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A review is given of the properties of highly excited atoms placed in an electromagnetic field. The
probabilities of bound-bound and bound-free transitions between quasiclassical atomic states, and also
approximate selection rules for such transitions, are examined. The properties of the dynamic polarizability of
highly excited states of atoms are investigated. Quantum-mechanical ionization mechanisms (multiphoton
and tunneling) are discussed for highly excited states. Much space is devoted to the stochastic dynamics of
classical atomic electrons in a varying monochromatic electromagnetic field. The threshold electric field for
the stochastic motion of an electron and the ionization of an atom is given as a function of the field frequency,
its polarization, and the principal quantum number of the atomic state under consideration. The influence of
orbital angular momentum of the state from which ionization takes place on the stochastization process is
discussed. Classical diffusion ionization of a highly excited atom in an electromagnetic field is considered
within the framework of classical mechanics and the quasiclassical quantum-mechanical approximation. The
validity of classical mechanics in relation to the properties of highly excited atoms in an electromagnetic field
is examined. The realization of quantum and quasiclassical ionization of highly excited atoms is considered.
The final part of the review analyzes experimental data on the behavior of highly excited atoms in a
radiofrequency field. Comparison of experimental data with the theory given in this review has demonstrated
good agreement between them.
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1. INTRODUCTION

In this review, we shall be concerned with highly ex-
cited atoms, the basic properties of which are suffi-
ciently well known.1 Some of these properties will,
nevertheless, be recalled so far as they will be needed
in our discussion. By definition, a highly excited state
is a state whose principal quantum number is n» 1.
The highly excited states of complex atoms are hydro-
gen-like, i.e., their wave functions are identical with
the wave functions of the hydrogen atom. The energies
of the highly excited states have the form

£„ = - l/2n"; (1)

where, here and henceforth, we use the atomic system
of units in which e = K- m - 1. According to the corre-
spondence principle, the classical Kepler frequency n
of an electron in an atom is given by n = En- Entl, and,
if we combine this with (1), we obtain

Q = «-'. (2)

It is well known that, in general, the laws of quantum
mechanics have to be used in the description of atoms.
However, whenn»l , quantum-mechanical calculations
can be performed within the framework of the quasi-
classical approximation, and many of the results ob-
tained in this way turn out to be identical with the re-
sults obtained in classical mechanics.

In the ensuing review, we shall consider nonlinear
phenomena that arise during the interaction between a
highly excited atom and a varying electromagnetic field.
The interaction between the electromagnetic field and
an atom in the ground state, or in one of the low-lying
excited quantum states, has been investigated in suffi-
cient detail. In particular, dynamic polarizability, and
multiphoton and tunneling ionization of atoms, are now
well explored.2 3 In this review, we shall discuss non-
linear effects for highly excited atoms.
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As a rule, we shall consider electromagnetic fields
of frequency of the order of the Kepler frequency (2).
For highly excited states, this corresponds to the mi-
crowave frequency range. By varying the frequency u>,
the electric field &?, and the principal quantum number
n of the state under consideration, it is possible to en-
sure that the adiabatic parameter Y- ">/«#" will assume
very different values. It is well known4 that the magni-
tude of this parameter determines whether a given
quantum-mechanical ionizatkm process is of the multi-
photon or tunneling type. Anticipating a little, we note
that the quasiclassical character of highly excited
states leads to qualitatively new phenomena that have
no analog in ground-state atoms. The most important
of these phenomena is the onset of stochasticity in the
motion of atomic electrons, which leads to diffusion
ionization of atoms. Considerable space will be given
to this process in the present review. We note that the
motion of a charged particle on a circular orbit in an
external resonance field has long attracted the attention
of researchers. It is precisely as a result of the solu-
tion of this problem that Veksler and MacMillan dis-
covered in the 1940's the well-known phenomenon of
phase stability, which is the basis for the operation of
all modern cyclic accelerators. Later work, concerned
with the motion of particles in magnetic traps, led to
the investigation of the phenomenon of dynamic sto-
chasticity of classical systems. In the present review,
this phenomenon will be discussed by considering the
example of an electron in a highly excited (Rydberg)
atom.

2. PROBABILITIES AND APPROXIMATE SELECTION
RULES FOR BOUND-BOUND AND BOUND-FREE
TRANSITIONS BETWEEN QUASICLASSICAL STATES

It is well known2 that the probabilities of multiphoton
transitions are determined by composite matrix ele-
ments that can be written as products of the matrix ele-
ments for single-photon transitions. The latter are, in
turn, expressed in terms of the radial dipole matrix
elements

(r)r*dr; (3)

where /?„,(»") are the radial wave functions and « and I
are the principal and orbital quantum numbers. For the
hydrogen atom, Gordon has obtained an exact expres-
sion for the integral given by (3) in terms of the hyper-
geometric functions (see, for example, Ref. 5).

However, Gordon's formula is difficult to use for
transitions between states with high values of n, both in
qualitative estimates and in direct calculations, since
all three parameters of the hypergeometric function
turn out, in general, to be large.

Various approximate simple expressions for the ma-
trix element (3) can be obtained if n,n'»l. A resume'
of such expressions is givai in Ref. 6. The probabili-
ties of radiative transitions between states with n,n'
»1 and An= n-n'«n,n', are given in Ref. 6 and in
Ref. 1. Heisenberg's correspondence principle then
shows that the matrix element (3) reduces to the Fouri-

er component of the time-dependent classical coordin-
ate of Keplerian motion.

The quasiclassical values of the matrix elements (3)
and of the probabilities of radiative transitions are giv-
en in Ref. 3 for tt,n'» 1 and &n~n,n'. For low orbital
angular momenta l«n, the matrix elements (3) are
then quasiclassically high, i.e., of the order of n1/s.
This is a consequence of the strong overlap of the wave
functions at short distances r. Moreover, Ref. 6 also
gives the matrix elements and the probabilities of radi-
ative transitions for high l~n. They turn out to be ex-
ponentially small. Finally, definite simplifications are
achieved in the exact Gordon formulas when one of the
quantum numbers is n» 1 and the other n '~l . The hy-
pergeometric functions are then replaced by confluent
hypergeometric functions that have simpler properties.
Further details can be found in Ref. 6.

Comparison of the quasiclassical values of the differ-
ent matrix elements leads to the conclusion that, for
transitions with / ~ n » l , the change in the principal
quantum number n is accompanied by a change in the
orbital quantum number /, which has an overwhelming
probability of varying in the same direction as n. This
rule was found empirically by Bethe.7 Quasiclassical
estimates of the matrix elements show that this rule is
violated for low orbital quantum numbers and,
especially, for l«n2/3, for which the results obtained
in Ref. 6 show that the quasiclassical dipole matrix ele-
ment is independent of I, i.e., is identical for transi-
tions with l'=l±l. The selection rule just mentioned is
generalized in Ref. 8 as follows: a change in I is ac-
companied by a change in « in preferentially the same
direction and by the same amount.

From the matrix elements for bound-bound transi-
tions, we can readily obtain the matrix elements for
bound-free transitions by replacing the corresponding
principal quantum number n with i/p, where p is the
momentum of the electron in the continuous spectrum.
In this way, we obtain the photoionization cross sec-
tions6 for highly excited states.

Analytic continuation in the other principal quantum
number n' can be used to obtain the quasiclassical ma-
trix elements describing transitions between quasi-
classical states in the continuous spectrum, i.e.,
states with p,p'« 1. These matrix elements, and the
corresponding bremsstrahlung absorption and emission
cross sections for low-energy electrons scattered by a
Coulomb center, are given in Ref. 6.

It is important to note that, if we assume that all
states with particular magnetic quantum numbers are
occupied with equal probability, the average of the re-
sulting probabilities of single-photon radiative transi-
tions over I leads to the well-known Kramers formulas.
We emphasize that all these average formulas (for
bound-bound, bound-free, and free-free transitions)
contain as their mala component the contribution due to
transitions between states with low orbital quantum
numbers l«n.

Thus, the numerous quasiclassical formulas given in
Ref. 6 can be used to describe radiative transitions
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when one or both states involved in the transition lie
near the boundary between the discrete and continuous
spectra.

For complex atoms, we must replace n in all these
formulas with n*= n- 5p where 6, is the quantum de-
fect of the state n,l. This replacement and the corre-
sponding numerical calculations of the radial dipole
matrix elements (3) are given in Ref. 9 for &n«n,n'.
The replacement of n with n* is very important in this
case because 6, is of the order of unity for low I , and
Aw undergoes a substantial change when n is replaced
with n*. However, when we are dealing with matrix
elements for which An ~n,n', the replacement of n with
n* has practically no effect on Aw, and we may conclude
that the quantum defect has no effect on matrix elements
with &w~rc,rc ' . Next, when l~n, the quantum effect is,
in general, practically absent, and replacement of n
with n* is unnecessary for both transitions with
Aw« n,n' and those with An-«,«'.

The probabilities of quadrupole transitions between
highly-excited states of a hydrogen-like atom were
calculated in Ref. 10.

To conclude this section, we note that a generaliza-
tion of the Heisenberg correspondence principle to the
case where A w ~ « , w ' is given in Ref. 6.

3. PERTURBATION OF HIGHLY EXCITED ATOMIC
STATES

The perturbation of ground and low-lying atomic
states by the field of a monochromatic wave $ cosotf has
been described in detail in the literature.2-3 Here, we
shall begin by turning to the perturbation of highly ex-
cited states of the hydrogen atom, characterized by
quantum numbers nlm (n» 1). To be specific, we shall
suppose that the field acting on the atom is linearly
polarized along the z axis.

For the moment, we shall postpone the discussion of
the linear Stark shift in a varying field, and will turn to
the quadratic Stark effect, i.e., to the determination of
the dynamic polarizability. This quantity is the propor-
tionality coefficient in the expression for the atomic
level shift 5Enlm, produced when a monochromatic elec-
tromagnetic field is turned on, as a function of the
square of the field amplitude:

6EaIm=—Lanlm&.

This expression is valid when the frequency u> of the
external field is not in resonance with the atomic
transition frequencies.

It is well known2-3 that, in general, the dynamic po-
larizability is given by

(4)„...,..

whsre unri, is the frequency of the atomic transition be-
tween states with principal quantum numbers n and n',
i.e.,

«„„• = l/(2n'2) —1/(2«2), (5)

and znj^ is the dipole matrix element of the operator z
between Coulomb wave functions.

For the ground and low-lying atomic states, the co-
efficient ot can be calculated only by numerical methods
on a computer, since the matrix elements have a com-
plicated form. In the case of highly excited states,
(n» I ) , an analytic expression11 can be obtained for (4)
in a relatively simple manner. The dependence on the
magnetic quantum number m in (4) can readily be ex-
tracted with the aid of Eq. (29.7) of Ref. 7. The sum-
mation over I' can be performed explicitly, since it in-
volves only two terms with /' = l± 1. Thus, to solve the
problem, we must evaluate the sum in (4) over the
priacipal quantum numbers n' of the virtual states (in-
cluding integration over the continuous spectrum).
This problem can be divided into two, namely, (1)
summation over values of n' that are very different
from n, i.e., An~n, and (2) summation over n' close
to n, i.e., Aw««,w'.

Let us begin by considering the former case. Sub-
stituting the corresponding quasiclassical matrix ele-
ments (see Sec. 2), and replacing the quasiclassical
summation over n' with integration in accordance with
the rule

v r< - - - )= J <W

we readily verify that the corresponding contribution to
the polarizability (4) is equal to zero because the inte-
grand is odd in the variable u>B>B. This is explained by
the quasiclassical nature of the spectrum of highly ex-
cited states and the resulting symmetry of the summa-
tion over «' >n and n' <n. We note that, for the ground
and low-lying excited states, the above statement is
definitely incorrect because the summation over n' is
then essentially asymmetric in n.

Thus, the sum in (4) is determined only by values of
n' that are close to n, in which case, we cannot replace
the sum with an integral because the former then con-
tains a relatively small number of significant terms.
Since, in the sum given by (4), states with n' >n com-
pensate to a large extent the states with n'<n, we have
to use more accurate expressions for the radial dipole
matrix elements (3) than those obtained on the basis of
the correspondence principle (see Sec. 2), and include
terms that follow from the lowest-order approximation
in the quasiclassical parameter 1/n. Moreover, the ex-
pression given by (5) must include not only the linear
but also the quadratic terms of the expansion in the dif-
ference Aw. By taking all these points into considera-
tion, it is possible11 to obtain an analytic expression for
a

nim- This expression is too complicated to be repro-
duced here, and we shall therefore confine our attention
to the relatively simple case for which /= m = 0:

«„<,,> = -f-n6S
7k1—(on3)2

(6)

where Jk(x) is a Bessel function.

It is clear from (6) that

(7)

provided only we are not in a region of resonance with
the discrete atomic states in the neighborhood of the
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FIG. 1. Dynamic polarizability of a highly excited state Mm)
as a function of the frequency w of the electromagnetic field.
The quantity <*nlm/fe6 Is plotted against am3 = ci)/B. The vertical
asymptotes correspond to resonances with the nearest highly
excited states.

nth state. These resonances are given by the obvious
conditions

<fl = ̂ ' (8)

where k is an integer. It is clear from (6) that the
quantity anlni becomes infinite in the neighborhood of
each resonance, but does not change sign and remains
positive. It is thus clear that the resonance behavior of
the dynamic polarizability of highly excited states (Fig.
1) is qualitatively different from the resonance behavior
of otnlm for the ground and low-lying excited states for
which it changes sign as it passes through resonance
(see Figs. 8.1 and 8.2 in Ref. 2). This difference is ex-
plained by the fact that, in the case considered here,
we have the superposition of resonances with higher-
and lower-lying states as compared with n, whereas,
for n ~ 1, we have a resonance with one particular dis-
crete atomic level corresponding to the given frequency.

This conclusion is, of course, valid provided the an-
harmonism of the Rydberg states is ignored.

Let us now consider the behavior of the dynamic po-
larizability in intervals between resonances. It is well
known (see, for example, Fig. 8.1 of Ref. 2) that, for
the ground states of atoms (in the present case, n= 1),
the dynamic polarizability in a linearly polarized field
will vanish once in each interval between resonances.
For low-lying excited states (w~l ) , the relationship is
different because, as the frequency increases, there
may be resonances both with higher-lying and lower-
lying states. In particular, in the intervals between
resonances, the dynamic polarizability may not vanish
or may vanish twice (but with a change in sign across
each resonance). For the highly excited states consid-
ered here («» 1), the dynamic polarizability is large
and positive near the resonance frequencies but, in the
intervals between resonances, it can assume negative
values because of the large negative term in (6) which
corresponds to & = 1 for frequencies a» iT/n3. Under
these conditions, it vanishes twice in the interval be-
tween resonances.

It is now important to note that the magnitude of the
dynamic polarizability (6) is lower by a factor ~n than

each of the terms in the sum in (4) that is of the order
of n7 for frequencies u)~«~3. This fact is a consequence
of the mutual compensation of terms with n' >n and
n'<n, mentioned above.

In the static case, u>«3«l, it follows from (6) that
the dynamic polarizability is positive. This is in agree-
ment with the well-known result that the hydrogen ener-
gy levels always shift downward as a consequence of the
quadratic Stark effect in a constant external field. Ac-
tually, the transition from the spherical to the parabolic
basis in terms of which the static shifts of the atomic
states of hydrogen are expressed can be achieved by
multiplying by the squares of the corresponding
Clebsch-Gordan coefficients.

A special case arises in the asymptotic limit of high
frequencies for which o>n3» 1. It is then clear from (6)
that the dynamic polarizability becomes very low and
negative. Using the summation theorem for Bessel
functions, we obtain

1 " ' O)

The quantity given by (9) determines the vibrational en-
ergy of a free electron in an external field of frequency
a). The numerical factor in (9) is connected with the ex-
traction of the spherically symmetric state with 1= m
= 0 from the plane wave characterizing the wave func-
tion of the electron in this particular limit. This ex-
traction corresponds to averaging over the solid angle:

All the above conclusions can be transferred without
any fundamental change to the case of arbitrary I and
m. The universal dependence on m appears in the dy-
namic polarizability in the limit l» 1:

(10)•('-*)•
The qualitative form of the dynamic polarizability as

a function of ww3 is shown in Fig. 1. It illustrates the
various properties of the dynamic polarizability of high-
ly excited states that were discussed above.

The condition for the validity of the above expressions
is that the next orders of perturbation theory in the
electric field must be small in comparison with the
quadratic term. This is so when g>««~4 (see Sec. 6).
Moreover, we have neglected in our discussion the lin-
ear Stark shift which, in the case of the varying field,
is reflected in the filling of the quasienergy states.
The energies of the most highly filled states corre-
spond to the linear Stark shift that occurs in a constant
field. According to general theory,2'3 the appearance of
these quasienergy states, simulating the linear Stark
shift, can be neglected when

d'£ n^*£ A / 1 1 \~~-^p<Cl (11)

where d is the diagonal dipole matrix element of the
degenerate state n. This condition sets an upper limit
for the electric field g'of the wave and a lower limit
for its frequency to. In deriving the condition given by
(11), we used the fact that the characteristic dipole
matrix elements (3) are of the order of n2 when these
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elements are taken between highly excited states sep-
arated by a small energy interval (see Sec. 2).

Let us now consider the extent to which (11) is a
realistic condition. When (jo~n~3, we find that (11)
yields the condition &«n~5 whereas, for dj-rf2, we
have 8? «n~*, which is identical with the above criterion
for the validity of perturbation theory.

When we pass from the hydrogen atom to the highly
excited states of more complicated atoms, we must
bear in mind the difference between n and n'. Firstly,
for high orbital angular momenta I (in practice, Z > 2 ) ,
it is well known that we can neglect the quantum defect,
and the above results remain valid without change.
Secondly, for low orbital angular momenta (in prac-
tice, 1= 0,1,2), the presence of the quantum defect in-
terferes with the compensation of the n' >n terms by
the n' <n terms in (4), owing to the difference between
the energies of the corresponding states. The result
of all this is that the dynamic polarizability rises
sharply and its magnitude becomes of the order of n7.
Moreover, the behavior of the polarizability becomes
similar to that of the polarizability of low-lying excited
states (see above), since the n' >n and n' <n resonances
occur at different energies.

So far, we have confined our attention to linearly
polarized electromagnetic waves. The case of circular
polarization does not introduce any fundamental chang-
es because, in the original expression given by (4), on-
ly the fa ~s that appear in front of the summatioa
sign over w'and depend only on I, m are modified. The
sums over n' themselves remain unaltered. The same
remarks apply to the more general case of elliptically
polarized fields. So far, there have been no experi-
ments designed to observe the quadratic Stark shift for
highly excited states with the condition (11) satisfied
(.see the note added in proof at the end of this review).

We now tarn to the linear Stark shift in a varying
field. According to general theory,2'3 when the inequal-
ity opposite to that given by (11) is satisfied, each
level splits into quasienergy states. The probability
that the kth quasienergy state will be occupied is pro-
portional to J^in^W/ u), where J is a Bessel function.
This probability is a maximum for quasienergy states
whose energy corresponds to the energy of the initial
level shifted in the constant field as a result of the lin-
ear Stark effect (with &lonsl-&~2). The appearance of
the quasienergy states is described in detail for the
first excited states of the hydrogen atom in Refs. 2 , 3 ,
and 12. The effect is qualitatively similar in the case
of highly excited states. When the inequality given by
(11) is reversed, the quadratic Stark effect is small in
comparison with the linear shift. It appears as a small
common shift of the entire net of quasienergy states.
The inequality opposite to (11) can be realized for low
frequencies w<n'3 and fields ^>w/n2.

The experimental confirmation of quasienergy split-
ting and the quadratic Stark shift of the highly excited
states of the hydrogen atom is reported in Ref 13. In
this experiment, the hydrogen atoms were excited by
laser radiation from the n= 10 state. The atoms were

n-10-

FIG. 2. Schematic diagram illustrating the experiment re-
ported in Ref. 13 on the resonance ionization via the quasi-
energy harmonics of the n = 48 level. Tuning to resonance is
achieved by using the Stark shift of the n = 48 level in the radio-
frequency field g = &„,.

allowed to traverse a resonator in which a field of fre-
quency w = 10 GHz was excited. The amplitude of this
field could be varied, so that the Stark shift of the
n = 48 level could be used to tune to resonance between
the laser frequency and the frequency corresponding to
a transition from the n= 10 state to one of the quasi-
energy harmonics of the n= 48 state (Fig. 2). These
atoms were then ionized by a third field of frequency of
the order of 1 GHz and field strength in excess of the
characteristic atomic field for n = 48 (of the order of
100 V/cm), so that, when the n= 48 state was populated,
all such atoms were ionized.

It was found that the yield of ions as a function of the
field strength at 10 GHz exhibited a resonance that cor-
responded to the population of the quasienergy harmon-
ics at energies

where w = 10 GHz and K = 1, 2, 3, and 4.

This experiment satisfied the condition

J£L»1-
which is opposite to that given by (11). It is precisely
this condition that ensured that the quasiharmonies
were populated. We may therefore conclude that the
quadratic Stark effect can be observed even when (11)
is not satisfied: both the n = 48 level itself and its
quasienergy harmonics are shifted by the amount cor-
responding to the quadratic Stark shift, whereas the
magnitude of the factor «zgP/w is responsible for the
distribution of the population over the quasienergy har-
monics.

We note that, in this experiment, the quadratic Stark
shift was practically static in character, since it turns
out that o>n3 = 1/6 for the n= 48 state. The dipole selec-
tion rules for the single-photon n= 10~«= 48 transition
induced by the laser field ensured that the n- 48 states
with low orbital quantum numbers were populated.
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The order of magnitude of the quadratic Stark shift can
be estimated by using the static limit of the expression
given by (6) for the dynamic polarizability:

ct,,00 w 0,6«6 for <ore 3 <l .

The sign of the Stark shift (negative) and the order of
magnitude of the shift are in agreement with experimen-
tal data.13

Subsequent development of these investigations14 has
fully confirmed the main result, namely, the fact that
it is possible to observe the population of the quasiener-
gy harmonics of the highly excited atomic states.

From the point of view of the design of the experi-
ment, two differences were introduced Li Ref. 14.
Firstly, the hydrogen atoms were excited from the
«= 10 state to states with n= 44-67 by the absorption
of a. quantum of infrared radiation produced by a CQj
laser and by selecting the kinetic energy of the atoms
with the aid of the Doppler effect (see below, Sec.
951'52). Secondly, use was made of a radiofrequency
field with tunable frequency in the range u>= 6-8 GHz.

The number of protons was measured as a function of
the kinetic energy of the atoms (i.e., of the quantity n),
the frequency w, and the field & in the radiofrequency
range (i.e., the number k and the degree of population
of the different quasihar monies). It was found that
there was a large number of resonances in the proton
yield that corresponded to the excitation of different
quasienergy states with energies Enll= En + kit>.

By determining the maxima corresponding to these
resonances, it was possible to determine the probabil-
ity of excitation of states with given n, k as a function
of the field strength f in the radiofrequency range. It
was found that, as $ was increased, this function at
first rose sharply and, having reached a maximum, de-
clined gradually. The observed relationship is in
agreement with the assumption that the probability of
population of the kth quasihar m on ic of the state n is
proportional to J\(n2W/u), since this dependence corre-
sponds to the well-known asymptotic properties of the
Bessel function. It was also observed that, for a given
k, the radiofrequency field&mu corresponding to the
maximum excitation fell sharply with increasing n.
This also corresponds to the properties of the Bessel
function: the maximum of the function occurs when its
argument is equal to its index, i.e., for^-l/n2.

4. MULTIPHONON IONIZATION OF HIGHLY EXCITED
STATES

All the basic relationships describing the probability
of multiphoton ionization from ground and low-lying
atomic states are well known.2-3 In principle, they re-
main valid for the ionization of highly excited atomic
states. Thus, the probability of direct multiphoton ion-
ization (i.e., in the absence of intermediate resonances)
from a state with principal quantum number n is de-
scribed by the usual power-type expression

wn = a?0' (co, p) $2K°,

where K0 is the number of field quanta whose absorp-

tion is necessary to ensure that energy conservation is
satisfied:

#„ = [l/(2n%) + 1].
The quantity p represents the polarization of the field.

The quantity a(
a
K°\u,p) is the multiphoton direct ion-

ization cross section. It is obtained from the well-
known expression2 for the multiphoton matrix elements

-v
Z)

k, >...s

(rc)i,/ „

(12)

where Np is the density of final states of the electron in
the continuous spectrum.

The particular feature of this problem lies in the
simplification of the formulas for the multiphoton matrix
elements, which results from the simplicity of the
analytic expressions for the quasiclassical matrix ele-
ments (re)w (see Sec 2) and the energy denominators
that appear in the multiphoton matrix element.

Instead of considering the general case, we begin by
turniag to the simple example of two-photon ionization.
We shall characterize the initial state of the highly ex-
cited atom by quantum numbers nlm, where w» 1. We
consider that the frequency of the external linearly po-
larized field satisfies the condition

under which single-photon ionization is forbidden by en-
ergy conservation. Thus, in order of magnitude the re-
sult is oi-l/w2.

According to the dipole selection rules for two-photon
transitions, the orbital angular momentum in the final
state is l'= l±2. To be specific, let us consider in
greater detail only one of these transitions, say, that
with l'= 1+ 2. As in the last section, we shall assume
that the external field is linearly polarized along the z
axis. After standard separation of angular variables in
the two-photon matrix element, and averaging the prob-
ability (12) over the magnetic quantum number m of the
initial state, we are left with the problem of evaluating
the sum over the intermediate states n' in the two-pho-
toa matrix element. The sum over n' in the quasiclass-
ical approximation consists of terms in the neighbor-
hood of values for which the resonance denominator is
(t>n.n- di~0. When the resonance detuning is small, the
sum in (12) is dominated by a single term. When this
is so, the term must be retained and the quasiclassical
values substituted for the single-photon matrix ele-
ments (see Sec. 2).

When the sum is evaluated in the more general case of
intervals between resonances, we need only take into
account the change in the small energy denominators.
The numerators in (12) are taken out at the point
w , = u/. We assume in this process that the orbital
quantum number is l«n,f > . In the opposite case, one
of the dipole matrix elements is exponentially small.
The condition that the orbital angular momentum is
small is in agreement with the conditions prevailing, in
practice, in which the highly excited state is reached
through siagle-photon excitation by a monochromatic
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laser field from the ground or a low-lying atomic state.
The process is assured by the selection rules for the
orbital angular momentum for single-photon transitions.

Assuming that K0= 2 in (12), and substituting for the
matrix elements the quasiclassical estimate taken
from Ref. 6 for An~n, we finally obtain from (12)

(13)

where K3(x) is the Macdonald function and p is the mo-
meatum of the electron in the final state. In particular,
for the ionization of the S-state (1= 0), we find from
(13),

(2) 3s;sr* (2/3)MZ/3) 2I ™ \
ina^o/s CO I ^ T/I —2ii)n' / (.14;

>~n'1 and w-w'2 , Eqs. (13) and (14) yield the fol-
lowing estimate:

aJ,Y = const- n3t'3. (15)

Expressions analogous to (13) are obtained for transi-
tions with I' = I - 2 and I' = I. Our next step is to deter-
mine the cross section for two-photon ionization, sum-
med over I' and averaged over the orbital quantum
number I of the initial «th state on the assumption that
all the substates of the nth level are populated with
equal probability. Using (13), it is readily shown that15

(16)

When w~«"2, Eq. (16) yields the following estimate:

a'? = const -n29/3. (17)

We assumed above that oj<l/(2n2), i.e., that single-
photon ionization is forbidden by energy conservation.
We now turn to the case where CD >l/(2n3). When this
condition is satisfied, we have both two-photon and or-
dinary single-photon ionization. The cross section for
the latter is described by the well-known Kramers for-
mula (see, for example, Ref. 9). In the notation of (12),
we have for K0= I,

3 I/ (18)

As far as the two-photon matrix element is con-
cerned, the two situations corresponding to u><!/(2«2)
and u»l/(2«z) differ in that, in the latter case, there
is an additional term in the form of an imaginary part
since, for the state n' in the continuous spectrum, we
mast make the replacement

Its contribution to the two-photon cross section for the
process can be calculated readily by using the quasi-
classical matrix elements (see Sec. 2). As a resale,
it turns out that the imaginary part is much greater
than the real part (i.e., it dominates the integral taken
in the sense of the principal value), and a(

n
2' is given

by (16) with cot2(-- •) -1 (see Ref. 16).

The imaginary part of the two- photon matrix element
corresponds to the cascade transition n~p'~p through
a real (and not virtual) state />'. It is clear from the

foregoing that the cascade probability of two- photon ion-
ization is the dominant probability.

Thus, the analysis given above leads us to the follow-
ing conclusion. In intervals between resonances, two-
photon ionization is determined by transitions for which
the intermediate states are close to the average be-
tween the initial and final states, and the orbital quan-
tum numbers are small in comparison with the corre-
sponding principal quantum numbers. It is only in the
case of small detuning of a particular atomic transition
from the frequency of the external field that only one
resonance term can be retained in the sum over the in-
termediate states.

We now turn to the question of the validity of pertur-
bation theory in calculations of multiphoton processes
occurring from highly-excited states. To answer this
question, we must, clearly, consider an open channel
of single- photon ionization and compare the probability
of two-photon ionization, which is proportional to the
quantity given by (16) (with cot2(. ..) — !), with the prob-
ability of single-photon ionization, which is proportion-
al to the quantity given by (18). Equating the probabil-
ity ratio to unity, we obtain the field & 0 at which per-
turbation theory ceases to be valid:

?„ --= 3.5 (a5/3. (19)

In particular, when w = l/2«2, we have from (19)

g0 =• - l.l.n-10'3. (20)

The value w = l/2w2 is the minimum for which the sin-
gle-photon ionization channel is open.

When oj>l/2«2, it is clear from (18) that the field
g?0 for which perturbation theory breaks down is higher.
This simply reflects the fact that an increase in the
frequency at fixed field strength is accompanied by a
reduction in the perturbation produced by the field:
this is clear from (16) and (18), where the frequency u>
is raised to a high power in the denominator. Thus,
the expression given by (20) gives the minimum thresh-
old for the validity of perturbation theory for two- pho-
ton ionization.

As we proceed to higher orders of perturbation the-
ory, the algebra becomes much more complicated.13

This is even more so for nth orders of perturbation
theory, which must be included when the probability of
ionization by a field of frequency w~w"3 has to be cal-
culated.

However, when the degree of nonlinearity of the ion-
ization process (the number of photons) is high, i.e.,
AO» 1, the corresponding general expressions16 can be
simplified. Thus, the cross section for direct multi-
photon ionization in the field of a linearly polarized
wave is given by the following expression17:

The expression for a-^o' in the case of circularly po-
larized waves has also been obtained17 and differs from
that given above only by a relatively insignificant nu-
merical factor.
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The expression for the multiphoton cross section can
be used to determine the characteristic atomic field
g^ for the multiphoton ionization process as the field
for which the probability of the process of order
(K0+ 1) becomes comparable with the probability of the
process of order Ka. It is readily shown that

for a linearly polarized external field.
= n'3, this yields

i

When u>= fi

(21)

When the radiation is circularly polarized, the numeri-
cal factor in the denominator becomes 7.69.

It is important to note the very sharp dependence of
the ionization probability on the field strength for high
values of K0. This dependence has a threshold, so that
the ionization process has an essentially multiphoton
character for &<&t, and is characterized by the degree
of nonlinearity K0.

5. TUNNELING IONIZATION OF HIGHLY EXCITED
STATES

In the last section, we gave a detailed discussion of
two-photon ionization of highly-excited states, and
briefly mentioned multiphoton ionization from such
states. According to general theory,4 multiphoton ion-
ization occurs when y= (u/nW)» 1, i.e., at sufficiently
high external-fie Id frequencies (for fixed field
strength). In the present section, we turn to the oppo-
site case, namely,

V = (eo/ng) (22)

Since the external field strength is assumed to be less
than the atomic field n"4 (see below), the above condi-
tion signifies that ou«fl [see Eq. (2)]. The electron will
then tunnel through the slowly time- varying potential
barrier, and the problem for the theory is to determine
the probability of this type of tunneling per unit time.

The solution of this problem for the ground state of
the hydrogen atom (n= 1) is well known*;

This result is obtained by averaging the probability of
tunneling from the ground state in a constant electric
field over the period of the external field, T= Zn/<ji, if
we substitute 8? — ifcostxtf and use the saddle-point
method to determine the probability.

When we pass from the ground to the highly excited
states, we must start with the well-known expressions
for the probability of tunneling in a constant field.18

Proceeding by analogy with the derivation of (23), we
obtain the following expression for the probability of
tunneling in a varying field:

/
"3J~ / 4 \ n - n i + n 2 exp [ — 2/(3gn3) + 3 (n, — n,)}
7m3" \ n't, I 2n,\(n— B,— 1)!

(24)

where nL <n2 are the parabolic quantum numbers char-
acterizing the initial state of the atom, which remain in

the limit as u> —0. It may be verified that the probabil-
ity given by (24) is small when §"«w~'.

When we are concerned with highly excited states of
complex atoms, characterized by a definite orbital
quantum number I and magnetic quantum number m, the
probability of tunneling ionization in a varying field
(per unit time) is given by

(25)
where it is implied that n"n*. This formula is valid
whan the perturbation nzWis small in comparison with
the energy separation between the levels of the atomic
multiplet under consideration, so that the orbital angu-
lar momentum I remains a good quantum number when
the field is turned on.

We now draw attention to the very large preexponen-
tial factor in (24) and (25), which is absent in the case
of ionization from a well that is present for only a short
period of time. At the same time, the arguments of the
exponential in the case of the Coulomb potential and the
potential representing the short-lived well are the same
for the same level energy. We note that it is precisely
because account has been taken of the preexponential
factor that the atomic field g"a for which tunneling ion-
ization occurs in the characteristic atomic time is of
the order of E2

n in the Coulomb field, where En is the
energy of the state from which ionization takes place.
At the same time, in the case of the short-lived poten-
tial, the atomic field is determined only by the argu-
ment of the exponential in the ionization probability and,
obviously, is of the order of £„ •

When «» 1, the dependence of the probabilities (24)
and (25) on % is very sharp, and these two expressions
become virtually step functions. It is readily seen
from (24) and (25) that the atomic fields determining
the position of a step of this kind are the same as in the
case of ionization by a constant field. According to Ref.
1, we have

g.=4r. (26)

in which C(n^,n^ varies with nlt nz from 4.5 to 9.2,
where 0<M 1 ( n 2 «n- 1.

It is interesting to compare the magnitude of the
atomic field for tunneling and multiphoton ionization
from highly excited states [Eqs. (26) and (21), respec-
tively]. It is clear from (21) and (26) that these quanti-
ties are of the same order of magnitude. There is no
doubt that, in the intermediate case where y-1, the
atomic field is of the same order of magnitude.

It is shown in Ref. 19 that, actually, the result given
by (24) is valid provided a condition that is more
stringent than (22) is satisfied, namely,

rif

When only (22) is satisfied, the initial energy level ex-
hibits significant splitting into quasienergy levels (this
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is the analog of the linear Stark effect in the constant
field), and tunneling from these levels is different.
The corresponding formulas are very complicated and
are given in Ref. 19. The result given by (25) remains
unaltered, since the corresponding quasienergy states
in the varying field are generated by a time-dependent
perturbation that is a quadratic function of the field
strength.

6. STOCHASTIC DYNAMICS OF A CLASSICAL
ELECTRON IN AN ALTERNATING FIELD

A. Introduction

The basic feature of the multiphoton and tunneling
ionization discussed above is the purely quantum-
mechanical nature of the process. However, when
n» i, the highly-excited atom is a quasiclassical sys-
tem, and the effect of an external field on an electron
in the system can be described in terms of the laws of
classical mechanics. It is well known that, within the
framework of classical mechanics, the process of
above-barrier transitioi may result in the ionization of
the atom. By an analogy with the case of the constant
external electric field, this process corresponds physi-
cally to the above-barrier transition of an electron
from the potential well to the continuous spectrum un-
der the influence of a field of frequency oj«H"3. Ioniza-
tion then takes place in approximately one period of
revolution in the unperturbed orbit, ~n3. This type of
above-barrier ionization is possible only for a suffi-
ciently high alternating field strength that is compar-
able with the atomic field strength in a constant
field (26). l

However, it is clear that the greatest interest at-
taches to frequencies w of the order of the Kepler or-
bital frequency of an electron, fi = n'3, since the effect
of the varying field on the electron is then resonant in
character.

It turns out that, in a strictly monochromatic wave
with w ~ f i , for which the field strength is strong
enough but still such that tf« &it the nonlinear oscilla-
tions of the electron (the frequency of the unperturbed
oscillations fi depends on the principal quantum number
n) becomes stochastic,20 which leads to diffusion ion-
ization of the atom. Here, it is important to emphasize
that diffusion in the system arises not because of the
random character of the external electromagnetic field,
which is strictly monochromatic, but because of the
nonlinearity of the classical equations of motion. The
mechanism responsible for diffusion ionization was
first discussed in Ref. 21. The phenomenon of diffusion
ionization due to stochasticity was discovered as a re-
sult of numerical experiments.22 An estimate for the
stochasticity threshold was first obtained analytically
in Ref. 23.

At this point, we should like to emphasize once again
the qualitative difference between diffusion and multi-
photon ionization (Fig. 3). In fact, diffusion excitation
corresponds to a gradual increase in the energy of the
classical electron from the initial value to the value
corresponding to ionization. The characteristic time

FIG. 3. Results of a computer simulation of the onset of
stochastic instability of an electron in a highly excited atom
and diffusion ionization of the atom.J2 The external field ̂
increases from left to right. E is the binding energy of the
electron in the atom and t is the time of interaction with the
field.

TD for this excitation is substantially greater than the
unperturbed orbital period: TD»n3 (see Sec. 7). It fol-
lows that the probability of classical diffusion ioniza-
tion will continue to be equal to zero (the electron will
not succeed in acquiring sufficient energy) for a time T
containing a number of orbital periods (T« TD). In the
quantum-mechanical analysis, the ionization probability
W= wnr will be different from zero after a time r~n3,
where wn is the probability of multiphoton ionization per
unit time.

The condition for the appearance of stochasticity re-
sulting in diffusion excitation of the atom is that the
nonlinear resonances must overlap.20'2<l-25 This leads to
the existence of a sharply defined limit for the electric
field, which has been estimated in Ref. 23. The diffu-
sion excitation of the atom (right up to ionization) oc-
curs in fields exceeding this critical value $ > &c,
whereas, for 8°<g'c, the energy of the classical elec-
tron oscillates between finite limits, and the amplitude
of these oscillations decreases with decreasing 8? (see
Fig. 3).

B. Nonlinear resonance for circular orbits

Let us now consider how the circular electron orbit
becomes deformed under the influence of a weak linear-
ly polarized monochromatic field. Since the circular
motion is purely harmonic, the Hamiltonian for the sys-
tem in a varying electric field g'cosotf has the simple
form

_ i 2
2n2 ~"~ • COS , (27)

where it is assumed that the electric field lies in the
plane of the orbit and n, X are canonically conjugate
variables, namely, classical action and angle. The
Hamiltoiiiai given by (27) is the sum of the unperturbed
energy and the dipole interaction between the field and
the atomic electron, and X is the phase of the orbitals
motion of the electron, which, in the case of a circular
orbit, is equal to the angle between the radius vector of
the electron and the direction of the field. It is assumed
in (27) that the orbital angular momentum I of the elec-
tron remains constant. This approximation turns out to
be valid by virtue of the fact that the rate of change
l~ &in a weak field is much less than w-^1^2 (see be-
low).
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The perturbation in the Hamiltonian given by (27) pro-
duces the greatest change Aw = n - n0 (na characterizes
the initial state of the electron) in the case of resonance
between the field frequency w and the frequency of the
Kepler motion of the electron fi = n~3. Let us expand the
unperturbed part of the Hamiltonian (27) around the
resonance nr = aT1/3. and retain in the perturbation only
the slowly-varying terms. To eliminate the explicit de-
pendence of the Hamiltonian on time, we introduce the
new phase 6 = X- o>f and its new conjugate action l=n
- n r. In terms of these new variables, and apart from
a constant term, the Hamiltonian (27) assumes the form

classical approach, is satisfied f or 9 » n',6 . We may
therefore conclude that, in fields such that

Ht(I, 9 )=—

The new Hamiltonian does not explicitly depend on time
and is therefore conserved. The fact that the system
described by (28) is one-dimensional implies that it is
integrable. The equations of motion obtained from (28)
are identical with the equations of motion of a physical
pendulum with "mass" given by

The region of the nonlinear resonance corresponds to
the oscillations of the "pendulum" (bounded variation of
the phase 9) and lies in the interior of the separatrix
that separates oscillatory motion from rotation. The
frequency of small (in comparison with the size of the
separatrix) oscillations of the "pendulum" is given by

This quantity defines the frequency of fluctuations
(J?,« ft) in the orbit of the electron in the field when the
initial values I0= n0- n, and 60= X0 lie near the position
of equilibrium of the pendulum: Is= 0, 6S = 0. The en-
ergy of the electron is then also found to fluctuate in
time with frequency fit. The phenomenon we have just
described lies at the basis of the principle of phase
stability as it applies to particles in cyclic accelerators.

Similar energy oscillations are observed in numerical
experiments performed with the classical atom in a
circularly polarized field.28

The number of levels within the nonlinear resonance
(Aw) r , is determined by the width of the separatrix in
units of action. According to the condition H, = -^n2,,
we have

which we can now use to determine the width of the non-
linear resonance in units of action /:

This expression also enables us to deduce the half-
width of the nonlinear resonance in units of frequency:

20*. (31)

which we shall find useful in the ensuing discussion.

The nonlinear resonance approximation discussed
above is valid when (Aw)r «nt and n^«f i , which im-
poses a restriction on the extermal field, namely,
&«n~*. From (29) and (30), we find that the condition
(An)r» 1, which is necessary for the validity of the

ri

the fluctuations in the classical orbit of the electron are
restricted to a regiou confined within the limits of the
separatrix of the nonlinear resonance.

On the other hand, when the electron starts outside
the nonlinear resonance region, i.e., |w-B|»fi4>

its oscillation amplitude turns out to be much smaller:

(28) for | w-n | ~ f l = «o3.

C. Overlap of resonances for elongated orbits

Let us now consider the opposite case of very elong-
ated orbits with eccentricity given by

We shall assume that the electric field vector is parallel
to the electron orbit. The Hamiltonian for the system
then takes the form

» cos **•

where

(32)

(33)

are the Fourier components of the dipole moment of the
electron28 and e = 1.

The resonance condition u = fent= fen'3 determines the
resonance values of nk. By analogy with the case of the
circular orbit, considered above, we retain only the
resonance term in the Hamiltonian (32). By analogy
with (30), the frequency half-width of the resonance
separatrix is given by23

A,, --_2 /q«. W2 11A\Avh — -^— ^dgaj,j , (61)

and this determines the characteristic frequencies of
electron fluctuations in the external field against the
background of the unperturbed orbital frequency Ji4.

We must now determine the critical field g"e in which
the &th and the (k + l)th nonlinear resonances overlap,
leading to the stochastic behavior of the electron. It
will be useful to introduce the parameter s given by

'= i-Z:1' (35)
to characterize the degree of overlap of neighboring
resonances. When s«l, the influence of neighboring
resonances can be neglected and the bounded oscilla-
tions of the electron can be described in the approxima-
tion of a single isolated nonlinear resonance, as was
done in subsection b.

The value s = 1 corresponds to the situation where
the separatrices corresponding to unperturbed reso-
nances touch one another. According to the results re-
ported in Ref. 25, the trajectory begins to undergo a
random transition from one resonance to another when
the following condition is satisfied:

K', (36)
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The semiempirical numerical factor in this expression
represents resonances of higher harmonics, the distor-
tion of unperturbed separatrices under the influence of
neighboring resonances, and the finite width of the sto-
chastic layer that appears near the unperturbed separa-
trix. This factor is not very sensitive to the form of the
system under consideration, and numerical experi-
ments25 have shown that it lies in the range 2.2-2.5, de-
pending on which model is used. We shall adopt the val-
ue 2.5, which corresponds to the so-called standard
model 25 (see also Ref. 29).

Using the resonance condition co= fcO^ together with
Eqs. (34)-(36), we obtain the following expression for
the critical field when I = 0:

where

.I^O + T)-"1]1-

(37)

(38)

For the fundamental resonance k= 1, Eqs. (37) and (38)
yield

i (39)

According to (39), the value of &a is lower by a fac-
tor of three than the estimate obtained in Ref. 23 , and
appears to provide the minimum value of the field for
which the stochastic behavior of the electron sets in.

If we use the asymptotic expression for (33) when
fc»l, i.e., xk^OAk5/-., we find from (37) and (38) that

(40)c ~ 49 (am3)1/3 n4 '

Actually, the asymptotic behavior begins as early as
k= 5.

Thus, the increase in the frequency (x>= kSlk at con-
stant initial n is accompanied by a reduction in the
threshold for stochasticity. The reason for this is con-
nected with the reduction in the separation between the
nonlinear resonances with increasing k, and the suffi-
ciently slow reduction in the higher harmonics of the
dipole moment.

Adjacent resonances overlap for & > &<.. Resonances
with the higher n correspond to greater k and, accord-
ing to (40) , undergo greater overlap. This results in
the onset of the diffusion excitation of the electron (see
Sec. 7). Each individual orbit is then a very complicat-
ed and tortuous figure, and neighboring trajectories di-
verge in time at an exponential rate. The characteris-
tic time for stochastization is of the order of the width
of the nonlinear resonance rc~ Aui'1. When &~1, we
find that Te~n'1.

When k » 1 and ̂  ~ &e, the resonance part of the per-
turbation in the Hamiltonian (32) turns out to be smaller
by a factor of k2 than the unperturbed part. This fact
ensures the validity of the approximation we have
used and of the expression given by (40) for the critical
field. We also note that, when k» 1, the network of
resonances becomes uniform (O^ - Jltrt ~ ttktl - nt<2) and
can be described Locally by the standard model.25 It is
this that dictates the choice of the numerical factor in
(36).

Less favorable for the theory is the case fe~l, for
which, formally, the perturbation is not small. Never-
theless, the fact that the perturbation is numerically
small in comparison with the unperturbed Hamiltonian
(it is of the order of 1/42 for k= 1) assures the validity
of the expressions given by (37)-(39) for the critical
field.

D. The general case

We now consider the case of an arbitrary orbit. The
Hamiltonian for an electron in the field of a Coulomb
center and a monochromatic external electromagnetic
field, written in terms of the action and angle variables
for the unperturbed problem, has the form

X [̂  — 2" e sin cp + 2 2 (xt> sin ̂  c°s k\ + yk cos if sin fcX.) T
*-i

(41)
where I and m are the angular momentum of the elec-
tron and its component along the external field % , re-
spectively, 4> ancl <t> are the conjugate Euler angles,30

respectively, and the quantities xt [see (33)] and

-/*(*«) (42)

are the Fourier components of the dipole moment of the
electron.28 The quantity e is the eccentricity of the or-
bit. The component m of the angular momentum is a
constant of the motion.

Since the frequency of the variation in / and 4> is
proportional to&, it turns out to be smaller than the
frequency of the variation in n and d = A- ut, which is
proportional to 8"1/2 when the resonance condition
0-= knk is satisfied (see above). We can therefore sep-
arate the fast (n, 6) and slow (;, $) subsystems which, in
turn, enables us to introduce the resonance approxima-
tion into the Hamiltonian (41) by analogy with the case
of the elongated orbits considered above.

Proceeding by analogy with the determination of the
critical field for elongated orbits, we can show that, in
the present case, the critical field is given by (37),
where

(43)

in which and, for simplicity, we have sub-
stituted the average value

Generally speaking, this results in an overestimate for
g>c by a factor of /2~ when x^« y^ or xk»yk.

It follows28 from the asymptotic behavior of the Four-
ier components xk and yk for k» 1 that the resonances
will overlap only for highly elongated orbits with eccen-
tricity e —1. For orbits with smaller eccentricity, the
quantities xk, yk decrease exponentially with increasing
k. This exponential reduction is absent and, conse-
quently, the orbits exhibit stochastic behavior, only for
small angular momenta

(44)
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The dependence of the critical field g"c on I when k » 1
can be obtained from (37) and (43) has the form

g<= x,|nMV.(l-«.'/!')•/'..•' ^'c- (45)

We shall not reproduce the rather complicated expres-
sion for x., that is obtained from the asymptotic formu-
las for the Fourier components xk, yk.

28 We merely
note that K, is a very slowly varying function of I when
Z « lc. Thus, for example, K0=35 and H, =22.

In the case of fundamental resonance & = 1, the de-
pendence of #c on I is also slight, according to (43).
Thus, when I- n/2 and 1= 3w/4, Eq. (43) shows that
gj.w4= 1/77 and 1/80, respectively (when m = 0). These
values are not very different from the value 1/84 given
by (39) for 1= 0. Thus, in fields exceeding the critical
value given by

(46)t c~ 77,,' '

the resonances will overlap for most of the possible
values of I .

Moreover, for orbits with eccentricity e« 1, the
amplitude of the harmonics xh, y^ with k^ 2 is found to
be very small (-e"**1). Hence, forg>~g'c, resonances
with k = 2 and k = 3 do not overlap, and ionization from
such states is highly suppressed. It can occur only be-
cause small regions of stochasticity appear as a result
of the overlap of the k = 1 and k = 2 resonances, and
these regions enable the electron to leave the region
with e ~1, so that ionization can then take place.

Numerical experiments25 have shown that, when
K= (&/&c)a\, the structure of the phase space is a very
complicated interlacing of stable and stochastic com-
ponents whose measures are roughly equal. However,
as early as &= 4^, the measure of the stable compon-
ent component is found to be 10%, and developed sto-
chasticity is present.

So far, we have confined our attention to the case
k» 1. When fe<l, there are no resonances in «'.
Nevertheless, because of the finite width of the higher
resonance with fe= 1, the trajectory may enter the re-
gion of stochasticity of this resonance. Thus, for ex-
ample, for highly elongated orbits and % = #"c , we find
from (34) and (39) that Aoij = 0.22 w. Hence, it follows
that effective excitation occurs for frequencies begin-
ning with u,& 0.78 SI. As the field is increased to
*"= 58"c, this value reaches 0.52 S2. These results are
in agreement with numerical experiments,31 which sug-
gest that stochastic excitation occurs for fields

and w = 0.4 fl.

E. Stochasticity in a low-frequency field

It is interesting that, despite the absence of reso-
nances in n for k« 1 and & «n~*, the prese ice of Kep-
ler degeneracy (i.e., degeneracy in /) also gives rise to
the stochastization of the motion of the atomic elec-
tron.32 In this section, we turn to the examination of
this type of stochasticity. A detailed discussion will be
found in Ref. 32, and we shall reproduce only the lead-
ing results.

Since the electric field varies slowly, it is convenient
to write the classical Hamiltonian in terms of the actio-i
and angle variables defined for the motion of the
particle in parabolic coordinates for the instantaneous
value of the field. In addition to the unperturbed ener-
gy, the Hamiltonian contains the linear Stark shift
which contains time as a parameter, a>.id the analogous
quadratic Stark shift. Both shifts are expressed in
terms of the action variables corresponding to the para-
bolic quantum numbers of the hydrogen atom in a con-
stant electric field. Finally, the Hamiltonian also in-
cludes a low-frequency term that appears because the
perturbation is an explicit function of time.

In the approximation that we shall employ, we shall
have both an exact constant of motion, namely, the
component of the angular momentum along the electric
field, and conservation of the principal quantum num-
ber n.

The condition for the overlap of the nonlinear reso-
nances (36) is satisfied when the critical field32

(47)

is exceeded for parameter values for which

con8 <1.

When w/« « g< g?c, the parabolic quantum numbers os-
cillate within a small bounded interval near their initial
values. On the other hand, when gs>g'c, they vary ran-
domly within the interval [0,?z- \m l], and the plane of
the orbit precesses in a random fashion around the di-
rection of the field.

Let us consider observable effects that result from
this stochasticity. Suppose that, initially, the electron
occupies the wth level and has parabolic quantum num-
bers «!, n2. When a weak field &<%'<. is turned on, the
quantum numbers nlyn2 become approximate constants
of motion33 (they are exact constants of motion in a
constant field). Spontaneous radiative transitions will
therefore take place only from this state («,w1(w2) to
some other lower-lying atomic states. The situation is
quite different for # >g>c. In the latter case, the reso-
nances overlap, and the values of Wj and n2 are no long-
er constants of motion. After a certain interval of time
following the introduction of the electric field, the elec-
tron can have with equal probability any parabolic quan-
tum numbers satisfying the condition nt + w2 = n - \m\.
There is a corresponding change in the probability of
spontaneous radiative transitions, and this change can
be recorded. Similarly, a transition from fields &<%c

to fields ?>>g'c results in a change in the probability of
ionization by these fields because these probabilities
are very dependent on the quantum numbers nlt»2.

We note in conclusion that, according to (47), the
critical field for stochastization decreases with de-
creasing a), i.e., as we approach the static limit. How-
ever, the stochasticity itself develops over an increas-
ing time, namely, over a time given by Tc-ar1.

F. Circular polarization

Let us now consider the case of circularly polarized
radiation, which was examined in Refs. 26 and 27. The
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motion of the electron remains qualitatively the same
as in the li.iearly polarized field. Actually, since /, m
and the associated angles are slowly varying functions,
the dynamics of highly elongated orbits is, as before,
described by the Hamiltonian (32). It is assumed that
the orbit lies in the plane of polarization of the radia-
tion. From this, it follows immediately that ^c is giv-
en by (37)-(40), as for the linearly polarized field.
When k- i, the critical field [see (39)] turns out to be
lower by a factor of about 2.5 than thai found in Ref. 27.
As in the case of linear polarization, this difference is
explained by the more accurate allowance for the width
of the nonlinear resonances and the frequency difference
between them. The result given by (39) is found to be
close to that deduced from numerical experiments26 in
which ionization of the atom is found to occur for
$nl>1/100.

We now turn to the general case of arbitrarily elon-
gated orbits. We shall confine our attention to two-di-
mensional trajectories lying in the pla-ie of polarization
of the external field. Proceeding by analogy with our
treatment of the critical field for linearly polarized
radiation, we find that, for k= 1 and 1= 0, n/2, 3n/4,
we have

J_ J_ J_
84 ' 149' 184 (48)

respectively.

Thus, in a circularly polarized field and when k = 1,
the orbits with intermediate values of eccentricity are
the most readily stochasticized. The critical field is
then given by

^c = x, (n3w)i/3 n' ' (49)

The quantity vt, in this expression is a slowly varying
function of I . Thus, in particular, H,,a49 and H, =43.

For three-dimensional orbits, the critical field is
given by the same expression (49), but with a somewhat
different numerical constant K,.

The question whether stochasticity occurs in a cir-
cularly polarized field for un*« 1 requires further in-
vestigation.

We now introduce our concluding remarks about the
dependence of the critical field on the parameters de-
fining it. Firstly, as the frequency rises from w = n
= 1/n3, the critical field 2?c is found to decrease [see
(40), (45), and (49)]. As the frequency is reduced from
a value u>« 1/n3, the critical field is also found to de-
crease [see (47)]. We now turn to the dependence of &c

on the orbital angular momentum I. Let us consider,
to begin with, the case where the frequency is given by
w = 1/n3. It is clear from the discussion preceding (46)
that there is now practically no dependence of £"c on I if
we exclude values of / close to n (orbits with small
eccentricity) for which the critical field increases
sharply. This conclusion refers to linearly polarized
radiation. On the other hand, ia a circularly polarized
field, the critical field decreases with increasing I [see
(48)]. When u>» \/n3(k» 1), the critical field varies
slowly with l^, lc for both linearly and circularly polar-
ized fields, but rises sharply for l>lc.

As far as the dependence of gj. on the polarization of
the external field is concerned, comparison of (45) with
(49) enables us to draw the perfectly definite conclusion
that, for high frequencies (k» 1), the critical field &c

is somewhat lower ia the circularly polarized field than
in the linearly polarized field. When k~l, the critical
field for I = 0 is independent of the polarization, and for
I >0, the critical field S?c is lower in the circular than
in the linear field. In the phrases just given, the words
'less than" signify a difference by a factor of 1.5-2.

7. DIFFUSION IONIZATION

A. Introduction

In the last section, we obtained estimates for the cri-
tical electric field %"c for which nonlinear resonances
are found to overlap. For fields 'S > &c, the electron be-
gins a stochastic transition from one resonance to
another, and its trajectory becomes exceedingly com-
plicated, random, and unpredictable.25 However, ow-
ing to the stochasticity of each individual trajectory, it
is possible to use a statistical description of the excita-
tion of the atomic electron.24'25'34 One can then identify
two characteristic scales of time in the course of the
temporal e/olution, namely, the time TC for the sto-
chastization of the motion, and the time TD during
which the electron executes a random walk over the
resonances. As we shall see later, the latter time is
much greater than TC. On time intervals exceeding rc)

the phase distribution becomes homogeneous, and the
evolution of the distribution function f(n,t), i.e., the
number of particles with given n at time t, over action
is described by the Fokker-Planck-Kolmogorov equa-
tion. When the degree of overlap between the reso-
nances is high enough, the measure of the stable com-
ponent turns out to be negligible. Detailed balancing
then prevails in the system, and the nondiffusion cur-
rent is absent from the Fokker-Planck-Kolmogorov
equation.35 The result is that this equation reduces to
the usual diffusion equation

-K-sr (".£)• 150)
The problem for the theory is to determine the diffusion
coefficient £>n and, since this coefficient depends on n,
the diffusion equation describes a nonlinear diffusion
process.

B. Determination of the diffusion coefficient

We shall now follow Ref. 34 and determine the diffu-
sion coefficient for the case of highly elongated orbits
(1= 0). Using the Hamiltonian (32), we obtain the equa-
tion for n:

where

(51)

(52)

The phases 9^(t) in (52) vary slowly with time on a time
scale of the order of T .
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Integration of (51) with respect to time yields

* - et) - sin et]. (53)

We now square (53) and recall the fact that, owing to
stochasticity, the phases 6t(t) are random variables on
the interval |0, 2jr]. Consequently, the squares of sines
and cosines can be replaced with 1/2, and the first
powers of trigonometric functions can be set equal to
zero. Replacing the sum by an integral, we obtain

Wtf = n ( ) t , (54)

where the resonance value is given by k = w/ft = am3.
According to general relationships that are known to be
valid for one-dimensional diffusion, we have

<A»)' = 2B.«. (55)

Comparison of (54) with (55) finally gives us the requir-
ed diffusion coefficient:

£>n = -2-gWre<3x|. (56)

In particular, when k» 1, and if we use the asymptotic
expression for x,,, Eq. (56) yields

•»-*/•, (57)

whereas, for k = 1, we have

£>„ «.0.17gV. (58)

An analogous analysis of the diffusion coefficient can
be given for the general case of arbitrary eccentricity.
The coefficient Da is obtained from (56) by introducing
the replacement

For two-dimensional orbits in circularly polarized
radiation, we must introduce the replacement x\-~x\
+ y2 in (56). Equation (56) is also approximately valid
for three-dimensional orbits. For all these cases, we
obtain an expression of the form of (57) with slightly
different numerical factors in the asymptotic limit

An estimate for the time TD, during which diffusion
results in the ionization of the atom, can be obtained
from condition (A«)2~«2 [see (55)], where n represents
the principal quantum number of the initial state of the
electron. Consequently, we have from (55)

TB^^T. (59)

The inverse quantity WD = r'^ can be referred to as the
probability of diffusion ionization. However, it must
then be remembered that, when t« TD, the fraction of
ionized particles is equal to zero and not to WD£. Equa-
tion (57) yields the following estimate:

For wn3 =a 1 and linearly polarized radiation, the ioniza-
tion probability is given by

i=4«'n'. (6DWD;

In particular, when k= 1 and &n*= 1/77 or 1/12, we
have TD= 2xl04n3 and TD = 460«3, respectively. We
thus see that the time TD is substantially greater than

FIG. 4. The result of a numerical calculation31 of the fraction
W of ionized particles as a function of the external-field fre-
quency. W is plotted against the ratio cu/Q. The interval of
time during which the field interacts with the atom is assumed
to be 300 irn3 and the field strength is & = n*/l2.

the electron orbital time n3 on a Kepler orbit, in ac-
cordance with the general considerations given at the
beginning of this section.

Numerical experiments31 involving linearly polarized
radiation with 8"n*» 1/12 have shown that, for k =1 (u>
«£2) and field interaction time T= SOOwn3, the fraction
of ionized particles is approximately 40% (Fig. 4). The
above estimates are in good agreement with numerical
experiments.

The dependence of TD on the field ^ and frequency w
is also in qualitative agreement with numerical experi-
ments31 (Fig. 5). However, more accurate numerical
experiments will be necessary for a more detailed
verification of the power-type dependence of TD on u>.

It is interesting to note that the ionization probability
WD decreases with increasing u>, despite the reduction
in the threshold for stochasticity.

C. Some features of diffusion excitation

As we have seen in Sec. 6, the theory becomes much
simpler for high external-field frequencies w»n, and
we can then analyze in greater detail the nature of the
diffusion excitation and ionization as compared with the
general case of arbitrary frequency.

According to (44), diffusion occurs only for states
with low orbital angular momenta / S lc. The Hamiltoni-
an (41) can then be used to obtain the equation for the
change in / by analogy with the procedure used above to
obtain the equation for the change in n. This shows that
the coefficient of diffusion in / is smaller by a factor of
(wAi)a than the coefficient of diffusion in n. This leads
to the fact that, at high frequencies uij»n, the diffusion

w

-z

FIG. 5. The results of a numerical calculation31 of the frac-
tion W of ionized particles as a function of the external field
& (in units of n"4) and the field frequency w (in units of Q).
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process is quasi-one-dimensional, i.e., the diffusion
takes place only in n. When this is so, the spreading
over all the orbital angular momenta 0 «i « l c cannot
occur during the diffusion ionization time TD. We note
that the random walk of the electron over the spectrum
is asymmetric since, for n-s, nc= (49^'jj1'3)'1^5, the
resonances do not overlap [see (40)], so that there is
no diffusion below nc.

It has been noted in the course of numerical experi-
ments22'26'31'36 that the diffusion process consists of a
sequence of rapid changes in n that occur when the peri-
helion of the orbit is traversed, and nonaccumulatiag
small oscillations in n during the motion over the re-
mainder of the orbit. For highly excited electrons, the
time interval between the times of passage through the
perihelion is very large (of the order of n3). This ap-
parently leads to the appearance of persistent, nonion-
izing, highly excited trajectories that have been seen in
numerical experiments.22-26

When wi3«l and #2^ [see (47)], the quantities
nlt n2 undergo a stochastic deviation that leads to dif-
fusion in n with an exponentially small diffusion coeffi-
cient

where Aw-SSPV78 (see Refs. 32 and 42). Thus, the
ionization time turns out to be exponentially large in
this case.

D. Quasiclassical calculation of the diffusion time

All the preceding discussion of diffusion was based on
the laws of classical mechanics. The quasiclassical
approximation to quantum mechanics was used in Ref.
21 to derive a diffusion equation similar to (50) for the
random walk of an electron along the energy axis. It
was then used in the balance equations for the electron
in a highly excited state in which a large number of
single-photon transitions between neighboring levels
occurred in the presence of an external field. We shall
now reproduce the diffusion equation obtained within the
framework of this approach. To be specific, we shall
confine our attention to the region of the first resonance
u>= ii. From each state n, we then have transitions to
neighboring states w ± 1. Detailed examination of these
transitions21 leads to the following expression for the
diffusion time:

£n
^a~~wa&' (62)

where w is the probability of the single-photon transi-
tion per unit time between states with principal quan-
tum numbers n and n+ 1, which is given by Fermi's
Golden Rule No. 2:

w = -%-\z]lti''
m\i&n'. (63)

The last factor, w3, in (631 represents the density of
final states of the electron (cf. the transition from the
quasiclassical summation to integration in Sec. 3). The
quasiclassical matrix element in (63), which is written
down for the case of linearly polarized fields, is evalu-
ated on the basis of the results given in Sec. 2. If we
average (63) over the magnetic quantum number m,

sum over the two values I' = l± 1, in accordance with
the dipole selection rules, and follow this by the sub-
stitution of (63) in (62) and set o>= n, we obtain

TD~g-2«-'. (64)

This expression is in good agreement with (61).

8. CONDITIONS FOR THE REALIZATION OF
DIFFUSION AND QUANTUM-MECHANICAL
IONIZATION

Let us begin by considering the condition for the
validity of classical mechanics in the description of dif-
fusion ionization. From the standpoint of quantum me-
chanics, this condition is equivalent to demanding that
the corrections to the quasiclassical wave function of
the electron in the field of the residual ion and the ex-
ternal electromagnetic field must be small. It is im-
portant to note that these corrections increase with
time,38 i.e., the precision of the quasiclassical approx-
imation deteriorates. Let 6 denote the mean relative
correction to the classical wave function corresponding
to the next after the lowest order of the quasiclassical
approximation. The quasiclassical approximation is
valid if 6 remains small during the electron diffusion
time, i.e., 6«1. The following estimate is reported
for 8 in Refs. 39 and 40:

where y0 = 3n~*/2 is the nonlinearity of the classical
system. When w ^ O - TCI, the diffusion time is given by
(64), from which we obtain

(65)

In particular, under the conditions obtaining in the ex-
periment reported in Ref. 41, Eq. (65) yields S-lSn"1

forg'n4= 1/12 and 6-1/4 for n= 65, which indicates
that the classical analysis is valid. However, near the
stochastic limit given by (39), Eq. (65) gives 5~120n'1,
from which it follows that the classical analysis is valid
only up to « 2 120.

When k = w/n » 1 and %'- &c, we have rc~&/n and,
hence, following Ref. 39, we obtain an estimate that
differs from (69), namely,

t> ~ 75 ft3/2 n-1.

We note that this condition is more stringent (if we
suppose that 6« 1) than the condition ">«£„ that lies at
the very basis of the question whether diffusion ioniza-
tion of a highly excited atom is possible.

When 621, the theoretical description of the ioniza-
tion process encounters considerable difficulties that
have not as yet been overcome (see, for example, Refs.
37, 42, and 43). However, preliminary numerical ex-
periments44 with simple quantum-mechanical models
(that are unrelated to the atomic ionization process)
show that diffusion excitation occurs in multidimension-
al systems even for 5» 1. This means that diffusion
ionization of the atom will probabily occur even in the
essentially quantum-mechanical region 62 1.

We now turn to quantum-mechanical ionization, i.e.,
to tunneling and multiphoton ionization.
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From the standpoint of the theory given in the entire
preceding text, we must divide the experimental situa-
tion into two cases, namely, 8?<gfc and ^>$c, where
g>c is the critical field for classical stochastic ioniza-
tion (see Sec. 6). Diffusion ionization does not occur
when %<gc. This case corresponds to fields that are
small in comparison with the characteristic atomic
fields for the highly excited levels under consideration.
For such fields, we have the well-known theory4 in
which the nature of the ionization process is determined
by the adiabatic parameter f . Tunneling occurs for
y«\ and the multiphoton ionization process takes place
for y»l; y~\ corresponds to intermediate cases.
These statements are valid in the absence of resonanc-
es between the external-field frequency and the fre-
quencies of the atomic transitions. When a resonance
occurs, the electron undergoes a transition to a lower-
lying resonance level and is then removed fron this
level by some quantum-mechanical mechanism deter-
mined by y, or by a diffusion process if &z 3°c is valid
for this particular level.

In the opposite case, where the field is &>&c, we
find, in accordance with the foregoing discussion, that
diffusion ionization of highly-excited atoms with n» 1
occurs for En» cos n. Under these conditions, diffu-
sion ionization may proceed in parallel with multipho-
ton ionization. There is, however, an obvious qualita-
tive difference between these two processes, namely,
multiphoton ionization occurs as a result of the simul-
taneous absorption of a number of photons by the atomic
electron, whereas diffusion ionization occurs as a re-
sult of a series of successive single-photon absorption-
emission events. To establish the relative importance
of these two competing ionization processes, we must
compare the corresponding total ionization probabilities
in the presence of an external field or, and this is much
simpler, we must determine the critical field
strengths.

We now turn to the resonance case for which w=* n.
The critical linearly polarized field for the stochastic
instability of an atomic electron is given by (39) where-
as, for multiphoton ionization, it is given by (21). We
recall that (21) gives the atomic field for which the ion-
ization probability in (K0+ l)th order perturbation theo-
ry is equal to the probability corresponding to order K0.
Since K0» 1, the dependence of multiphoton ionization
on the field strength is very sharp and is practically
of the threshold type. Accordingly, for all fields less
than ^, including the field ^c < gpa, the quantum-me-
chanical ionization process is essentially multiphoton
in character and, because K0 is large, the probability
of this process is vanishingly small in comparison with
the probability of diffusion ionization which, in quan-
tum-mechanical language, constitutes a set of a large
number of photon absorption and emission events. Ac-
cordingly, the diffusion ionization process takes place
for external fields in the range

gc^i^iSa-

When, on the other hand, the condition w«ii is
satisfied for fields ^5 ffc, there is practically no dif-
fusion ionization. Tunneling ionization then takes place

for fields &<&a (g"a is defined in Sec. 5), and the proba-
bility of this process is exponentially small and is equal
to the probability of tunneling ionization in a constant
field, apart from the factor (3gfc3/V)1/2 (see Sec. 5).
The condition for the validity of this mechanism is
(u/ntf)2n« 1 (it is discussed in Sec. 5), which is ob-
viously equivalent to the condition w«fn1/2. When the
less stringent condition uX&n is satisfied, we again
have tunneling ionization but, in this case, the process
occurs in a different way for different quasienergy
states associated with the nth level.19 When &>tft,
tunneling ionization goes over into an above-barrier
electron transition which occurs in the characteristic
atomic time of the order of n3.

The above situations exhaust all the ranges of fre-
quency w and field $ for which there are different
mechanisms of ionization of highly excited atomic
states.

In conclusion, we turn to a numerical estimate of the
quantum number n» 1 above which quasiclassical dif-
fusion ionization can take place. It is clear that the ne-
cessary condition for quasiclassical ionization is that
there should be no appreciable effects associated with
the discrete structure of the atomic spectrum, and that
the stochastic random walk of the electron should take
place over many levels. This is equivalent to demand-
ing that the width of the nonlinear resonance in n,
which is indicated by (30) as being of the order of
nft1 /3, must be greater than unity. From this inequal-
ity, we can obtain an estimate for the necessary field
strength. If we then compare this estimate with the
condition for stochasticity, given by (46), we obtain the
required value of the principal quantum number, name-
ly, n > 5. It is clear that this value is not very high, so
that quasiclassical ionization is not necessarily con-
fined to atoms excited to very high-lying states.

9. OBERSVATION OF NONLINEAR IONIZATION OF
HIGHLY EXCITED ATOMS

Experimental data on nonlinear ionization of highly
excited atoms are exceedingly scarce. However, they
not only clearly show the existence of the phenomena
itself, but also enable us to draw a number of important
conclusions in relation to its basic properties. Before
we turn to these results, let us consider the basic prob-
lems that arise in the design of the experiment, which
is basically different from the standard formulation of
experiments on nonlinear ionization of ground-state
atoms by optical radiation.45

Experiments on nonlinear ionization of highly excited
atoms involve the resolution of two specific difficulties,
namely, the development of targets consisting of atoms
excited to a particular state with a given large principal
quantum number n, and the production of the ionizing
radiofrequency field.

We first turn to the ionizing field and recall that we
are dealing with nonlinear effects that occur at external
field frequencies w« En for n» 1. It is clear from the
foregoing that frequencies close to the Kepler frequency
(2) are of particular interest. Starting from (1) and (2),
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and assuming different high values of n, we can readily
show that a radiofrequency field is necessary for ion-
ization. For example, the binding energy correspond-
ing to the n = 50 state is E50~ 5 • 10"3 eV and the Kepler
frequency is M50~ 50 GHz, which corresponds to a pho-
ton energy Ku~2-10"* eV. It is thus clear that, to
achieve a resonance interaction with the classical
(Kepler) frequency, we need a microwave field with a
frequency u> of the order of 10 GHz, i.e., with a wave-
length of the order of 1 cm. If we use (39) to estimate
the threshold for diffusion ionization of the atom excited
to the n= 50 state, we find that the ionizing field
strength is g"c = 2 • 10"9 a.u. = 10 V/cm, i.e., the inten-
sity of the microwave radiation must be Fc= 0.1 W/cm2.

The technology for producing radiofrequency fields
with given metric, field strength, and polarization is
well established.46 Depending on the particular practi-
cal conditions, it is possible to produce radiofrequency
fields both in the interior of a resonator and in the
space between antennas (horns) or the plates of a plane-
parallel capacitor.

When a radiofrequency field is employed, particular
attention must be paid to the field frequency, wave-
length, path length traversed by the atom in the field,
the velocity of the atom, and the spontaneous lifetime
of the atom in the excited state. These parameter val-
ues must be such as to ensure that the time spent by
the atom in the field is long enough, so that the field is
essentially variable and not constant. The most critical
case is that where the kinetic energy of the atoms is
high and the field frequency is low.

We now turn to the problem of producing highly excit-
ed atoms. Here again, the experimental techniques
available for producing such atoms are sufficiently well
developed.

The first method, which has been developed in the
greatest detail, consists of the cascade ionization of
atoms from the ground state to a given highly excited
state with the aid of a number of lasers (usually, tun-
able dye lasers). The possibilities of this method and
the necessary technology are well known, since they
form the basis for the selective photoionization of
atoms, which is of major practical importance.47'48

One way is to cross a laser beam with an atomic beam
at right angles, so that the linear Doppler effect can be
avoided. Moreover, the limiting spectrum width of
10"3 cm"1 can be achieved by using single-frequency
laser generation. The maximum value of the principal
quantum number of the excited state that can be
achieved is determined by the laser frequency instabil-
ity. The highest value that has been reached so far is
n = 65.49 The efficiency of excitation of atoms in the
atomic beam can be close to unity.50 At the same time,
the density of the atomic beam can be up to 1013 cm"3.
We note that this method restricts the orbital angular
momentum of the highly excited atom to low values be-
cause of the restricted number of excitation stages.

In principle, this method can be used to produce high-
ly excited states of any atoms that are in the atomic
rather than the molecular state in the gaseous or vapor

phase. Atomic beams are particularly easy to produce
from materials with low melting and boiling points, for
example, the alkali metals.

The second method is a development of the classical
charge-transfer technique that is widely used in the
physics of atomic collisions. Its main advantage is that
it can be used to produce highly excited hydrogen atoms.
A beam of protons from an accelerator capable of pro-
ducing 10-keV particles is scattered by a gas. As a re-
sult of charge exchange excited neutral hydrogen atoms
are produced in states with different principal quantum
number n. The probability of excitation to these states
is proportional to1 n~3. An infrared beam from a CO^
laser is directed along the axis of the beam of excited
atoms, the energy of the infrared photons being of the
order of 0.1 eV. The latter energy is approximately in
resonance with the atomic hydrogen transition from the
n = 10 to the n = 50 state. Precise tuning to resonance
with the transition to a state with given n can be pro-
duced in two different ways. In one of these methods,
the energy of the excited hydrogen atoms is varied by
varying the energy of the accelerated protons in such a
way that the Doppler effect can be exploited to establish
resonance between the energy of the n = 10—« = 50
transition and the energy of a laser photon.51'52 The re-
sults reported in Ref. 53 show that, individual states
with n =s 50 can be produced in this way. The selectivity
of this method is determined by the precision with
which the energy of the accelerated protons can be
maintained at a given value. We note that this method
can be used to excite only states with low orbital angu-
lar momenta.

The method has been used51 to produce a beam of
atoms with n =* 50 and intensity of 2.5x 105 atoms/sec.
It is expected that, by optimizing the experimental con-
ditions, the intensity will be raised51 to 1010 atoms/sec.

Another method available for precise tuning to reso-
nance is to use the Stark shift of the levels of the excit-
ed atom in a strong (of the order of 1000 V/cm) con-
stant electric field.54 We note that this method can pro-
duce resonances between states characterized by para-
bolic quantum numbers (n,»1,na), i.e., states with dif-
ferent orbital quantum number I. The selectivity of
this method is determined by the precision with which
one can maintain the high-frequency voltage across the
capacitor producing the constant field. In both cases,
the maximum achievable values of the quantum number
of the excited states is again determined by the stabil-
ity of the frequency and by the spectrum width of the
CO2 laser beam.

Experimental data on the process of nonlinear ioniza-
tion of highly excited atoms can be found in the litera-
ture. "-41-53-55 yfe now turn to Ref. 41, which reports re-
sults that are of the greatest interest for the problem
of nonlinear ionization of highly excited atoms.

Figure 6 shows a block diagram of the apparatus used
in Ref. 41. It relies on the second of the above two
methods of producing highly-excited atoms, i.e., charge
exchange between a gas and a proton beam. The 11-keV
proton beam undergoes charge exchange on a xenon-gas
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FIG. 6. Schematic diagram of the apparatus used in Ref. 41:
1—beam of accelerated H* ions; 2, 6, 10—deflecting magnets;
3—laser beam; 4—window of vacuum chamber; 5—charge-
exchange chamber for H* on Xe; 7—extracted H* ion beam;
8—microwave ionization chamber; 9—H* + H* beam; 11—H*
detector; 12—detector of excited hydrogen atoms (H*). See
text for further details.

S, V/cm

FIG. 7. Amplitude of the proton signal in relative units as a
function of the field strength % (the results of the experiment
reported in Ref. 41).

target. The beam is allowed to pass through an elec-
trostatic filter that removes charged particles and
leaves behind only neutral atoms in different excited
states. This experiment did not use a laser beam for
the resonance excitation of particular highly excited
states. Instead, a difference technique was employed
in which states with n >«c were cut off by a constant
electric field as a result of above-barrier ionization.
The relation used for the critical constant field was
g>a = Cn?, where C was determined from the calcula-
tions given in Refs. 56 and 57 and the experiments re-
ported in Refs. 56 and 58. On the basis of all their da-
ta, the authors concluded that they were able to deter-
mine values of n to within ±5 units. The difference ex-
periment defined the range of n amounting to about 5
units and lying between n= 69 and n = 63. Atoms with
W K 65 selected in this way were ionized in a field of a
particular frequency and configuration. The following
fields were used in turn: a transverse field with a fre-
quency of 0.9-1.8 GHz between parallel plates, an axial
TM,,! field at 9.9 GHz, and an electrostatic Einzel lens
which could be used to produce a field with a principal
Fourier frequency component of about 30 MHz. Com-
parison of the velocity of the excited atoms with the lin-
ear dimensions of the field at 30 MHz (wavelength of the
order of 10 m) shows that the effect of the field in this
case is equivalent to that of a constant field. Protons
produced as a result of ionization of the highly excited
atoms were detected by a Faraday cup.

Figure 7 shows the proton signal amplitude recorded
by the Faraday cup41 as a function of the radiofrequency
field. Data obtained for different frequencies of the ion-
ized field are normalized to the saturated ion signal.
Each curve represents the probability of ionization of
hydrogen atoms excited to the n ~ 65 state as a function
of the field strength.

For the data obtained at a fixed radiation frequency,
we can introduce the critical field ^a corresponding to
the signal amplitude equal to one- half of the maximum
amplitude. The values of ^a obtained in this way can be
expressed in the following form:

where the frequency-dependent quantity C is deduced
from experimental data. For field frequencies w= 9.9
GHz, 1.5 GHz, and 30 MHz, it is found that C is, re-
spectively, equal to 25, 17, and 8. It is thus clear that,

in the above frequency range, the critical field decreas-
es with increasing frequency of the ionizing field.

To make any kind of deduction about the nature of the
ionization process, we must compare the experimental
data (frequencies and critical fields) with theoretical
data on critical fields and their dependence on the radi-
ation frequency. This comparison is made in the next
section.

We now turn to experimental data53 on ionization from
highly-excited states of the hydrogen atom. The proton
beam with an energy of about 11 keV was made to under-
go charge exchange on a xenon-gas target. The laser
beam was then used to induce single-photon transitions
from lower-lying excited states of the hydrogen atom to
states with n = 45-57. The microwave field of frequency
between 9.4 and 11.6 GHz was applied to these atoms
with the result that they become ionized. It was found
that the ion yield as a function of the microwave field
frequency went through a resonance. The authors of
Ref. 53 ascribe such resonances to the fact that the con-
dition &u) = n was satisfied at certain particular fre-
quencies tu (the Kepler frequency n is equal to the sep-
aration between neighboring highly excited states); in
this expression, k = 2,3, 4. Since the Kepler frequency
ft varies with n, the position of the resonances is differ-
ent for different n at constant k. We are thus dealing
with a multiphoton resonance between neighboring high-
ly excited states of the hydrogen atom. The experimen-
tal confirmation of the existence of these resonances is
not a trivial matter from the theoretical point of view
since, on the face of it, one would not expect any reso-
nances to appear because the characteristic linear
Stark splitting n2 & under the conditions of this experi-
ment is greater by a factor of three than B, and by a
factor of 10-15 than the frequency w. The authors of
Ref. 53 emphasize that the resonances should not have
occurred for a further reason, namely, the condition
y ~ l has to be satisfied by characteristic experimental
quantities. According to general theory,4 this should
prevent multiphoton absorption of radiofrequency pho-
tons. Thus, the problem for the theory is to explain
the origin of the resonances in the ion yield.

10. COMPARISON OF THEORY AND EXPERIMENT

The experiment reported in Ref. 53 demonstrated the
ionization of highly excited atoms for external-field
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frequencies that were lower than the Kepler frequency
by a substantial factor (a factor of approximately 5), so
that there are good grounds for concluding that classical
ionization did not occur in this experiment. For u>= 10
GHz and n= 45, the adiabatic parameter is y= 3. It
follows that the process occuring in this experiment
was multiphoton ionization. However, absorption of
photons will not, of course, occur right up to the con-
tinuous-spectrum limit because the probability of mul-
tiphoton ionization near this limit is negligible (see Sec.
4). Something like 5-10 photons are likely to be ab-
sorbed, after which the external field reaches the atom-
ic value or ~WC for the corresponding n. Accordingly,
if we suppose that n= 60 and %= 75 v/cm, we find that
these values satisfy the relation 9= l/5n4. This esti-
mate of the critical field for multiphoton ionization is
in reasonable agreement with (21).

In accordance with the excitation conditions, these
states have low orbital angular momenta, i.e., they are
approximately spherically symmetric. In terms of
parabolic variables, this means that n1^n2 (for nL >n2,
the probability of finding the particle with z >0 is
greater than the corresponding probability for z <0,
whereas the reverse situation prevails for wx <wa).
Consequently, the linear Stark shift, which is propor-
tional to n± - «2, is practically absent in the above low-
frequency field. Since the field is variable, it would
be more correct to speak not of the linear Stark effect
but of the population of the quasienergy states for the
corresponding quasienergy harmonics, but this has no
effect on the conclusion made above. As far as the
quadratic Stark effect is concerned, the results of Sec.
3 indicate that it is approximately 0.15n6^2 for low or-
bital angular momenta. For the fields and values of n
indicated above, the shift turns out to be of the order
of J2/40. Moreover, the shift is almost the same for
neighboring levels, so that the difference between level
energies remains practically undisturbed. It is this
that is responsible for the resonances that are observed
experimentally when the Kepler frequency is a multiple
of the microwave field frequency.

We now turn to an analysis of the experiment report-
ed in Ref. 41. In this experiment, the values of n were
much greater, namely, «^65. For these states, a
radiofrequency field with w** 10 GHz, i.e., w^O.430,
turns out to correspond to a field strength above the
threshold (39) for stochastic ionization. The ionization
was observed for fields ^>10 V/cm, which is in agree-
ment with (39); g"c »5 V/cm. Figure & shows the exper-
imental data taken from Ref. 41 and the results of the
numerical experiment,22 giving the fraction of ionized
particles as a function of B". It is clear that there is
good agreement. Under these quasiresonance condi-
tions, the only competitor to diffusion ionization is mul-
tiphoton ionization. However, the field strength for
which the ionization was observed was much less than
the critical field strength (21) for multiphoton ionization
which, in this case, was of the order of 50 V/cm, so
that multiphoton ionization is described by a power-type
law, and its probability estimated from the relation-
ships given in Sec. 4 turns out to be low in this case.

3 10 30 S,V/cm

FIG. 8. Amplitude of the proton signal (relative units) re-
corded in the experiment described in Ref. 41 as a function of
the field strength & for n = 65. Points—experimental; cros-
ses—numerical calculation.22 The field frequency was 01= 9. 9
GHz (the experimental values correspond to the curve drawn
through the open circles in Fig. 7).

On the whole, the results of this comparison are not
inconsistent with the assumption that this experiment is,
so far, the only example of stochastic instability of a
highly excited atom, and of the observation of diffusion
ionization of a highly excited atom.

Let us now analyze the experimental data*1 for w = 30
MHz (see Fig. 7) from the point of view of the theory.
We note that this frequency is lower by a factor of one
thousand than the Kepler frequency n, so that there is,
of course, no question of stochastic ionization. In this
case, ionization is produced in a practically constant
field and is the result of above-barrier passage of the
electron across the potential barrier. In accordance
with general theory (see Ref. 1 in Sec. 5), the above-
barrier motion of the electron occurs for atomic fields
given by (26). Experiment shows that the ionization pro-
cess occurred for fields ^Kl/8n4= 30 V/cm, which is
in reasonable agreement with the estimate given by (26).

The case w = 1.5 GHz, for which y-1, is intermediate
between multiphoton and tunneling cases of quantum-
mechanical ionization. The experimental field strength
for which ionization takes place at this frequency is also
intermediate, as we have seen in Section 8. Since, un-
der these conditions, w = 0.065O and 9>&c, the situa-
tion is closer to the above-barrier transition of the
electron, which is impeded by the fact that the field is
still not constant.

To summarize, we may conclude that the results of
experiments with highly-excited hydrogen atoms, the
results of numerical computer experiments, and the
conclusions ensuing from the analytic description of the
ionization of highly excited atoms indicate that there is
good qualitative and quantitative agreement between
them. We thus have confirmation of the existence of a
new, quasiclassical process of diffusion ionization of
highly excited atoms. It is important to note, however,
that, so far, there is no published experiment that un-
ambiguously confirms the diffusion nature of the ioniza-
tion process. Such an experiment is not simple but
possible, in principle. As an example, we suggest
measurement of the ion yield as a function of the dura-
tion of the interaction with the external field. In the
case of multiphoton ionization, for which the ion yield
is characterized by the probability of ionization per unit
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time, the yield is directly proportional to the duration
of the interaction with the external field. In the case of
diffusion ionization, this relationship is obviously not
valid.

Another possible way of confirming experimentally the
existence of diffusion ionization is to frequency-modu-
late the external field: ^(t) =9 cos(utf + Asino>mO. When
w~fl and \u>m^ w/3, the modulation depth is of the same
order as the separation between the resonances Afi = w/
2. This means that the condition for the appearance of
diffusion ionization is that there should be overlap be-
tween the much more closely spaced modulation reso-
nances with Afl = wm« to, since we are assuming that
X» 1. Thus, modulation of the external field results in
a reduction by a factor of A3/2 in the critical field (46)
for diffusion excitation. Thus, for example, when n
= 65, u>/27r= 20 GHz, wM/2?r= 1.1 GHz, and \= 6, we
have ffc»(84«4X3/2)-1 a0.2 V/cm. The diffusion coeffi-
cient is then still given by (56). Modulation of the ex-
ternal field has little effect on the number of photons in-
volved in the multiphoton ionization process because the
maximum frequency of the perturbing field is increased
by only 30%. Correspondingly, there is also very little
change in the critical field for the multiphoton ioniza-
tion process.

11. CONCLUSIONS

It is well known that, in the general case, the interac-
tion between the external electromagnetic field and the
atom is essentially quantum-mechanical in nature. The
above discussion of the interaction with a highly excited
atom has shown that, in this special case, the interac-
tion is quasiclassical. The use of classical mechanics
has enabled us to describe a new mechanism for the
ionization of a highly excited atom, which has no analog
in the case of multiphoton or tunneling ionization.
Analysis of the classical equations of motion shows that,
under certain definite conditions, the dynamics of an
atomic electron in the external field is stochastic in
character (although there is not external perturbation).
This results in the diffusion of the electron along the
energy scale, leading to the ionization of the atom. We
note once again the qualitative difference between the
diffusion ionization process and the quantum-mechanical
ionizatio.i processes, such as photoionization and non-
linear multiphoton and tunneling ionization. Whatever
the specific mechanism involved, the process of quan-
tum-mechanical ionization always consists of a single
transition of an electron from an initial bound state to
a final free state. Diffusion ionization, on the other
hand, consists of a large number of transitions of the
electron in which its energy changes ia a random fash-
ion both in sign and magnitude. This is why, in the de-
scription of quantum-mechanical ionization, we have
introduced the concept of probability per unit time,
wheraas diffusioa ionizatioi can be described only in
terms of the total probability.

Numerical experiments in which diffusion ionization
of a highly excited atom was simulated on a computer
have led to results that are in good agreement with the
analytic description of this process. As far as actual

experiments are concerned, the number of these is ex-
ceedingly small. The results of the only experiment
reported so far,41 in which the experimental conditions
corresponded to the conditions for diffusion ionization,
are in good agreement with the predictions of the theo-
ry. However, the conclusive experiment that would un-
ambiguously confirm that it is the diffusion ionization
and not quantum-mechanical ionization that is being ob-
served has not as yet been performed. This type of ex-
periment would be of interest, above all, for the reso-
lution of the problem of ionization of highly excited
atoms. However, the interest in this experiment actu-
ally extends beyond the confines of the above problem
because the highly excited atom constitutes one of the
realistic models capable of reflecting the characteris-
tics of the dynamics of quantum-mechanical systems
that are stochastic in the classical limit.

Although the main interest attaches at present to ex-
periments with highly excited atoms, there are a num-
ber of important questions that, so far, have not been
answered by the theory.

One of these questions is the description of above-
barrier ionization in a variable field. In above-barrier
ionization (and in the case of tunneling ionization), the
difference between a variable and a constant field is
that the barrier varies with time. By analogy with the
tunnel effect, we have-to assume that the conditions
that must be satisfied for above-barrier ionization to
take place must involve not only the field strength (bar-
rier height) but also field frequency.

If we now turn to diffusion ionization, we find that the
most fundamental problem is, perhaps, that of the role
of quantum-mechanical corrections to the classical
theory of the stochastic excitation of an atomic electron
and its diffusion along the energy scale. It is important
to draw attention to the fact that, in the course of time,
the quantum-mechanical corrections may lead to radical
changes in the dynamics of the system (see, for exam-
ple, Ref. 37).

As regards traditional approaches to the description
of diffusion ionization, it is desirable to continue and
develop numerical experiments with a view to obtaining
data on the probability of diffusion ionization in a
broader range of frequencies and for lower field
strengths, and also data on the limit for the appearance
of stochastic excitation of an atomic electron.

The natural question that arises from all this is: to
what extent do the above phenomena occur not only in
atoms but also in highly excited molecules? As far as
molecules in highly-excited electronic states are con-
cerned, there is no doubt that all that we have said
above in connection with highly excited atoms applies to
them as well. However, there are no direct experimen-
tal data relating to this case. Analogous phenomena
may also occur for molecules in highly excited vibra-
tional states. The greatest practical interest is in the
excitation of complex molecules to vibrational states
by infrared laser radiation, resulting in the dissocia-
tion of the molecules.59-60 The possibility of the disso-
ciation of a molecule as a result of its stochastic insta-
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bility and diffusion excitation has been noted in the liter-
ature.61-62 The critical field is given in Ref. 62 (or a
number of complex vibrationally excited molecules.
Theoretical estimates of the critical field are in satis-
factory agreement with experimental results.59'60 It
cannot be said, however, that stochastic instability and
diffusion excitation of molecules are the generally ac-
cepted explanation of the dissociation of molecules by
infrared laser radiation.59'60 For example, we note Ref.
63, in which the excitation of high vibrational states of
a polyatomic molecule in an infrared field is described
within the framework of quantum mechanics for a par-
ticular model of the molecular spectrum. The overall
situation in the case of molecules is the same as in the
case of atoms: the classical process of stochastic in-
stability and diffusion excitation explains the experi-
mental data but there are alternative explanations.

Finally, since the phenomena described above in a
qualitative way do not depend on the particular shape of
the potential, it would be interesting to investigate the
external multiphoton photoelectric effect as well. From
the standpoint of the theory, this case is particularly
interesting because the potential is oie-dimensional in
character, which substantially simplifies both analytic
calculations and numerical simulation.64

Summarizing the situation as a whole, we may con-
clude that research into the process of perturbation of
the ionization of excited atoms in low-frequency fields
remains a highly promising field of activity for both
experimenters and theoreticians.

Note added in proof. The results of an experiment in
which the shift (which is quadratic in the field) of the
22P state of the rubidium atom was observed are re-
ported in Ref. 65.
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