession angle) is related as £ —~1
to the amplitude of dynamic deformations by the large
numerical coefficient C,,/B,. Upon comparing (2.39)
with (2.19), one can easily discern that this relationship
is purely of an equilibrium type: the changes in the
magnetization and the deformations for the quasiphonon
modes (both of L- and D-types) are expressed in terms
of one another in the same way as for equilibrium pro-
cesses. What we have said allows us to understand this
result as well: if one calculates the energy flux trans-
ported by these waves by the known formulas,®® then it
turns out that it is completely associated with the ex-
change terms in the thermodynamic potential of (2.2).
Owing to the quasiequilibrium character, the fluxes as-
sociated with the elastic (2.4) and magnetoelastic (2.1)
terms completely compensate one another.

The quasiequilibrium coupling between the oscilla-
tions Ax,; and AM for quasiphonons in the long-wave-
length region k < k, (Fig. 4b) enables one to study the
anomaly of the corresponding elastic modulus C,, near
a phase transition point from a thermodynamic stand-
point. Upon determining from the conditions 8E/8m
=0 and 8E/8m, = 0 (with m?= 1 - m2 - m?) the changes
in the magnetization caused by the shear deformations
u,, and u_(corresponding to the transverse circularly
polarized waves in which we are interested), with ac-
count taken of the deformations (2.16) in the ground
state, we have
B}

-1
My = —Bz(K+ Cu‘cm) Usxzy my

=—B, (K-%— CuB-iC” )_‘ Uy
(2.40)
Upon substituting these values of m, and m, into the
thermodynamic potential E of (2.6), we can then find the
elastic modulus renormalized with respect to E, and

E,;:

_ 4 eE 1 oE
b 4 out, 4 oul,

(2.41)

The result will be expressed by a formula of the form
of (2.34), which corresponds to the vanishing of the
modulus of C,, as defined according to (2.41) at the PT
point, where ¢=1.

Owing to the mixing of the oscillations AM and Ax
the quasiphonon mode can be excited either by sound or
by a magnetic field. Here, whereas the deformations
are “frozen” for the quasimagnon mode in the long-~
wavelength limit, on the contrary, for the quasiphonon
mode the deformations follow the oscillations of the
magnetization in quasiequilibrium fashion. In this
sense the “frozen lattice” model holds for the quasi-
magnons, and the “free-lattice” model for the quasi-
phonons (although even for the latter the spontaneous
deformations in the ground state also must be taken in-
to account—this involves precisely the term with B? in
the denominator of the formulas of (2.40)).
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The results that we have presented can be applied in
the special case to an isotropic ferromagnetic material
if we set

K =0, B, =B, and Cyy — C14 = 2C,. (242)

We note that this state also can be treated as a PT
point: dependent on the field H (for H= 0), the pressure,
or the temperature (at values of these at which the iso-
tropy is violated).

Finally we must bear in mind that damping has not
at all been taken into account in the treatment of ME
phenomena presented above fterms (2.10) and (2.11) in
the equations of motion]. However, it is more appro-
priate to evaluate the role of damping using the example
of ferromagnetic materials of the “easy-plane” type,
for which the ME effects in which we are interested
have actually been observed. '

¢) Ferromagnetic materials of the “‘easy-plane” (EP)
type

As we have already noted, the real systems in which
SSB effects have been observed, and in particular, the
ME gap in the magnon spectrum, are uniaxial (e.g.,
hexagonal) ferromagnetic materials with magnetization
lying in the basal plane, for which the magnetic aniso-
tropy is rather small (“easy plane”). These ferromag-
netic materials (EPFMs) include the rare-earth metals
dysprosium and terbium at temperatures below certain
critical temperatures ©_., which are respectively equal
to 87 K and 219 K. A first-order PT occurs at the tem-
perature T = © ., whereby for T >© . the ferromagnetic
structure is converted into an antiferromagnetic heli-
coidal structure. However, the latter in fields H great-
er than a critical field H_(7) that depends on the tem-
perature again becomes ferromagnetic (see, e.g., Refs.
67, 12, 20, and 21). Important features of these ferro-
magnets are giant magnetostriction (al/1~B/C ~1073-
107 and a large uniaxial magnetic anisotropy K" =6
% 10® erg/cm®, which confines the magnetization to the
basal plane.

The hexagonal anisotropy in the basal plane for single
crystals of Dy and Tb, which determines the equilibri-
um direction of magnetization in this plane, also proves
to be very high (at T= 4.2 K we have K® =10°-107 erg/
cm®). Therefore we must take into account the corre-
sponding terms in the anisotropy energy, although they
are sixth order in the components of the magnetization.
The giant magnetostriction can give rise to a consider-
able magnetostrictive contribution to K‘®. For a sys-
tematic derivation of the latter, in the expansion of the
magnetoelastic energy in powers of the deformations
1,, We must take into account the second-order terms
along with the linear terms, as in(2.1). This some-
what complicates the mathematics and the formulas that
are derived for hexagonal ferromagnetic materials.

But we are mainly interested in the qualitative features
of the ME effects in EPFMs, which can be treated us-

ing the simpler example of ferromagnetic materials of
tetragonal symmetry.

In a system of coordinates with the Z axis lying along
the tetragonal axis and the X and ¥ axes along the edges
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[100] and {010] of the basal face, only the following con-
stants {(with account taken of the notation (2.12) for pairs
of indices) can remain as nonzero constants determining
the energy in (2.6): B,, = B,,, B, = By,, B,,, B,,= B,
By, K=K, K2 = K(1§) KD/IZ, C11=Cay Cyy, C12=Cyy,s
C13=Cp=Cy = Cyp, Cpuu=C,,, and Cy. [Everywhere
hereinafter we shall describe the inhomogeneous ex-
change by a single constant A, as in the case of (2.13),
thus neglecting the anisotropy of the tensor A,,, which
is inessential for our problems.]

For the sake of definiteness, let us study a saturation
state with magnetization lying in the basal plane along
the edge [100], so that M,||H|[|X. Upon determining
again the spontaneous deformations uf‘,’) in this state and
calculating the spectrum of small oscillations AM and
Ay, about it, we obtain the following results.

First let the wave vector k also lie along the X axis
(i.e., along the equilibrium magnetization M,). In this
case the dispersion equation of the coupled ME waves

has the form
(02— 0}) [(0 — 0}) (0* — 0}) (0 — 0}) — Lawfof, (0" — w})

— Lol (0* — of) — Lnlaolol 0f] = 0;

(2.43)
here

or=v V(- + Bt Ha+ Hue ) (- 0+ H+ o+ o)
(2.44)
is the frequency of the spin waves without taking into

account the dynamic ME coupling (yet allowing for the
spontaneous deformations in the ground state), while

oy =s;k (el X, si= l/-'—c;;:) '

-
O = Seyke (eu” Y, 8= ‘//_';e_) ’

O =Seok (efz IZ, siz= l/§)

are the frequencies of longitudinal and transverse
acoustic waves when unperturbed by the ME interaction.
The directions of the polarization vectors and the veloc-
ities of these waves are indicated in the parentheses.

In (2.44) we have introduced the effective static mag-
netic-anisotropy fields #, and H-as renormalized with
allowance for magnetostriction, and also the ME fields
Hygs and Hyge!

(2.45)

K'
HA=——3“ , (2.46)
K -1 2584, 48B3,
Ho= G =Mi* Ko+t — ), (2.47)
483 4B}
Hupi=7g 3> Huee= o (2.48)

In Egs. (2.46) and (2.47) we have written out the explicit
form of the anisotropy constants renormalized by mag-
netostriction (“starred”) only for the constant K*, which
determines the anisotropy in the basal plane, since the
phase transition for the EPFM in which we are interest-
ed involves precisely this constant. In contrast to a
cubic crystal, two parameters play a role here that de-
termine the ME coupling of the waves:

(2.49
(2.50)

-1
Lin=Hpp s (—%ﬁ— k2+H+HA+HMEA) s

-1
Len = HuEs (k2+H+H[]+HME6) .
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Let us present directly the solutions of (2.43) for the
normal waves in the long~wavelength approximation.
Namely, when

k<<—si:- and %‘;— (2.51)

we obtain
(1)% = mf + ;ehmfi + gkhmgzy (2. 52)
op=w =5k (enllk), (2.53)
omr=skV1—Tax (el Y), (2.54)
ory=skV1—Cn  (ev 1l 2). (2.55)

The condition of minimal total energy implies that a
uniaxial (tetragonal in this case) ferromagnetic materi-
al is an EPFM if the effective uniaxial anisotropy field
H, in (2.46) satisfies the inequality

Hy>0. (2.56)

Here, as usual, we have H, > H,;,, and hence, {,,«1,
while the magnon gap is

©o=on[x=0 % vV (H+ Hy) (H+ H- + Huke)- (2.57)

Consequently it turns out that a transverse acoustic
wave at the frequency w, = w,, actually does not inter-
act with magnons to the given approximation, just like

a longitudinal wave at the frequency w, ;= w,. Only the
transverse waves polarized linearly along Y can experi-
ence strong coupling with magnons. For these waves
the corresponding coupling parameter ¢, =¢;,,,, can be
of the order of unity with a sufficiently small anisotropy
in the basal plane (143).

We note that an orientational PT occurs upon sign
change of HD(depending on the temperature for H= 0):
when HD>0, the easy axis is an edge of the basal square
(X and Y axes), while when H<0 it is a diagonal.
Here, as in a cubic ferromagnetic material, the maxi-
mal ME coupling with {; ~1 will occur at the very tran-
sition point where Ho= 0. An analogous transition with
¢, going to unity can arise also from an external field.
Thus, in the case being studied with H|| X, if H,<0 (so
that the stated axis is the hard axis in the basal plane)
the field-dependent PT point is H= IHp) .

All that we have said above about the ME effects for a
cubic crystal near PT points as £~ 1 holds also for an
EPFM (minimal nonzero ME gap for quasimagnons, de-
crease in the velocity of sound of the magnon-associated
acoustic branch until its dispersion law changes from
linear to quadratic). However, a feature of the latter
case is that the large uniaxial magnetic anisotropy (the
field H,) here can substantially increase the ME gap
wyg, as happens for the rare-earth metals Dy and Th
mentioned above. Concomitantly the frequency range is
increased in which the long~wavelength approximation
holds [Egs. (2.52)-(2.55)]. According to these formulas,
in this case at the PT point, i.e., when H= |Hl, we
have the following frequencies of the coupled ME waves
respectively for quasimagnons and quasiphonons:

wgwa + 0}
o1 zmmn%—%hmn—(ak)z (2.58)
and
YN
PN VAL e (2.59)
ME
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Here the ME gap is

wME = @{™" =y (Hs+ [H| + Hues) Hues - (2.60)

Also wy = YA/M,d® and w, = yH, are the effective fre-
quencies of the exchange interaction and the magnetic
anisotropy.

The orientation of the wave vector k || M, that we have
been studying up to now (both in cubic and in tetragonal
crystals) is the most favorable one for ME coupling of
waves. The point is that in this case, as Egs. (2.3)
imply, the dipole (magnetostatic) contribution to the fre-
quency of the spin waves vanishes. In order to elucidate
the role of the dipole field, let us also present the ap-
proximate expressions for the frequencies of the long-
wavelength [i.e., under the condition (2.51)] ME oscil-
lations with the wave vector k lying in the basal plane
at an arbitrary angle ¢, to the magnetization My || H|| X:

o) & 0, =9 1/( MA., /fz%—H+HA+HMEA)

x ‘/(T‘%k2+H+HDJ,—4nM°sin‘cpk+HMm) ,
(2.61)

o, 1v=Fk {C“ + Cos F[(Co—Ciog)?

. ~ LY |
—38in? 2Q, (Cyy -+ Cgp) (€4 — C 13— 2C4s)] ”2} Ve

2p
(2.62)
(err Il k, erv 1k, Z),
am=k V Cusingy +Cycost u V‘p_ (enr11Z) - (2.63)

Here we have

Cou=Cull—tun), Co=Coall—Ls(@p)l,

Ce (@s) = wz:';s=”mze (7;: +H+HD+4nMoSinz(Ph+HMES)_1-

(2.64)
[Here ¢,, is given by the former expression (2.49)].
Thus, when ¢,+0, all three acoustic branches of the os-
cillations {including the longitudinal elastic waves)
prove to be coupled with the magnons. However, here
the effectiveness of ME coupling is diminished by the
dipole interaction, since the parameter of this coupling
s (¢,) <1, even at the PT point (i.e., when H+ H,=0).
And when ¢,=7/2,

Hygs

%(%) o= WM Hype (2.65)

has a magnitude that is usually small in comparison
with unity (perhaps except for ferromagnetic materials
with giant magnetostriction).

We note that the formulas (2.52)=(2.55) or (2.61)~
(2.63) given above for the spectrum of ME oscillations
can also be applied for a ferromagnetic material of the
“easy-axis” type (when H, <0, so that the basal plane
is the plane of hard magnetization) whenever the magni-
tude of the field H (as before directed along the X axis)
satisfies the condition H>[H,|. Then the point H+ H
=0 is the PT point with ,~1.

Up to now we have not taken into account the damping
of the magnetoelastic oscillations. At the same time,
as we have already noted, it increases strongly near
the PT point, and then the above-described pattern of
phenomena can be altered substantially. For example,
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the damping can prove to be so strong that it no longer
makes sense to speak of quasiacoustic waves with an
altered dispersion law (from linear to quadratic).

Taking into account the corresponding relaxation
terms (2.10) and (2.11) in the equations of motion (2.8)
and (2.9), we find, in particular, the damping for the
quasiacoustic mode of (2.54), which interacts most
strongly with the spin waves. It is convenient here to
define the damping coefficient as the ratio of the imag-
inary and real components of the complex wave vector
k=k+il:

x=fr=he, (2.66)
Here A= 27/F is the wavelength, and 6= 1/T is the ef-
fective damping length for the mode being studied.

A calculation for the long-wavelength region (2.51)
yields

et (). .07

For the PT point (i.e., as £;~1), we obtain the fol-
lowing expression from Eq. (2.67) taking (2.59) into ac-
count and assuming, in view of the smallness of wg‘“‘“)
= Wyg, that the fundamental contribution to » arises
from magnetic damping:

1 wp
=T Voe (2.68)

Although usually »<« 1, nevertheless, depending on the
relationship of the other parameters in (2.68), the
damping coefficient » can be either smaller or larger
than (or of the order of) unity. In the latter cases,
quasiacoustic waves at the frequency w,,,(2.59) are ab-
sent. We note that a large uniaxial anisotropy constant
K favors a decrease in ». Perhaps this occurs in the
rare-earth EPFMs (Dy and Tb).

The point is that FMR is observed!”-!® in these ferro-
magnetic materials with the magnetization along the
hard direction of the basal plane in the UHF region
(namely, at w=~10' s™). Moreover, according to (2.60)
the minimum value of this frequency {(for H= |Hql)
must be at least an order of magnitude larger (since
H,~10° Oe and H,, ~10* Oe). We caun assume® that in
the cited experiments the UHF field actually excites the
quasiacoustic waves w;; (2.54) with a wavelength of the
order of the depth of the skin effect. In direct excita-
tion of these waves by ultrasound in terbium, it was
possible to obtain?? a decrease in the effective dynamic
modulus Cy, [Eq. (2.64)] by 50% near the PT point. (A
more detailed test of this formula was hindered by the
impossibility of maintaining acoustic contact with the
specimen as the PT point was approached).®

3. ANTIFERROMAGNETIC MATERIALS
a) General status
The antiferromagnetic state is described by the rela-

tive antiferromagnetism vectors

#)one can easily find T, at the PT point itself:

0 ) opo, .

Cop="Ceg WD
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l=~'M1—Mz

oM, (3.1)
and the resultant magnetization
M, +M,
T (3.2)

The moduli of the magnetizations of the sublattices M,
and M, are usually assumed to be conserved quantities:
M: = MZ= M2, which is equivalent to the relationships

(3.3)

In a state of equilibrium (and in the absence of a mag-
netic field H) we have M, = -M,, and the vector 1 has
the maximal value |1] =1, while m= 0.

m? 4 1°=1, ml =0.

The magnetization M= M, + M, that appears in oscil-
lations of M, and M, (and also upon magnetization with
an external field that is small in comparison with the
exchange fields) is always so small that we can assume
that

m? < 1 (and hence, 12 = 1). (3.4)

In view of what we have said, when writing out the en-
ergy density of an antiferromagnetic material, includ-
ing the magnetoelastic, magnetic, and elastic contribu-
tions, just as for a ferromagnetic material we must be
guided by the following rules:

1) The magnetoelastic energy is written in the form
of Eq. (2.1) with the substitution m—1.

2) One obtains from (2.2) the terms for inhomogene-
ous exchange and magnetic anisotropy by the same sub-
stitution; here the terms for the Zeeman and the mag-
netostatic energy must be left unchanged, as in (2.2).

3) After this, the magnetic energy E, must be supple-
mented with the term

5 Agm? (3.5)

—the so-called homogeneous exchange energy, which
gives rise to the fact that the ground (homogeneous)
state is antiferromagnetic with m= 0 and =1 (for

A,>0).

4) In antiferromagnetic materials with weak ferro-
magnetism (in which in the ground state a spontaneous
magnetization m# 0 satisfying the condition (3.4) can
exist along with 1) one must also take into account in the
magnetic energy E,, terms of the form

d”mil,.

(3.6)
Here the explicit form of the tensor d,, is determined
by the magnetic structure and the symmetry of the
crystal.®s.®

After determining the ground state (12, m‘®, 5 (%)
from the condition of minimum total energy, we can then
find the spectrum of coupled ME waves of the antiferro-
magnetic material by solving the equation (2.9) of the
theory of elasticity simultaneously with the equations of
motion of the form (2.8) for the magnetization m
(a=1,2) of each of the sublattices.

b) Orthorhombic antiferromagnetic materials—
orthoferrites

1t is convenient to start the study of SSB effects in
antiferromagnetic materials with the rare-earth ortho-
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ferrites—compounds of the type of ErFeQ,.** In the
past decade the orthoferrites have been widely studied
owing to the existence of weak ferromagnetism in them.
For us they are interesting for their orientational PTs,
near which effects due to SSB are manifested most
clearly and consequently have been detected experimen-
tally,so.38-a

In line with the orthorhombic symmetry of the ortho-
ferrites (and with account taken of the rules formulated
in the preceding subsection), we can describe their en-
ergy with:

the homogeneous and inhomogeneous exchange con-
stants 4, and 4,; the magnetic-anisotropy constants
KD, KV K2, k) and K{2) = K{2); the magnetoelas-
tic constants B,,, B,,, B;;, B,,, B, Ba, B,,, Bg, and
Bg,; the elastic constants C,,, C,,, C,;, C,,, Cj,, Cyy.
Cu» Css, and C,.. In addition, the energy contains
terms of the form®?

(3.1

which are responsible for the weak ferromagnetism.

dignyl, — dymaly,

Our further discussion will deal with the concrete
case of the orthoferrites ErFeQ, and TmFeQ;, in which
orientational magnetic PTs are ooserved: at low tem-
peratures below some point T, (e.g., for erbium ortho-
ferrite T, = 88.5 K}, we find the antiferromagnatism
vector l{| ¢ (Z axis), while at high temperatures above a
point T, (for erbium orthoferritz2 T,= 98.1 K), we find
the vector 1| a (X axis). In the temperature interval
T,s T <T,(Fig. 5), the vector | gradually rotates in
the XZ plane from one of these directions to the other.
At the same time, the spoitaneous weuk ferromagnetic
moment m, being perpendicular to 1, rotates in this
same plane from a to ¢, so that the angle ¢ between m
and Z varizs from 7/2 to 0. We shall call the states
indicated above the low-temperature, intermediate, and
high-temperature states.

Study of the equilibrium states by minimizing the
total energy of the orthoferrite (for H= 0) show= the
following.

The rotation of the vectors 1 and m described above
(see Fig. 5) without leaving the XZ plane indicates that
the axis Y || b is the hardest axis for the vector 1. Ap-
proximately (neglecting fourth-order anisotropy, in-
cluding the magnetostrictive contribution t» it), the lat-
ter holds under the conditions K{*’ <0 and K& <0.

&y, GH2

“or, z x z £

X ]
5 X
20r
ot A
“y Q@pf e -/
&,

: o T % b)
FIG. 5. Orinetational PTs and the temperature~dependence of
the AFMR frequency {magnon gap for k || Z) in orthoferrites.

a) Second-order PT (T, >Ty); b) first-order PT (T, <Ty). Here
we have wy=wyg (Tl): ‘Y‘/HBmMEE) +HM)1 wy = wyg (T2)= WyEs.
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The orientational transition itself is governed by the
temperature-dependence of the two effective magnetic-
anisotropy constants:

Ki= Kb — K4 2K 2K+ dy, (dyy —dyg) -+ K}, (3.8)
(3.9

The last terms in (3.8) and (3.9), whose explicit forms
we shall not present, determine the magnetostrictive
renormalization of the thermodynamic constants K,
and &%

K=K —2K9 — K — (dyy —d o) -+ KYE

The spins reorientation showa in Fig. 5a is realized
in the case whea K, >0. Here the three equilibrium
states, whose boundaries are second-order PT points,
correspond to the following couditions:

1) For the low-temperature state (T< T,) with =7/
2 and m = m_=d,,/A,, we have

Ky (T) < —2K1 (T). (3.9a)
2) For the intermediate state (T, <T <T,) with
sin®g = -K /2K, we have
—2K11 (1) < Ko (1) < 0. (3.9b)

3) For the high-temperature state (7= T,) with §=10
and m = m_=d/A,, we have
Ky >0 (3.9¢)

In the other case when K, <0, the regions of exist-
ence of the low- and the high-temperature states over-
lap (Fig. 5b), sothat T, <T,. Then the system can ex-
ist in two equilibrium states:

(3.10a)
(3.10b)

0 = a/2(F < T,), when K1 (T) < —2K 11 (T);
0 == U (I' = T,), when K1 (T) = 0.

The transition from the one to the other state occurs by
a first-order PT. The temperature T, and T, are the
points of loss of stability.

Now let us present the results of calculating the cou-
pled ME waves.

First we shall study a state with § = 0 (which is real-
ized under the conditions (3.9¢) or (3.10b), respective-
ly, for K, >0 or K, <0) in which waves are propagating
with the wave vector k|| Z|| m. In this case the interact-
ing waves prove to be one of the two branches of the
spin waves (namely, the lower-frequency branch, for
which the oscillations of the vector 1 occur in the XZ
plane) and one of the two transverse sound waves with
polarization e, || X||a. The frequencies of these spin and
sound waves (without taking into account the dynamic in-
teraction between them) are respectively determined by
the formulas

=7 [H g (M2 1 KM+ Hyps)] 12,
0=V Cslp k= soh.

(3.11)
(3.12)

Here Hy = A,/2M, is the exchange field, and Hy,
= 8B%,/M,C,, is the ME field.

Further, if we take into account the dynamic ME cou-
pling, we obtain the following expression for the fre-
quencies of the coupled waves:

l P a T N N P T
of 1= 5 [0} 4+ 0 + V (0f — o2 doiomes|.

(3.13)
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(R ]

Here wyp;= ¥VHgHys is the characteristic ME fre-
quency, which corresponds to the ME field of the effec-
tive magnetic anisotropy H,.;. The essential point is
that in antiferromagnetic materials this field enters in-
to the frequency in a geometric-mean combination with
the exchange field Hy. This considerably enhances the
ME gap (and other SSB effects) as compared with ferro-
magnetic materials. The plus sign in Eq. {3.13) corre-
sponds to the branch having the gap

o (k=0)=yV Hg (KiM;*+ Hugs) - (3.14)

Thus the latter can be viewed as the quasimagnon gap.
The minus sign corresponds to the gapless branch wy;
(2= 0)=0, so that the latter amounts to the quasiacous-
tic branch.

The term containing K, in the quasimagnon gap in
(3.14) corresponds to the orthorhombic anisotropy of
the equilibrium state as renormalized by magnetostric-
tion. The term containing H,,;;, which does not fit with-
in the framework of this renormalization, again is the
SSB effect. As the temperature is lowered, at the
spin-reorientation point 7, where K, = 0, the state with
6= 0 becomes quasidegenerate (when K, >0) or unstable
(when K, <0). Here the quasimagnon gap of (3.14) has
a minimum value, which is determined by the ME in-
teraction:

(3.15)

ofmiD) = @MES-

In the long-wavelength limit when ak < wy/w, and
w,/ wy, where wy = ¥V A;A/Ma is the exchange frequen-
¢y (including the parameters of both homogeneous and
inhomogeneous exchange), while w, is again the Debye
frequency, we obtain the following expression for the
quasiacoustic mode from (3.13) to the accuracy of
fourth-order terms in k:

ohr = 0b (@HE A — )+ G (b —ob(I—L)1 @R (3.16)
Here
@
L=— (3.17)

is the dimensionless ME-coupling parameter. At the
PT point itself, where {.=1, we have

ODWE (ak)2.
OMES

oy &~

(3.18)

Thus, again as we approach the PT point, the veloci-
ty of sound § = w; /% (for the mode being studied with
polarization e, | X) strongly declines until it vanishes as
k=0 while ¢, = 1.

Now let us study waves in the same direction k|| Z
for the low-temperature state (T <T,; see Fig. 5) in
which @= 7/2, i.e., mLk. The frequencies of the cou-
pled ME waves in this state will be determined as be-
fore by an expression of the form of (3.13), but only
with another value of the frequency of the magnons in-
teracting with the sound:

of = V2 Hg [AMH — (K14 2K1) M2+ By + Hues]. (3.19)

Here H, = 87M,d%,/A? is the magnetostatic field associ-
ated with the oscillations of the spontaneous weak-
ferromagnetic moment. Owing to the existence of H,,
at the transition point T,, where K + 2K, =0, we have
the parameter ¢, = Hyp./(Hy.;+ H,) <1 (in contrast to
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the point T,, at which {;=1). Thus the decrease in 5,
at the point T, will be limited by the dipole-dipole in~
teraction. In general, this should be manifested in a
smaller change in the velocity of transverse sound near
T, than near T,. Certain differences of this type have
been observed experimentally®** (Fig. 6). However,
since the effects in which we are interested were rela-
tively small (<1%) under the conditions of the experi-
ments,**#! there are as yet hardly sufficient grounds
for associating them with the influence of the dipole-
dipole interaction.

We shall not present here the dispersion formulas
for the intermediate state with 0 <9 <7/2, which is
realized whea T, < T < T, {the case K ;>0), but refer
the reader to the appropriate original study.*? We note
only that in this state the low-frequency spin-wave
branch interacts not only with the transverse, but also
with the longitudinal acoustic wave. Curve 3 in Fig. 6
shows the relative variation of the velocity of trans-
verse sound with temperature in the intermediate state.

In order to elucidate the role of dissipation, we shall
write out the final result of calculating®® the velocity of
transverse quasisound at the frequency w=w;,(3.18)
and the damping coefficient for it as §,~1(7—~7T,) in
the long-wavelength approximation, which corresponds
to the condition w <« wy;,:

ex sV GiEo (-2, (3.20)
x~ (D) o (3.21)
* ™ Voyg,/ og

(again we have omitted the viscoelastic terms).

If the relaxation parameter ¥ does not depend (or de-
pends weakly) on the frequency, then the quantity »vH,
will determine the width of the AFMR line (in the given
case at the frequency w{™® = w,.). Consequently the
first factor in (3.21) will constitute the relative magni-
tude of the width Aw_/w, of the AFMR line. If the latter
is small in comparison with unity, then the damping
coefficient »,, while reaching a maximum at the PT
point T,, may still have a rather small value, so that
one might speak of the existence of quasiacoustic ME
waves at this point. Here, as we have noted above [and
as can now be seen from Eq. (3.20)], the velocity §, of
this quasisound in the low-frequency region that we are
studying ( @<« w,; ) must sharply decline as we approach
the point T, as compared with its value s, far from this
point.

The features of behavior that we have described of the
velocity of sound near points of orientational PTs agree
qualitatively with experiment in erbium and thulium or-

7y Tz T

20+

4s
.5_.10#

FIG. 6. Relative variation of the velocity of transverse sound
with the temperature in ErFeO; for k |l Z.
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thoferrites.?®™2 Quaatitative comparison requires fur-
ther experiments, since the processing of the data in
Refs. 39-41 was based on using formulas that do not
take into account the ME gap in the quasimagnon spec-
trum and are thus inapplicable in the immediate vicinity
of PT points. In particular, it is of interest to test the
square-root dependence of the velocity 5, on the fre-
quency w of quasisound predicted by Eq. (3.20).

We should note that the regularities pointed out above
for the AFMR frequency and the velocity of sound near
points of orientational PTs actually must be manifested
only in the immediate vicinity of these points. Since
the decrease in the velocity of sound in the cited stud-
ies®™! amounted to no more than 1%, this probably
meant that the authors did not succeed in approaching
close enough to the PT points. A field-dependent PT
would be more convenient, and in this respect is more
stretched-out (see the next subsection ¢). Apparently
an analogous situation is involved in the considerably
larger magnitude (and even in the qualitative tempera-
ture course itself) of the AFMR frequency near the
points T, and T, that was obtained experimentally in
Ref. 70, as compared with its value as calculated di-
rectly for the points themselves. The point is that the
authors of Ref. 70, as we see it, performed the mea-
surements with an insufficiently small temperature in-
crement. The results should also be very sensitive to
the accuracy of positioning the crystal with respect to
the direction of propagation of sound.

c) Antiferromagnetic materials of the “easy-piane”
type. Pressure-dependent phase transition

As we have already noted, SSB effects are most no-
ticeable and have been studied best in antiferromagnetic
materials of the EP type, such as hematite («-Fe,0,)
and iron borate (FeBQ,). Variations of the velocity of
sound of the order of 20% have been obtained in
them.?**® Moreover, the effect of pressure (more ex-
actly, unilateral stress) on the AFMR frequency has
been studied experimentally®*2® and theoretically®®*® in
hematite, and thus a pressure-dependent PT has actual-
ly been examined.

Crystals of hematite and iron borate have rhombohed-
ral symmetry with a very small anisotropy in the basal
XY plane, which we shall neglect for the sake of sim-
plicity. Here it suffices to retain one term containiag
Kf,” in the magnetic-anisotropy energy, while the mag-
netoelastic and elastic energies will be described by the
same sets of constants as for an orthorhombic antifer-
romagnetic material (subsectioa 3%}, upon which we
must impose the extra conditioas 3,, = By, = B,, + 2B,
B,3= By;, By = Bysy Cy;=Cpy= Cp+ 2Cy, Cy3=Cyy, and

Ciy=Css

Moreover, in states of the EP type, these antiferro-
magnetic materials have a weak ferromagnetism, which
arises from the energy in (3.6) of the form 4 (I _m,
-I,mJ).

The state of a uniaxial antiferromagnetic material
will be a1 EP-type state (so that at equilibrium the mag-
netization vectors M; and M, will lie in the basal XY
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plane) if we have the anisotropy constant Kg” >0. Let
the directions M, and M, in this plane be given respec-
tively by the azimuthal angles ¢, and ¢, (Fig. 7).
Then, accordiag to (3.1)=(3.3), the half-sum of these
angles ¢ = (¢, + ¢,)/2 determines the direction of the
vector m, while their half-difference y= (¢, — ¢,)/2
determines the modulus of this vector: m?= ¢cns?y.

Now let us assume that a magnetic field H and a me-
chaaical stress o[,= —P are applied along the X direc-
tion (which, owing to the isotropy in the basal plane,
can be chosen arbitrarily ia it). The mechanical stress
compresses the crystal when P>0 and stretches it when
P<0.

In the presence of the stated un:ilateral pressure P,
we must add to the total thermodyaamic-potential densi-
ty E o[ {2.6) a term of the form Pu,. Now let us intro-
duce the effective pressure-associated field:

245 P
Hp= Ce:m . (3.22)

Then we can find from the minimum of E that the fol-
lowing two equilibrium states can exist in the system,
depending o.1 the magaitude of Hp:

1. At pressures for which H, < Hf, where

H(H -+ Hy)
Hy,

d A,

(#i=7 He=37)s

the vector m is parallel to H|| X (¢ = 0). Here we have

AYp=(n/2) -~ y=(H+ H,)/H,, and hence, m=(H+ H,)/H,.
2. At pressures P >0, for which Hp > H§,

. HHg _Hp
cos (P_H“E(HP—II;)-{~HH4 and Ay = 7 008 ¢.

Hp=

(3.23)

(3.24)

Henice, an orientational PT dependent on the pressure
P occurs at the point Hp, = H; as P increases further
the vector m rotates from the direction m (X to the di-
rection m || Y (reaching the latter when H, — Hf > HH,/
H,).

Ia the case P <0 (stretch), only state 1 is realized.

We note that an analogous orientational phase transi-
tion can depend on the field H at a given pressure P > 0.
Thus, we can pass through it in the reverse order with

increasing H: at H= 0 we have m!] Y according to (3.24).

Then m rotates from ¢ = 7/2 to ¢ = 0 in the interval
H} .25
O<H<H*:]/Td+HEHp—%- (32)
After this is achieved (owing to the overcoming of the
anisotropy in the XY plane created by the unilateral
pressure P), we return at #> H* to state 1 with m || H.

FIG. 7. Magnetizations of the sublattices in an antiferromag-
netic material and the angles defining their configuration.
Here ¢ defines the direction of the vector M=M, +M,, while ¥
defines its modulus A =2Mcosy.
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Let us examine first coupled ME waves propagating
along the field direction: k| H|| X.

One can show that also in this case the sound inter-
acts most strongly with the low-frequency branch of the
spin waves (corresponding to oscillation of the spins in
the EP), whose frequency is respectively determined
for the two above-mentioned states by the expressions:

1. H,<<H}:
ot=v2Hy (AM)2 4+ Hyge + Hb— Hp). (3.26)

2. Hp>2 H}:
HyHp-H*+HH .
m§=YZHE[AMEIkz+HMEe+L—HP1m—j—IFJ(HP—H?=)+HMS“‘2‘PJ-
(3.27)

Here we have

_ 8nMo(H+Ha)? _ 8B%
HM__T%—_’ HMEsteeMn-

In these expressions the field H,;, takes into account
the “frozen” spontaneous deformations, while H, takes
into account the deformations associated with the pres-
sure P. Although in state 1 a compressive pressure
(P>0) decreases the spin-wave gap w,, the latter is not
reduced to zero. This is because a phase transition
from state 1 (Fig. 8a) to state 2 precedes this as P in-
creases when the effective field H, reaches the value
HY (3.23). With further increase in P (now in state 2},
the gap again increases, and not only directly owing to
the term containing H, in (3.27), but also owing to the
dipole term that appears when the angle ¢ between m
and H|| k becomes different from zero, in line with
(3.24). Here the minimum gap, which is reached at the
phase-transition point at H, = H} (3.23) again is of ME
type:

@M = oyps =7V HpHues- (3.28)
Thus, actually the ME gap cannot be abolished by pres-
sure as well.

As we see from Fig. 8b, the dependence of w, on the
magnetic field H (at a given pressure P) has an analo-
gous form with a minimum (3.28) at the phase-transition
point H= H* (3.25). Curve 1 corresponds to the case
P=0(when H*=0), and curve 2 to the case P#0. The
following result is highly characteristic: in the second
case at a given frequency in the interval w, . <w
< Wg, .00 AFMR must occur at two values of the field
H.?) This appearance of an additional resonance upon

FIG. 8. The AFMR frequency as a function of the unilateral
pressure P> 0 (compression) in the field H Il P (a), and as a
function of the field # (b). 1—P=0; 2—Hp >0, HI P or Hp
<0, H1P; 3—Hp>0, HLPor Hp<0, H| P.

9%We should note that, strictly speaking, the frequency of
homogeneous AFMR is not the limit w,|,., obtained from Eq.
(3.27), since the latter corresponds to an infinite medium,
whereas homogeneous AFMR is defined by the condition that
the wavelength is large in comparison with the dimensions of
the specimen. For a spherical specimen the AFMR fre-
queincy is obtained from wy for Hy=0.
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applying unilateral pressure in the EP has beea ob-
served experimentally in Ref. 28.

One can represent the frequencies of the coupled ME
waves for the two states (H, < Hf and H, > H}) by gener-
al formulas, which have the following form in the long-
wavelength limit & < wy/s :

wy = w2+ {, wi—quasimagnon branch;

wy = § . k—transverse quasiacoustic branch polarized
in the EP;

wyy = §,k—longitudilal quasiacoustic branch;

Transverse sound polarized along the symmetry axis of
the crystal interacts weakly with the magnons. Here we
have introduced the notation

si= 071 (Cyy—LarCos sin® 29), st =p"1C4q (1 —cos? 2¢),

e _ s (3.29)
6k Wi *

h
Here the angle ¢ is zero for state 1 (Hp, = H}) and is
determined by Eq. (3.24) for state 2 (H, > H}). Corre-
spondingly, the frequency w, is given by Egs. (3.26) or
(3.27).

The theoretical dependence on H of the velocity of the
long-wavelength (as k£ —~0) quasiacoustic waves in
hematite in the presence of the unilateral pressure P is
given in Fig. 9.3° The experimental data?*™2® at p= 0
for the velocity of sound in a-Fe,Q, and FeBO, as a
function of H fit well the theoretical curve 5 (H).

At the PT point (with H, = Hf or H= H*) where {;~1
and 3, (as & —0) vanishes, the dispersion law for w,
again changes from linear to quadratic; here w, (k)
takes on the form (3.18) with the substitution wg,
~ wyge ANd Cy5~ Cos.

The formulas (3.20) and (3.21) for the velocity of
quasisound and its damping at the phase-~transition point
for an orthorhombic crystal are al3o applicable in this
case upon taking into account the indicated substitution.

Further, we note that qualitatively the properties of
the ME waves for an EP-type antiferromagnetic mater-
ial are analogous to those for an EP-type ferromagnet-
ic material (Sec. 2¢). The fundamental difference is
that in the antiferromagnetic material all the effective
magnetic-anisotropy fields (including H,; and Hj) are
intensified by the effective homogeneous-exchange field
Hy = Ay/M,, rather than by the uniaxial anisotropy field
H,. Consequently, for example, a formula of the form

3 #kOe

FIG. 9. Variation of the velocity of transverse (1) (polarized
in the basal plane) and longitudinal (2) quasielastic waves in
hematite with L1Z andk |H | Pl X. Hp>0. P=1 kbar.
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(3.18) (with the substitution 5~ 6) for w,, in an antifer-
romagaetic material can be derived from the corre~
sponding formula (2.59) for a ferromagnetic material
by the simple substitution H,~ H;. Of course, we must
bear in mind here the fact that for the ferromagnetic
material we have allowed for the natural crystallograph-
ic anisotropy in the EP, which is described by the ef-
fective field H, while here this anisotropy (the field
Hp) is imposed by the external unilateral stress.
Moreover, the exchange frequency w; is determined in
different ways in the two cases.

The interrelation of the frequencies of the ME waves
that we have noted for EP-type ferro- and antiferro-
magnetic materials is also conserved in the more gen-
eral case in which the wave vector k makes some angle
¢,#0 with the magnetization m|| H|| X (we are referring
to state 1). The correspondiag formulas for an anti-
ferromagnetic material in the long-wavelength limit are
analogous to those for a ferromagnetic material (2.61)—
(2.64), with only the distinction that here we have

ok =y Hg[AM*i? 4 Hyge 4 Hp — Hp+ 8nM, (H - H,)? Hi sin? @, ,
(3.30)

$4=0, and in §{®), the ME frequency wyg, is deter-
mined by Eq. (3.28).

In closing we must call attention to the important role
of exchange intensification in observing SSB effects in
antiferromagnetic materials. For example, let us com-~
pare ferromagnetic materials with EP-type antiferro-
magnetic materials. In both cases the magnitude of the
effects is characterized by the ME coupling parameter
{¢, which is determined, in line with (2.50) and (3.29),
by the formulas

(FM) &= Hugs (H - Hy + Hyge) ™, (3.31)

(AFM) {s= HpHmes (H? + Hellmes)™ (3.32)

(assuming for simplicity that H, = H,= 0).

Of course, at the PT point itself (respectively with
H+ H =0 and H=0), where the effects are maximal,
we have ¢, =1 in both cases. However, in view of the
smallness of the effective field Hy; (usually H,e <1 Oe),
an experimentally important factor is the width of the
region of variation of the field H in the vicinity of the
PT within which ¢, declines to values {,<«< 1 (at which
SSB effects vanish).

For example, for H,; =1 Oe we fiad that a twofold
decline in £, for a ferromagnetic material occurs when
the field H deviates from the PT point by only 1 Oe.
For well-known reasons, the observation of effects that
arise in such a small field interval proves difficult (or
totally impossible).

At the same time, for an antiferromagnetic material
with the same value of H,g, the exchange field H
(equal to 10° Oe or more) causes the interval of varia-
tion of the field H in which & declines by half to amount
to 10® Oe. This explains why the SSB effects have been
studied more in antiferro- than in ferromagnetic ma-
terials (apart from ferromagnetic materials with giant
magnetostriction like Dy and Th).
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4. CONCLUDING REMARKS,

in this article we have treated ME effects of broken
symmetry in unlimited homogeuneous {single-domain)
magnetic materials, albeit only in a linear approxima-
tion (in the oscillation amplitude). We have shown that
effects of interaction of spin and elastic waves that are
relatively small under ordinary conditions are consid-
erably enhanced and actually acquire a qualitatively new
character near magnetic PT points.

Appareutly from the practical standpoint studies of
the quasiacoustic mode of coupled ME waves are of
special interest: this is due not only to its pronounced
weakening in the vicinity of the PT, but also to the fact
that it is equally elastic and magaetic (and in particu-
lar, can be excited by a magnetic field). The latter
situation and the potentiality of controlling the veiocity
of these waves with a magnetic field, elastic stresses,
or the temperature must be of interest to specialists in
electronics (for example, for purposes of designing de-
lay lines regulated by the stated agents). Unfortunately,
there are as yet very few experimental studies along
this line. Such studies require sufficiently good single
crystals (most likely antiferromagnetic ones) with a
large magaetostriction, “convenient” magnetic PTs,
and as small as possible a width of the AFMR line (the
latter is dictated by the desire to diminish damping,
which impedes the excitation and observation of quasi-
sound).

Even greater prospects are promised by studies of
magnetoacoustic effects that extend beyond the frame-
work of the restrictions pointed out above. We must
make some remarks on this topic.

First of all, nonlinear magnetoacoustic phenomena in
magnetic crystals are of great interest (especially in
antiferromagnetic materials, where again they are in-
tensified by the exchange interaction). As has beea
shown,2-33 the ME interaction renormalizes not only the
velocity of sound or the harmonic elastic moduli (sec-
ond-order), but also the third-order anharmonic elastic
moduli: C,=C,+ AC,. Here the ME contribution to the
anharmonicity (AC,) can exceed considerably the in-
trinsic strain contribution (C,). Thus, it has been
shown experimentally”™™™ that for thulium orthoferrite
and for hematite AC,/C, can attain values of the order
of 102-10*. For this reason, even with relatively small
deformations in the primary wave {u,~107%, consider-
able nonlinear effects arise, such as parametric excita-
tion of sound by sound, frequency-doubling of sound,
acoustic detection, etc.?® (For other SSB effects, see
also Refs. 74-176).

Further, we note that everywhere above we have been
dealing with effects caused by spontaneous breaking of
symmetry of divections with a homogeneous spatial
distribution of magnetic moments in the ground state of
a ferro- or antiferromagnetic material. At the same
time, magnetic materials contain highly mobile (with
an unstable spatial distribution) inhomogeneous struc-
tures—domains and domain boundaries, which break
the {ranslational symmetry. Generally they correspond
to inhomogeneous strictive deformations in the ground
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state. In magnetically soft (with a large magnetic sus-
ceptibility) magnetic materials, and also for certain
special magnetic structures, e.g., an isolated domain
boundary (or domain), the ground state of the system
can be quasidegenerate with respect to displacements of
the domain boundaries (or domains) together with the
inhomogeneous deformations that “clothe” them. This
will correspond to quasiacoustic (Goldstone) oscilla-
tions of the domain boundaries. At the same time, the
breaking of translational symmetry in the presence of

a continuously degenerate ground state can lead in addi-
tion under certain conditions to the existence of quasi-
local (or resonance) modes of oscillations of the domain

boundary with respect to the “frozen” inhomogeneous

deformations created by it. This field of magnetoacous-
tics has arisen very recently and is in a stage of ac-
celerated development (interacting with the problem of
magnetoelastic solitons). Therefore we refer the
reader to the original studies,587%9-77"7

Now we should turn our attention to the implicit as-
sumption that we have adopted from the very outset that
we are dealing with specimens of sufficiently large di-
mensious. The characteristic linear dimension L of a
specimen affected by spontaneous deformations that de-
termine the ME gap w,; must be large enough that the
minimum frequency of elastic vibrations w,=sL™
corresponding to it (which we can identify with the
characteristic “decay frequency” of the spontaneous de-
formations) is small in comparison with the frequency
of precession of the magnetization in the effective mag-
netic field of these deformations w,;. In other words,
the following inequality must be satisfied to allow the
existence of the effect of a finite ME gap in a finite
specimen:

(4.1)

@ << OME -

This is precisely the condition that the deformations
are “frozen” for the quasimagnon mode as k= 0.%77

When we take into account the above-mentioned in-
tensification effects for w,;, the condition (4.1) can
practically always be satisfied, both for massive fer-
romagnetic materials (and all the more so for antifer-
romagnetic materials) and for thin films. The point is
that in the latter case, according to the conditions of
experiment, the characteristic dimension L is usually
not the thickness of the film, but a dimension in its
plane. Nevertheless, the condition (4.1) must be tested
for each concrete design of an experiment.

But the condition (4.1) becomes especially important
in treating ME oscillations of domain boundaries, since
the role of L in this case is played by their effective
thickness (the linear dimensions of the transition layer
between domains). The inequality (4.1) actually is the
condition for existence of the above-mentioned quasi-
local ME oscillations of the domain boundary.

And finally another important remark. In treating
ME phenomena near PT points, we have completely ne-
glected fluctuations, although, as is known, the role
played by the latter at these points can increase sharp-
ly. However, the possibility of neglecting this for a
spin-reorientation~-type PT, which was the main topic
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above in our article, has been shown in a number of
studies (see, e.g., Refs. 80 and 69).

In closing we note the close analogy between the
anomalies of the dynamic elastic constants that exist in
orientational magnetic PTs with which we have been
dealing here and those in cooperative PTs of the Jahn-
Teller type.® An even closer analogy exists between
the phenomena that we have examined that are caused
by SSB in magnetic materials and the corresponding ef-
fects in the case of structural transformations in ferro-
electric materials (effects of pseudospin-phonon cou-
pling; see, e.g., Ref. 82).
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