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A review is made of the new theoretical and experimental results on multiple light-scattering near the critical
point. Particular attention is paid to the effects of multiple scattering on the integrated intensity,
depolarization, and spectrum of the critical opalescence. The features of the temperature, density, and angular
dependence of these characteristics are considered for the cases of double and multiple scattering. It is shown
the geometry is an important factor in critical opalescence. A study is made of the conditions under which the
Born (Rayleigh) concept of scattering order loses meaning. A detailed comparison of theory and experiment is
made for the problem of multiple light-scattering in critical opalescence.
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"This science isa dense forest. One can see nothing nearby...
Johann Wolfgang von Goethe

INTRODUCTION

In describing the propagation of electromagnetic
waves, one frequently encounters situations in which
the single-scattering approximation becomes unsuitable.
This may occur both in media of large geometric di-
mensions in which the scatterers are individual parti-
cles or molecules (clouds, fog, artificial aerosols,
stellar and planetary atmospheres, etc.) and also in
media in which the scatterers are fluctuations of va-
rious physical parameters, leading to a marked
growth in the extinction coefficient (matter near criti-
cal points and second-order phase transitions, a me-
dium with well-developed turbulence, etc.). In cases
of this sort it becomes necessary to consider the ef-
fects of multiple scattering of the electromagnetic
radiation.

Multiple scattering of waves in media with discrete
scatterers or well-developed turbulence has been the
subject of a number of reviews and monographs (see,
e.g., Refs. 1-4). The status of the theoretical and
experimental research on multiple light-scattering
near the critical point has been covered in less detail.
At this same time, the importance of multiple-scatter-
ing effects in the critical region is obvious. Light

scattering is one of the most convenient methods of
studying the physical properties of matter in this re-
gion, since here the correlation length for fluctuations
of the characteristic order parameter of the system is
comparable to an optical wavelength.

A deep understanding of the features of the multiple-
scattering processes is necessary for the following
reasons as well: 1) Multiple light-scattering contains
certain information on the higher-order space-time
correlation functions of the fluctuations of the physical
quantities; 2) the effects of multiple scattering must be
taken into account in interpreting critical-opalescence
studies in the single-scattering approximation, for
which there is a reliable theory.

In the last 10-15 years our understanding of the na-
ture of critical phenomena has deepened substantially.
The basic cause of the universal behavior of systems of
diverse physical natures near the critical point has
been discovered—the long-range and long-time corre-
lations of fluctuations of the order parameter. This
discovery has come as a result of the development and
refinement of the modern theory of phase transitions
and critical phenomena—the theories of scaling5 (scale
invariance) and the renormalization group.6
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The general progress that has been made in the study
of critical phenomena is also reflected in the develop-
ment of ideas about the role of anomalies of the higher-
multiple scattering in the phenomenon of critical opal-
escence. By now there Is a large body of accumulated
experimental and theoretical material on the integrated
and spectral intensities of multiple light-scattering near
the critical point. Many results can be regarded as al-
ready firmly established. In such a situation the "best
and only recourse" is to clarify the present status of
research on multiple light-scattering is critical opal-
escence.

1. DEVELOPMENT OF THE CONCEPTS OF CRITICAL
OPALESCENCE

The first observations of the phenomenon of critical
opalescence were evidently undertaken in the 1880's
and 90's by Gerzi, Altschul, and Wesendonck. The
local thermodynamic theory of fluctuations, which was
given by Smoluchowski7 and Einstein,8 explained the
omnidirectional growth of the scattered light intensity
on approach to the critical point. The spatial nonlo-
cality of the fluctuations, which leads to the fundamen-
tal concept of the correlation length rc, was first taken
into account by Ornstein and Zernike.9 Many papers
have been devoted to the justification of the main re-
sults of the Ornstein-Zernike theory on both the ther-
modynamic and molecular levels and also to the experi-
mental verification of this theory; an analysis of these
papers is found, for example, in Ref. 10. The Orn-
stein-Zernike theory, which explains critical opalesc-
ence by allowing for long-range correlations, in fact
corresponds to the model of noninteracting fluctuations
and, of course, does not give an exact description of the
analytical properties of fluctuating quantities in the
close proximity of the critical point.

The construction of the Ginzburg-Landau theory11 of
superconductivity and the establishment of the applica-
bility criterion12'13 for the Landau self-consistent field
have revealed that the interaction of fluctuations plays
an increasing role as the critical point is approached.
The modern theories of critical phenomena, due to
Patashinskii and Pokrovskii5 and to Kadanoff and Wil-
son,8 take this decisive factor into account in a syste-
matic way and have explained a variety of importance
new properties of the pair and higher-order correlation
functions of the order-parameter fluctuations. In part-
icular, a fundamental consequence of the scale invar-
iance is the appearance of the anomalous-dimensionality
exponent r\ of the pair correlation function, which does
not appear in the Ornstein-Zernike theory. The fact
that r j #0 should make the reciprocal intensity I ^ 1 of the
singly scattered light have a nonlinear dependence on
the square of the change in the wave vector upon scatter-
ing at an arbitrary angle.

Together with the growth in the correlation length rc,
there is also an increase in the relaxation time ic of the
long-wavelength fluctuations of the order parameter.

This so-called "critical slowing down" is manifested
primarily in a sharp narrowing of the intensely growing
central line of the fine structure of the spectrum. The
various versions of the dynamical theory of critical
phenomena14"16 provide an extremely firm foundation
for studying the spectral characteristics of the critical
opalescence in the single-scattering approximation.

The concept of scattering order (multiplicity) in elec-
trodynamics stems, as we know (see, e.g., Refs. 4,
17, and 18), from the iterative solution of the integral
equations describing the propagation and scattering of
electromagnetic waves in statistically inhomogeneous
media; the solution is represented in the form of the
Born or Rayleigh series in the polarizability of the
molecules (in fluctuations of the dielectric permitti-
vity). The results of an electrodynamic calculation
with scale-invariant correlation functions of the order-
parameter fluctuations adequately describe the multi-
ple scattering of light near the critical point.1'

The systematic electrodynamic calculation of double
light-scattering near the critical point, with the correct
correlation function for fluctuations of the order para-
meter, was performed independently and practically
simultaneously in Refs. 21-25. These papers suc-
ceeded in explaining theoretically the main features of
double scattering (the temperature dependence of the
total intensity /2 and depolarization factor A, the non-
trivial dependence of /2 and, hence, of A on the charac-
teristic linear dimensions of the scattering volume, the
features of the angular dependence of /2, etc.). At the
same time, however, the papers of Refs. 21-25 did not
give due regard to the real geometry of the scattering
volume. The corresponding calculations, which are
highly necessary for estimating correctly the correc-
tions due to double scattering and multiple scattering
in critical opalescence, were carried out in Refs. 26-
29. The advent of reliable theoretical calculations of
/2 and A (Refs. 21-33) largely motivated the corre-
sponding experimental studies (Refs. 26, 27, and 43-
39).

No less interesting is the study of the possible in-
fluence of multiple scattering on the spectral charac-
teristics of critical opalescence. This factor must be
taken into account in order to verify the assertions of
the dynamical theory of critical phenomena (the magni-
tude of the dynamic exponent z, the exact form of the
scaling function for the width rc of the central com-
ponent, etc.). The first theoretical40"44 and experi-
mental42'43-45 studies in this area have already been
carried out.

"Here we will not go into the papers which have used various
approximate methods of calculating the double scattering of
light near the critical point (see Eefs. 19 and 20 for details)
and employed well-known methodological procedures for re-
ducing its contribution (decreasing the scattering volume,
choosing mixtures whose components have nearly the same
refractive indices, etc.). The lack of rigorous theoretical
analysis in these papers has, in any case, left open the funda-
mental question of the magnitude and role of multiple-scatter-
ing effects.
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2. STUDY OF THE SCATTERING PROCESS IN
CRITICAL OPALESCENCE

a) Iterative procedure for solving the electrodynamic
problem

There are two basic approaches—macroscopic and
microscopic—to the description of the propagation and
scattering of electromagnetic waves in a material which
is in a near-critical state.

In the macroscopic approach one uses the concept of
a fluctuating dielectric permittivity: c(r, /) = £0(r)
+ s'(r, t), where e0(r) is the average value for the me-
dium and t'(r,t) is the fluctuating part. The dielectric
permittivity is assumed to be spatially inhomogeneous
on account of the presence of an external field, for ex-
ample. The concept of scattering order stems from
the application of an iterative procedure in solving the
wave equation

AE—i-~e(r, ()E —gradd ivE = 0, (2.1)

which is written in this form for a nonmagnetic, non-
conducting medium. The idea of the iterative proce-
dure is to seek the electric field E = E0+Si,1Ei in the
form of a sum of the field E0 of the exciting wave,
which satisfies equation (2.1) with E = c0(r), and the
fields Ej, which are functionals of the i-fold products
of c'(r, t). The general recursion formulas for the
electric Ef and magnetic H( fields in the (r, o>) repre-
sentation are of the form41t

-dr'

Ei ( r> «)]= -„

[l-i %- | r-r, |>]dr,da>,,

(2.2)

H,(r, o>) = -
oo11e' {ft, <a,)G't~' (r, >,) [n,, m,)

|r-r, |]dr,d<B(;

(2.3)

here n( = (r- r , ) / j r -r , | is a unit vector in the direc-
tion of the observation point, G£~>(r, rf, oj<) is the cau-
sal Green's function of the wave equation, and ojj is the
frequency of the i-tuply scattered light. The vector
nij, which gives the polarization direction of the »-
tuply scattered wave, satisfies the relation46 mf =m,-.1
-n,-(nj -nij.i).

In the microscopic approach one starts from the re-
lation17

P(rf, t)=a[E.(r,, t) + fttP(r,, t)] (2.4)

for the dipole moment P(rf, t) induced in a molecule
located at point r{ at time t by the external field
E0(r,, t) and the fields of all the other molecules. In
this relation a is the molecular polarizability, which
is frequency independent and is taken here to be a
scalar, and

is the propagator for the electromagnetic field. The
field of the scattered wave is determined with the aid of
the formulas

in terms of the value of the dipole moment P(r', t),
which is found from (2.4) by the formal iterative proce-
dure

JP(r,,f)=aE0(r,,t)

(2.5)
The terms in (2. 5) are interpreted as the contributions
of the exciting field and of the singly, doubly, etc.
scattered fields. The relationship of the two approach-
es in the theory of multiple scattering is discussed in
Ref. 47.

From here the solution of the problem of multiple
scattering reduces to the calculations of the Poynting
vector

<S)=^rReS<[E,, H/l). (2.6)
i. 1

The terms with » = j give the intensity of the "pure"
i-fold scattering, while the remaining terms, with
i*j, give the intensity of the so called "interference"
effects. The terms with t = l, j = 2 and » = 2, j = l are
sometimes called the "one-and-one-half-fold" scatter-
ing. The angle brackets in (2. 6) denote the statistical
average over the fluctuations c'(r, t) in the macroscop-
ic approach or to an ensemble average in the micro-
scopic approach.

Thus, to study multiple -scattering processes one
must know the space-time correlation functions
Gt.i =<nli E'(r>, () nii E'(r

s> O> for dielectric-per-
mittivity fluctuations of arbitrary order or the par-
tial statistical distribution functions
Fifi(

rA;- • • ; ri» *i;> ri. '{;• • • \T'i + '/)• &» the macro-
scopic approach the space-time correlation function of
the dielectric -permittivity fluctuations can, with rea-
sonable accuracy, be replaced by the space-time corre-
lation functions of the density fluctuations (for the sake
of definiteness, we shall henceforth treat a liquid-va-
por system near the critical point)

For analyzing series expansions in the scattering or-
der for the fields and intensity of the multiply scattered
light, diagram techniques analogous to the Feynman
technique in quantum field theory find extremely wide
use. The summation of these series under certain as-
sumptions reduces to the solution of equations of the
Dyson type and Bethe-Salpeter type, respectively, for
the field and intensity of the scattered radiation (Refs.
2, 4, 24a, 25a, 30b, 40, and 48).

b) Correlation functions in the critical region

For a long time the only theory of critical fluctua-
tions was the Ornstein-Zernike theory, the main idea
of which reduces, as we know, to allowance for the
nonlocality of the density fluctuations Ap near the criti-
cal point. For the pair correlation function this gives

|r,-r2|/rc) |r,-rs|-'. (2.8)
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The correlation length rc, growing without bound as the
critical point is approached, provides for the long-
range character of the fluctuation correlations.

With the advent of scaling theory it became possible
to explain a number of important new properties of the
pair and higher-order correlation functions.5 Thus it
was established that the many-point correlation func-
tion G^1 A"(rl,. •., rn) depends on the ratios
| TJ - r, |/rc and is homogeneous of order AAj + . . .
+ A^n as a function of its spatial arguments, where
AAj are the scaling dimensionalities characterizing
the change in the fluctuating quantities A{ in the scale
transformation At(\r) — X'^'A t(r). For the pair corre-
lation function this result means that

' (r,, r2) = g (|jr,-r21/rc)/ | rt (2.9)

where in the case of order-parameter fluctuations one
has AAj = AA2 = (d - 2 + 7))/2, where d is the dimension-
ality of the space, 77 •£ 0.06 is the anomalous-dimen-
sionality critical exponent of the correlation function,
which distinguishes the behavior of the latter from that
found in the Ornstein-Zernike approximation, given by
(2.8). In(2.9)g-(0) = const, and usually g(x)~exp(-x).
The correlation length is

rc = |T |-v/(Ap/tP), (2.10)

where r= (T- TC)/TC and Ap = (co- pc)/pc are the di-
mensionless deviations of the temperature and density
from their critical values, and the scaling function f ( x )
has the asymptotic behavior /(* —0) = a0 = 10"<7~8> cm,
/(#— <*>)~x~vlt, and i"»0. 63 and 0*0.34 are critical ex-
ponents.

Using certain consequences of scaling theory,5 one
can calculate the singularity of the zeroth Fourier com-
ponents of the higher-order correlation functions near
the critical point.

In addition to invariance under change of scale, the
correlation functions can also have invariance under a
special conformal transformation. 49'50 In this case the
structure of the ternary correlation functions at the
critical point is completely determined, and the class
of functions describing the quaternary correlation func-
tions is substantially narrowed.

Unfortunately, at this time we do not know explicitly
how the higher-order correlation functions depend on
the wave vectors along whose directions one must per-
form the summation of the reradiations in the prob-
lem of multiple scattering. However, there is one im-
portant circumstance which enables one to calculate
the terms in the Poynting vector (2. 6). For variables
in the region in which the correlation length rc remains
smaller than the wavelength X of the light, the wave-
zone condition is satisfied:

Ao/i^OJI^-rjOl. (2.11)

Precisely such a situation is realized in many optical
experiments. This means that in calculating the scat-
tered fields by recursion formulas (2. 2) and (2. 3) one
is justified in using the asymptotic behavior of the mul-
tifrequency correlation functions that was obtained in
Refs. 50 and 51, which corresponds to the withdrawal
of one group of particles from the other to distances

I rf - r^ I » X a re. The features of the space-time corre-
lation functions for the critical fluctuations will be dis-
cussed in Section 5.

c) Single-scattering approximation. Distorting
factors

The integrated intensity of singly scattered light, /t,
is proportional to the Fourier transform of the pair
correlation function for the density fluctuations. Tak-
ing (2.9) into account, we have

/i = -g-j-Re<[E,, H*])-n1~G2(?)~ l/(rc!-fg2)1""'1'2, (2.12)

where g = fe0V2e0(l -cos6)1/2 is the change in the wave
vector upon scattering by angle 8.

It follows from an analysis of formula (2.12) that

1) at the critical point r~^ ^0 and l\l ~q*^, making it
possible in principle to determine the critical exponent
i] from measurements of the angular dependence of the
single scattering;

2) the intensity l^q — 0) ~r|~" ~j3r characterizes the
isothermal compressibility:

T-T v/,(-^r), /.(*- - a
 (2 13)

/, (x -*• oo) ~ i1"6, isssl-2, 8w4.5,

enabling one to find the values of the critical exponents
y and 6 and the explicit form of the scaling function

3) the angular slope of the plot of (Il/0TYn"~2> ver-
sus <f gives r2

c and thereby, upon variation of ^ and
Ap, yields the critical exponents v and v/$ and the
scaling function f(x) from (2.10).

Similar methods of determining the critical expo-
nents and scaling functions have been used in many
experimental studies (see, e.g., Ref. 53).

The consequences of formula (2.12) enumerated
above are valid for the asymptotic neighborhood of an
isolated critical point. There are a number of factors
which distort this idealized critical behavior, and
these must be kept in mind when interpreting experi-
mental data on critical opalescence in the single-scat-
tering approximation.

1) External "fields. " The anomalous growth in the
susceptibility near critical and second-order phase-
transition points causes a lowering of the symmetry
(breaking of the macroscopic homogeneity) of the me-
dium in the presence of external "fields. " For a liq-
uid-vapor system this leads to a narrowing of the true
phase-transition region (the gravitational effect).

Suppose that the scattering occurs in a plane-parallel
layer -L, ^z <L,, inhomogeneous with respect to z, at
normal incidence of the x-polarized exciting wave on
the boundary z = -L, (Fig. 1). Critical phenomena oc-
cur in the layer at the level z = 0 for r~ 0. The inten-
sity of the singly scattered light, averaged over the lay-
er, is given by the formula

,

[G,(9, z) + f3p$-
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FIG. 1. Geometry of the scattering problem In Refs. 22, 54,
and 55.

Here cr is the cross section of the incident beam, m0 is
a unit vector in the polarization direction of the exciting
wave, L is the distance from the scattering volume to
the detector, and G2(q, z) is the Fourier transform of
the pair correlation function of the spatially inhonio-
geneous medium.54 The second term is due to the
presence of the backward wave.S5

It follows from (2.14) that: a) A/J/A.Z, the intensity
referred to a unit interval A2, has a sharp dependence
on the vertical coordinate, with a maximum at the 2 = 0
level; b) at z, T — 0 and 6 — 0, IT there is an anomalous
increase in the magnitude of A/j/Az, but this feature is
leveled out in the averaging over the layer, and ̂ (21,,)
remains finite even at T —0 and 0 — 0 , ir; c) the temper-
ature dependence of Jj(2Lz) on the critical isochore is
described by an exponent yrft <y; d) the reciprocal
quantity I\1(2LZ] is characterized by a nonlinear depen-
dence in cf even when the Ornstein—Zernike-approxi-
mation formula (2.8) is used.

The height dependence of the scattering power near
the liquid-vapor critical point was studied in the ex-
periments of Refs. 56-60. AtT»10'4, for example,59

a departure of only 1 cm from the 2=0 level causes
the single-scattering intensity in n-pentane at the an-
gle 6 =77/2 to decrease by a factor of 80. At fixed
heights 2*0 the extrema of the single-scattering inten-
sity are reached at r#0.6 0 A decrease of the expo-
nent y and its approach toward the "classical" value
y = 1 was observed by Ivanov and Makarov61 and ex-
plained as a gravitational effect by Ivanov and Fedy-
anin.62 The appearance of nonlinearity in the function
/iMtf2) in a gravitational field was mentioned in Refs.
54 and 63-65. Leung and Miller65 evaluated the ex-
ponent 7)graT describing this nonlinearity and found that
it reached a value of unit order in Xe at 2L,= 10 cm
and T<=10'5.

2) Nonasymptotic and asymmetric neighborhood of
the critical point. The use of the simple power-law
relations of scaling theory in the interpretation of ex-
perimental data generally yields not the limiting values
of the critical exponents, but effective values, which
change as the critical point is approached. To find the
limiting values of the critical exponents one must take
into account: a) the nonasymptotic corrections due to
the broadening of the neighborhood of the critical and
second-order phase transition points in the idealized
models of the incompressible magnetic material (lat-
tice-gas) type with spins (atoms) fixed at lattice sites;

b) the asymmetric corrections describing the difference
between real systems (for example, a liquid-vapor sys-
tem near the critical point) and the aforementioned
idealized models.5'66"68 The correct processing of ex-
perimental data in the critical region with allowance
for the nonasymptotic and asymmetric corrections has
been carried out in Refs. 69 and 70, for example. Of
course, in the broad neighborhood of the critical point
one should also take into account not only the singular
parts of the physical quantities but also the regular
parts, which characterize the values of these quanti-
ties far from the critical point (r~\ and Ap«l ) .

3) Auxiliary thermodynamic variables. The majority
of phase transitions occur on lines or surfaces in the
space of thermodynamic variables. For this reason
the natural question arises of whether these phase
transitions are isomorphic to a phase transition in the
only real system with an isolated critical point—a one-
component fluid characterized by only two independent
variables (for example, T and Ap). A detailed discus-
sion of this question (in particular, the renormaliza-
tion of the critical exponents when the auxiliary density
variables, rather than the field variables, are held
fixed) is found in Ref. 53.

4) Crossover. The character of the critical ano-
malies also changes on approach to higher-order criti-
cal points on phase-transition lines or surfaces. For
example, near a tricritical point one has, to within
logarithmic temperature corrections, j3T~T"r< for the
compressibility and rc ~ T""' for the correlation length
of the order parameter, where y, = 1 and v, =0. 5. The
transition (crossover) from critical to polycritical
behavior must be taken into consideration in systems
with interacting order parameters.71

5) Higher-multiple scattering. The discussion of this
question is the subject of the remainder of this article.

3. INTEGRATED INTENSITY AND DEPOLARIZATION
OF DOUBLY SCATTERED LIGHT IN THE CRITICAL
REGION

a) Theory

Experimental efforts to study the features of physical
properties of matter (its scattering power, in particu-
lar) in the close neighborhood of the critical point
(T-& 10"3) made it necessary to elucidate the basic
characteristics of high-multiple scattering in critical
opalescence. This stimulated a heightened interest in
theoretical calculations of (first of all) double light-
scattering, which were done in Refs. 21-33. We note
that all the calculations were based on the decoupling
of the correlation function G4 into products of pair cor-
relation functions G2; this decoupling, as we noted
earlier [see (2.11)], is valid for X >rc and corresponds
to the actual experimental situation in critical opales-
cence studies down to TS 10"5.

1) Integrated intensity. The main contribution to the
integrated double-scattering intensity is given by the
expression22-46
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(3.1)

where L0 is the characteristic linear dimension of the
scattering volume V, and qt and 02 are the changes in
the wave vector during the successive scattering pro-
cesses. The integral over the solid angle in (3.1) is
the sum over direction of all the single scattering that
corresponds to double scattering which can be regis-
tered toy the detector.

The theoretical consequences of (3.1) are that: 1)
I2 is proportional to the fourth power of the linear di-
mension (I2~VL0~V*/3); 2) for qrc«l (the Rayleigh
region) I2(r)~fi.(T)~r?™ ~T~** on the critical iso-
chore, and /2(z)~0|(z)~z'2(*'1)/B on the critical iso-
therm of an inhomogeneous fluid in a gravitational
field; 3) for qr,.-& 1 and «2S«0 (small-angle scattering)
/2 ~/3T + ln#T. This result reflects the particulars of
the decay of correlations for the four-point correla-
tion function5'72-73; 4) the indicatrix I2(e) is smoother
than the indicatrix 1^(0): I2 ~ 1 + (7/ll)cos20, /x ~ 1
+ cos26 for qre« 1 and for natural incident light.2'

2) Depolarization of scattered radiation. The funda-
mental mechanisms responsible for depolarization of
scattered light include scattering by anisotropy fluctua-
tions,74"76 scattering due to fluctuations of the distribu-
tion function of the thermal fluctuations,77 and multiple
scattering. The object of study is the depolarization
factor

where the lower index indicates the observation direc-
tion and the upper indices give the polarization of the
incident and scattered light, respectively (see Fig. 1).

For estimating the relative contributions of the va-
rious depolarization mechanisms, it is convenient to
use the following relations:

A y.jjniso

^~
(3.3)

which are valid for qrc« 1.

The character of the anomaly of Imiso in the critical
region is an open question at the present time and de-
mands a theoretical solution of its own. The experi-
mental studies (see below) provide grounds for as-
suming that if /„,„„ is in fact singular at the critical
point, then the singularity is extremely weak, since
<p(T)p~J(T)~Q at T — 0 . It follows from (3. 3) that
I"n/I"~rll< i - e - ' this contribution, like the pre-
ceding one, falls off as the critical point is approached.
The last depolarization mechanism, multiple scatter-

>A number of the results mentioned (/2~|3^ for <jrc«l), /2/t

~L0, and the fact that the angular dependence o f / 2 (9 ) is
smoother than that of 11(0) were obtained earlier19 in a calcu-
lation of the double-scattering intensity near the critical point
on the basis of the transport equation for radiation with an
indicatrix given by the Ornstein-Zernik theory.

ing, assumes the governing role in the critical region,
since JJj/JJ* ~/3T.

A systematic calculation of the individual components
of the double scattering for a spherical sample geo-
metry was carried out by Oxtoby and Gelbart21:

2n n
f" V Tl 2 f A f d9sin3 9 cos2 9 sin'<p

(14-asin9cos sin 8 cos (3. 4a)

I? ~
\. 71

dq> j d8 sin5 8 (1 + a sin 0 cos <p)-i

X [1 -t-asinScosfqj + cp,)]-'.

(3.4b)

Here Vl is the illuminated volume, Rs is the radius of
the sphere, a = 2k2

0/(2k2
0 + r^), and <pt is the scattering

angle. It follows from (3.4) that I*', If-V^,, and
for fe0r

4[this was already noted in connection with for-
mula (3.1)]. Extrapolation of (3.4a) to the critical
point (k0rc — °°) gives a finite value for II'.

In Ref. 23, Oxtoby and Gelbart made a theoretical
study of the angular dependence of the polarized com-
ponent /" = II* + I™. The calculated values of
I/I**(q2) for Xe atK^lO'2 cm and T-T0 = 0.031 °C
revealed deviations of I/Il*(q2) from the linear be-
havior predicted by the Ornstein-Zernike theory, which
were especially noticeable at small scattering angles.
Despite the use of the correlation function G2 from the
Ornstein-Zernike theory in the calculation, these de-
viations are characterized by a nonzero effective value
of the anomalous-dimensionality exponent J]2cr as a con-
sequence of the allowance for double scattering. As in

(3. 2) the case of 7}g the value of 7j2cr is extremely large:
rj2cr = 0. 7. As the scattering volume decreases, the
share of the double scattering in the total intensity de-
creases, and the value of J72<:r decreases accordingly.
For Rt ~ 10~3 mm one has r)2C:t

aQ.l, which is close to
the theoretical value of the anomalous-dimensionality
exponent 77 for the correlation function G2.

Oxtoby and Gelbart21 also did a numerical calculation
of A(fe0rc) for Xe at Ra= 10"3 m (Fig. 2). The growth of
A for k0ra >0.04 (r<, 10"2 for the critical isochore) is
due to the increase in the depolarized component /J2.
It should be stressed that /JJ/7g ~Hsr

2 for fe0rc s 0.3.

The dependence I2 ~ VL0 was also obtained indepen-
dently by Kuz'min44 and Boots et aL25a Those authors
used a microscopic approach to the description of mul-
tiple scattering in the dipole approximation and a dia-
gram technique similar to that which has been develop-
ed for the problem of wave propagation in media with
random inhomogeneities.2-4

In Ref. 25b, Boots and co-workers calculated the de-

FIG. 2. Depolarization
factor for double scatter-
ing in Xe (Ref. 21).

an ir1 as 1.0 *„
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polarization factor A in CO2 for the case in which the
exciting radiation is incident perpendicular to the gra-
vitational field gradient. They showed, in particular,
that A = ^2,depAi,poi ~L0, where L0 is the vertical di-
mension of the scattering volume.

The total contribution of the double scattering to the
depolarization factor was calculated in Ref. 33. The
results obtained in the interval 3 • 10"3 «#orc * ̂
(where q0 = J~2k0 is the change in the wave vector upon
scattering by an angle d = 77/2) were used to obtain the
dependence on q*0r\ of the depolarization factor A = y1/
(1 +y2) and of the quantities

Y, = -

V2 = - = s (1 + go

, (9orc) ,

?) qlr%K 2 (gorc) .

(3. 5a)

(3. 5b)

Here /^ and K2 are calculated explicitly as functions of
q\r\, s = (p(BE/8p))2

T feBTL0/8X2/* is a parameter which
depends weakly on r and Ap, and /* = r2/|3T is the non-
locality factor of the fluctuations.10

The results of the calculation of A shown in Fig. 3
(the arrows indicate the positions of the extrema)
support the following qualitative arguments. For low-
multiple scattering, polarized radiation incident on a
system of isotropic molecules for the most part retains
its initial polarization direction, and for this reason
y1 should be relatively small. As the critical point is
approached, there is an increase in the relative share
Y2 of double scattering in the polarized component.
However, in the immediate vicinity of the critical point
(<?orc> >!) low-order multiply scattered light simply
does not reach the detector, as can be inferred from
the following formula:

* r— yfl

In 2 -(1/2)

The initial polarization ceases to be preferred, and the
contributions to the various polarizations to the criti-
cal-scattering intensity tend to become equal. The
value of A should go asymptotically to unity at the
critical point.

The present authors showed in Ref. 33 that as the
parameter qz

0r\ increases to the value (<?orc)jnai = ll'
the component /JJ grows and A falls off accordingly.
Hence, one sees that it is pointless to continue calcu-
lating A in the double-scattering approximation, since
in the region (q6r,)z ;> (tfoOmax higher-multiple scatter-
ing processes become important.

The results of calculations21'25" of A in the double-

FIG. 3. Dependence of
the depolarization factor
on the parameter (<?0rc)

2

(Ref. 33).

scattering approximation are in quantitative agreement
with the calculated value33 of y^ in the region (<?0rc)

2

<0.1-0.2, since the former calculations21'25b did not
include the double-scattering contribution to the pol-
arized component 7J* (y2=0). For example, in the re-
gion (q0re)

3<Q. 18, where y2 = 0, the values used in Ref.
21 (L0 = 0.1 cm, X = 25f-10'5 cm) give s^lfT2 for
Xe [rc = 289.757/sr, f*~Wsdn, (p-3e/3p)|2 10'1], and
the results of the calculations of A in Ref. 21 and yl in
Ref. 33 practically coincide at (p • 3e/3pft = 1. 74 • 10"1.

b) Allowance for experimental geometry

A factor of fundamental importance in the calcula-
tion of the higher-multiple scattering processes is the
particular geometry of the system under study. Al-
lowance for the geometry has given rise to "instru-
mental" theories26"29 which adequately reflect the ex-
perimental conditions.

Adzhemyan et at. 26>29 implemented the original idea
that the illuminated volume Vx and the detected volume
Vz (the upper and lower cylinders in Fig. 4) need not
overlap, and one can therefore eliminate the single
scattering. These authors did a series of very consis-
tent experimental studies and theoretical calculations of
the polarized /|* and depolarized I'(*y1 (the scattered
light is studied in the xy plane) components of the double
scattering as functions of the distance h between cylin-
ders, the scattering angle 8, and the parameter fe0rc.
Both the calculations and the experiment confirmed that
I?*y>(e) is a smoother function than /*(0), that the frac-
tion of the polarized component I" that is due to double
scattering grows with increasing k0rc, and the scatter-
ing properties depend in a nontrivial way on the linear
dimensions of the system. It was also shown that al-
lowance for double scattering leads to an increase in
the exponent v, to a decrease in the exponent y, and
also to a decrease in a0 (without double scattering the
values are v = 0. 58, y = 1.29, and a0 = 3. 20-10"8 cm,
and with double scattering they are v~Q. 625, y=1.21,
and a0 = 2.36-10"8 cm).

Reith and Swinney27 achieved the important result of
obtaining the relation

+ 2)/3]2 (3.6)

and verifying it experimentally for the case of ascatter-
ing volume in the form of a parallelepiped of height L0.
Using the Monte Carlo method to evaluate the quadruple

FIG. 4. Geometry of experiment29 for studying the depolariza-
tion of the scattered light near the critical point.

579 Sov. Phys. Usp. 26(7), July 1983 E. L. Lakoza and A. V. Chalyi 579



integral giving the numerical value of g, those authors27

showed that g depends only weakly on L0: as L0 changed
from 0. 3 to 1. 5 mm, the value of g decreased smoothly
from ir/4 to 0. 76. A numerical calculation28 of A
for a cylindrical sample of height L0 and radius rg

confirmed relation (3.6). Approximate evaluations of
the corresponding integrals established that

-(1/6)(1 + ir/2)(2r0 /L0Y* for 2r0 » L0. The product gL0

grows linearly with a slope of jr/4 for LQ« 2r0, then
continues to grow but with decreasing slope, and fi-
nally reaches the constant value gL0 = r0(ir/2)ln(l + V2")
forL0»2r0.

c) Experiment

1) Temperature dependences of A and 4. Experimen-
tal studies of the temperature dependence of the depol-
arization factor A(T) have a rather long history (see the
corresponding bibliography in Ref. 78). Beridze78 and
Kolpakov and Skripov79 very correctly asserted that the
growth of A on approach to the critical point is due to
multiple scattering effects. More recent experimental
studies26'27-34'39 have confirmed the corrections of this
conclusion and made it possible to calculate, on the
basis of the theoretical results mentioned above, the
critical exponents and other characteristics of the dou-
ble scattering. For example, the experimental data27

on A(r) in Xe, which are shown in Fig. 5, can be de-
scribed by the formula A = const • /3"1 + ga0L0, where the
first term corresponds to the ratio /m,,,/.^. Garrabos
et al.37a used the data on A(T) in Xe to establish that A
is a smooth function of T displaying no critical be-
havior in the region AT s 50°, while in the interval
5° < AT « 50°, A is a decreasing function of T with ex-
ponent y «1. 2, as can be explained by the growth of
1*1, the constancy of /imi80, and the practical absence of
/£. In the region (1-3)° « AT -s 5° the fall-off of the
first term and the growth of the third term in formula
(3.3) compensate one another, and the depolarization
factor passes through a minimum. Finally, in the re-
gion ATs (1-3)° one observes a growth of A due to the
more rapid growth of /*f than of /"; the slope of A(T)
in this region is again given by the exponent y.

The maximum attainable experimental values of the
depolarization factor are: A a 1.2 • 10"2 at r~\. \ • 10"4

in C02,
351 A * 5 • 10'1 at T« 6 • 10"5 in Xe,35b A = 10'2 at

T = 3 .4-10- 4 inXe, 2 7 and A = 4-10'3at r=l . 4 • 10'3 in
Xe.37a It should be noted that Trappeniers et al.35a ob-
served that, after reaching a maximum, A decreased
slightly (up to 10%) in the region T« 10"4. In spite of
the seeming agreement with the calculation33 of A (see

Fig. 3), the reliability of this result is in doubt, since
for rslO"4 the incipient higher-multiple scattering
processes should cause a further increase in A. In
fact, Trappeniers et a/.35" expressed the opinion that
triple scattering was the casue of the strong growth in
A(T) and anomalies in A(L0) which they observed in Xe.

The change in the temperature dependence of the dou-
ble-scattering intensity I2 that was predicted in Ref. 21
and 22 was observed experimentally by Beysens et al.34

Those authors analyzed the depolarized multiple scat-
tering in a nitrobenzene-n-hexane mixture for temper-
atures 10"5s r-s 10"2. The angular slope of the multiple
(predominantly double) scattering intensity in a log-log
plot in the region T« 10"2 came out to be 2. 52, which, in
accordance with the predictions of Refs. 21 and 22, is
in good agreement with the value of 2y. In the region
T=10"4 the exponent in the function /*|(r) was observed
to decrease from 2y to y, as had been noted in Ref. 22.
At still smaller values of r they observed a tendency
toward a weaker temperature dependence of /", which
also agrees with the theoretical predictions.21'22

2) Density dependence of A. The density dependence
of the depolarization factor is not as well-studied as the
temperature dependence. Figure 6 shows the mea-
sured371 curves of A(w) in Xe. For the isotherm closest
to critical, T0 = 290. 74 K, one observes a decrease in
A as p approaches pc in the interval | P - Pc| >P0. The
reason for this is a decrease of the relative contribu-
tion /aaiao/A- In connection with the possible singu-
larity of /aafco as a function of the order parameter Ap
[/„,,„~\~4V<p1(^.p)], it can be stated that <pj(Ap) • Ap8'1

— 0 as Ap —0. If <pj(Ap) has no singularity whatsoever
at the critical point, then in the interval |p-pc| >p0 the
critical exponent 6 is determined from the data on A(p)
in the region T« Ap1/8, and the scaling function of the
isothermal compressibility is given by (3T = Ap1"8g-J(T/
Ap178). In the density interval pc - p0 <p <pc + p0 on the
T = T0 isotherm, the growth of the depolarized double
scattering becomes dominant. With increasing r, i.e.,
upon the transition, for example, to the T = 7\ iso-
therm with TJ = (Tj - TC)/T0 = 4r0, the indicated growth
of A on account of double scattering should also be ob-
served, but in a narrower density interval pc - Pj <P
<pc + pj, where, according to estimates, pj^O.lpo.
The experiment of Ref. 37a was apparently not de-

£J> L Xe

1.0

-I 1 ' L_
*> .. K

p. mole/liter

FIG. 5. Temperature dependence of the depolarization factor
in Xe for various values ofi0(Ref. 27).

FIG. 6. Density dependence of the depolarization factor in Xe
in the critical region. 3'a
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signed to monitor A(p) at such small deviations from
the critical density.

A similar result to that of Ref. 37a was obtained by
A lekhin and Burak38 in a study of the height dependence
A(z) of the depolarization factor in w-pentane with al-
lowance for the gravitational effect. The experimental
data obtained for five different wavelengths are pre-
sented in Fig. 7. The nonmonotonic change in A(z)
was attributed by those authors to the composition be-
tween two contributions—the double scattering and In

(and not /M130, as in Ref. 37a; see Ref. 77). Then for
qarc«1 near an isotherm on which t6 « z* = pcg0(z — zc)/
/>c (gg is the acceleration of gravity, />c is the critical
pressure, and 2C is the level at which p = pc), it follows
from (3. 3), with (2.10) and (2.13) taken into account,
that A = c1z*"/S8 + c2z*a"6>/S. where iV/36«0.4, (l-6)/5
» -0.8, Cj is a constant which does not depend on X4,
and CJJ-LO/V*. As X increases, the fluctuation scatter-
ing /fl becomes the predominant contribution to A, as
can in principle be explained by the singularity of the
temperature and density (height) dependence of A in the
region qarc« 1. In Ref. 39, Alekhin showed by pro-
cessing the A(z) data of Ref. 38 that /**n//f
= (A1(z*)X4-A2(z*)X4)/(X4-X|)~z*°-4<*°-°6, where A^z*)
are the values of the depolarization factor measured at
X1 = 435.8 nm and X2 = 632.8 nm. This result is in
good agreement with both the theoretical predictions59

and the experimental data80 for the function rc(z*), which
determines the ratio /"„//" ~r'c

l ~z*v'M along the
critical isochore.

3) The dependence of A and Iz on the linear dimen-
sions of the scattering volume. The experimental data
obtained to data are in agreement with the important
consequences of the double-scattering theory21"25: the
dependence of the intensity on the fourth power of the
linear dimensions (I2 ~L4) and the consequent propor-
tionality of the depolarization factor to the linear di-
mension (A~L 0 ) in the region where /*£//£*«!. The
character of the linear dimension of the scattering
volume must be determined with the actual experimen-
tal geometry taken into account. For example, L0=R
for a spherical sample of radius R, L0 = a for a cube of
side a, and for a cylindrical sample L0 in general de-
pends on the radius of the base and the height.

The behavior A~L 0 was observed experimentally even
before the advent of the modern theory21"25 of critical
opalescence. Figure 8 shows data78 on the dependence
of A on the length L0 of a cell containing a nitroben-
zene -n-heptane solution of AT = 0. 16 °C. The growth of

Iff W 30 La,mm

FIG. 8. Dependence of the depolarization factor on the length
of the cell for a nitrobenzene-n-heptane solution'on the AT
= 0.16° isotherm.?8

A at small i0<5 mm is attributed in that paper to
growth of the scattering order, while the approximate
constancy of A at L0 >5 mm is attributed to the esta-
blishment of a "deep" regime in which the multiple
scattering has reached its maximum value.

After Ref. 21 appeared, measurements of A(L0) began
to be made with a definite goal in mind. A study26 of the
depolarized light-scatter ing in a nitrobenzene-hexane -
mixture near the critical point of stratification showed
that at h=0 (the cylinders in Fig. 4 overlap) A~d ,
where d is the diameter of the laser beam. At prac-
tically the same time as Ref. 26, measurements27 of
A(L0) in Xe confirmed that A is proportional to the cy-
linder height L0 (Fig. 9). In agreement with the theo-
retical predictions that A~Z,0/3r/X

4 for q0rc«l (this
inequality was satisfied in the experiment of Ref. 27,
since T - rc = 0. 5 K), the slope of the curve A(L0) de-
creased with increasing X. The theory predicts that the
derivative 9A/3L0 should grow ~PT, and this was mani-
fested in the experiment27 for T -T >0.15 K. At smal-
ler values of T - Tc the theory21 and experiment27 disa-
gree. We note when the polarized double scattering is
taken into account,33 one obtains the observed27 decrease
in the slope of 3A/3L0 as a function of T- Tc.

Trappeniers et aZ.35a made detailed measurements of
A(L0) in CO2 at p = pc. In the experiments they varied
the height (L01 = 0. 7 mm, L03 = 2 .1mm, L03 = 2 .8mm)
of the scattering volume illuminated by a horizontal
beam perpendicular to the direction of the gravitational
field. The theoretical predictions for T>10~4 are com-
pared with the experimental data in Table I.

A convenient variable for describing the distance from
the critical point is the quantity D = [&„[(£ - l)(e + 2)/
IZttfkgT^]'1, which was introduced by Trappeniers
et al.36 and has units of length. When the connection
between rc and |3T in terms of the integral of the com-
pressibility is taken into account, one obtains a univer-
sal relation between A and D for various materials at a
fixed experimental geometry. In Ref. 36, Trappe-
niers et al. supplemented the measurements of Ref. 35

-U.Z -O.1 a 0.1 0.2//,cm

FIG. 7. Height dependence of the depolarization factor inn-
pentane for various wavelengths.38

Z.O

1.5

to

as

at 0.8 !.2

FIG. 9. Depolarization factor in Xe as a function of the height
of a cylindrical sample for various wavelengths.27
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TABLE I.

Material

AOI : AOJ : A03

ADI : A0j

Theory

1:3:4

1:3

Experiment

0.683:1.803:2.752 (AT = 0.2084")
0.960:3.139:4.390 (AZ" = 0.1227°)
2.971 : 8.579 (Ar=0.0318°)
0.648:1.674 (A7 =0.0722°)

with a study of A(Z>) in Xe. For L0 = 1.69 mm, double
scattering plays a governing role in the region O . l m
<D<10 m; here A = (l/4)irD"1fe, a result which agrees
to within a factor (Dml=o0/2) with the results of Refs.
27 and 28. The correction for attenuation (see Sect.
4d) was neglibibly small all the way down to Dz 0.1 nv
(corresponding to T -T0s 0. 2 K). For D>10 m the
main contribution to A was given by I^iao' while for
D<0.1 m it is necessary to take higher-multiple scat-
tering into account.

Let us conclude this section with a brief discussion
of two questions.

The first question is still of a controversial nature
and concerns the competition between the relative con-
tributions /Jf / fJ* and I'ntoo/1™ on tt16 one hand and
I*yl/I™ on the other hand in the region of the minimum
of the depolarization factor, where g0rc is still «1.
Using (3.3) for an elementary analysis of the line of
minima T"mlll = TmlI>(A.) on the critical isochore, one can
study the following limiting cases: 1) /^[,ao « /Jf,
T-mllW~*-8/3r; 2) /^Uo»/f7- T.j.W-X-*/"""', where
n is the exponent of the possible temperature depen-
dence of lnlao~<p(T)~r~n. The experimental study of
the spectral dependence of TmU(\) is extremely useful
for elucidating which of the contributions to the depol-
arized scattering (l3^,,, /", or both) is competing with
II* in the region of A = Amla. For the case in which I"
and I^toa are °* the same order, one must make a more
detailed analysis of the system of three equations (3. 3)
for different experimental values of A(T). An analo-
gous study can be made for the line of minima Tmla

= Tml.(L0): 1)/£*„«/??, rulm<f,0)~Ll'»; 2)/£lso »/??,
Tmu(^o)~I-J/<2r"")- The experimental data27 for A(L0),
which are shown in Fig. 5, indicate that it is most like-
ly the second possibility that is realized (analysis of the
curves gives nisO).

Yet another question concerns the use of the quantity
A = /*//*, i. e., the ratio of the total scattered-light
intensities observed in the directions parallel and per-
pendicular to the polarization direction of the incident
light, to characterize the depolarization of the scattered
light in experiments in dense gases81 and near the cri-
tical point.37b In the region of r and Ap in which one
may neglect scattering processes of order t>2, one
has A = A(l + Aj)/(l + A). The polarization ratio33

Ax = / J«/7 « lies in the interval A^r2 _ 0) _ j < ̂
<\(<ftrl— <*>) = !. 589. In the region 10'5<T<10"2 the
value of Aj is approximately equal to one. For ex-
ample, at cfcr\ = l, which corresponds to r« 10~4 at
A. = 5 • 10~B cm, one has Aj = 1. 08. Since one typically
has Ae x p<0.1, the value of Aexp should be about twice as
large as AMP. Comparison of the calculated values33 of
A with the measured values37 of A shows that they agree

in order of magnitude, thereby confirming the indicated
range of values of the polarization ratio Aj.

4. HIGHER-MULTIPLE SCATTERING

a) Total coefficient of multiple scattering

Let us first discuss the critical behavior of the terms
in (2. 6) which are responsible for "interference" ef-
fects. The intensity of these terms depends on the fol-
lowing way on the characteristic dimension L0 of the
scattering volume41: /,„,„-([£,, H/]>~L2'-J*2, i*j. It
can be shown that ([E2,H0*]> and {[E0,H *]) on the one
hand, and {[E3,Hj!'j> and <[E l f H*]> on the other, give
the same contribution to the total multiple-scattering
intensity as ([E^H*]) and ([E2,H2*]>, which determine
the "pure" single and double scattering, respectively.
This assertion is based on the fact that {[E^Hj"]),
<[E2,H*]>, and <[E0,H*]> are related to the correla-
tion function G2, while <[E2,H*]>, ([E3,H*]>, and
([El,H*]) are related to the correlation function G4.
However, estimates21-22 show that both the "inter-
ference" effects enumerated above and the one-and-one-
half-fold scattering /3/2~([E.,,H*]), ([E,,H*]>, which
contains the correlation function G3, give negligibly
small contributions to the multiple-scattering intensity.

For studying higher-multiple scattering processes,
we introduce in (2. 6) the total coefficient of multiple
scattering

I,V (4.1)

The t-fold scattering coefficient Rt is defined here in
analogy with the single-scattering coefficient. 10 The
general formulas (2.2) and (2. 3) for the scattered fields
in the static case give the following recursion relations46

for R f :

(4.2)

/ . n\(4.3)

In particular, (4. 1) and (4. 2) imply that Rt -L^1,

When (4. 2) is taken into account, it is readily ap-
parent that expression (4. 1) is the iterative solution of
the integral equation

(4.4)R(a, OO) = JRI(CT, I (a, o') R (a', a0)da',

which has the following closed solution

here

are the coefficients of the expansion of Rt [from (4.3)]
in the spherical harmonics Y*(a). Formula (4. 5) en-
ables one to find the various characteristics of the mul-
tiple scattering (the indicatrix, extinction coefficient,
etc.) from a given correlation function G2 for the order-
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parameter fluctuations. We note that a direct conse-
quence of (4.5) is the following criterion for applying the
iterative procedure to (4.4):

fc,L0<l (fc, = Boo) (4.6)

b) Extinction coefficient for multiple scattering. The
relationship of the various scattering orders

With allowance for (4. 5), the extinction coefficient for
multiple scattering

K=\R(a, <j0)d0 (4.7)

TABLE II.

is given by the expression
(4.8)

This result can also be obtained directly from (4. 7),
(4.1), and (4. 2), according to which

K = J, k, = fc, + k$L0 + l*L\ + ... (4.9)

Summation of the series (4. 9) under condition (4. 6)
yields formula (4.8).

From (4. 9) one obtains a relation between the contri-
butions to K from scattering processes of successive
orders:

-=*.£,„. (4.10)

For k^Q «1, it follows from (4. 8) that what is deter-
mined in experiment is klt the extinction coefficient
for single scattering. In the general case it is not kt

butK, the extinction coefficient for multiple scattering,
that is found in experiment. From (4. 8) and (4. 10) we
obtain the expression k i f l / k f =KL0/(\ +KL0), which en-
ables one to determine the relative contributions of the
successive scattering orders on the basis of the exper-
imentally measured value of K.

For concrete calculations of the extinction coefficient
K, we use the representation of the correlation function
G2 in the Ornstein-Zernike approximation. In this
case we obtain for k1 the well-known expression (see
e.g. , Refs. 19 and 82).

ln

'

where 5~/3T/X4 and § = qz
Qr\. The coefficients B0n and

B2n appearing in formula (4. 5) are evaluated in Ref. 46.
The logarithmic singularity of ki at the critical point
(5~r* — ») generally speaking leads to violation of cri-
terion (4. 6). Table II gives calculated46 values of the
quantity k1La/s, where s is the parameter introduced
in (3. 5), which show that at the realistic value s = 0. 1
criterion (4. 6) is violated (fejl /o^l) at qara*2, corre-
sponding to a temperature deviation T»10~4°9 on the
critical isochore. At this same value of s the single-
scattering contribution is comparable to the contribu-
tion of all the remaining scattering orders (klL0= 1/2)
for ^0rc=l.l(T=10'4-45) and, finally, the single-scat-
tering approximation can be used with acceptable ac-
curacy (fe^/fe! -sO.l.S^fe, /fet s 11%) for all TSlO'3-7.

c) Experimental studies of higher-multiple scattering

In Ref. 35b, Trappeniers and co-workers reported
the experimental observation of triple scattering along
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8.0
5.123

13.097

7-10-'

4.227
3.713

9.0
5.164

13.689

2-10'1

3.842
1.412

4.0
4.882
9.834

8-10-1

4.323
4.061

10 X)
5.201

14.226

3- 10-1

3.982
1.976

5.0
4.900

10.841

9-10-1

4.364
4.386

11.0
5.234

14.719

the critical isochore in Xe. In the region 0.02 K
<T - Tc <0.1 K the temperature dependence of the de-
polarization factor A(T) was described by the exponent
-2. 45 ±0.05, which agrees with the theoretical value
-2y for the exponent describing the temperature depen-
dence of the ratio /"//". They also obtained a non-
monotonic dependence of A on the height L0 of the scat-
tering volume. With allowance for the triple scatter-
ing, for which I3 ~L\, the L0 dependence can be descri-
bed by the formula33

A (T, La) 4. a,t-v (4.11)

where the last terms in the numerator and denominator
represent 1*1/1™ and lH/I*Ji, respectively, Relation
(4. 11) implies, however, that detection of the triple-s
scattering contribution on the basis of the temperature
dependence of the depolarization factor A(T) requires
special processing of the experimental data, since in
addition to the growth of the depolarized component of
the scattering intensity as the critical point is ap-
proached there is also growth in the fraction of the
polarized component that is due to higher scattering
orders.

A correct technique for separating the double and
higher-multiple scattering from the total intensity of
scattered light in critical opalescence was devised and
applied by Adzhemyan et aZ.290 In essence, this tech-
nique amounts to: 1) theoretically calculating the dou-
ble-scattering intensity using the formulas of Ref. 29b,
which take into account the actual experimental geo-
metry (see Fig. 4), with the values of the critical expo-
nents y and v and parameters a0 and B =R1/(qre¥ ob-
tained from the data on the single-scattering intensity
I^r, B); 2) using the experimental data on lm(T, 6) for
each scattering angle to calculate the theoretical value
of I2(r, 6) and to discover thereby the intensity It of all
the scattering orders higher than two; 3) extrapolating
It(h) to h=0; 4) subtracting the contributions Iz(h = 0)
and /,(fc = 0) from Inr(h = Q) for all T to obtain the cor-
rected intensity I^r, 0,h = Q); 5) finding a new set of
values for y, v, aa, and B and reiterating the entire
procedure until self-consistent values of the exponents
and parameters are obtained. Table III illustrates how
y, v, a0, and B depend on the,number of iterations for
the system studied in Ref. 19c: a nitrobenzene-hexane
mixture near the critical state of stratification. Al-

583 Sov. Phys. Usp. 26(7), July 1983 E. L. Lakoza and A. V. Chalyi 583



TABLE III.

Number of iteration

1
2
3

Final value

QO, A

3.25
2.79
2.72

2.7±0.2

"

0.589
0.619
0.622

0.62±0.02

V

1.225
1.210
1.213

1.21 ±0.02

B, cm"1

0.321
0.287
0.294

0,29±0.02

lowance for multiple scattering leads to lower values3'
of y, «„, and B and to a higher value of v. Figures 10
and 11 show the results of applying the procedure of
Adzhemyan et al.zsc to separate /" and I'/ from /**B.
At fe0r,, = 2 the combined intensity of the double and
higher-multiple scattering is comparable to the single-
scattering intensity (Fig. 11). Adzhemyan et al.Z9 also
studied the angular dependence of /|*(6) and /"(6) (Fig.
12). In addition to the fact that Iz{9) is smoother than
1^9), as was noted in Refs. 19, 22, 23, and 83, it is
interesting that the relative value of the multiple scat-
tering increases with increasing scattering angle.

Sorensen et aL43a obtained estimates of the region
in which multiple-scattering effects are important from
an analysis of an experimental study of A in a methanol
cyclohexane mixture. These estimates, which are
similar to those obtained in Refs. 29c, 35b, and 46,
are as follows: for fe0rc<0. 6 one may use the single-
scattering approximation (at fe0r0 = 0. 6, /2//1 = 15%),
for 0. 6-S fe0rc s 0.8 one should take into account both
single and double scattering, and for karc >0. 8 one
should also take higher scattering orders into account.

d) Allowance for attenuation. The refractive index in
the critical region

The standard method of taking into account the atten-
uation of the intensity of a light beam traversing a dis-
tance I in a medium is based on the familiar Bouguer-

I-K/Z

h, mm

FIG. 10. Measured intensity/£„, calculated intensities of
double scattering /" and multiple scattering if for the nitro-
benzene-hexane system near the critical state of stratification,
plotted as functions of the distance h between the illuminated
and detected volumes29* (see also Fig. 4).

°The change in the parameter B , which is related to the scat-
tering coefficient R1( reflects the decrease in the absolute in-
tensity of the single scattering as the higher-multiple scat-
tering processes are systematically taken into account. This
same result follows directly from relations (4. 1), (4.4),
and (4.9).

FIG. 11. Relative content of double and multiple scattering in
the measured intensity !"„ for ft = 0 (Ref. 29a).

Lambert law

(4.12)

The reciprocal attenuation length fe' is usually, in the
absence of intrinsic absorption, identified with the ex-
tinction coefficient for single scattering, fex. Equation
(4.12) is based on the optical theorem,4-17-18 which re-
lates kt to the imaginary part of the refractive index n:

fcj = 4n Im nIK. (4.13)

The existence of an imaginary part of n and an esti-
mate of its value near the critical point were adduced in
Refs. 84 and 85 (a discussion of this question for the
noncritical region is given, for example, in Refs. 2-4,
18, and 47). Those studies84-85 obtained the corrections
to the Lorentz-Lorenz expression for n that result from
allowance for the two-particle and higher correlations.
These contributions are expressed analytically in terms
of integrals of the product of the electromagnetic field
propagators Tu and the partial statistical distribution
functions FM. These integrals are analogous to those
which arise in the microscopic approach to the de-
scription of multiple scattering.

A calculation incorporating the pair correlations,
which is formally equivalent to the single-scattering
approximation, yields the following expression for the
refractive index near the critical point:

„ = nLL + F (fcrc); (4.14)

here WLL is the Lorentz-Lorenz value of n, whose cri-
tical behavior is governed by the order parameter. For
example, for a liquid-vapor system on the coexistence
curve

(4.15)
where a~Q. 11, the critical exponent A'=0. 5, and the
upper and lower signs correspond to p>p<. and p<pc,
respectively. The correlation contribution F(ferc) has
the asymptotic behavior:

* 40° BO' 1ZO' t

FIG. 12. Angular dependence of various scattering orders in
the polarized component.29*
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for krc <C 1,

~2 for irc^>l,

T~ v for krc <C li

const for irc S> 1.

(4. 16a)

(4.16b)

It follows from (4.14)-(4.16) that the refractive index
is constant as the critical point is approached, whereas
the derivative Sn/dr has a "weak" singularity of the
type | r|"a. There should be an analogous singularity
(dn/8p)r ~| Ap|"a/s on the critical isotherm. Formula
(4.16b) determines Imw in accordance with the optical
theorem.

The inclusion of higher-order (beyond pair) corre-
lations leads to a refinement of the relation between
Imw and fej given by the optical theorem (4.13). Here
it becomes necessary to relate the experimental para-
meter in (4.12)—the reciprocal attenuation length k' —
to the multiple-scattering extinction coefficient K. For
this purpose we write the following balance equation,48

neglecting surface effects:

<T/O = a/ (I) + /„ VK,

where a is the cross section of the incident (transmit-
ted) beam. Taking (4.12) into account, we find

ft' = _r-'in(i-J^-). (4.17)

For k'l « 1 it by no means follows from (4.17) that k'
= fej. In fact, for k'l«l anda//7=l, we find k' =K.
It is only for KL0 « 1 that (4.8) gives K = k1 and the
reciprocal attenuation length in (4. 12) is the single-
scattering extinction coefficient: k'' = kt. In the general
case, however, when0 / /V# l , one can use (4.10) and
(4.17) to estimate the ratio kiti/ki from the experimen-
tal value of k' and the geometric factors /, a, V, and
L0. We note that the fact that the reciprocal attenuation
length k' depends not only on the thermodynamic vari-
ables but also on the geometric factors indicates that
higher-multiple scattering is present.

In Ref. 21-23 and 27, the characteristics of the double
scattering near the critical point were calculated without
taking attenuation into account. The analogous calcula-
tions of Refs. 24, 25, and 29 included the attenuation
factor in an approximation based on formula (4.12) with
fe'=fe1; as we have already mentioned, this approxima-
tion is equivalent to taking single scattering into ac-
count. It is clear that inclusion of the attenuation factor
in this manner corresponds to an increase in the scatter-
ing order of the scattered light. For example, allow-
ance for a factor exp(-fejJ) in the single-scattering cal-
culation requires simultaneous consideration of the un-
attenuated double scattering. Moreover, as was noted
in Refs. 28, 47, and 86, it is consistent in this case to
expand the exponential in series retaining the linear
term. In other words, to write im in the double-scat-
tering approximation one should use the formula /,„
= /! - f e jZ / j + I2(k' = k^, which is valid for angles Q *0.

5. EFFECT OF MULTIPLE SCATTERING ON THE
SPECTRUM OF CRITICAL OPALESCENCE

a) Single-scattering spectrum
The light-scattering spectrum contains extremely

comprehensive information on the equilibrium and ki-

netic properties of a material. 10'87-89 The main feature
of the dynamics of fluctuations in the critical region—
the growth of the relaxation time—governs the spectral
features of the critical opalescence, which have been
well studied theoretically and experimentally in the sin-
gle-scattering approximation (Refs. 5, 6, 14-16, 53,
and 90-94).

The hydrodynamic theory predicts that the widths Tc

and TB of the central (Rayleigh) and side (Brillouin)
components of the single-scattering triplet and also the
frequency shift AfiB depend on the thermal conductivity
A, the shear and bulk moduli 77 and £, the specific heats
cp and cv, and the speed of sound v:

(5.1)

In a binary mixture one has Tc = L(q)\'1(q)q2=D(q)qz,
where L is the Onsager coefficient, x is the suscepti-
bility, which is equal to (3p/3/>)T,(i-^1-(.2 or to (3x/3M)A
near a critical point of vaporization or stratification,
and 1) is the diffusion coefficient.

Correct interpretation of the experimental data on the
critical-opalescence spectrum requires that the back-
ground parts of the kinetic coefficients be taken into ac-
count. 16.53-92.94 in the region in which the background
parts A* and Lb exceed their singular parts \"(q) and
Ls(q), the increase in the relaxation time £c (the nar-
rowing of rc = /^1) is completely determined by the
strongly divergent equilibrium properties of cp and x:
r^ = A.6<?2(l +q2rl)/pct(q = 0) in a one-component fluid,
and r^ = I^x"1(? = 0)<?2(l +<fr\) in a binary mixture.
Extrapolation of the hydrodynamic formula for ro to
the critical point, where Xs ~ T~" » \* and Ls ~ r'" » L" ,
leads to not so strong a narrowing of the central line:
r c ~T" for p = pc and I^-Ap"'* for r = T0. This result
follows from simple considerations based on the Stokes-
Einstein relation: D=

The behavior of the Brillouin component in the critical
region is governed by singularities in the speed and
damping of sound waves. The background part i?(<j) —0)
~(c^)"1/2 is regular. For the singular part we have
us(o>-0)~T°'/2/I,(Ap/T8), where fa(x~Q) = const. The
fall-off of the speed of sound, which leads to a de-
crease in the frequency shift AfiB, should be seen only
at frequencies w «uf. The relaxation frequency
up= X/pctr\ decreases rapidly as the critical point is
approached; as a result, one should observe disper-
sion in the speed of sound v(w). In close proximity in
the critical point, where the contribution TB is small,
the growth of the acoustic damping and, accordingly,
the broadening of the Brillouin component are gover-
ned predominantly by the singular part of the bulk vis-
cosity: TB « T| ~fs~T'(3"*0"/c(Ap/T8), where 3v+a
= 2, f { ( x - ~ 0 ) = const. Here the dispersion v(<i))/v(0)
- 1 =('x)/2pt;2(0))Im^(aj) of the speed of sound and the
damping a(u>) = (jrw/pi)(0))Ref*(co) at the acoustic wave-
length should be universal functions of the reduced fre-
quency w* = w/2o>p (to within a factor which depends
weakly on T and p). These features of the behavior of
the Brillouin component were confirmed experimentally
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by technqiues based on light-beating spectroscopy.16-95

Ultrasound studies are also promising. 53

Of primary interest in the study of the critical-opal-
escence spectrum is the rapidly growing central
component. It can be seen from the Landau-Placzek re-
lation /c/2/B ~r~y*a((i-~ 0, Ap«T6) that as the tempera-
ture is brought one decade (for example) closer to the
critical point (in terms of the value of r), the ratio
/0/2/B grows by an order of magnitude (y - a* 1. 1).
Naturally, allowance for the spatial dispersion of the
fluctuations should lead to a large, but finite, value of
/c/24(tf*0) at the critical point. For studying the
width rc, which characterizes the relaxation frequency
of fluctuations of the order parameter, several ver-
sions of the dynamical theory of critical phenomena
have been developed: the mode-mode coupling96'97 and
decoupled-mode98'99 theories, modifications of these
theories,110'104 and the dynamic droplet model.105-106 Al-
lowance for coupling between modes (the most impor-
tant being the coupling of order-parameter fluctuations
and the viscous mode) leads to the following result for
rs

c:
*. (,,.„), (5.2)

where 17* is the "high-frequency" shear viscosity and
#„(#) = (3/4)[l +x2 + (*3-*'1)arctgx]. For qrs«l we
have limI_0K0(x) = x2, and the result for T\=Dqz agrees
with the hydrodynamic theory (see 5.1). In the nonhy-
drodynamic region (#rc»l) we have Iimx^-lf0(x) = (3ir/
8)x3, which yields a value F| = (feBT/167J*)<f which is
independent of r,. and, hence, of r and Ap.

In the modified mode-mode coupling theory100"102 the
following additional factors were taken into account:
The relation 7j*~1=.R(<?rc)fi~

1 between the "high-fre-
quency" T)* and macroscopic TJ shear viscosities; a cor-
rection C(qrc) = Tl(GFB, qra)/Tl(Goz, qrj describing the
deviation of a correlation function107 with Tj#0 from the
correlation function (2.8); a "vertex" correction
V(qrc) arising from a more exact (than in Ref. 96)
solution of the "Dyson" type equation for fluctuations
of the order parameter. The factor H(qrJ =R(qrt.)x.
C(qra)V(qrc) which arises in (5.2) grows smoothly from
a value Ha 1.1 at «rc = 0. 1 toH«1.3 at #rc = 10.

A similar, but not equivalent,96-97 approach to the dy-
namics of critical phenomena was taken by Ferrel and
Perl in developing the decoupled-mode theory.98-99

Jointly solving the system of two equations for rc and
ij by an iterative method with a number of simplifying
assumptions [factorization of the correlation functions
of the stress tensors in using the fluctuation-dissipa-
tion theorem for the viscosity, introduction of a "De-
bye" cutoff wave vector qD in evaluating the integrals
over q, neglect of the "vertex" correction V(qre)],
those authors obtained the following expression for r*:

(5.3)

° 16t|rc ° ' (5 -4 )

which gives a good description of the experimental data
and is used as a zeroth approximation for finding ij3.

A similar [to (5.4)] dispersion relation for rc is used
in the dynamic droplet model.105-106 according to which
we have

(5.5)

where y is a factor of order of unity characterizing the
non-Lorentzian (in contrast with the theory of Refs.
96-104) line shape of the central peak.

Figure 13 shows curves431 of the dimensionless
"scaling" width F°* = 61777 ri/kBTq3 for the mode-mode
coupling theory (curve 1), the decoupled-mode theory
(curve 2), and the dynamic droplet model (curve 3). In
the hydrodynamic region (qre«l) all the theories give
practically the same result: r** = l/(^r0). A difference
appears in the nonhydrodynamic region (gy0»l). Ex-
perimental studies of rc in individual fluids and liquid
mixtures in the region 1 s<j>yc« 10 agree better in some
cases (Xe, aniline-eyelohexane, 3-methylpentane-nitro-
ethane) with the mode-mode coupling theory and in oth-
er cases (water-isobutyric acid) with the decoupled-
mode theory. la<sz-M The disparity between these theo-
ries, however, does not exceed 10% for qrc» 1. The
predictions of the dynamic droplet model agree less
with the experimental measurements of r^(qrc). For
y = 1 the discrepancy between theory and experiment
can reach tens of percent.108 Nevertheless, by treating
y as an adjustable parameter, one can obtain satisfac-
tory agreement with experiment for this theory, too.

Let us discuss a number of important problems in
dynamics of critical phenomena which continue to at-
tract experimental and theoretical interest,

1) Dynamic critical exponent. In the dynamic scaling
theory14-15-91 the width rc is given by the formula
rc = gyr(<3rr<!). One of the main theoretical and experi-
mental problems is to establish the value of the dyna-
mic critical exponent z. In particular, it is important
to answer the question of whether z is related to the
exponents of the static theory of scaling or whether it
is a new critical exponent. Far from the critical
point, where r£»rj, one has 5 = 2 or 2 = 2-?j , depen-
ding on whether the Ornstein-Zernike approximation or
a scale-invariant form of the correlation function G2 is
used. Close to the critical point, if T* is neglected (in
practice, the condition r*«r| is not realized in ex-
periments), it follows from (5. 2)-(5. 5) that z = 3. Such
a value of z corresponds to the additional assumption

where ijel, = f}6 + (87f/15ir2)[ln(<7Dye) - 1/2(1 +q2r\)
+ T(gre)] is the "effective" shear viscosity, r(qrc) is a
tabulated function, and r\ is an adjustable parameter in
the approximation formula5-99

10 1 10 fo

FIG. 13. Dependence upon qrc of the "scaling" width T** of
the central line in the various theories of critical dynamics.
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that the viscosity rj* has a weak logarithmic divergence
(or no divergence at all) at the critical point. In reality
(see Refs. 15. 94 and 104) the shear viscosity has a
weak power-law singularity TJ s~r*i for x- = 0. 065. This
result is confirmed by experimental studies,94'109 ac-
cording to which x^ = 0. 0635 ±0. 0004. Therefore, we
have for the dynamic critical exponent z in fluids:
«tllao = 3 + xi, = 3.065 and 2MI>=3. 063 ±0.024 for the mix-
ture 3-methylpentane-nitroethane.109 The tempera-
ture dependence of ztlt from Ref. 94, showing a smooth
transition from z = 2 to 2 = 3.06, is shown in Fig. 14.
In systems belonging to another universality class, 2
can, of course, be different. Discussions of how I
depends on the dimensionality of the order parameter
and the spatial dimensionality, and also on whether
the total order parameter is a conserved or noncon-
served quantity, are found in Refs. 14 and 91.

2) Dynamic scaling function. The existing versions of
the dynamical theory of critical phenomena predict dif-
ferent scaling functions fr(qrj. According to the mode-
mode coupling theory, fr(x)~x3K0(x)H(x). In the de-
coupled-mode theory/r(x)~(TJ/T),,,)x~3K0(x)C(x) is gen-
erally not a universal function of x = qrc, since fj,tt de-
pends not only on the product qrc, but also simply on re.
In the dynamic droplet model/r(x)~(7J/i7'6)x"1(l +*2)1/2.
The exact structure of the dynamic scaling function
fr(QrJ *s needed in order to check the attractive hypo-
thesis of the universality of kinetic phenomena near
critical and second-order phase-transition points.

3) Renormalization group in critical dynamics. The
diffusion coefficient D determined experimentally from
the Rayleigh linewidth in binary mixtures satisfies the
relation D = limIJO rc(x)q~2 =RkBT/iirc, where the nu-
merical coefficient R is equal to l/6ir in the mode-mode
coupling and decoupled-mode theories. At the same
time, renormalization group calculations110 of the criti-
cal dynamics have shown that R*>1. 2/6it = l/5ir. Such a
value of R corresponds to the Stokes-Einstein relation
for a spherical droplet of radius rc moving in a medium
whose viscosity is the same as that of the field in the
droplet.1U An increase of 20% in the value of the con-
stant R can be attributed to the factor H(x) which
arises in formula (5. 2) in the nonhydrodynamic region.
In the hydrodynamic region, however, where H(x —• 0)
»1, behavior of this sort becomes conspicuous and re-
quires explanation. While a number of experiments
have detected values R * 1. 2/6?r, more recent studies
of rc have given results which agree with the mode-
mode coupling theory (see Ref. 94). In particular,
Burstyn et al.109 found R = (1.02 ±0.06)/6i7 on the basis
of their independent measurements of fj and Fc (with al-
lowance for the phonon contributions) and the data on rc

from measurements112 of the integrated light-scattering

2.8

intensity in the mixture 3-methylpentane -nitroethane.

4) Crossover function for the shear viscosity. In or-
der to find 2, /r(x), and R, one faces the problem of
determining the crossover function for the shear vis-
cosity, which takes into account the relationship of the
background and critical parts. Oxtoby and Gelbart103

solved this problem in the framework of the mode-mode
coupling theory, but with F* included in the calcula-
tion. This term, which was not included in Refs. 96-
102, should be taken into account, since the main con-
tribution to the integral for r j s is from large wave vec-
tors q, for which r*~^4, while r*~</3. A refined
crossover function for i) was recently determined104

using the methods of the decoupled-mode theory, i.e.,
with the introduction of a cutoff wave vector qD and
simultaneous allowance for r* in accordance with Ref.
103. The results of Ref. 104 are in good quantitative
agreement with the experimental data for the viscosity
of nitrogen113 and water vapor.114

5) Distorting influence. Factors causing distortion
from ideal critical behavior (see part 2c) can also have
a substantial effect on the critical-opalescence spec-
trum. In particular, the dependence Tc on the vertical
coordinate 2 in a gravitational field was studied in Refs.
92, 108, 115, and 116. In Ref. 108 the function Fc(2)
was measured in CO2 at T- TC = 10"S°C (Fig. 15). The
results are in best agreement with the decoupled-mode
theory (the lower curve, with an rms error of 2. 73%).
The agreement with the mode-mode coupling theory is
not as good (7.95% error). The origin of the "beak" in
the calculations of Fc(2) remains unclear. The dis-
agreement with the dynamic droplet model is large (up-
per curve, with 33. 95% error at y = l); for y = 0.8,
however, the error is reduced to 2.:

b) Calculations of the double scattering-spectrum

As in the static case, the properties of the higher-
order space-time correlation functions for fluctuations
of the order parameter, which determine the features
of the multiple-scattering spectra, have been little
studied in the critical region. Most of the calculations
of the higher-multiple-scattering spectra to date40"43

have been done in the approximation that the successive
reradiation processes are incoherent, i.e., have been
done using asymptotic formulas which express the high-
er-order space-time correlation functions of even or-
ders in terms of the pair correlation function

0 WO 2.00 300 T-7CI mk

FIG. 14. Temperature dependence of the effective dynamical
critical exponent.94

-ff./ -O.Q5 0

FIG. 15. Height dependence of the width rcte) of the central
line in a gravitational field.1M
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G2(r1; f,; r2, t2). Most exact results, valid in the non-
hydrodynamic region, can evidently be obtained with the
aid of multiple-index fluctuation-dissipation theorems
similar to that which establishes the connection between
the three-index susceptibility and the ternary space -time
correlation function. 117.118 We note that the one-and-
one-half-scattering spectrum, which is related to the
space-time correlation function G3 and has the form of
a triplet,24-41-116-120 gives a negligibly small contribution
to the dynamic scattering.

In Ref . 41 the double-scattering spectrum in critical
opalescence was studied in the hydrodynamic approxi-
mation, using the dynamic structure factor G2(k, k', u>)
obtained in Ref. 121 from hydrodynamic equations in-
corporating the inhomogeneity of the medium in an ex-
ternal field and all the necessary spatio-temporal dis-
persion effects in the critical region [the spatial dis-
persion122-123 of (3£/3p)T and the spatio-temporal dis-
persion of the transport kernels124]. The temperature
and field anomalies of the coefficients in the hydrody-
namic equations were assigned using the results of the
dynamical theory of critical phenomena91"99 and the
theory of the gravitational effect. 60 If we neglect ef-
fects (temporal dispersion) in the transport kernels,
the spatio-temporal pair correlation function has a
three-pole structure with the roots

0)0= —il rn <p(g), co<2.3> = ±Re/(?) — (Im/(g) , (5 .6 )

(5.7a)

(5.7b)
Im / = « 2, t)

(5. 7c)

We have used the standard notation10 in (5. 7). To al-
low for spatial dispersion, terms of the form Biq

z are
added to quantities which vanish at the critical point .

In Ref. 41, on the basis of the calculated spectral
characteristics of the double scattering in the hydrody-
namic approximation, it was shown that in comparison
with rcl, TBl, and respectively, TB2, and

have the same temperature dependence but a
smoother angular dependence. For example, r,̂  and
TB2 go as ~q, and in the limit of zero-angle scattering
go to zero more slowly than rcl and rB1, which go as
~q2. The relation41

(5.8)

implies that the spectral components suffer an addition-
al broadening in multiple-scattering processes. How-
ever, this broadening is insignificant: for example,
r^ = V~2 rcl at 9 = 11/2. A relation analogous to (5. 7)
was obtained in Ref. 125 for point particles undergoing
Brownian motion: rc2(e = Tr) = rcl(e = ir) = 2rcl(e=ir/2).
This result has also been used43a to obtain the estimate
ron = nrcl(ir/2) for the broadening of the central com-
ponent in w-fold multiple light-scattering in such a sys-
tem and to make qualitative arguments concerning the
effect of multiple scattering on re in real media near
the critical point.

On the basis of the dynamic scaling hypothesis,
Kuz'min40 compared the "pure-scattering" component
of the double scattering with the contribution due to
"interference" effects. In particular, if one takes into
account all diagrams in which the space-time correla-
tion function G4 is represented as a product of two
space-time correlation functions G2, the estimate ob-
tained for the width rc2 of the central component is of
the same order of magnitude as rcl: rc2 ~q* for qrK»l.

Beysens and Zalczer42 evaluated the spectral intensity
/2(o>) for double scattering with a central component
rc(«(, rc) (i = 1, 2) given by formula (5. 2) for each inde-
pendent (by assumption) scattering event. If the single-
scattering spectrum is assumed to be Lorentzian, the
contribution to the spectral intensity from two succes-
sive scattering events with wave-vector transfers qj
and q2 also has a Lorentzian shape:

L (g,, ?2, co, rc)= , rc) (5.9)

The total spectral intensity of the double scattering is
obtained by integrating (5.9) over the illuminated (VJ
and observed (V2) scattering volumes:

/2(0), rc)= fdFz ^dVlS(qi, rc) S (?2, rc)/(q,, q2)<?~"i'£(<?„ ?2, <o, rc),
V2 Vj

(5.10)
where S(<jj,rc) = r2/(l +r2

eq
2

i) is the static structure
factor, /(qt, q2) is a factor which characterizes the
polarization of the incident and scattered light and is
related to the dipole-scattering matrix, and h± is the
extinction coefficient for single scattering in the Orn-
stein-Zernike approximation. The integration in (5.10)
has been carried out for rectangular and cylindrical
geometries of the scattering volume. One of the main
results of the numerical calculation of I2(w, rc) for
nitrobenzene-»-hexane mixtures42 is that the spectrum
of the polarized double scattering can be approximated
to within 5% in a wide temperature interval 10"5 « T
« 10'2 by the formula

7, («, rc) = I, (rc) L (Wr, (rc)); (5. H)

here /2(rc) is the integrated intensity and the function
L[w/ro(rc)] represents the sum of the two Lorentzians
with respective half-widths of (7/3)ro and (2/3)ro, in-
dicating that the spectrum is non-Lorentzian.

Yet another confirmation of the non-Lorentzian char-
acter of the double-scattering spectrum was obtained
by Ferrel and Bhattacharjee.44 For the cylindrical
geometry studied in Ref. 28, those authors, without
using factorization of the four-point space-time corre-
lation function G4, but assuming that the total double
scattering at the critical point is small, showed that

In / (t) = In /„ - (1 + eCJIV + *C*F (rci«) (IV)2;

here In/0 = InZt+/.,//! (I2 is evaluated in Ref. 28),
s =4irr0B, where r0 is the radius of the cylinder and
B =a0(fe0rc)"

2, and the Cn are related to (Ar/rcl)
n, where

Ar=ro2-ro2. Thus, the double-scattering effects
were manifested in a change of the slope (the second
term) and curvature (the third term) of the function
ln/(f). The magnitude of these changes is determined
by the specific values of E, Ct, C2, and F. At the
critical point itself, for the case of incident light pol-
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arized along the height of the cylinder, we have
C1 = Ct = -0.07y*'1(lny*-2.2) and C2 = C£ = 1. IZy*'1

x (Iny* + 0.13), where y* = 2r0/L0 and L0 is the height
of the cylinder. The function F(Tclt) differs only
slightly from unity: F - 11« 0. 25. The technique
proposed in Ref. 44 for taking into account the correc-
tion for double scattering in the critical-opalescence
spectrum was recently used in Ref. 94.

c) Experimental studies of the multiple-scattering
spectra

Let us first mention the studies of Velochine and
Berge126 and Theil et al. ,127 who investigated the in-
fluence of multiple scattering on the critical-opale-
scence spectrum but failed to detect any. One of the
reasons for this is that they had taken measures pre-
cisely to avoid an appreciable contribution from multi-
ple scattering. In Ref. 127 these measures were to
limit the approach to the critical temperature, thereby
reducing the scattering power of the material (to be
sure, at the expense of information needed for more
exact determination of a0, r/, and TJ), and to decrease
the path length of the beam in the medium and the aper-
ture diameter of the detector. The role of the last
factor was studied experimentally in Ref. 45. Mea-
surements in CO2 at AT = 2 • 10"3 K showed that increas-
ing the diameter of the receiving aperture from 0.2 to
1 mm caused the multiple-scattering percentage of the
total scattered intensity to increase from 20% to 62%.
Another, qualitative result of Ref. 45, which confirms
the calculation of Ref. 41, is that the width of the cen-
tral component of the multiple-scattering spectrum in
CO2 turns out to be less sensitive than rcl(0) to the
scattering angle.

Studies devoted to investigating the role of multiple
scattering in experimental studies of the dynamics of
fluctuations near the critical point were undertaken by
Beysens and Zalczer42 and Sorensen et al.43i

The method of light-beating spectroscopy was used42

to study the critical behavior of a nitrobenzene-n-hex-
ane mixture in a rectangular scattering volume
(2R,L,z) with ZR=L = 2 cm and z=0.125 cm«fl ,L.
The results of the experiment were compared with the
theoretical calculations for the following values of the
parameters which appear in the integrand in (5.10):
X = 632.8nm, a0 = 0.23nm, v = 0. 63, y = 1. 22,
TC = 293.06K, ij* = 0.67 sec-Pa, and (3^/3c)(3c/3pi)()

= 2. 36 • 10"3 cm3/J; this last quantity is related to the
amplitude of the susceptibility of the mixture. The
main results of Ref. 42 are: 1) the Rayleigh component
has a non-Lorentzian line shape, in accordance with
(5.11); 2) the experimental data are in good agreement
with the calculated results for the intensity /2 of the
double scattering down to TS 10"4 and for the effective
width ro of the double scattering throughout the entire
temperature interval (Fig. 16). An unexpected finding
is that the temperature dependence ro(r) is stronger
than rcl(r) and that the value of ro is lower than that of
rcl in the region r<10"4. There is no reasonable theo-
retical explanation for these facts. An attractive fea-
ture of the double-scattering spectra obtained for dif-

to2

ttr"

FIG. 16. Temperature dependence of the effective width TO of
the central line of the double scattering in a nitrobenzene-?! -
hexane mixture.42

ferent r is that they can be reduced to a common form
with the aid of a single formula (5.11).

The results of Ref. 43a made it possible to explain the
difficulty of experimentally detecting the influence of
multiple scattering on the width rc. It was shown in
that paper that in the region fe0r0 » 1 the ratio of the de-
cay times t2/t1 = rcl/Ta2 of the correlation of the scat-
tered fields for double and single scattering grows on
approach to the critical point and tends toward a value
close to unity. Figure 17 shows the ratios tjt± depend
on fe0r0 for 6 = 90° in a methanol-cyclohexane mixture.
The time t2 was found from analysis of the time depen-
dence of the correlation functions (E*(t)E2(0)} of the
polarized and depolarized fields. With the aid of a
cumulant analysis of the spectra, Koppel128 established
that the double-scattering spectra are almost exponen-
tial in the t representation (Lorentzian in the u> repre-
sentation). The deviation from exponentiality is char-
acterized by the small ratio of the first two cumulants
K2/K2«0.07. The solid curves in Fig. 17 represent
the ratios t2/t1 calculated with only the first cumulant
taken into account. The dashed curve corresponds to
the estimate of tz as the time by which the correlation
function (E*(t)E2(0)) has decreased by a factor of e
from its value at t = 0. The growth of the ratio tz/tt is
particularly pronounced for the substantially more in-
tense polarized component of the double scattering.
The double scattering displays a greater broadening
for smaller values of fe0rc. For fe0rcs 9 the growth of
the ratio T^/T^ is comparatively small and does not
exceed 4% at 6 = IT/2 and 40% at 6 = IT/6. It is believed
that this indicates that for k0rc»1 the width rc in mul-
tiple scattering will be not much larger than rc2 (con-
crete estimates were not given in Ref. 43a).

Sorensen et al.*3* also studied the width of the de-
polarized component, which consists predominantly of
double and multiple scattering for kar^ 1 (Fig. 18).
The conversion to the scaling width T*2 = Girri "Ta/

•tOO 10 1.0

FIG. 17. Dependence upon fe0rc of the ratio of the correlation
decay times for doubly and singly scattered fields in the case
of a methanol-cyclohexane mixture.43*
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FIG. 18. Dependence upon fe0rc of the "scaling" width r£2 of
the central line of the depolarized double scattering.43a

feBTfe3 for double scattering is analogous to the intro-
duction of r*j for the single-scattering spectrum, the
only difference being that one takes for the shear vis-
cosity fj the background value rj * (in accordance with
the dynamic droplet model used in that paper). The
experimental data on the width of the depolarized
scattering for k0rc S 1 lies somewhat above the solid
curve, which corresponds to the theoretical estimates
of the same authors.431" The deviation, which is due to
multiple scattering effects, does not exceed 20%. In-
terestingly, for the smaller scattering angle 6 = 30° at
which measurements of r*,A were made in Ref. 43a,
the contribution from multiple scattering is lower. This
result agrees with the conclusions of Refs. 29c and 41b
concerning the angular dependence of the multiple-
scattering effects.

The experimental measurements43* of the width T* of
all the scattered light (not just the depolarized compo-
nent) are in good agreement with the values of T* calcu-
lated in the dynamic droplet model in the single-scatter-
ing approximation for the following values of the vari-
able parameters: i/ = 0. 652 (this value of v is higher
than the most reliable value53 v = 0.63), a0 = 0.241 nm,
and y = 1. 037. The problem of determining the double-
scattering and multiple-scattering contributions to the
width T*(qrc) is complicated by the difficulty of allowing
for effects due to the nonexponential character of the
spectrum in the close proximity of the critical point
(T- rc<0.008°C for the investigated methanol-cyclo-
hexane mixture). The result ro2 < rol for karc < 1 ob-
tained in Ref. 42 was not confirmed by the studies of
Ref. 43a.

In the hydrodynamic region (fe0rc<l), as can be seen
from Fig. 17, the ratio tz/t^ is given as =0. 6 by the
cumulant estimates and as =0. 7 by estimates based on
a strictly exponential spectrum. For comparison we
note that in accordance with (5.8) the ratio F^/F^ is
«0. 7 at 6 = 90° and decreases with decreasing 6, in
qualitative agreement with experiment.43a The devia-
tion of the ratio t2/t1 = Tel/Ta from unity would seem to
give reason to expect a large influence of double and
multiple scattering on the critical-opalescence spectrum
in the hydrodynamic region, but the absolute integrated
intensity of higher-multiple scattering in this region is
small.

So, despite the appreciable and growing contribution
to the integrated intensity of the scattered light from
higher-multiple scattering on approach to the critical
point, the first exponential studies have shown that these

effects play a relatively minor role in the measure-
ment of Fc. At the same time, however, multiple scat-
tering effects are the cause of the non-Lorentzian char-
acter of the spectral lines that is observed in experi-
ment. These fundamental conclusions require new
verification. Most importantly, a study is needed of
the possible influence of multiple scattering on the
value of the dynamic critical exponent 2. if these ef-
fects do turn out to be important, one would expect a
decrease in z as the critical point is approached
(zum — 0), since the wave-vector dependence of all the
characteristics of the scattered light becomes pro-
gressively less pronounced with increasing scattering
order.

CONCLUSION

The phenomenon of critical opalescence, which has
been known for over 100 years, is more and more
widely used to study the anomalies of physical pro-
perties close to the critical point. This trend is pro-
moted by the discovery of the basic behavior of higher-
multiple scattering, by reliable calculations of double
scattering with allowance for the actual experimental
conditions, and by the study of the effect of multiple
scattering on the critical exponents. What we have just
said is even more true of the integrated intensity and
the depolarization of the scattered light. To clarify
completely the role of double and multiple scattering
in the critical-opalescence spectrum additional preci-
sion experiments and the corresponding calculations
will be required. The most important such study will
be to investigate the change due to multiple-scattering
effects in the width Fc of the central component and,
hence, in the dynamic critical exponent z. The growth
of the multiple-scattering contribution in critical opal-
escence should evidently lead to a decrease in the effec-
tive value of z, since the dependence of Fc on q should
become less pronounced (Lambertian) as the multipli-
city of the scattering increases.

Finally, there is the fundamental question of how
close to the critical point can one regard the single
scattering contribution as primary, adequately de-
scribing the experimental data, and the double and
multiple scattering as corrections. The analysis (see
Sect. 4) of the convergence of the iterative series in
the scattering orders for the extinction coefficient in
the "ladder" approximation shows that this traditional
situation breaks down at qrc s 1 and for the parameter
value s =0.1. For smaller values of s, which are at-
tained, for example, by decreasing the linear dimen-
sion L0 of the scattering volume or by decreasing the
factor (9E/3p)ij. (which in the case of a mixture is re-
lated to the difference between the refractive indices
of the components), this conclusion remains valid, but
only for large values of qrc (which, in a number of
cases, are not yet experimentally accessible). Be-
cause the original Born (Rayleigh) concept of scatter-
ing order loses meaning, in describing critical opal-
escence one must systematically apply the technique of
resumming the initial series for the fields and inten-
sity of the scattered light and also use functional meth-
ods of solving the electrodynamic problem when the

590 Sov. Phys. Usp. 26(7), July 1983 E. L. Lakoza and A. V. Chalyi 590



order-parameter fluctuations have non-Gaussian statis-
tics.

We wish to thank I. L. Fabelinskii and the participant
of the School on Molecular Light-Scattering (Odessa,
1981) for their interest in the questions which we have
discussed and for helpful advice which greatly facili-
tated the writing of this review.
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