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1. INTRODUCTION

Researchers from a wide variety of disciplines have
always been concerned with equations of state, which
are fundamental characteristics of substances, deter-
mining whether the formal general apparatus of thermo-
dynamics and gas-dynamics can be applied to specific
physical systems. Interest in equations of state has re-
cently risen sharply, apparently for two basic reasons.

The development of high-power sources of concen-
trated energy (lasers; electron, ion, and neutron
beams; shock and electromagnetic waves; etc.) has
made it possible to study states of matter at extremely
high pressures and temperatures which were previous-
ly inaccessible, so that the corresponding regions of
the phase diagram have not previously been mapped.
This development has significantly increased the num-
ber of researchers working in the physics of high ener-
gy densities—a scientific field which, for the most
part, has previously attracted the interest only of as-
trophysicists. In addition, progress in numerical
methods for powerful new computers has led to the de-
velopment of efficient difference schemes for calcula-
tions dealing with time-dependent gasdynamic phenom-
ena. The effect has been to increase sharply the re-
quirements imposed on a description of the thermody-
namic properties of a substance, since the accuracy of
gasdynamic calculations is determined primarily by the
errors of the equation of state for the particular medi-
um.

Thermodynamic characteristics of various substances
must be calculated in order to solve essentially any
problem in the contemporary physics of high energy
densities—in the effort to achieve controlled fusion, to
design high-power MHD generators, to carry out cal-

culations on the dynamics of strong shock waves, for
the protection of space vehicles from meteoroids, and
for determining the structures of stars and planets.
These problems, along with the problems involved in
the promising technology of high pressures (the syn-
thesis of diamond phases of graphite and boron nitride;
explosive, electron-beam, and laser welding and ma-
chining of metals; etc.), have provided a powerful
stimulus for active experimental and theoretical re-
search. The goals of this research have been to move
into unexplored regions of the phase diagram and to ob-
tain more-detailed information in the regions of the
phase diagram which have already been explored.

The basic difficulty confronting a systematic theoreti-
cal calculation of the equation of state of a substance by
the methods of statistical physics is the need to incor-
porate correctly the structurally complicated interpar-
ticle interaction in the quantum-mechanical many-body
problem at arbitrary values of the coupling constant.
The calculations must therefore deal with simplified
models whose ranges of applicability are limited and
are determined in each particular case, either from
the internal characteristics of the model or through a
comparison with more accurate solutions or experimen-
tal data. The last approach is obviously the most con-
structive, since there are many well-known examples
(the van der Waals theory, nonideal plasmas, etc.) in
which the actual range of applicability of the models
goes well beyond the boundaries within which the cor-
responding small parameters of the models are in fact
small.

In the next stage of the development of the thermody-
namic models, the experimental data available are used
to choose the basic numerical parameters in the func-
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tional dependences constructed from the exact solutions.
The semiempirical models obtained in this manner are
used to describe and formulate suitable zeroth-order
approximation models in particularly complicated situ-
ations (liquids, solids, and dense plasmas) where no
small parameter can be found for a perturbation theory.
The success of the semiempirical models is measured
by how well they describe various types of experimental
data, over as broad a range as possible, and also by
whether they support extrapolation calculations.
Clearly, experiments are not merely a necessary sup-
plement to the semiempirical models but in fact the
very basis for their existence.

Finally, a large part of the state diagram of a sub-
stance—and a part important for practical applica-
tions—is presently inaccessible both theoretically and
experimentally. The situation provides a fertile soil
for the growth of a wide variety of hypotheses, usually
formulated in terms of heuristic models which are ex-
trapolations into the highly nonideal region of results of
a simpler calculation carried out for slight deviations
from the ideal. Models of this sort, which are qualita-
tive and do not come close to being quantitative, fre-
quently predict new phases and states with exotic prop-
erties, demonstrating the need for careful experimen-
tal study of regions with important interparticle inter-
actions.

Our purposes in this review are to carry out a com-
parative analysis of the various thermodynamic mod-
els and to discuss their ranges of applicability over
broad ranges of the parameters. Since the thermody-
namic literature is vast, we will single out the basic
ideas underlying the theoretical methods, and we will
discuss experimental results only very briefly. We di-
rect the reader interested in the calculation details and
exhaustive bibliographies to the specialized reviews
and monographs in Refs. 1-9, which contain detailed
studies of the properties of media in specific regions
of the state diagram and which are addressed to physi-
cists working in the corresponding fields. Since the ar-
ticles and books on model equations of state make up a
long list, we will be citing primarily recent work,
which serves as an introduction to the history of the
given topic.

We will focus primarily on describing the states
which are of the most practical interest for the phys-
ics of high energy densities. These are states which
have already been reached or can be reached under
controlled conditions in the foreseeable future. The
ultraextreme astrophysical applications will thus not be
taken up here. The thermodynamics of such situations
is strongly affected by relativistic effects, strong grav-
itational and magnetic fields, thermal radiation, the
conversions of elementary particles, etc. These ex-
tremely interesting questions are discussed in Refs. 20
and 21, where an exhaustive classification of extreme
states is presented. We will also omit strength effects
in solids and the thermodynamics of chemical com-
pounds.

The phase diagram with which we are left after these
exclusions is shown schematically in Fig. 1. A neutral

FIG. 1. Phase diagram. Hatched region I—melting; hatched
region II—evaporation; Tp—triple point; Cp—critical point;
arrows—direction of weakening interparticle interaction.

gas occupies the region of low temperatures and low
densities, where the interparticle interaction is weak
and can be incorporated in a virial equation of state
(Section 2). With increasing density, the strengthening
interaction in the system forces us to resort to a purely
empirical description, while at supercritical conditions
we must deal with models of liquids (Section 6). With
increasing temperature, we find a progressive disso-
ciation and ionization of first the outer and then the in-
ner electron shells of atoms (Section 3). The thermo-
dynamic properties of a plasma are described by the
equations of ionizational equilibrium, which use experi-
mental data on the spectra of atoms and ions or calcu-
lated ionization potentials. The applicability of this ap-
proach in the case of low densities is determined by the
deviation from the condition of local thermodynamic
equilibrium.

As a plasma is compressed, Coulomb-interaction ef-
fects strengthen and cause a lowering of ionization po-
tentials. The model of a single-component plasma, a
system of point charges in a homogeneous charge-neu-
tralizing background, is widely used to analyze the ef-
fects which arise in this situation. Its simplicity makes
this model convenient for numerical simulations, and
the results can be used to test the various analytic
methods used in the thermodynamics of real dense
plasmas.

Quantum-mechanical effects are also important in
dense plasmas, particularly at low temperatures. A
simplified description of quantum effects accompanying
the electron-ion interaction based on a binary pseudo-
potential has made it possible to use the general Monte
Carlo method for thermodynamic calculations. It turns
out that the characteristics of the pseudopotential for a
low-temperature dense plasma can be chosen in a re-
liable way from experimental data on highly nonideal
plasmas.

At higher pressures the strong interparticle interac-
tion affects not only free electrons but also those bound
in atoms and ions, thereby deforming the discrete en-
ergy spectrum of the plasma. This effect can be de-
scribed by a model of a bounded atom which effectively
incoporates the finite size of the ion and the effect of
the plasma environment on the spectrum of this ion.

The structure and thermodynamic description of mat-
ter become much simpler at extremely high pressures
and densities, where the electron shells of atoms are
crushed, and atoms acquire a quasiuniform electron
density distribution describable by the quasiclassical
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approximation to the method of a self-consistent field
(the Thomas-Fermi model; Section 4). A further in-
crease in the density or temperature causes a relative
weakening of the Coulomb interaction, so that the equa-
tions for an ideal Fermi or Boltzmann electron gas,
respectively, can be used. The lower limit on the ap-
plicability of the Thomas-Fermi model is determined
by the approximate incorporation of the quantum and
exchange corrections and the need to take into account
the shell structure of the elements.

As the pressure and temperature are lowered, the
behavior of the substance becomes determined by the
particular shell structure, the way in which the elec-
tron energy bands are filled, and the symmetry of the
crystal lattice (Section 5). Here it becomes a compli-
cated matter to classify the possible states, and the
modern methods of the quantum theory of solids must
be used to describe the various situations. At suffi-
ciently high pressures, close-packed structures arise
in solids after a series of polymorphic transitions, so
that the Wigner-Seitz spherical-cell model can be used.
In this model, one seeks a solution of the wave equation
using Bloch boundary conditions.

A detailed study of the various aspects of the Fermi
surface and a description of loosely packed structures
require consideration of the deviations from spherical
symmetry and the use of more sophisticated quantum-
mechanical models of augmented plane waves and lin-
ear muffin-tin orbitals, the Green's-function method,
etc. Determining the band structures in these approxi-
mations requires laborious calculations, which have
been carried out for only a few elements, and in only a
limited part of the phase diagram.

The factor primarily determining the thermodynamic
properties of the nontransition metals is the particular
behavior of the valence electrons, which depends only
slightly on the intra-ion potential. It becomes possible
to introduce an electron-ion pseudopotential interaction
with an extremely simple description of the ion core.
The numerical parameters of the pseudopotential are
chosen from experimental data on the shape of the Fer-
mi surface. The absence of data of this sort at high
pressures and temperatures limits the usefulness of the
pseudopotential model over a rather broad range of pa-
rameters.

The region of the liquid state (Section 6) has tradi-
tionally been considered the most difficult and least
studied, since the strong interaction and the disorder
render theoretical predications of the properties of
real liquids extremely uncertain. It has recently
been found possible to formulate some realistic
zeroth-order approximation models based on extremely
simplified potentials of hard and soft spheres, which
allow the use of the numerical methods of molecular
dynamics and the Monte Carlo method. Studies by this
approach have reproduced the basic qualitative features
of the experimentally observed structure factors, and
the nature of melting and crystallization has been ana-
lyzed (Section 7). The equations of state of real liquids
are determined from computer calculations based on a
variational method of perturbation theory; the param-

eters of the binary interparticle potential are found by
comparing the calculated results with experimental
data. The absence of reliable experimental data at high
pressures and temperatures has significantly retarded
the development of realistic models for liquids which
would work all the way up to the boiling boundary where
the liquid converts into a vapor or (in the case of met-
als) directly into a plasma phase.

The most extensive and reliable experimental results
on the equations of state of matter at high pressures,
in the condensed phase, have been obtained by dynamic
methods based on the use of strong shock waves for the
generation of, and the thermodynamic diagnostics of,
the resulting states. These experimental results are
the basis for semiempirical equations of state (Section
8) which have been constructed from simplified models
regarding the thermal-vibration spectrum and the na-
ture of the interparticle interaction in a substance.
These semiempirical equations of state contain several
adjustable parameters for a quantitative fit of the ex-
perimental results. Although these models are defin-
itely empirical, they give a highly accurate description
of a large part of the phase diagram, including high-
temperature melting and evaporation, and they predict
the correct asymptotic behavior in the regions of the
Thomas-Fermi gas and the ideal plasma.

It can be seen from this analysis that a rigorous the-
oretical description of the properties of a substance is
possible at extreme pressures and temperatures at the
periphery of the phase diagram, while the interior part
of the diagram—the most interesting and the most im-
portant region in practice—can be described, if at all,
only by the model-based theories. This circumstance
provides a real stimulus to the active theoretical and
experimental research presently being carried out on
the physical properties of matter under conditions of
strong interparticle interaction.

2. EQUATIONS OF STATE OF GASES

The model of an ideal gas is a first and simplest ap-
proximation, applicable at low densities and modest
temperatures, where thermal dissociation and ioniza-
tion do not yet occur in the system and where the en-
ergy of the interparticle interaction is small in com-
parison with the kinetic energy of the particles. The
most common method for taking this interaction into
account is to use Mayer group expansions, which lead
to a virial equation of state1

(2.1)

where the virial coefficients B{(T) incorporate the in-
teraction of the i particles through the potential (fu(r).
The shape and the parameters of the potentials <p u are
chosen for a consistent description of information of as
many types as possible—data from quantum-mechanical
calculations of binding energies, data on the spectra of
diatomic molecules, diatomic molecules, data from
molecular-beam experiments, and the various types of
thermophysical data.

This type of description of a system has been ana-
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lyzed for inert gases with exp-6, 12-6, and w-6 poten-
tials, and the parameters and optimum type of poten-
tial have been determined.2 The short-range nature of
these potentials means that the integrals in Bi con-
verge, but practical calculations of the higher-order
virial coefficients run into difficulties because of the
need to evaluate multiple integrals. The first seven
virial coefficients have now been calculated for the
simple hard-sphere potential, and the first few coeffi-
cients have been calculated for a more realistic inter-
action potential.2 In the specific calculations, the con-
vergence of expansion (2.1) rapidly worsens with in-
creasing density, forcing us to use a large number of
terms in the series, containing unknown higher-order
virial coefficients. We wish to emphasize that the con-
vergence of the virial series has been proved only for
an extremely low-density gas.

The effects of the nonadditivity of the interparticle in-
teraction become important in dense systems. Within
the framework of the three-particle Axelrod-Teller po-
tential,2

A<Pi23 = v (1 + 3 cos 012 cos e13 cos 9,3) (r12r13ra3)-»,

these effects change the value of B3 of argon by 40% at
the critical point. These circumstances limit the ap-
plicability of the virial equations of state at high gas
densities. For this region, many empirical equations,
extremely complicated, have been proposed. These
equations are a detailed approximation of the experi-
mental data and are convenient for engineering thermo-
dynamic calculations.

In highly compressed gases the energy of the inter-
particle interaction becomes comparable to the kinetic
energy of the particles, and the situation essentially
corresponds to the liquid state, although the distinction
between a liquid and a gas at supercritical tempera-
tures is of course arbitrary. Physical models based on
integral equations and a numerical simulation of highly
compressed classical systems are presently being used
very successfully to describe such situations. These
models will be discussed in Section 6.

3. THERMODYNAMICS OF PLASMAS

As the temperature of a gas is raised, dissociation
and then ionization occur, causing free charges to ap-
pear in the neutral system. The long-range nature of
the Coulomb interaction makes this interaction a gov-
erning influence in the thermodynamic properties of a
substance over broad ranges of parameters. This long-
range nature of the Coulomb potential also causes theo-
retical difficulties,4'5 ruling out the application to plas-
mas of the conventional apparatus of the statistical
theory of gases (the corresponding integrals diverge).
A regrouping and a summation of the most divergent
terms of the perturbation-theory series, however,
make it possible to derive final expressions incorpo-
rating screening effects. Quantum effects also play a
role of fundamental importance in a dense plasma,
making it stable and giving it the correct ideal-gas as-
ymptotic behavior at low temperatures.5

For the Coulomb potential, the electronic properties

of a plasma are characterized by two dimensionless
parameters. The first, the "plasma nonideality param-
eter," is the ratio of the energy of the Coulomb interac-
tion to the kinetic energy E^: TD=e2/rDtK (rD

is the Debye screening length). The sec-
ond is the degeneracy parameter (Ae = 7h/2rafeT), which
determines the importance of quantum -mechanical ef-
fects in the system. The relative importance of these
effects is shown in Fig. 2, which also shows the ranges
of working parameters of the most typical plasma ap-
plications.

At high temperatures (regions I and II in Fig. 2), the
quantum effects of the interaction of the free charges
are inconsequential (wX^«l) , and the kinetic energy EK

~kT is greater than the typical Coulomb energy (rc

«1), so that the model of an ideal Boltzmann plasma
can be used. Under this condition, TS Ry (region I),
ionization is well developed, while at T<Ry (region II)
neutral bound states also exist in the system. Calcula-
tions of the plasma composition in regions I and II run
into no particular difficulties. These calculations are
carried out from a chemical model based on the equa-
tions for ionizational equilibrium.4

With isothermal compression, the Coulomb interac-
tion is intensified in a plasma; in region III the Cou-
lomb energy becomes comparable to the kinetic ener-
gy. rDSl, complicating a correct theoretical descrip-
tion of such states. An important point is that there is
a relatively large number of atoms in the system be-
cause of the relatively low temperatures, and if these
atoms are to be taken into account it is necessary to
calculate correctly the discrete spectrum of the com-
pressed plasma. A further compression of the plasma
in region III increases the ratio of the Coulomb energy
to the kinetic energy, but it simultaneously gives rise
to a degeneracy of the electrons, wX^~ 1. At this point
the Boltzmann statistics gives way to Fermi statistics;
the scale kinetic energy is cF~K2n2/3/2m; and a further
compression of the nonideal plasma (region IV) reduces
the relative importance of the interparticle interaction,
substantially simplifying the properties of the system in
region V. Because of the large mass of the ions, their
degeneracy occurs at higher densities, so that the Cou-
lomb interaction remains strong in region V, where we
find crystals and liquids, which are described by ap-
pealing to the symmetry and the short-range order
(Sections 5 and 6).

The best-studied although most simplified model of

Pulsed controlled
fusion

power plants
Shock tubes

Debye
II

ischarges , | Steady-state
! %y controlled fusion

fOs 10s

FIG. 2. Typical plasma states.

468 Sov. Phys. Usp. 26(6), June 1983 A. V. Bushman and V. E. Fortov 468



Coulomb systems is the model of a single-component
plasma, which is stabilized by placing it in a homogen-
eous background of the opposite charge for charge neu-
tralization. There is no recombination in such a plas-
ma, and the nature of the interaction potential raises
no doubt.

This plasma model has been the subject of extensive
asymptotic theories22"24 based on expansions in small
parameters, regrouping and selective summations of
perturbation-theory series, and approximations which
borrow the integral-equation technique from the theory
of liquids.25 The standard here is the Monte Carlo
method,26"28 which uses direct computer calculations of
the configurational integral, which furnish exhaustive
information on the classical single-component plasma
over an extremely broad range of the parameter r,
0.05-300 [T = e2/kTrvs, where the average interparticle
distance rws = (3/4irw)1/3

; i.e., F = (r2 /3)1/3], and which
are used to construct simple approximate expres-
sions.28 The screening of the background charges was
taken into account in Monte Carlo calculations in Ref.
29 through calculations of the dielectric permittivity of
the background in the approximation of a linear re-
sponse. The analytic methods developed on the basis of
a variational principle30 use a perturbation theory to de-
scribe the ion background; calculations from the hard-
sphere model are used as a zeroth-order approxima-
tion. The results found by this approach are fairly
close to those found by the Monte Carlo method, espe-
cially at large values of F (Fig. 3). It should be noted
that the actual calculations of the properties of a sin-
gle-component plasma frequently use, as a model more
realistic than the hard-sphere model, the zeroth-order
approximation of the determination of the thermody-
namic characteristics of liquid metals (Section 6).

The success of the various asymptotic approxima-
tions in extrapolations can be improved dramatically31

(Fig. 4) by imposing the further requirement that the
calculated correlation function obey the condition of lo-
cal electrical neutrality, corresponding to the equality
of the charge of the polarization plasma cloud and the
charge of the particle creating this cloud in the plasma.
This condition and the analogous conditions imposed on
the screening of the dipole and quadrupole moments31

do not depend on the strength of the interaction in the
system; they follow from the fundamental fact that
there exists a thermodynamic limit of Coulomb sys-
tems.32 The incorporation of these conditions effec-
tively corrects the approximate correlation functions
found from model-based considerations or constructed
through expansions in small parameters. We might

FIG. 3. Free energy of a single-component plasma.30 MC-
Monte Carlo calculations; Var—Variational method (upper
boundary); DH—Debye-Huckel law (lower boundary).

FIG. 4. Interaction energy of a single-component plasma
without (a) and with (b) the condition of local electrical
neutrality.31 MC—Monte Carlo calculations; DH—Debye-
Huckel law; UDH—unllneartzed Debye-Huckel law; GHD—
Debye-HUckel law in a grand canonical ensemble; MN—with
allowance for the FD dependence of the screening radius.

note that the solution for a single-component plasma of
the equations of "superinterlocked" circuits,25 in which
the necessary conditions of a positive correlation func-
tion and local electrical neutrality are satisfied auto-
matically, yields results similar to those found from
Monte Carlo calculations.

The numerical calculations of the properties of a sin-
gle-component classical plasma in Refs. 26-28 demon-
strate the appearance at a significant compression of
thermodynamic anomalies and of a short-range order.
These events have been interpreted as a crystalliza-
tion.33 According to the recent results of Ref. 28,
which incorporate the dependence of the energies of the
liquid and solid phases on the number of test particles
used in the Monte Carlo method, this transition corre-
sponds in the limit N~ °° to a value F = 178 ± 1.

In a real plasma, degeneracy sets in with increasing
density, and the interaction is usually described in this
case by means of the dimensionless parameter rs = rws/
«0 (where a0 = K/me2 is the Bohr radius), which is a
measure of the ratio of the average interparticle dis-
tance to the atomic distance. This parameter is small
in a highly compressed plasma, so that perturbation
theory can be used, and the first few terms in the ex-
pansion in the coupling constant can be evaluated.22'34

Wigner35 has developed a crystal model for a low-den-
sity degenerate (rs » 1) plasma by assuming that the
electron component converts into a face-centered cubic
lattice as a result of the strong Coulomb interaction.
The properties of this crystal and the conditions for its
melting have been studied in detail36 with allowance for
the zero-point and thermal vibrations, anharmonicity,
and exchange effects.

The characteristics of a quantum electron plasma
have also been found by Monde Carlo methods.37 These
calculations describe a transition from an unpolarized
liquid to a ferromagnetic liquid at rs> 26 and a Wigner
crystallization at1' rs> 67. Dolgov and Maksimov38 have
argued that that estimate is too high; they studied lo-
cal-field effects and, working in terms of the dielec-
tric permittivity, analyzed the stability of a degenerate
electron liquid with respect to the propagation of space-
charge and spin-density waves. The particular fea-
tures of phase transitions in Coulomb systems were
analyzed in detail in the review by losilevskU,39 who
pointed out that the very conditions for the existence of

469 Sov. Phys. Usp. 26(6), June 1983 A. V. Bushman and V. E. Fortov 469



a Wigner crystal correspond to a region of thermody-
namic instability with respect to the gas-liquid transi-
tion. We might note in this connection that as yet there
has been no experimental observation of Wigner crys-
tallization in Coulomb systems, and the reports of an
experimental observation of a Wigner crystal in exper-
iments using condensed explosives40 have been shown
by further study41 to have been erroneous.

On the whole, the model of a single-component plasma
is effective for calculating the properties of the electron
gas in a simple metal, where the energy of the system
is determined primarily by the direct Coulomb repul-
sion between ions and their indirect attraction through
conduction electrons42 (Section 6). Under certain condi-
tions this model also describes the thermodynamics of
the plasmas of metal-ammonium solutions, heavily
doped semiconductors, the hydrogen-helium plasmas of
Jupiter and Saturn, and the nuclear liquid in dense and
superdense stars.

The primary shortcoming of the single-component
plasma model is its extremely simplified treatment of
the charge of the opposite sign, which is taken to be a
structureless neutralizing background. Better plasma
models attempt to take into account explicitly the struc-
ture and the interactions of the charges of all signs.
Here it is necessary to describe the quantum-mechani-
cal effects accompanying the Coulomb interaction,
which causes a convergence of the coordinate part of
the Gibbs probability as unlike charges approach each
other and ultimately makes the system stable. Many
attempts4 have been made to retain the classical for-
malism by cutting off the Coulomb potential at short
range and requiring that there be no configurations with
charges moving close together. In this approach, the
final result incorporates the cutoff parameter. Furth-
ermore, many of these models lose their thermody-
namic stability at TD2 1, where the cutoff radius be-
comes comparable to the interparticle distance.

The systematic quantum-mechanical treatment of the
problem works from a Hamiltonian containing the com-
plete interaction among all charges. This approach
corresponds to the physical model of a multicomponent
plasma, where the discrete spectrum makes a finite
contribution, which arises simultaneously with the con-
tribution of the continuous spectrum of the free
charges.5 The physical model is the most general and
systematic one for a real plasma, but practical calcu-
lations using this model are extremely laborious and
have not yet been carried out to any extent,43'44 since
the application of this model to the plasmas of many-
electron elements would necessarily require a quan-
tum-mechanical calculation of the internal structure of
the bound states.

Configurations with particles moving close together
are improbable in a low-density plasma, so that the
models can be simplified. The most important simpli-
fication is to describe separately the states of the dis-
crete and continuous spectra, which determine the in-
ternal structure of the atoms and ions and the behavior
of the free particles, respectively. This approxima-
tion is the basis for the most popular model in plasma

physics, the so-called chemical model, since the num-
ber of particles of different species {jV,} is determined
in this case by the conditions for chemical equilibri-
um.

' dF(V, T. (3.1)

and all hypotheses regarding the structure of the parti-
cles and their interactions are embodied in the expres-
sion for the free energy,

F (V, T, {Nj}) = FK + FA + F,+ Ft.

The contribution of the discrete spectrum, Fd, in this
model is singled out and calculated without reference to
the contribution of the continuous spectrum, which is
represented by the kinetic part FK. The various cor-
rections to the interparticle interaction are described
by the term Fe. If the radiation is in local thermody-
namic equilibrium with matter, then it is also neces-
sary to take into account the contribution of the energy
of the photon gas, which becomes important at extreme-
ly high temperatures or at extremely low densities, Fd

The free energy of the j-th component of an ideal gas
is45

-, (3.2)

where the reduced chemical potential o^ = y.s/kT is a
measure of the degree of degeneracy of the plasma and
is determined from the relation/1/2(ay) = JV/Xj/^ 7. Ac-
cording to (3.2), incorporating the degeneracy of the
electrons lowers the degree of ionization of a plasma,
increasing the kinetic part of the electron pressure.

In the spirit of the component composition of the plas-
ma adopted in the chemical model, one singles out the
various particular types of interparticle interactions in
the calculation of .Fc: the atom-atom, electron-atom,
ion-atom, and the Coulomb interaction of the charges of
the continuous spectrum, which is most characteristic
of a plasma. The Coulomb corrections in the chemical
model are usually calculated from relations derived
for a fully ionized plasma by perturbation theory.4-5

The primary correction is calculated by summing over
the so-called ring diagrams5; for a degenerate plasma
it corresponds to the Gell-Mann-Brueckner model, and
in the Boltzmann limit it leads to the Debye-Huckel
model,

Fet=—kT^N,-^-{P(~t}}. (3.3)
3

The dimensionless parameter of the expansion in the
perturbation-theory series in (3.3), A=V/47rAJKp, is
directly related to the generalized screening radius flD

= ^ k T / ^ T T e ^ j Z j N j B f / V ) , where the functions 0y

=/-]/ 2(
 a>)//i/ i aP reflect the degeneracy of the j-th

component, while the factor {P(y}} describes the effect
of the uncertainty principle in a hot plasma (e2Z^/kT
«Xy) and corresponds to an effective repulsion of the
charges at short range.5 The term in the expansion
following (3.3), calculated for a plasma, is called the
ladder term and describes the binary interaction of
charges through a dynamic screened Coulomb potential.
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Several approximate expressions, with complex struc-
tures, have been proposed45 to take into account quan-
tum-mechanical and diffraction effects in the ladder and
following terms of perturbation theory.

In addition to the Coulomb interaction, perturbation-
theory methods can be used to calculate the corrections
of first, second, and third order for the exchange inter-
action between free particles of identical spin.5 The
expressions derived by perturbation theory are asymp-
totic expressions, strictly applicable only at small val-
ues of the expansion parameter, A « 1. According to
Ref. 45, for example, an estimate of the range of ap-
plicability of the ring model, (3.3), yields AS 0.5 (ae

<2) , while the more modest estimate A<0.1 is given in
Ref. 5.

In a very nonideal plasma, with rD 2 1, the perturba-
tion-theory results do not hold, and it becomes neces-
sary to call upon parameter-free Monte Carlo and mo-
lecular-dynamics methods or to use extrapolations.
Convenient in the latter approach is the ring Debye ap-
proximation in a grand canonical ensemble,46 which ex-
hibits in the case of a slightly nonideal plasma the cor-
rect asymptotic approach to the ordinary Debye approx-
imation, (3.3), while in a very nonideal plasma (FD » 1)
it does not cause a loss of thermodynamic stability be-
cause of the moderate values of the calculated correc-
tions. This tendency toward a lowering of the correc-
tions has been confirmed independently by results cal-
culated by rigorous asymptotic methods and by various
model-based approaches. It has also been confirmed by
experiments on the shock compression of nonideal plas-
mas. Consequently, calculations using the ring Debye
model46 are the most suitable for extrapolating into the
domain of highly nonideal plasmas.

The numerical Monte Carlo method has definite ad-
vantages for describing the thermodynamic properties
of very nonideal plasmas. This method does not involve
an expansion in terms of a small parameter, and it
proves particularly effective in the cases of dense
gases and liquids and also in the case of a single-com-
ponent plasma—systems in which the interparticle po-
tential is known exactly. This method is based on first
principles of statistical physics and involves a direct
computer calculation of the average thermodynamic
quantities47

</••> Q-> (A", I', T) \ ... \ F,. (q) exp [ - pt/w (q)| d"q, (3.4)
v J

where

Q (A', V, T) - - |exP{-p£7w(q)}c|-vq

is the configuration integral, [)=l/kT, and the inter-
particle potential is assumed given, a binary potential
in most specific cases,

T), r , , - | q i - q > l (3.5)

The use of this technique in the case of a multicompo-
nent plasma runs into some specific difficulties, be-
cause it is necessary to incorporate quantum-mechan-
ical effects in the quasiclassical formalism of the
Monte Carlo method. These quantum effects play a

definite role in a real plasma, giving rise to bound
states. In the pseudopotential model of a plasma this
difficulty is removed by introducing an effective elec-
tron-ion binary potential *el(r, T), which is determined
by equating the quantum-mechanical probability density
to the classical correlation function5'47

Sn (r) -= 11 T. I ya(r) | 2 exp( — p#a) = exp[ — P<Pel(r, J)], (3.6)

where *a and Ea are the orthonormal wave functions
and energy eigenvalues, and the summation is over all
the states of the discrete and continuous spectra.

The pseudopotential determined in this manner at
large values of r»X e agrees with the Coulomb poten-
tial, while at r — 0 it has a finite value and depends on
the particular electronic structure of the element. This
structure is determined by a self-consistent solution of
the quantum-mechanical many-body problem and cannot
be described by the binary approximation (3.6). Ignor-
ing this fact47 has led to serious qualitative errors in
the model, manifested by the appearance of nonphysical
complexes because of an overly deep pseudopotential
(3.6).

The model has been improved substantially47 through
the partition

e.\p [ - PO)C1 (r, T)] = exp [ - P<DJ, (r, T)]
(3.7)

where the bound states are taken into account through
the introduction of the term Sb

ei, which determines the
partition function of the atom in accordance with Ref.
48, while the continuous spectrum is described by an
electron- ion interaction pseudopotential 4>*t. The pseu-
dopotentials constructed in this manner depend only
slightly on the temperature in the non-Coulomb region;
in addition, since the ^J are determined primarily by
hydrogen-like states, they depend only slightly on the
particular chemical element. A simple approximation47

which lies at the basis of the zeroth-order approxima-
tion pseudopotential model of a plasma has been pro-
posed47 on the basis of the similar temperature depen-
dences and the approximate equality, in reduced form,
of the pseudopotentials of the various chemical ele-
ments2':

, T) =
r>a,

(3.8)

where the numerical parameter of this model, e, is
chosen on the basis of experimental data (Fig. 5).

On the whole, the range of applicability of the pseudo-
potential model of a low-temperature plasma is limited
by the neglect of many-particle interactions and the ab-
sence of information on the discrete energy spectrum •
in (3.6)-(3.8). The discrete energy spectrum in a dense
plasma may be distorted by the strong interaction, and
it is generally not known at the outset. In a weakly ion-
ized plasma, the interactions involving neutral parti-
cles become important in addition to the Coulomb inter-
action. The mutual repulsion is taken into account ap-
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FIG. 5. Equation of ionizational equilibrium in a cesium
plasma at r = 6000 and 12000 K (Ref. 47). 1—£ = 2; 2—E = 4;
3—Debye-Huckel law; 4—ideal plasma.

proximately by means of a model of hard or soft
spheres, which incorporates the atomic-volume effects
and which leads to a cold pressure-induced ionization
at substantial pressures.

In several cases of practical importance, the inter-
action of charges with neutrals is a governing effect,
while the nonideal nature of the charged and neutral
components can be ignored. The model of a weakly ion-
ized plasma (an interaction potential UKL«kT) has been
proposed for evaluating the contribution of the electron-
atom interaction in this case49:

JLfl -•
'•m L

-Jllf;

where

.--^[^('--sz^rrT
a is the polarizability of the plasma, and /(Xm) is the
amplitude for the scattering of an electron with an en-
ergy K2/2m\m by an atom (experimental data on the
transport scattering cross sections can be used to de-
termine this amplitude). The contribution of the ion-
atom interaction is described by the polarization mod-

where R is the effective range of the potential U(r). It
should be noted that in a highly compressed plasma the
interaction of electrons with neutrals can result in lo-
calization of the conduction electrons at density fluctua-
tions and can give rise to heavy charged complexes.
The cluster model of a plasma has been used success-
fully to describe the conductivity of metal vapor,49 but
the thermodynamic consequences of the appearance of
clusters are less certain.

To take bound states into account appropriately is one
of the most complicated problems confronting the de-
velopment of models for dense plasmas. In the chemi-
cal model, the bound states are split off from the con-
tinuous spectrum and described by the partition func-
tion

(3.9)

where g*n and E'n, the statistical weight and excitation
energy, are found either from spectroscopic measure-
ments for a low-density plasma or through quantum-

mechanical calculations for the isolated atoms and ions.
The partition function of an isolated atom diverges and
must be artificially cut off, to reflect the presence of a
plasma environment.4'5 For most substances the ener-
gies of the first few excited states are comparable to
the ionization potential, so that their contribution to Qf

is important only at high temperatures, where the plas-
ma is significantly ionized and contains few neutrals.
Consequently, the specific mechanism limiting Q^ for a
low-density plasma is less important than the very fact
that the limitation does occur, and this circumstance
partially explains why the corresponding models are
rather crude approximations. With increasing pres-
sure, the degree of ionization of the plasma falls off,
making the thermodynamic functions more sensitive to
the specific method used to calculate Qs and requiring
a more careful account of how the nonideal effects in-
fluence the bound-state contribution.

In a highly compressed plasma the interparticle in-
teraction causes a significant shift, deformation, and
splitting of energy levels—effects which are not de-
scribed by perturbation theory and which require a
complete solution of the quantum-mechanical problem
incorporating the interactions of all particles. The
models proposed for this situation must determine the
characteristics of the discrete spectrum with appropri-
ate allowance for the distortion of the spectrum by the
surrounding medium. The simplest approach is to cal-
culate the bound states of one electron in various po-
tentials simulating the plasma surroundings.50 Gra-
boske et al.5i have studied the thermodynamic conse-
quences of a compression-induced change in the energy
spectrum of hydrogen. They showed that at substantial
densities the compressibility of a plasma decreases by
a factor of more than two because of the deformation of
bound states.

A description of the thermodynamic properties of a
highly compressed plasma of heavy elements requires
calculations of the shell structure of the atoms and ions
and incorporation of the effect of the compression on
the positions of the energy spectra of the bound elec-
trons. The corresponding calculations can be carried
out in the model of a bounded atom,52 according to which
the Z atomic electrons lie inside a spherical cell of ra-
dius rc with an interaction potential

-Ze*/r, r<rc, (3 1())

oo, r>rc.

The radial parts of the wave functions of each electron,
<pnl, and the energy levels, £„,, are calculated by the
Hartree-Fock method in this model, through a numeri-
cal solution of a system of nonlinear integrodifferential
self-consistent-field equations (here and in Section 4 we
we are using the atomic system of units, with H = e = k
= m = 1):

(3.11)
here Unl is the Coulomb potential of the interaction of
electrons with each other and with the nucleus, (3.10),
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Gnl is the nonlocal (exchange) part of the potential, and
I (Z + l)/r2 is the centrifugal potential. The eigenvalues
Enl and the off-diagonal Lagrange factors £„;,„., are de-
termined from the orthogonality conditions and the
boundary conditions on the wave functions <pnl. The ex-
citation energies Enl found in this manner are used to
calculate Q, in (3.9) and to calculate the free energy,
with corrections for the Coulomb interaction and for the
interaction of the hard spheres in accordance with Eq.
(6.1) of Section 6. The equilibrium radii rc are deter-
mined from the condition 9F/8rc = 0, so that the model
is closed from the thermodynamic standpoint.

The results calculated for the energy spectrum of
compressed cesium (Fig. 6) clearly illustrate the sub-
stantial deformation caused by the compression of first
the upper atomic energy levels and then the deeper lev-
els. This deformation reduces the shock compressibil-
ity and the internal energy of a dence plasma: an effect
which has been clearly seen experimentally.52-53 Ac-
cording to the calculations of Ref. 52, the distortion of
the discrete spectrum of a nonideal plasma is signifi-
cant under the experimental conditions31 (Fig. 6), but it
can nevertheless be described qualitatively by such an
approximate model as the thermodynamic model of a
bounded atom (Fig. 7).

The need to take into account the deformation of the
discrete spectrum of a dense plasma is also demon-
strated by experiments on the shock compression of
metals at ultrahigh pressures. The shock-wave data
for thorium at pressures up to 1.5 Mbar and for alum-
inum and molybdenum up to 10-50 Mbar, for example,
can be described successfully5" (Fig. 8) by a modified
ionizational model which incorporates the pressure-in-
duced ionization on compression in addition to thermal
ionization. It thus clearly follows that only by taking
into account the actual energy structure of the bound
states, which stiffen the system, can a model for a
dense plasma give a quantitatively correct description
of the experimental data. A corresponding conclusion
can be reached by examining the results calculated for
the thermodynamic properties of a high-temperature
condensed phase by band-theory methods (Section 5).

The available experimental methods for studying
highly nonideal plasma can detect only overall thermo-
dynamic characteristics. They cannot yield direct in-
formation on the relative contributions of the discrete
and continuous spectra, especially since these con-

1/T-

2 3 4 S W

FIG. 7. Equation of state of an argon plasma.52 Wavy line—
Single-ionization boundary; points—experimental. The shock
adiabatics were calculated from states with initial pressures
/>0 = 1, 5, and 20 bar (curves 1, 2, and 3, respectively).
Solid lines—Debye approximation; dashed lines—with distor-
tion of the discrete spectrum according to the model of a
bounded atom; dot-dashed lines—pseudopotential model.

cepts become arbitrary in the case of dense plasmas.5

At the same time, a model-based interpretation of the
experimental data available52"54 indicates that the Cou-
lomb corrections to the continuous spectrum are small-
er than would follow from the ring model, (3.3) (Fig. 9).
These corrections can be described by using extrapola-
tion models46 or pseudopotential models31'47'56 up to52'53

FD~ 2-3. To conclude this section of the paper we note
that the applicability of the models discussed here is
limited at low densities by the condition of local ther-
modynamic equilibrium (if this condition is not satis-
fied, kinetic models must be used to calculate the ion-
ization of the plasma) and at high temperatures by the
absence of data on the excitation energies and ioniza-
tion potentials of multiply charged ions.

4. QUASICLASSICAL MODEL OF MATTER

The description of the bound states of electrons at
high densities pi p0 simplifies dramatically at ex-

FIG. 6. Compression-induced changes in the energy spectrum
of cesium. The wavy line shows the conditions of the experi-
ments of Ref. 35.

sis HAS o.ss v/va

FIG. 8. Shock adiabatic of aluminum.55 1—Absolute measure-
ments; 2—data from comparative measurements, found
through the use of a smooth interpolation of the shock adiabatic
of a reference (SiO2) to calculations from the corrected
Thomas-Fermi model.
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FIG. 9. Caloric equation of state of a cesium plasma56

(V =103 cmVg). TD—ratio of the Coulomb energy to the
kinetic energy ("nonideality parameter"); a—degree of
ionization; hatching—band of experimental errors; 1—Debye
approximation in a grand canonical ensemble; 2—pseudo-
potential approximation; 3—asymptotic approximation taking
the leading terms of the expansion into account; 4—approxi-
mation of an ideal plasma with atoms in the ground-state.

tremely high pressures, P»e2/al~3QQ Mbar, or ex-
tremely high temperatures, T»Ry=105 K, where the
electron shells are crushed, and their properties are
described by the quasiclassical approximation of the
self-consistent-field method: the Thomas-Fermi theo-
ry. In this model the description of the system in
terms of wave functions and energy eigenvalues is re-
placed by a simplified statistical representation in
terms of the average electron density n(x), which sat-
isfies the equations of a quasihomogeneous degenerate
electron gas,7

«(*) = - 271

where/1/2(a) is defined in (3.2), and

.«-=-pj.(x)
(4.1)

To simplify the calculations in the quasiclassical mod-
el, the substance is partitioned into electrically neutral
spherical Wigner-Seitz cells containing a nucleus and
the Z electrons surrounding it. It thus becomes possi-
ble to transform from a multicentered problem to a
single-centered, spherically symmetric problem. The
electrons are in a self-consistent potential £/(r) satis-
fying the Poisson equation

-RV), (4-2)

where the cell radius R is determined from the condi-
tion for electrical neutrality, J n(x)dx.= Z. Through a
numerical integration of (4.2) one can determine the
electron density w(x), which can then be used to con-
struct all the thermodynamic functions of the electron
gas of the atomic cell. To obtain the resultant thermo-
dynamic characteristics of the model it is necessary to
take into account, along with the electron terms, the
motion of the nuclei, which is usually described in the
ideal-gas approximation or the quasiharmonic approxi-
mation.57 At T» 107 K and at solid-state densities, the
contribution of the equilibrium radiation must also be
taken into account. Equations (4.1)-(4.2) are self-sim-
ilar in the nuclear charge: After the introduction of the
variables

zv, Z-VT, z-io/sp, z-'/*#.•
they do not contain Z explicitly, and their solution ap-
plies to any element. This circumstance simplifies the

use of numerical calculations using the Thomas-Fermi
model.53-59

The Thomas-Fermi model is a quasiclassical limit
with respect to the Hartree self-consistent-field equa-
tions, so that modifications of this model involve a
more-detailed account of correlation, quantum-me-
chanical, and relativistic effects.7 The correlation cor-
rections result from the difference between the Hartree
self-consistent field and the actual field in the atomic
cell. These corrections result from the asymmetry of
the electron wave functions and are interpreted as ex-
change correlation effects. Furthermore, because of
the inaccuracy of the picture of independent particles
adopted in the model, force-correlation effects appear.

Quantum-mechanical corrections arise because of the
use of the quasiclassical formalism. These corrections
can be said to consist of a part which is regular in
terms of K2 (the so-called quantum part), which reflects
the nonlocal coupling between n(x) and the potential (7(x)
due to the uncertainty principle, and an irregular part
which reflects the nonmonotonic behavior of the physi-
cal quantities due to the discrete energy spectrum.60 It
is important to note that the introduction of an oscilla-
tory correction is characteristic of the Thomas- Fermi
model,7 while the incorporation of exchange, correla-
tion, and quantum corrections59 is traditional for the
physics of high energy densities. The relative magni-
tude of the correlation and quantum effects is deter-
mined by the dimensionless parameters7 6corr~ 6£ and
6qu~ 6M~«//4, which are given in the degeneracy region

»r, 6corr~ , and
and in the classical region (w2 / 3« T,f>¥~ Tl/2,

2/3

6ex~w'1/3

50~n1/3/T,v=3/2) by 6c

A shortcoming of the Thomas- Fermi model is that it
incorrectly describes the electron density at the pe-
riphery of the cell and near the nucleus, because of the
violation of the quasiclassical conditions there.
Kirzhnits61 has proposed a method for resolving this
problem through the use of successive approximations
to solve the Thomas-Fermi equations with quantum
corrections without a series expansion in a small pa-
rameter. This approach is the basis of the quantum-
statistical model, in which the solution converges rap-
idly near the nucleus, while far from the nucleus the
solution exhibits the correct quantum -mechanical be-
havior. The resulting expressions do not scale over Z,
however: The numerical calculations must be repeated
for each particular element. Furthermore, the equa-
tions themselves present far greater difficulties for
numerical calculations. Several other modifications of
the quasiclassical model near the nucleus have also
been proposed.7'62'63 They differ in the method used to
make the corrections. In the thermodynamic descrip-
tion, however, the difference between these models
and the corrected Thomas-Fermi model is significant
only outside the region of their formal applicability,
and for this reason the simple Thomas-Fermi model is
preferred for specific calculations.

In using the quasiclassical description one should be
clearly aware of the specific errors introduced by the
cell model itself. In this model all the electron corre-
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lations are automatically limited by the dimensions of
the atomic cell, so they cannot exceed the average dis-
tance between nuclei, and there are no internuclear
correlations. These circumstances impose an obvious
limit on the applicability of the Thomas-Fermi model
for describing plasmas under the conditions typical of
this state, with the screening sphere including a signi-
ficant number of nuclei, whose correlations with each
other dominate the Debye correction.64 Consequently,
in contradiction of the assertion of Ref. 59, this model
does not have the Debye limit in the plasma region.
Furthermore, its extrapolation properties worsen with
decreasing plasma density,64 since the model does not
reflect the stepped nature of the thermodynamic func-
tions in a gaseous plasma (Fig. 10). Figure 13 (Section
5) also demonstrates the inadequacy of calculations by
the Thomas-Fermi model and of the quantum-mechani-
cal calculations from the Hartree-Fock-Slater model65

in the characteristic plasma range.

Nuclear-cor relation effects may also be important in
a condensed phase, since the cell model ignores the
deviation of the actual volume of the cells from the av-
erage volume (due to the motion of the nuclei). This
approximation is valid only for ordered systems. At
the values T~ 100 characteristic of the condensed state
and a dense plasma it is also necessary to incorporate
in the equation of state the motion of the nuclei causing
the fluctuations in the atomic volume. This effect was
estimated for the Thomas-Fermi model in Ref. 66,
where it was shown in the particular case of SiO2 that
the nuclear motion increases the pressure ~15% in the
interval 1<F<100.

The physical conditions for the applicability of the
semiclassical model correspond to extremely high
pressures, P» 300 Mbar, and extremely high temper-
atures, T»105 K, which prevail in various astrophysi-
cal entities but which are still beyond the reach of our
technical capabilities here on the earth. The highest
pressures and temperatures which have been attained
to data have been produced by dynamic methods using
intense shock waves.67"71 Although the data from shock-
wave experiments do not correspond to the quantum-
statistical conditions, they do give an idea of how well
the quasiclassical models will extrapolate beyond their
formal range of applicability, within which correspond-
ing small parameters are in fact small.67'72 The re-
sults of work along this line show that the quantum, ex-

change, and correlation corrections (the oscillatory
corrections have not been considered) improve the ex-
trapolation, making extrapolation possible, according
to Al'tshuler et al.,iz up to pressures P2 300 Mbar at
a zero temperature and up to ~50 Mbar at TS 105 K.
At the same time, the two possible interpretations67-72

of the results of comparative measurements prevent an
unambiguous answer to the question of which version of
the quasiclassical model is preferable. These inter-
pretations contradict the data from absolute measure-
ments.68-70 We might also note that recent experiments
on the shock compression of highly porous copper at
pressures of 10-20 Mbar and temperatures up to 2-105

K (Ref. 69) and of nonporous substances at pressures
up to 160 Mbar (Ref. 71) point to significant shell ef-
fects in a region which has traditionally been described
by the standard Thomas-Fermi model (see Fig. 11 and
also Fig. 36 below).

Because of the initial simplifications, the quasiclassi-
cal model with the quantum and exchange corrections is
not applicable at low pressures. Nevertheless, it does
yield59 a reasonable average of the atomic volumes of
elements over the periodic table.4' We wish to empha-
size that the Thomas-Fermi model itself leads to an in-
finite radius of the atomic cell at zero pressure be-
cause it lacks coupling forces; a finite density is
achieved only by means of corrections. Kalitkin and
Kuz'mina59 have pointed out that the oscillations in the
atomic volume fade with increasing pressure and ap-
proach the level predicted by calculations from the
modified Thomas-Fermi models, although this effect
can be credited in part to the circumstance that at high
pressures the comparison has been made with the re-
sults of an extrapolation74 of experimental data to the
quasiclassical calculations themselves.

In fact, the tendency toward a simplification of the
properties of a substance is disrupted at higher pres-
sures because of the inner electron shells in the atom.
It has been shown7-60 that shell effects can be described
qualitatively in the quasiclassical approximation by
taking into account a correction which is irregular in
H2 and corresponds to the oscillatory part of the elec-
tron density, previously (and erroneously) discarded.
An important point here is that the shell effects are de-

FIG. 10. Equation of state of lithium plasmas.64 1—Calcula-
tions from the chemical model; 2—from the Thomas-Fermi
model with quantum and exchange corrections. /4, /2, ^3—
successive ionization potentials.

FIG. 11. Measurements of the relative compressibility of
substances at ultrahigh pressures.71 Points—Experimental;
curves—calculations from the Thomas-Fermi model with
corrections. The nonmonotonic deviation of the experimental
data from the calculated results is evidence of significant
shell effects.
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scribed already in the lowest quasiclassical approxima-
tion for the wave function and must therefore be taken
into account in addition to the corrections discussed
above. According to Ref. 60, shell effects reflect ir-
regularities in the properties of a substance caused by
the discrete energy spectrum, and they arise in the
quasiclassical model because of interference or de
Broglie waves. The quasiclassical model in its most
sophisticated version is thus quite a bit more meaning-
ful than has been believed. It turns out that this model
not only describes the average behavior of the elec-
trons in heavy and highly compressed atoms but also
reproduces qualitatively the inner shell structure of an
atom7 and frequently yields results in fair agreement
with calculations using more-accurate quantum-me-
chanical models while being simpler and more graphic.

The shell effects significantly change the equation of
state of a substance, causing discontinuities on the
atomic-volume curve V(Z) at high pressures (where
this approximation is justified).7 The equation of state
acquires a characteristic nonmonotonic behavior,
caused by the electronic phase transitions which occur
as the energy levels are forced out of the discrete
spectrum into the continuum. It might be expected that
with increasing temperature this monotonic behavior
would be smoothed out by resonance electrons. Never-
theless, results derived in the central field approxima-
tion75 indicate (Fig. 12) that the shell structure is im-
portant even at an extremely high temperature. That
shell effects are significant at hypermegabar pressures
also follows from quantum-mechanical calculations in
the Hartree-Fock-Slater approximation76 (Section 5) and
from calculations by the method of augmented plane
waves77 (see Figs. 14 and 15 below). These effects are
predicted over broad ranges of the parameters7 and
should fade at n » Z4 in the homogeneity region, as all
the energy levels of the atom shift into the continuous
spectrum. We might note in this connection that the
asymptotic behavior of the quasiclassical model is not
a trivial question, since it has been shown78 that this
model corresponds to the exact solution of the Schro-
dinger equation only in the limit Z — °°, but not in the
limit of high densities.

~0.5 0 OS /.? IS 2.0 !g0('av>

FIG. 13. Ratio of the energy of a lithium plasma according to
the Hartree-Fock-Slater model65 to the energy according to
the TFQE model59 atP =1 kbar. The points are calculations
from the chemical model.

In summary, the range of applicability of the quasi-
classical model remains an open question to a large ex-
tent, and the behavior of substances at P>300 Mbar is
more varied than has previously been concluded from
simple models.58'59 An experimental test of the predic-
tions of the quasiclassical shell model is the most in-
teresting problem of the physics of ultrahigh pressures
today. The solution of this problem will apparently re-
quire special experimental apparatus using high-power
lasers,79 electron beams,18 or underground nuclear ex-
plosions.68 Of significant interest in this connection is
the reproduction of shell effects in the equation of state
by means of direct quantum-mechanical methods; this
topic is discussed in Section 5.

5. QUANTUM-MECHANICAL MODELS OF SOLIDS

At low pressures and temperatures, solids behave in
a wide variety of ways. The various elements exhibit
some very distinctive individual properties which can
be explained on the basis of the particular electron en-
ergy spectrum of the atoms making up the crystal lat-
tice. In this case the quantum-statistical description of
Section 4, which averages the characteristic properties
of the elements, is too crude, and direct quantum-me-
chanical methods must be used to calculate the thermo-

FIG. 12. Dependence of the pressure on the atomic number at
a fixed density and a fixed temperature.75 Solid curves—
Calculations from the Thomas-Fermi model; points—calcula-
tions in the approximation of a central field with shell effects.
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FIG. 14. Shock adiabatics of copper (1) and lead (2) (Ref. 76).
Solid curves—Calculations from the Hartree-Fock-Slater
model; dashed curves—calculations from the TFQE model and
an interpolation.72
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dynamic characteristics. Several methods have now
been proposed for obtaining a quantum-mechanical de-
scription of the electronic, phonon, magnetic, optical,
and other properties of the solids. The methods them-
selves have become highly refined. Here we will focus
on the results calculated for the thermodynamic prop-
erties of substances over ranges of the pressure and
the temperature as broad as possible. We will discuss
only briefly the qualitative aspects of the methods, di-
recting the reader to the original papers, monographs,
and reviews for the details.8-80"83

In a thermodynamic description of a solid, one sin-
gles out the phonon and electron components,3 which
are studied independnetly, to a large extent. Most of
the calculations on the electron spectrum have been
carried out in a band model, in which the crystal is
represented as an ideal periodic structure with fixed
nuclei at the corners of cells, and each electron is
moving in a self-consistent periodic potential produced
by the ion lattice and the rest of the electrons. It thus
becomes possible to express the wave function for the
entire system in terms of one-electron Bloch func-
tions.80 The primary distinctions among the band-
structure models lie in the methods used to calculate
these one-electron functions within the elementary
atomic cells into which the entire substance is parti-
tioned and in the methods used to join the solutions at
the boundaries.

With increasing compression, solids tend to convert
into close-packed, highly symmetric crystalline struc-
tures, justifying the use of the Wigner-Seitz spherical-
cell model in this case. According to this model, the
overall self-consistent problem in the crystal is re-
duced to the solution of wave equation (3.11) in a single
cell with Bloch boundary conditions,80 under which the
discrete energy spectrum of the free atom gives way to
bands of allowed states. From the relationship between
the pressure and the wave functions at the surface of
the cell one determines the equation of state of the sys-
tem.

Even simplified calculations in the spherical-cell
model,84 ignoring exchange effects [the term Gnl(r) was
omitted in (3.11)], have revealed the distinctive proper-
ties of the various elements, the structure of the elec-
tron energy bands, and the way in which these bands
are filled. In contrast with the statistical model, the
band theory reflects several qualitative effects of the
periodic system, e.g., the different compressibilities
and the normal density of neighboring elements in the
periodic table. The distinctive ways in which the en-
ergy bands are filled cause irregularities in, and even
a nonmonotonic behavior of, the pressure dependence
of the properties of metals. The effect is seen in dy-
namic experiments as a change in the shock compressi-
bility.85

When exchange effects are incorporated in a band
model, serious calculation difficulties arise because
of the need to solve a system of integrodifferential
equations. An approximate way to incorporate ex-
change, with the real nonlocal exchange potential being
replaced by an average local potential in the Hartree-

Fock equations, was first proposed by Slater and has
been developed further under the name of the "X— a
method."86 This method has been used to calculate the
thermodynamic characteristics of the condensed phase
of substances at high pressures and temperatures.87

Nikifirovov et al.65 have pursued the development of a
method of this type for describing exchange effects,
offering an expression for an effective exchange poten-
tial for arbitrary temperatures and densities.

Calculations using the Hartree-Fock-Slater model
have demonstrated a much better agreement than the
quasiclassical model with experimental data and the
results of plasma calculations. All the results are
characterized by oscillations with respect to the data
of the quasiclassical models; the oscillations continue
as long as there are shells in the system. It should be
noted that the corrections for shell effects are also im-
portant where the exchange and quantum corrections to
the Thomas-Fermi model are small. It can be seen
from Fig. 13 that the energy of a lithium plasma at T
~ 5 and 16 eV is changed by a factor of more than two
when shells are taken into account, although calcula-
tions by the Thomas-Fermi model and its modifications
yield essentially identical results. Analogously, the
shock adiabatics of copper and lead shown in Fig. 14
are quite different from the quantum-statistical results
at pressures well above the traditional boundary esti-
mate at 300 Mbar (Ref. 72), indicating that shell effects
must be taken into account up to extremely high temper-
atures and pressures. It also follows from Fig. 14 that
there is a sharp difference between the calculated and
experimental shock adiabatics at low pressures (P*= 10
Mbar), which indicates that the Hartree-Fock-Slater
model is not accurate in this region.

The spherical-cell approximation is too crude for de-
scribing the properties of a solid under normal condi-
tions, since the elementary cells of real crystals have
much more complicated shapes, especially for struc-
tures with low coordination numbers. Furthermore,
the relative importance of the exchange and correlation
terms in the equation of state increases at low pres-
sures, so that these terms must be taken into account
more rigorously. A calculation of the intracell ex-
change interaction at T = 0 K and low compressions us-
ing the Hartree-Fock approximation and estimates of
the correlation corrections and the intercell-exchange
effects demonstrate that they strongly affect the calcu-
lated characteristics, casting doubt on spherical-ap-
proximation calculations in this region.88 These cir-
cumstances have forced the development of effective
new methods for self-consistent calculations for non-
spherical structures at low pressures.

In real crystals the ions occupy a limited portion of
the volume of an atomic cell, particularly at low de-
grees of compression. For a description of this situa-
tion, the crystal volume is partitioned into regions in
which different methods are used to seek solutions of
the Schrodinger equation. This partitioning makes it
possible simultaneously to satisfy the boundary condi-
tions at the surface of the elementary Wigner-Seitz
cell, of complicated shape, and to take into account the
difference between the lattice potential and the atomic
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potential. The idea is to introduce a so-called muffin-
tin potential,86 which is spherically symmetric near the
ion, where the wave function is a combination of the
solutions of the Schrodtnger equation in a central field,
and constant in the volume between sites, with a solu-
tion in the form of a linear combination of plane waves.
The two solutions are joined on a boundary sphere with-
in the cell, with an augmented plane wave as a conse-
quence.

Quantum-mechanical calculations by the method of
augmented plane waves are more laborious than calcu-
lations in the spherical-cell model and have been car-
ried out for the most part for structures under normal
conditions; considerably fewer numerical results have
been obtained for high pressures. Figure 15 compares
the results calculated from this model1'' with the pre-
dictions of the quasiclassical approximations (Section
4) for aluminum. The characteristic deviations from a
monotonic curve are caused by a transition of the L and
K shells into the continuous spectrum at pressures of
50-750 and 104-106 Mbar. We see that the model of
Ref. 77 predicts significant differences from the very
simple versions of the quasiclassical approximation at
pressures well above the boundaries estimated for the
applicability of the Thomas-Fermi model in Ref. 72.

A combination of the method of augmented plane
waves and the X- a method has been used39 to deter-
mine the high-temperature equation of state of iodine
and to study an isostructural phase transition in cesi-
um. This method has been combined with a variational
description of a liquid (Section 6) to calculate90 the
equation of state of condensed xenon. The critical vol-
umes and pressures corresponding to the conversion of
xenon into a metal upon compression were estimated
(V~ 10 cmVmole,P~ 1.5 Mbar). The calculated results
agree well with experimental results at low and high
pressures, as can be seen (in particular) from Fig. 16,
which shows the sensitivity of the course of the calcu-
lated shock adiabatic of xenon to different values of the
conversion-to-metal volume. Some independent mea-
surements of the optical absorption in condensed xenon
were carried out recently in experiments involving
compression using diamond anvils.192 Interestingly, the
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FIG. 15. Equation of state of aluminum77 (r=0 K). Calcula-
tions: TFD—Thomas-Ferml-Dlrac model; TFQE—Thomas-
Fermi model with quantum and exchange corrections; APW—
model of augmented plane waves. Here a Is the lattice
constant.
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FIG. 16. Shock adiabatic (SA) and absolute-zero isotherm
(T = 0 K) of condensed xenon.90 The points are experimental.
The curve labels are the volumes at which xenon becomes
metallic upon compression.

volume dependence found for the width of the energy gap
is also in approximate agreement with the calculated
dependence,90 and a conversion to metal is predicted at
P~ 2 Mbar.

The serious calculation difficulties which arise in the
use of the method of augmented plane waves, especially
at nonzero temperatures, has resulted in the wide-
spread use in specific calculations of the method of lin-
ear muffin-tin orbitals, which, although slightly less
accurate, permits much more rapid calculations.91

This band-calculation method, which is usually em-
ployed for close-packed structures, takes the exchange-
correlation effects into account in a self-consistent
manner in the local-density approximation.92 Over
broad ranges of the pressure and the temperature, the
linear muffin-tin-orbital method has yielded a quantita-
tively accurate description of the subtle characteristics
of the Fermi surface which have been observed experi-
mentally and also several features of the equations of
state. These features are explained in terms of the se-
quence in which the electron energy bands are filled,
for many metals. Although the method starts from first
principles and employs no input parameters of any sort,
it yields a very accurate description. For example,
calculations of the normal density and the bulk modulus
by this method have yielded results agreeing within 5%
and 10%, respectively, with experiment.

The method of linear muffin-tin orbitals has been used
to calculate the equations of state of lanthanum,93 thor-
ium,94 calcium,95 and silver.96 The results agree well
with data from static and dynamic experiments from
normal conditions up to megabar pressures. Figure 17
compares the calculated T=Q isotherm of calcium95 with
shock-wave data. In addition to giving a correct de-
scription of the equation of state, the calculation puts
the transition of calcium into a semimetal in the same
pressure range as is observed experimentally. This
transition is explained as a change in the electron
structure, which causes a sharp decrease in the state
density on the Fermi surface at V=0.18V0; only an in-
crease in the number of d states starting at compres-
sions F=0.5470 restores the metallic properties.

The use of this method to calculate the band structure
at normal and elevated pressures has explained the re-
distribution of electrons and the changes in the nature
of the electron states in cesium,97 transition metals,98
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FIG. 17. Equation of state of calcium.95 Points—Shockwave
experiments; solid curve—calculated; dashed curve—with
nonlocal corrections. The theoretical and experimental
intervals ("theory" and "experiment") in which calcium con-
verts into a semimetal are indicated.

the lanthanides,93-99 and the actinides.94-100 The thermo-
dynamic consequences of these changes are discussed
in detail in Section 6; at this point we will only show ex-
perimental data and calculated results93 on the shock
compression of lanthanum (Fig. 18), according to which
the steep part of the shock adiabatic at M a 1 km/s re-
sults from the completion of a 6s-5d electron transi-
tion.

All the calculations by the band-theory methods adopt
the approximation of a static lattice, and significant
difficulties accordingly arise in attempts to incorporate
the vibrations of the crystal atoms in a self-consistent
way. The effect of the temperature on the electron
terms in the model is taken into account by averaging
the calculated characteristics over a Fermi distribu-
tion.89-93 The thermal contribution of the lattice atoms
is determined from the cold curve93'97 in the approxi-
mation of one of several quasiharmonic models which
give a simplified description of the actual vibration
spectrum. As a consequence, essentially insurmount-
able difficulties arise in attempts to use the cell model
to describe the characteristics of a metal near the
phase-transition curve (for lanthanium93 and cesium97),
where it is precisely the fine structure of the phonon
spectrum which must be taken into account: the loss of
stability of one of the vibration modes.

In nontransition metals the ions occupy only a small
fraction (~10%) of the volume of the atomic cell, and as
the valence electrons move through the metal they
spend only a small fraction of their time in the volume
occupied by an ion. Since the properties of a metal are
essentially independent of the particular behavior of the
conduction electrons within the ion lattice, the actual
potential of the interaction with the many-electron ion
can be replaced by a simplified single-particle poten-
tial. A pseudopotential of this sort must conserve the
scattering properties of the original ion, but the poten-
tial inside the ion can be much weaker than the actual
potential. The introduction of a pseudopotential makes
it possible to define a small parameter for the theory,
f/k/eF (t/t is a Fourier component of the pseudopotential
at the point of a reciprocal-lattice vector), so that per-
turbation theory can be used.81 In the pseudopotential
theory the metal is thus treated as a dense, degenerate
plasma; the phonons are low-frequency collective ex-
citations around the ground state, which corresponds
to the regular positions of the ions.

The first successful quantitative descriptions of the
properties of metals by means of pseudopotential mod-
els were achieved in a variety of single-particle ap-
proximations which reflect the many-particle nature of
the problem in a nonsystematic way. Models of this
sort have the shortcoming that they incorporate only the
binary potential, ignoring the important indirect inter-
action of three and more ions through conduction elec-
trons. A systematic pseudopotential theory incorporat-
ing the effective two-ion, three-ion, etc., interactions
involves a rigorous series expansion in the electron-
ion interaction parameter.83 The many-particle for-
malism makes it possible to determine the dynamic
characteristics of a metal—its phonon spectrum—at the
same time as its static characteristics.

The use of this approach in the case of nontransition
metals has yielded a consistent description of the pho-
non spectrum over the entire phase-volume region, the
elastic constants, and the equation of state83-101"103 (Fig.
19). This approach has also yielded energies and lat-
tice constants and has made it possible to choose the
most appropriate crystal structures and to analyze the
effect of pressure on the lattice anharmonicity.83-101

The pseudopotential method has proved to be particu-
larly successful in calculating the equation of state of

u, km/s

FIG. 18. Shock adiabatic of lanthanum.93 1—Calculated by
the method of linear muffin-tin orbitals incorporating the
6s—5d electron transition; 2—calculation from the Mie-Griin-
eisen equation of state (y/V = const); points—experimental.

0.7

FIG. 19. Absolute-zero isotherms of the alkali metals.101

The experimental points are plotted from the results of shock-
wave measurements. 1—Li; 2—Na; 3—K.
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metallic hydrogen,104 whose ion has no electron shell,
so that the calculations can be carried out to high de-
grees of compression. The thermodynamic character-
istics of hydrogen have been calculated to terms of up
to fourth order in the electron-ion interaction param-
eter. The equation of state has been found for all the
structures competitive from the energy standpoint.

The use of the pseudopotential approach at high pres-
sures is limited by the overlap of the ion cores and the
lack of the necessary experimental data for construct-
ing the pseudopotential of a compressed substance. Ac-
cording to Refs. 83 and 101, the upper limit on the ap-
plicability of the pseudopotential model for alkali and
alkaline earth metals is of the order of hundreds of kil-
obars; below this limit the distortions of the pseudo-
potential are apparently of minor importance, and the
effect of the compression reduces to simply changing
the electron density.

The pseudopotential model was used in Ref. 105 to
construct semiempirical equations of state for sodium
and aluminum to describe the shock data at pressures
up to ~1 Mbar. By fitting the parameters of the poten-
tial106 it was found possible to calculate satisfactorily
the shock compressibility of alkali halides outside the
region of their polymorphic conversions. We might add
that the equations of state found for ionic crystals in the
quasiclassical approximation of the Hartree-Fock meth-
od and the shock adiatatics calculated from these equa-
tions of state107 agree well with experimental data at
pressures up to ~1 Mbar, above which the anharmonic-
ity and thermal excitation of electrons become impor-
tant.

6. MODELS FOR THE LIQUID STATE

With increasing temperature, phonon-phonon interac-
tions become important in a solid and make the crystal
lattice unstable with respect to the long-wavelength
shear mode,82 which causes the crystal to melt. The
absence of a long-range order and the strong interpar-
ticle interaction severely hamper attempts to describe
the liquid state theoretically. For a long time the liq-
uid state has been regarded as a difficult problem and
has been the least-developed branch of statistical phys-
ics. Attempts to extend to liquids ideas from the phys-
ics of gases have met with little success because of the
sharp difference between the densities of the two phases
(by two or three orders of magnitude), which mandates
a large number of unknown virial coefficients in an ex-
pansion like (2.1). Even if the necessary coefficients
could be calculated, the question of the convergence of
series (2.1) at the densities corresponding to the liquid
phase would remain open, since the existing proofs of
the convergence of the virial series apply only to ex-
tremely low-density gases.2

The density of a liquid differs from that of a crystal
by 10-20%, explaining the relative success in the use
of solid-state approximations to describe liquids. The
idea that liquid molecules are confined to a small vol-
ume by the average field exerted by their neighbors
underlies the lattice model or the free-volume model.108

This approach is of course most suitable for describing

highly compressed liquids at low temperatures, at
which the kinetic energy is only a small fraction of the
total energy, i.e., under conditions which generally do
not correspond to a liquid state. Consequently, the lat-
tice model applies exclusively to states in the immedi-
ate vicinity of the melting curve; the melting is mani-
fested by the formation of a multitude of defects in the
crystal lattice, which is greatly distorted in the liquid
state.109

Ideas from the solid-state and gas theories have been
combined in the multiple-structure model,108 according
to which a real liquid is an equilibrium mixture of a
gas and a solid, whose properties are described in
terms of a binary distribution function or a partition
function with an empirical parameter which performs
the interpolation between a harmonic crystal and an
ideal gas. Similar arguments are used in the cell mod-
el,108 which partitions the entire liquid into molecular
cells whose filling depends on the thermodynamic con-
ditions. Models of this type furnish only a schematic
description of the properties of a real liquid, but be-
cause of their simplicity they may be used effectively
as elements of semiempirical models (Section 8). We
might also note that the calculation methods of the cell
model110 have been refined to the point at which it is
possible to find a consistent analytic description of the
properties of solids and liquids and of the phenomenon
of melting (Fig. 20).

Refinements in diffraction measurements2 have
yielded important information on the structure of liq-
uids, which has improved our understanding of their
properties. According to ideas based on experiments
on the elastic scattering of x rays and thermal neutrons,
there is a short-range order in a liquid which can be
described by a binary distribution function g(r), which
determines all the equilibrium properties of the liquid
state for a given interparticle interaction potential tf>(r).
The statistical theory allows us to derive a relationship
between these characteristics by working from nonlin-
ear integral equations constructed on the basis of vari-
ous hypotheses regarding the relative roles played by
the short-range and long-range interactions in the sys-
tem.10"12 In turn, the Monte Carlo and molecular-dy-
namics methods make it possible to calculate ^(r) ac-
curately for a given potential and to test the worth of
the various integral equations.

r

0.2.

FIG. 20. Equation of state of a system of hard disks.110 1—
Calculations from the self-consistent cell model; 2—calcula-
tions with cluster corrections; 3—Monte Carlo calculations.
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The description of the liquid is thus determined by the
choice of a suitable potential tp(r); the quality of the
approximations can be controlled experimentally, since
the structure factor, i.e., the Fourier transform of the
binary distribution function,

5(q) = 1 + nj l g ( r ) lle'S'dr,

is an observable quantity in diffraction measurements.
The description is closed, and it reduces to an analy-
sis of how the properties of the potential affect the
structural and equilibrium properties of the disordered
system.

A governing circumstance in the development of new
liquid models is the experimental fact that the struc-
ture of a liquid depends only slightly on the tempera-
ture at a fixed density.2 In turn, the similarities among
the structures of liquid metals, ionic systems, and di-
electrics with very different attractive forces furnish
evidence that these forces play only a minor role in
shaping the equilibrium properties of liquids. These
circumstances suggest that a repulsive potential is
dominant, while the effect of the attractive forces and
temperature effects in a dense liquid are at the level of
corrections which can be dealt with by perturbation
theory,10 by a variational method,111 or in the random
phase approximation.112

In turn, for a model to describe the repulsive forces
the simple potential of hard spheres of radius a,

f (r (6.1)

is useful for describing the extreme state of a highly
compressed, hot liquid. The hard-sphere model, the
simplest nontrivial model of the liquid state, has won
extreme popularity in the use of the integral-equation
technique and numerical methods, and it has now been
studied exhaustively.10"12 Significantly, potential (6.1)
has made it possible to derive an exact analytic solu-
tion of the Percus-Yevick equation, which is the best
integral equation for describing a system with a short-
range repulsion and which is used widely to calculate
the properties of real liquids. The presence of a free
parameter in the solution — the packing density rj
= 4.7rcr3AT/3l/ — makes it possible to generate successfully
descriptions of the structural characteristics of simple
liquids and simple metals, by using various methods to
determine this packing density.10'12

Calculations by various methods for systems with po-
tential (6.1) have been carried out over the entire range
of the liquid state. The best analytic description of the
results is given by the Karnahan-Starling Fade approx-
imation:

Curiously, numerical calculations using the model (6.1)
at densities approaching close packing of spheres, rj
s 1, have revealed structural anomalies and a tendency
toward the appearance of long-range order in the sys-
tem. This effect has been attributed113 to crystalliza-
tion of a geometric nature. We might note in this con-
nection that most of the integral equations either fail to

describe melting at all or predict it to occur at anoma-
lously high densities.2

Further progress in the description of the properties
of the liquid phase has been achieved through the use of
the soft-sphere model, which uses a power-law repul-
sive potential

<p(r) =
e((T/r)n,

0,
(6.2)

This model has also been used to calculate the equilib-
rium properties by the Monte Carlo and molecular-dy-
namics methods.10'11'114 The results can be described
approximately by

where n is an additional adjustable parameter of the
model. By analogy with the hard-sphere model, the
power-law repulsive potential leads to melting,114 with
characteristics which depend strongly on n in this case.
We might note in this connection that a numerical sim-
ulation of the properties of real systems by means of
more complicated potentials such as the Lennard-Jones
potential,11 the stepped potential, and the square well115

have provided melting and evaporation curves and a
qualitative description of the isostructural electronic
and polymorphic phase transitions in solids (Section 7).

The model of Ref. 116 for the liquid state combines the
hard-sphere model (6.1) with the approximation of an
average field. In this combined model the adjustable
parameters are determined from the experimental sub-
limation energies and the experimental positions of the
first peak in the structure factor of the liquid metal at
the melting point. This model of the liquid state, like
its predecessor, the van der Waals model, is a qualita-
tive model, which does not give us a detailed descrip-
tion of the more subtle properties of a liquid. The
agreement between theory and experiment can be im-
proved substantially by appealing to the soft-sphere
model, (6.2), and introducing some further adjustable
parameters in the average-field model.117'118 Figure 21
shows a representative result of this approximation117;
here the parameters of the equation of state have been
chosen from experimental results on the electrical ex-
plosion of uranium wires under pressure and the prop-

FIG. 21, Description of experiments on the electrical
explosion of uranium wires under pressure by the hard-sphere
model (HS) and the soft-sphere model (SS). Points—experi-
mental; dashed curve—static data; solid curves—theoretical.
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erties of uranium at standard pressure. The modified
van der Waals models116"118 are equally applicable for
calculating the thermodynamic properties of dense gas-
eous phases, and they have an ideal-gas asymptotic be-
havior, so that they can be used successfully to con-
struct wide-range semiempirical equations of state
(Section 8).

Despite the extreme simplifications represented by
the hard-sphere or soft-sphere model, they correctly
incorporate the basic qualitative aspects of the many-
particle interactions in a liquid, so they give a satis-
factory description of the thermodynamic and structural
properties of the liquid phase. These models can
therefore be used as a zeroth-order approximation in a
further perturbation-theory treatment10"12 to take into
account the details of the actual interparticle potential.
A convenient calculation method for specific systems
over a broad range of parameters, a method particu-
larly effective in describing the properties of a dense
liquid phase, is the perturbation-theory variational
method,111 which can determine the thermodynamic
properties of a system with an arbitrary interaction
potential through an average of the perturbation over
the structural characteristics of the initial approxima-
tion, followed by a minimization with respect to its pa-
rameters.

A good zeroth-order approximation is the hard-
sphere system, for which analytic expressions have
been derived for the free energy and the binary distri-
bution function,12 so that explicit theoretical thermody-
namic characteristics can be obtained for an arbitrary
interparticle potential. The variational principle of a
perturbation theory based on a hard-sphere system,
which was the approach initially used to describe the
properties of simple liquids under nearly critical con-
ditions,111 has been used for thermodynamic calcula-
tions of liquid simple metals and alloys,9 single-com-
ponent plasmas,30 and dense, partially ionized plas-
mas.119

This description method has led to successful calcu-
lations of the characteristics of the liquid phase of met-
als over the range from standard pressure to states
with a dense, fully ionized plasma; Fig. 22 shows some
representative theoretical shock adiabatics of sodium
and aluminum in comparison with the results of some
shock-wave expreriments. The calculations by the var-
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iational method not only describe the experimental data
but also agree well with the results of more-rigorous
theoretical models at the extremely high pressures and
temperatures which have not yet been studied experi-
mentally.119

The method was subsequently generalized to use as a
zeroth-order approximation the soft-sphere model,
which is more realistic at high compression.10 This
approach has yielded successful descriptions of the
properties of liquified gases: xenon,90 argon,121 hydro-
gen and deuterium,122 and helium.123 Variational calcu-
lations of the thermodynamic characteristics of the liq-
uid phase of hydrogen, deuterium, and helium and the
equation of state of the solid phase in the quasiharmon-
ic approximation have revealed the positions of the
melting curves of these elements.122'123 Quantum-me-
chanical corrections were incorporated in the calcula-
tions in the liquid phase; anharmonicity effects were
taken into account in the solid-state calculations. Fig-
ure 23 compares the calculated and experimental data
in the liquid phase and on the melting curve for heli-
um.123 We see from this figure that the theoretical and
experimental results agree well over the entire range
studied. The accuracy of the description is similar in
the cases of hydrogen and deuterium.122

The development of the variational method of pertur-
bation theory for calculating the characteristics of liq-
uid metals has led to the use as the initial approxima-
tion of the perturbation theory results obtained by the
Monte Carlo method for a single-component plasma.
Comparison of the calculations for the various versions
of the variational method developed on the basis of sys-
tems of hard spheres or soft spheres or for a single -
component plasma has shown124 that the best description
of the properties of lithium is found with the help of the
characteristics of a single-component plasma. The re-
sults of a corresponding comparison125 of the hard-
sphere model and the single-component plasma as ze-
roth-order approximations in modeling the thermody-
namics of liquid sodium and liquid aluminum show that
the model of a single-component plasma is again pref-
erable in the case of sodium, but for aluminum the
hard-sphere model leads to a better agreement with ex-
perimental data (Fig. 24). This result is attributed to
a greater rigidity of the ion core of aluminum, which is

FIG. 22. Shock adiabattcs of sodium (a) and aluminum (b).119

Solid curves—Perturbation-theory variational-method
calculations; points—experimental.

FIG. 23. a—Equation of state of the liquid phase of helium;
b—melting curve of helium.123 Experimental data are shown
by the solid curves in part a and by the points in part b. The
isotherm temperatures are 75, 150, 225, and 300 K.
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FIG. 24. Structure factors of liquid sodium (a) and liquid
aluminum (b).125 a: T=373K. 1—Experimental data; 2—
variational calculation from the hard-sphere model (i) = 0.47);
3—variational calculation from the model of a single-compo-
nent plasma (F= 156). b: T=933K. 1—Experimental data;
2—hard-sphere model (r, =0.44); 3—model of a single-
component plasma (r = 119).

generally characteristic of polyvalent metals. Never-
theless, the results of Ref. 125 confirm that for sys-
tems with a soft repulsion (alkali metals, molten salts,
and alloys) the model of a single-component plasma is
preferable for use with the variational method of per-
turbation theory.

The use of perturbation theory to calculate the prop-
erties of a dense liquid phase is severely complicated
by the nonadditivity of the interaction forces and the
need to incorporate many-particle interactions. Since
the interaction potential is usually not known accurately
at the outset, a novel type of perturbation theory has
been proposed by Kerley.126 It uses as the zeroth-order
approximation the cold curve for a solid, which effec-
tively incorporates the nonadditive forces. The energy
of the liquid is expressed in terms of variables charac-
terizing the short-range order, and an average is taken
over the cold curve furnished by experiment or by nu-
merical calculations. The thermodynamic and struc-
tural characteristics of a liquid calculated from a cor-
rected hard-sphere model126 for various interaction po-
tentials agree well with the results of Monte Carlo and
molecular-dynamics calculations. The model has also
proved to be effective for describing the thermodynamic
properties of real liquids over broad ranges of param-
eters, and it yields results in agreement with experi-
mental data at low127 and high128 pressures (Fig. 25).
Curiously, the legitimacy of the approach of Ref. 126
has been confirmed independently by experimental re-
sults: The equations of state of the liquid and solid
phases of alkali metals found from experimental data
yield coincident ground-state curves.129

In addition to the direct problem of the statistical
mechanics of a liquid—calculating its equilibrium
properties from a given interparticle interaction poten-
tial ip(r)—the inverse problem has also received atten-
tion. In this approach, experimental data on the struc-
ture factor S(q) are used to seek an appropriate poten-
tial.12 The problem of finding the potential from dif-
fraction measurements for inert gases and liquid met-
als is solved by the methods of molecular dynamics and
integral equations; the integral approximation gives
better results.12 Analysis of the errors shows, how-
ever, that this inverse problem is an ill-conditioned
problem: For a 10% accuracy in <f(r), the initial ex-

a) b)

FIG. 25. Shock compression of liquid hydrogen (a) and liquid
deuterium (b).128 1, 2—Calculations from the corrected
hard-sphere model126 for direct and reflected shock waves;
3, 4—shock adiabatics of reflecting magnesium and aluminum
screens; points—experimental.

perimental data on S(q) must be accurate within 1%. To
improve the accuracy in a search for the interparticle
potential, additional information about the equation of
state and the equilibrium properties of the liquid has
been used in addition to the structure factor. The
characteristics of the potential can also be found from
thermodynamic information exclusively—without ap-
pealing to the data from diffraction measurements.
Experiments on the shock compression of argon and on
the scattering of molecular beams have,121 for example,
made it possible to choose the type of potential which
gives the best description of the experimental data and
to determine the parameters of this potential (Fig. 26).

7. PHASE TRANSITIONS

It is clear from the examination of the various mod-
els for a thermodynamic description of the properties
of media that the ordinary classification of states fre-
quently becomes indefinite and arbitrary at high pres-
sures and temperatures, and the boundaries between
phases either vanish completely or become indistinct,
corresponding essentially to a continuous mutual trans-
formation between adjacent states. In this section of
the review we examine the relations between the differ-
ent phases of a substance and thereby get a more defi-

V, cm /mote

FIG. 26. Shock compression of liquid argon.121 Points—
Experimental; curves—shock adiabatics calculated with the
help of various potentials (the best fit comes from the exp—6
potential).
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nite picture of the general phase diagram with real and
hypothetical phase transitions.

Melting is one of the most common and well-studied
phase transitions, and since it is a transition from an
ordered structure to a disordered one it involves the
disappearance of long-range order from the system. A
key question here is whether there is a type II critical
point on the melting curve, at which a first-order phase
transition gives way to a second-order transition, since
Landau's results130 indicate that the melting curve can-
not terminate in a critical point. A necessary condition
here is the simultaneous vanishing upon melting of the
discontinuities in the volume, AKm, and the entropy,
ASm, so that an experimental test of the theoretical
predictions reduces to measuring these properties at
high pressures.13'131"133

The experimental data presently available from tem-
perature measurements at high pressures,131 0.5-3
Mbar, and volume measurements under static condi-
tions132'133 furnish evidence for the hypothesis that there
are no type II critical points, since the discontinuities
in the volume and entropy upon melting do not disappear
with increasing pressure. Interestingly, the smallest
measured values of ASm have been greater than Rln2,
i.e., greater than the lowest value associated with the
disappearance of long-range order upon a transition
from an ordered to a disordered structure.13

A detailed comparison of the available experimental
data with the theoretical results obtained for certain
simple systems (inert gases, single-component plas-
mas, charged spheres, and alkali metals) indicates
that the structure dependence of the potential energy
plays a leading role in melting.13 In turn, this struc-
ture dependence depends only slightly on the particular
nature of the intermolecular forces, and it can be de-
scribed in the simple form in (6.1) or (6.2) for model
systems. It is important to note that the data from
these models also imply that there are no critical
points, in accordance with the general conclusion.130

The Lindemann criterion is used widely for a quanti-
tative description of the melting curve. According to
this criterion, a solid melts when the amplitude (q) of
the thermal vibrations of its lattice atoms constitutes
a certain fraction A of the interatomic distance (R) in
the crystal:

A3^~R»= MRf' (7.1)

where the average is taken over all the thermal vibra-
tion modes w,, and the energy of the i-th mode is given
in the quasiharmonic approximation by

where to,, is the Debye frequency. In the general case
of an arbitrary spectrum,82 we would have

£, = - (7.2)

The actual spectrum of thermal vibrations and its vol-
ume dependence are usually exceedingly complicated,
forcing us to appeal to models. For high-temperature
melting, we have E( = kT, and in the Debye approxima-
tion the conventional form of the Lindemann criterion
follows from (7.1):

Tm
- 2,,2/3 = const,

"o") ? Ya — 5~i—77—> in i\o / " dlnV \t. o /

and the usual assumptions adopted to simplify (7.3) are
the condition

and the replacement of the average value (y) by the
thermodynamic value: the Gruneisen coefficient y
= V(dP/BE)v. The latter simplification is valid at high
temperatures (T>0.1K^/k). It follows from (7.3) that
the melting temperature increases monotonically upon
compression, since the experimental values of y ex-
ceed 1/3.

Specific melting characteristics can be calculated
with the help of (7.3) and (7.4) if we know the volume
dependence of the Gruneisen coefficient, which is given
in a generalized form134 by

( — 2
' (PXV»I*)$ ' (7.5)

where t=Q corresponds to the Slater-Landau approxi-
mation, t=l corresponds to the Dugdale-McDonald
model, and / = 2 corresponds to the Vashchenko-Zuba-
rev free volume theory.14 Here PI-P(V,T = Q K) is the
pressure on the absolute-zero isotherm. Methods for
determining the parameter t in (7.5) and for finding the
dependence y(V) from the data of static and dynamic ex-
periments are discussed in Section 8. At this point we
simply note that the optimum value of t may, in gen-
eral, not be an integer; the melting curve of magnesi-
um observed experimentally at high pressures,135 for
example, can be described with £ = 0.55 (Fig. 27).

The Simon and Krot-Kennedy melting laws which are
used in practice13 follow under specific assumptions
from the Lindemann law. The generalization and re-
formulation of the criterion (7.1) for an arbitrary in-
terparticle potential by the methods of statistical me-
chanics136 provide further confirmation of this criter-
ion. Monte Carlo calculations for a hard-sphere sys-
tem113 also demonstrate the validity of the Lindemann

400

FIG. 27. Melting of magnesium during shock loading.135 1 —
Experimental; 2—shock adiabatic; 3, 4, 7, 9—calculations
from Eq. (7.5) with t =0, 1, 2, and 0.55; 5—Simon law; 6—
Krot-Kennedy law; 8—static data.
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criterion for up to a doubling of the temperature and a
quadrupling of the density; the melting sets in upon a
10% linear deviation from a close packing of the
spheres. This criterion is based on simple physical
considerations and has won much popularity in prob-
lems involving thermal and cold melting, in research
on plasma crystallization, etc.

When the real vibration spectrum in a crystal is taken
into account, we can also find from (7.3) a negative
slope of the melting curve,137 a consequence of the
anomalous volume dependence of one of the long-wave-
length vibration modes, which makes it possible to de-
scribe the nonmonotonic course of the melting curves.
The experimental discovery of a softening of the trans-
verse acoustic modes in the phonon spectrum of a bcc
barium lattice under pressure, for example, has made
it possible to explain the maximum on the melting curve
on the basis of a decrease in the stability of this lat-
tice.138 The change in the nature of the interparticle in-
teraction resulting from a change in the electronic
structure may also contribute to the nonmonotonic be-
havior of the temperature on the melting curve, as has
been observed for cesium and cerium.

The negative value of dTm/dPm can also be explained
in the model of a two-component liquid,139 according to
which the liquid is a mixture of particles of two spe-
cies, which are either formations with different coor-
indation numbers or atoms with an electronic transition
which has already occurred (or without an electronic
transition). The first case holds for substances which
have loosely packed low-pressure phases; in this case
the melting curve acquires a negative slope because of
formations with the coordination numbers of the high-
pressure phase near the phase boundary. This inter-
pretation is supported by an analysis of the structural
data, which indicates the presence (in the cases of Hg
and Sn) or in fact a dominant role (in the cases of Bi,
Sb, and Ga) of formations of the high-pressure phase
in a liquid near the melting curve.139

There is a different situation in the melting of metals
which permit (as the lanthanides do, for example) a
possible change in the electronic structure. The slope
changes and the pronounced decrease in the compres-
sibility observed experimentally on the shock adiabat-
ics of the rare earths140"142 have been attributed to a
completion of electronic transitions83'140 or to a high
rigidity of the filled 5p6 inner shell of xenon.141 As
Grover and Alder were the first to point out,143 the ex-
perimental slope changes on the shock adiabatics of the
lanthanides usually occur on the parts of the melting
curves extrapolated from low pressures. The pro-
nounced size of these slope changes is evidence for
large negative values of ATm/APm at the intersection of
the two-phase region.

Careful measurements of the shock adiabatics of the
lanthanides142 have made it possible to work from the
shock-wave and static data to plot melting curves up to
high pressures (PS 1 Mbar) and to determine the points
at which these curves intersect the adiabatics. These
intersection points coincide quite clearly with the ex-
perimental slope change for all metals (Fig. 28). Since
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FIG. 28. Phase diagrams of thulium (a) and erbium (b).142

Dashed curves—Calculated temperatures on the shock
adiabatic (SA) and the melting curve (melting); points—melting
on the shock adiabatic according to experimental data.

the high-pressure phases of the rare earth elements
are extremely closely packed, the anomalous behavior
observed on the melting curves and thus the higher den-
sity of the liquid cannot be attributed to the presence of
higher coordination numbers in the liquid. Working in
the model of a two-component liquid, we conclude that
a continuous change in the electronic structure which
tends to increase the density occurs in the atoms of a
liquid as the pressure is raised. In the solid phase, the
change in the electronic structure either also occurs
continuously (as in the case of cerium), but at a differ-
ent rate, or begins at the triple point (as in the case of
cesium), giving rise to anomalies on the melting curves
of the lanthanides.

The specific mechanism for the change in the struc-
ture which increases the density and reduces the com-
pressibility can be different in different cases; it has
been interpreted as either the completion of s-d elec-
tron transitions and the formation of relatively incom-
pressible shells (in the case of lathanum93) or a sharp
decrease in the metallic radius of the ion upon a delo-
calization of f electrons (cerium99 and praseodymi-
um144). We wish to emphasize that the correspondence
between the position of the slope changes on the shock
adiabatics of the lantanides and the intersection of these
adiabatics with the melting curves is not absolutely
necessary; the slope change (or a sharp bend93; see
Fig. 18) due to a redistribution of electrons can also
occur in the solid phase. In the lanthanides, however,
this correspondence is quite convincing because of the
anomalous melting curves and the low temperatures on
them and also because of the substantial pressures cor-
responding to the change in the electronic structure.
We apparently have a situation of a different type in the
cases of the refractory metals (Ti, Zr, Hf), where the
completion of the s-d transitions on the shock adiabatic
occurs in the solid phase and is accompanied by struc-
tural phase transitions.

A maximum also appears on the melting curve at ex-
tremely high pressures because of quantum effects.21

As a crystal is compressed, the spatial localization of
its nuclei increases the uncertainty in the momentum
and thus increases the amplitude of the zero-point vi-
brations. The energy of these vibrations, frwD~72u>0

~ w 1 / 2 (ob and a>0 are the Debye and plasma frequencies
of the ions), increases more rapidly with increasing
density than the Coulomb energy, ~«1/3, which tends to
stabilize the lattice. The ultimate result is a melting
of the crystal at T = 0 K; i.e., the region occupied by a
crystalline state is bounded. Estimates of the limiting
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densities of crystals are afflicted by extremely large
uncertainties, but at any rate these densities lie in the
range21-36 p~ 103-108 g/cm3.

At pressures of hundreds of kilobars, solids can have
different crystal structures, depending on the thermo-
dynamic conditions. Transitions between different
structures give rise to additional phase boundaries.
The classification and description of polymorphic phase
transitions constitute a complicated and laborious prob-
lem, requiring accurate calculations of the energy and
phonon spectra of the competing modifications. As a
result, the primary source of information about poly-
morphic transitions has been direct experiment, static
and dynamic.145 A general tendency in the phase transi-
tions is a pressure-induced transition of a crystalline
substance into more closely packed structures with
maximum coordination numbers. According to( dynamic
measurements,146'147 the polymorphic phase transitions
are completed at 0.5-1 Mbar.

The qualitative features of the phase diagram of vari-
ous substances, with allowance for the polymorphic
transitions between different close-packing versions,
have been reproduced successfully in molecular-dy-
namics calculations using a square-well potential115

corresponding to an effective attraction between the
atoms and the crystal lattice (Fig. 29). Calculations
with a stepped potential115 simulating change in the ionic
radius have explained details of isostructural conver-
sions in metals and have revealed anomalous types of
phase transitions which are characteristic of cesium
and cerium.

In a compressed substance, there are also electronic
phase transitions (predicted some time ago by Fermi)
which do not directly involve a change in the symmetry
of the crystal lattice and are instead caused by a change
in the electronic structure of the elements. The most
representative conversions are those observed in the
metals of the long periods, which exhibit an inversion
in the filling of their energy levels. As the pressure is
raised, the electrons become redistributed among
shells, and this inversion is progressively eliminated,
changing the binding energy of the crystal and giving
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rise to structural phase transitions.

The factor primarily determining the particular type
of crystal lattice in a metal is the number of binding d
electrons. As was shown by the calculations of Ref.
148, the s-d transition and the increase in the popula-
tion of the d band upon the compression of transition
metals and even simple metals are primarily responsi-
ble for the observed sequence of phases in these ele-
ments. Corresponding calculations of the binding en-
ergy of various structures in the trivalent lanthanides149

have revealed a correspondence between the optimum
lattice type predicted by the calculations and the lattice
type observed experimentally as the number of d elec-
trons is increased upon compression from 1.5 to 2.7;
absolutely no role is played in the process by a redis-
tribution of f electrons. Further evidence that the tri-
valent lanthanides behave in the same manner as tran-
sition metals upon moderate changes in volume comes
from the experimental observation of the sequence of
phases characteristic of the transition metals in yttri-
um,150 which lies in the same group, III, but which does
not contain f electrons.

The picture of events was marred by an unexpected
result: the appearance at high pressures of the rare
crystal lattice corresponding to the 0 phase of neptuni-
um in scandium, which is the first transition metal in
group III (Ref. 193). This result indicates, first, that
the approximate band calculations of Refs. 148 and 149,
which ignore the hybridization of the s-d bands (which
gives rise to this rare lattice), are inadequate in this
case; second, it indicates that the 5f electrons have on-
ly a minor effect on the binding energy of the actinides,
since structures similar to the neptunium B phase are
customary for them. Syassen et al.1SB recently car-
ried out a very interesting study of the structure of the
lanthanides at high static pressures (PS 500 kbar).
They found that the sequence of structural first-order
phase transitions which leads to the closest-packed fee
lattice becomes supplemented at higher pressures by a
second-order phase transition, which involves a grow-
ing distortion of the fee structure and which results
from a complex hybridization of bands at high degrees
of compression. This transition is further evidence
that the single-particle calculations148'149 are of limited
applicability under these conditions. Some unusual
properties are exhibited by the electronic transitions
in the lanthanides which involve a displacement into the
conduction band of some narrow, essentially localized,
f bands. An electronic transition of this sort, from a
localized level to a collectivized state, is accompanied
by the phenomenon of an intermediate valence197: Each
atom has a nonintegral number of conduction electrons.
An element which exhibits this type of transition is
ytterbium. As ytterbium is compressed from 40 to 300
kbar, one observes,198 without a change in crystal
structure, a continuous increase in the number of va-
lence electrons from 2 to 3, with a corresponding
change in the electronic structure from the 4f14(5d6s)2

state to the 4f13(5d6s)3 state. Incidentally, there is the
possibility that this transition is related to the delocal-
ization process discussed below.

Electronic phase transitions are not necessarily
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linked to changes in the symmetry of the crystal lat-
tice; furthermore, they occur in both the solid and liq-
uid phases. The most characteristic example is the
Mott transition, which corresponds to a delocalization
of electronic shells upon compression. In this case the
populations of the levels change only slightly, but at a
critical compression the nature of the electronic states
changes, and an electronic shell becomes a conduction
band. The Mott transition can occur without a struc-
ural change, and it terminates in a critical point; on
this basis it may be regarded as a phase transition be-
tween a gas and an "electronic liquid."151

The metal exhibiting this transition which has re-
ceived the most experimental study is cerium,145 in
which the delocalization of a 4f electron upon compres-
sion at a modest temperature causes a significant
(~15%) decrease in the size of the ion, which in turn
causes an isostructural phase transition with a critical
point. The element following cerium in the lanthanide
series, praseodymium exhibits at ~200 kbar a struc-
tural phase transition between similar close packings144

which involves a delocalization of 4f electrons. This
transition is also accompanied by a sharp decrease
(-19%) in the metallic radius of the ion. These exam-
ples both support the explanation of the anomalous melt-
ing curves of the lanthanides by the model of a two-
component liquid (more on this below), and they imply
a greater degree of collectivization of the f electrons
in the liquid phase, which increases the density and re-
duces the compressibility upon melting.

In metals, the effects of a change in electronic struc-
ture or of a delocalization of shells are seen both in dy-
namic experiments, in a decrease in the compressibil-
ity of the new phase,140"142 and in static experiments, in
discontinuities in the resistivity152 and changes in the
structural characteristics of the crystal.145 Electronic
phase transitions have also been the subject of exten-
sive theoretical study84'93"100 by band-theory methods
(Section 5). The calculated results have furnished a
correct explanation for the experimentally observed ef-
fects, and they have confirmed the general trend in the
pressure-induced changes in the electronic structure
toward a hydrogen-like arrangement of levels. Band-
structure calculations carried out for lanthanum by the
method of linear muffin-tin orbitals,93 for example,
have demonstrated a 6f-5d electronic transition and a
quantitative agreement between the point at which this
transition is completed and the point at which the de-
crease in the shock compressibility is found experi-
mentally (Fig. 18). It turns out that a temperature in-
crease smooths out the transition effects by virtue of a
broadening of the energy bands. The particular elec-
tronic characteristics of metals near the singular point
of an electronic transition caused by a pressure-in-
duced change in the topology of the Fermi surface have
also been studied.

An interesting theoretical result is the description of
the delocalization of f electrons upon the compression
of the lanthanides and actinides. Calculations for ceri-
um"9 show that the 4f band contracts upon a decrease in
the density and splits into two states corresponding to

different spin polarizations. The effect corresponds to
a transition of a 4f electron from a metallic state to a
localized state, and it can be linked with a y- a transi-
tion, which is accompanied by the appearance of anti-
ferromagnetism in the y phase and which has been stud-
ied experimentally in some detail.145 We wish to em-
phasize that at low temperatures this transition is a
purely Mott transition, not an f-d transition, since the
calculations of Ref. 199 show that in the a phase the
4f1(5d6s)3 electronic configuration is preferable to the
(5d6s)4 transition from the energy standpoint; further-
more, the former transition leads to a much better
agreement between the theoretical and experimental
transition energy and bulk modulus. Above the critical
temperature, however, the difference between the de-
localization of an f electron and an f-d electronic tran-
sition apparently becomes quite arbitrary. Calculations
by the method if linear muffin-tin orbitals have also
provided a quantitative description of the abrupt
changes in the magnetic properties of transition metals
at temperatures above the Curie point. The effect has
been attributed to a preference for states with unpolar-
ized spin at the transition, because of a decrease in the
energy.98

A delocalization of f electrons can occur not only upon
compression, as is observed in the cases of cerium and
praseodymium, but also as a function of the atomic
number, as can be seen in the actinide series. Figure
30 shows experimental and theoretical values of the
equilibrium atomic radii of the actinides.100 There is
a complete agreement between the experimental and
theoretical results for the first few elements of the
series, but the agreement is disrupted at neptunium
and plutonium. Correlation effects become more im-
portant for these elements, and at even a slight nega-
tive pressure a solution with a polarized spin becomes
preferred; for americium, this solution is also the op-
timum solution under standard conditions. Americium
is therefore the first element in the actinide series
which has localized 5f electrons and which exhibits the
characteristic properties of the rare-earth elements.
Calculations100 have shown that there should be a delo-
calization of 5f electrons, accompanied by a decrease
in the metallic radius, when americium is compressed,
by analogy with cerium and praseodymium. Interest-
ingly, this prediction has been confirmed experimen-

ts Ac Th Pa U Np Pu Am CTI 8k Cf

FIG. 30. Experimental and theoretical (1) atomic radii of the
actinides.100 2—Theoretical value calculated for americium
without allowance for localization of 5f electrons.
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tally154; although the change in volume at the transition
has turned out to be lower than that predicted theoret-
ically,100 the high-pressure phase has the low-sym-
metry structure of the uranium a phase, which is also
observed in the a' phase of cerium. The actinides
coming after americium will presumably also undergo
compression-induced transitions to the exotic struc-
tures with low coordination numbers which are charac-
teristic of the first few elements of the series.

Temperature, like pressure, can strongly affect the
nature of the f-electron states. Under standard condi-
tions, plutonium and neptumium have delocalized 5f
electrons, but even a slight increase in the volume is
accompanied by a transition of these electrons to a lo-
calized state.100 In a study including the anomalously
high volume expansion coefficient of plutonium and
neptunium and the definite role played by the hybridiza-
tion of s-d bands in the formation of the neptunium j3
phase,193 Vohra and Holzapfel194 concluded that a local-
ization of 5f electrons occurs in the high-temperature
solid phases of these metals and explains the observed
anomalies in their properties.

Electronic phase transitions also result from a com-
pression-induced shift of inner electron shells from the
discrete spectrum into the continuum. According to
Kirzhnits and Shpatakovskaya,60 this effect corresponds
to a first-order phase transition. An electronic phase
transition of this sort is of course the end result of a
succession of phase transitions which amount to a pres-
sure-induced ionization of a sequence of electron shells.
The parameters of these phase transitions calculated by
the semiclassical theory (Section 4) and by direct quan-
tum-mechanical methods (Section 5) correspond to
pressures well above 300 Mbar, making it difficult to
test these predictions experimentally. It may be that
these transitions are responsible for the anomalous
features observed on the mass-radius curves of white
dwarfs.60

Some interesting features are observed by phase
transitions in disordered structures, where a competi-
tion between attractive and repulsive forces in the in-
terparticle interaction gives rise to a liquid-vapor
transition which terminates in a critical point. The
characteristics of the boiling curves and the param-
eters of the critical points have been measured for a
large number of chemical compounds and can be found
in the voluminous handbooks. Particularly thorough ex-
periments have been carried out in the critical region,
where the data on the critical indices, the spatial and
temporal fluctuations, the kinetic coefficients, etc.,
have served as a foundation for the construction of the
various theories of critical phenomena.2 The informa-
tion available on the positions of the boiling curves of
most of the chemical elements is, however, quite lim-
ited. For example, among the metals, which make up
about 80% of the elements in the periodic table, the pa-
rameters of the critical point have been determined for
only three, the lowest-boiling metals,155 and the situa-
tion is even sadder when we start looking for detailed
studies of the phase boundary or of near-critical and,
especially, supercritical states.

The parameters of the critical points of elements
can be estimated from the tabulated heats, tempera-
tures, and densities on the liquid-vapor equilibrium
line through the use of the thermodynamic analogies in
their properties (Fig. 31). The thermodynamic scaling
principles and the parameters of the critical points of
most elements which have been found by various meth-
ods are given in Refs. 155 and 156. On the whole, the
results found by the different methods are not far
apart, although the quantitative differences in the criti-
cal parameters sometimes reach 30-50%. Similar re-
sults are also found from model equations of state (see
Fig. 36, somewhat below) and are supported indepen-
dently by experimental data on the adiabatic expansion
of shock-compressed metals157 and on the slow elec-
trical explosions of metal wires.117-118-158

An important feature of the evaporation of metals is
that the high-temperature part of the boiling curve is
in the plasma phase because of the high critical tem-
peratures, which are comparable to the corresponding
ionization potentials. Because of the high critical den-
sities, this plasma phase is very nonideal with respect
to a broad spectrum of interparticle interactions. The
evaporation of metals at high pressures thus occurs
directly to a plasma phase, skipping the gaseous re-
gion, in contrast with the events in the case of low-
boiling substances. The effect may distort the esti-
mates of the boiling phase boundary and may also give
rise to new phase boundaries.

As mentioned in Section 3, several qualitative de-
scriptions of the physical properties of nonideal plas-
mas have been generated from heuristic models based
on the extrapolation of arguments regarding collective
and quantum effects with a Coulomb interaction from
the region of slightly nonideal plasmas. Typically,
some of these models lose their thermodynamic stabil-
ity at high ratios of the Coulomb energy to the kinetic
energy, and the effect has been linked4'5>35 to the pos-
sibility of a first-order phase transition and to a strati-
fication of a highly compressed Coulomb system into
phases with different densities.159 It may be that the
experimental anomalies observed in the dielectric per-
mittivity of mercury vapor195 are evidence of precisely
this stratification, into a weakly ionized gas and a
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FIG. 31. Curve of the coexistence of the liquid and vapor of
alkali metals.155
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charged, relatively dense, disperse system. The triple
point on the liquid-vapor equilibrium line corresponds
in this case to a Mott metal-dielectric transition in the
liquid phase.

Several studies have been carried out to determine
the expected properties of nondegenerate, highly non-
ideal plasmas and the characteristics of the phase
transitions in them. The many possibilities here have
been analyzed by means of simple models4 and by
pseudopotential calculations by the Monte Carlo meth-
od.47 The primary effect, which causes the condensa-
tion of a multicomponent plasma, is the polarization at-
traction of unlike charges. In this case the stabilization
of the dense phase is attributed to quantum effects (in-
terference) or, at high densities, to degeneracy and
overlap of the electron shells of atoms and ions.
Another possibility which has been discussed recently
is a phase transition in a weakly ionized dense plasma
caused by an interaction of charges with neutrals.49

The model-based analysis of highly compressed
Coulomb systems predicts a possible formation of a
Wigner electronic crystal, which has become the sub-
ject of a fair number of theoretical papers30 and exper-
imental searches40-41 (Section 3). Landau and Zel'do-
vich160 discussed the possibility of anomalies in the
thermodynamic functions upon the transition of a dense
metal vapor to a metallic state. They predicted that
phase transitions in the gas and liquid phases other
than the boiling curve of the ordinary type might be
caused by the conversion to a metallic state.

The theoretically predicted plasma phase transitions
would greatly distort the customary phase diagram of
a substance, giving rise to additional phase boundaries
and to exotic plasma phases. The heutristic models,
which clearly are no more than qualitative models, suf-
fer from large uncertainties in their conclusions. The
conclusions depend on the particular ways used to de-
scribe plasmas with parameters in the very nonideal
region. In particular, since phase transitions are pre-
dicted for plasma states with a strong interparticle in-
teraction, where the theory is most uncertain, a final
resolution of the question of whether the specific plas-
ma phases exist must await experimental data. The
quantitative data presently available on the properties
of nonideal plasmas from dynamic experi-
ments52' 5-%ul',i57,i58 do not ShOW any definite indications
of a significant phase stratification, and they suggest
that the phase diagrams of the substances which have
been studied are of the usual form, with a single criti-
cal point (Fig. 1). To conclude this section we wish to
emphasize that the existence of specific phase transi-
tions is a hypothetical possibility but an extremely in-
teresting one from the standpoint of experimental high-
temperature thermophysics.

8. SEMIEMPIRICAL EQUATIONS OF STATE

It follows from the preceding sections that a descrip-
tion of the thermodynamic properties of nonideal media
requires complex models which are tailored to fit a
particular situation and are accordingly applicable only
in a limited region of parameters. These models usu-

ally require extensive numerical calculations, and the
results are in the form of graphs or tables of limited
size, making the results difficult to use for practical
calculations.

An alternative method for describing the properties
of nonideal media over a broad region of parameters is
to construct semiempirical models14"16 in which the gen-
eral functional dependences are found from theoretical
considerations, while experimental data are used to de-
termine the numerical values of the coefficients in
these functions.5* The most common approach in the
semiempirical models has been to divide some thermo-
dynamic potential (the free energy, for example) into a
cold component Ecald( V) and thermal components deter-
mined by thermal excitation. These thermal compo-
nents are written in turn as the sums of the contribu-
tions of the thermal motion of the atoms or molecules
of the crystal lattice, FlaLtt( V, T), and the contribution
of the thermally excited conduction electrons, fe(V, T):

F (V, T) = £,.„,„(V) + Fi,u (V, T) -f f e (V, T), (8.1)

where the particular nature and form of the various
terms depend on how general the corresponding semi-
empirical models are.

The relatively low temperatures in dynamic compres-
sion to pressures of hundreds of kilobars allow this
part of the quasiharmonic model (7.2) to be described
successfully in the form of a Mie-Griineisen equation of
state,

P(V, 1(V)
V (8.2)

where the relationship between y(V) and the cold curve
is determined from (7.5). The experimental fact15'18

that the wave and mass velocities are related linearly,
D=C0 + Xz<, leads to the following equation for the shock
adiabatic:

The procedure of Refs. 14 and 18, which incorporates
the third-order tangency of the shock adiabatic and the
absolute-zero isentrope, can therefore be used to con-
struct an approximate relationship between the param-
eter t in (7.5) and experimental results: the Griineisen
coefficient y0 = y(V0) and the slope of the adiabatic, A:

There are many other possible ways for determining t
from static and dynamic measurements.164 Comparison
of the various calculations of y(V) with experimental
data on aluminum165 shows, however, that none of the
quasiharmonic models has any decisive advantage in
describing the dynamic experiments.164 Equally unsat-
isfactory results are found in a comparison with the
data of Ref. 165 of the highly simple approximation y/V
= const, which is the approximation most commonly
used in calculations.0' We might also note that the use
of Eq. (7.5) to calculate y(V) is, strictly speaking, le-
gitimate only for isotropic structures or structures of
cubic symmetry. In general, the tensor nature of the
Griineisen coefficient must be taken into account. De-

489 Sov. Phys. Usp. 26(6), June 1983 A. V. Bushman and V. E. Fortov 489



lannoy and Perrin167 have discussed a method for de-
termining the Griineisen coefficient from measure-
ments of the elastic constants and their derivatives with
respect to the pressure for several metals of cubic and
hexagonal symmetry. We wish to emphasize again that
a complete solution of the problem of the behavior y( V)
can be found only by taking into account the actual spec-
trum of vibrational frequencies in the crystal (Section
1).

The Mie-Gruneisen equation of state (8.2), which de-
scribes the properties of solids at relatively low tem-
peratures, contains the two unknown functions PcoiA(V)
and y(F), which are related by differential equation
(7.5). In practice, however, the solution of this equa-
tion does not make it possible to find unambiguously the
density dependence of the Griineisen coefficient, since
the derivatives of Pcoid required in the calculation are
determined from the experimental shock adiabatic at a
severe cost in accuracy. Various analytic expressions
which give identically good descriptions of the raw data
from the shock-wave experiments predict qualitatively
different types of y(V) behavior.168

An alternative way to describe shock-wave experi-
ments and to extract equations of state is to specify the
cold curve analytically and use several adjustable pa-
rameters.168'169 A convenient way to represent Pcold is
a series expansion in the cubic root of the compres-

£latt= ZNkTD (x),

where x = K<*>D/kT and

sion,1 *= F(-P=0, T=0)/F)168:

(8.3)

where the coefficients a( are found from experimental
data on the compressibility, the Griineisen coefficient,
and the sublimation energy under standard conditions
and from calculations from quantum-statistical models
and the parameters of a single experimental point on
the shock adiabatic. The approximation

Ap,d (a*) = Q K2'3 exp [q (I - a'/3)] _ „»/»>,

which follows from the theory of ionic crystals, has
been used to find equations of state of several met-
als.169 A similar expression for Pcold has been used to
derive equations of state for many metals and miner-
als.16

The approximate expressions derived for the cold
curve in this way give a reliable description of this
curve at pressures up to ~103 Mbar, but they do not ex-
hibit the correct quantum-statistical asymptote in the
high-density limit. Expressions of the type in (8.3),
but with lower powers, have been proposed74 for calcu-
lations at extremely high pressures. The higher-order
terms ("cr5/3 and ff4/3) have the exact quantum-statisti-
cal value, while the lower-order terms provide a
smooth interpolation to low pressures.

The characteristics of the cold curve Pcold( V) and the
Mie-Griineisen equation of state (8.2) give a complete
description of the caloric properties of a substance.
The use of the quasiharmonic model of a solid in the
Debye approximation also makes it possible to deter-
mine the temperature from (8.2) and from an expres-
sion which follows from (7.2):

(3dt

This method has been used with shock-wave data on
many substances to construct equations of state valid at
megabar pressures.146'168-169 The quasiharmonic model
has also been modified170 to incorporate the tensor na-
ture of the equation of state.

With increasing temperature, the thermal vibrations
of a lattice become anharmonic, and in the high-tem-
perature limit the behavior of the lattice material is
characterized by the properties of an ideal gas. These
circumstances have been taken into account171 by the
addition to the free energy of a term

F,.tt = 2.RTln(l+z), (8.4)

where the quantity z = lRT/c*ola is proportional to the
ratio of the thermal and elastic parts of the pressure,
and I is an empirical parameter found from experi-
ments on the dynamic compression of porous samples.
The equation of state constructed in this manner de-
scribes the transition from the condensed state (za 0)
to the ideal-gas state (z — «).

A similar transition is described by the model of Ref.
172, where the substance is treated as an equilibrium
mixture of harmonic oscillators and an ideal gas. The
proportions in the mixture are determined by the condi-
tions for thermodynamic equilibrium. Anharmonic ef-
fects are also taken into account by means of the free-
volume theory169 and by introducing a temperature -in-
duced shift in the frequencies of the normal vibrational
modes.105

The ideal-gas asymptotic behavior was achieved in
Ref. 173 by describing the lattice heat capacity by the
expression

which was found from data obtained by using simple
models for a liquid: a system of soft spheres and a
Coulomb plasma. Anharmonic effects in the cell model
with the specific interaction potential

<p(r) = -*•=-•
which makes it possible to solve the Schrodinger equa-
tion exactly, have been incorporated in an equation of
state.174 This equation of state yields the correct gas
asymptote in the limits T-<*> and F-°°, but it gives
only a schematic description of dynamic experiments at
high pressures.

With increasing temperature it becomes necessary to
incorporate in the equations of state, along with lattice-
anharmonicity effects, the contribution of thermally ex-
cited conduction electrons. This contribution is deter-
mined by the fine details of how the electron energy
bands are filled, which are highly individual properties
of each element (Section 5). The simplest way to in-
corporate the electron contribution in metals15"18 is to
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use the model of nearly free electrons, whose number
is assumed to be constant and determined by the va-
lence of the element. At pressures which are not too
high the conduction electrons are degenerate, and their
properties can be described by the model of an ideal
Fermi gas,

£e = -£-(frr)2v(ep), Pe = -%-E,, (8.5)

where v(zy) is the density of electron states at the Fer-
mi surface, and ye = - 9 In i//9 In V. For a degenerate
gas in the model of free electrons, we have ye= 2/3.

The values found for I>(EF) from low-temperature
measurements of the heat capacity have usually turned
out to be much lower than the predictions of the ideal-
gas calculations. The discrepancy results from the ap-
proximate nature of the free-electron model, which be-
comes particularly arbitrary for transition metals with
conduction electrons localized in a narrow d band. Di-
rect quantum-mechanical calculations84 show that com-
pression causes a broadening and a transformation of
the d band, while the state density at the Fermi surface
changes dramatically. As a result, there are anoma-
lies in the behavior of ye, which may even become
negative.

The semiempirical models ignore the particular way
in which the bands are filled, and they use the obviously
simplified treatment of the electron terms according to
which I / (E F ) is taken from low-temperature experi-
ments, while the Griineisen electron coefficient is taken
to be ye= 1/2 in accordance with the Thomas-Fermi
theory.168'169 This simplified approach is valid at sub-
stantial pressures, but at standard conditions it is an
extremely crude approximation of the real situation.
For metals at T~0 the experimental values are ye= 1-3,
and calculations175 for aluminum and thorium show that
the approximation ye= 1/2 is valid only at high tempera-
tures (T~ 3-10* K). At temperatures T~ £F (which is of
the order of 105 K for metals), the electron degeneracy
is lifted, and (8.5) should be replaced by the exact rela-
tions for an ideal electron gas, (3.2). The semiempiri-
cal equations of state make it a far simpler matter to
carry out specific calculations if the exact expressions
for the electron terms are replaced by various approx-
imations157'171'176 which contain several adjustable pa-
rameters and which describe the correct asymptotic be-
havior at low and high temperatures.

In constructing equations of state of dielectrics, e.g.,
ionic crystals177 and inert gases,178 one must take into
account the thermal excitation of electrons into the con-
duction band which occurs when a substance is heated.
In this case the number of free electrons depends on the
density and the temperature: Ne~ T3/ 2exp (-&.E/2kT),
where &E(V) is the energy gap between the valence band
and the conduction band. This gap is either specified by
a model177 or found by direct quantum-mechanical cal-
culations89 (Section 5). The term accounting for the
contribution made by the free electrons in the expres-
sion for the free energy must be supplemented with an
expression that takes into account the thermal excita-
tion of the electrons.177'178 Since compression narrows
the energy gap, the additional term causes a negative

increment in the pressure, with a magnitude which de-
pends strongly on the rate at which the gap is nar-
rowed90 (Fig. 16).

The use of these expressions, or slight modifications
of them, has resulted in the construction of equations of
state for a large number of chemical elements and com-
pounds. 168"1'74'176'178 The incorporation of anharmonic ef-
fects and electron effects has led to a satisfactory de-
scription of the thermodynamic characteristics of the
condensed phase over a pressure range of tens of mega-
bars. Other methods have also been proposed for con-
structing semiempirical equations of state. For exam-
ple, the equation of state of water has been specified in
the following form,179 by analogy with (8.2):

E(P,

where the empirical dependence £(P) = P (dV/6E)p is de-
termined from experiments on the shock compression of
ice and snow of various densities.

At high pressures, melting effects are estimated180 to
have only a slight influence on the kinematic character-
istics in shock-wave experiments. Accordingly, the
early semiempirical models ignored melting, with lit-
tle effect on the calculations of the caloric characteris-
tics observable experimentally. However, measure-
ments of the temperature in shock-wave experi-
ments131'135 revealed a sensitivity of the temperature to
melting (Fig. 27). Further study of metals with anoma-
lous melting curves (Section 7) revealed that melting
also affects the kinematic parameters of shock
waves.142 These circumstances and the need for an ac-
curate calculation of the temperature in gasdynamic
problems with heat conduction required an appropriate
modification of the semiempirical models to incorpo-
rate melting correctly.

One way to incorporate melting in the semiempirical
equations of state is to use the Lindemann criterion,
with an entropy of melting, ASm=1.15.R, which is an av-
erage over all elements.173'181-182 A more systematic
way to take melting into account157'177-180-183-184 is to add
to the lattice term in the potential for the liquid phase
some functions whose adjustable parameters accurately
reproduce the experimental values of the changes in the
entropy and density upon melting. This approach has

FIG. 32. Curves of the melting and temperature of the shook
compression of lead, copper, and nickel.180 Dashed curves—
Superheated solid phase; dot-dashed curves—Lindemann
melting law.
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been used to calculate melting curves for ionic crys-
tals131-177 and metals157-180-184 (Fig. 32). For hydrogen,
the positions of the lines of the transition from the solid
state to the liquid and from the molecular state to the
metallic state have been determined183 (Fig. 33). A
method for calculating the melting curve and the lines
of structural phase transitions from the slope of the
experimental D-u dependence and static data is de-
scribed in Ref. 142, where the phase boundaries are
determined from the equilibrium conditions of the
phases using the equations of state for each phase ob-
tained from experimental data (Fig. 28).

A distinctive feature of the dynamic experiments
from which the semiempirical models are constructed
is that the experimental data determine the equation of
state in the thermodynamically incomplete form E
= E(P, V), and in order to close the thermodynamics
further information on the temperature, T=T(P, V), is
required.14 This further information is extremely im-
portant for developing adequate semiempirical equa-
tions of state. For example, it was the measurement
of the temperatures in dielectrics131'177 which made it
possible to determine the high-temperature part of the
corresponding melting curves at record high pressures
and to show that the quasiharmonic approximation is
valid over a broad region of parameters all the way to
the melting curve. It is an extremely difficult matter
to measure the temperature during the shock loading of
metals, which are optically opaque; only a few corre-
sponding experiments have been carried out.135 Conse-
quently, indirect thermal information obtained by iden-
tifying the states in an isentropic unloading wave has
become very important in constructing equations of
state.157-185

A thermodynamically complete equation of state can
be constructed from the data of dynamic experiments
alone,14'186 without appealing to any further model-based
arguments regarding the properties or nature of the
medium in question. This approach becomes possible
if a sufficiently dense and uniform grid of experimental
points is available over the parameter region of inter-
est. An approximation of the experimental data deter-
mines the caloric equation of state,

and the temperature T(P, V) is found by solving the lin-
ear, homogeneous differential equation

»T (8.6)

by the method of characteristics. For condensed me-
dia136, the results of static measurements at standard
pressure have been used as initial data for Eq. (8.6); in
the case of a cesium plasma,53 data from low densities,
at which the deviations from an ideal plasma are in-
consequential, have been used for the same purpose.
This approach has been used to construct equations of
state for many substances53'136: cesium plasmas, met-
als of the basic and transition groups, ionic crystals,
and silicon dioxide; Fig. 34 shows some representative
results for tungsten.

Complete gasdynamic calculations on the events
which occur during the high-temperature expansion of
a substance have required the construction of semiem-
pirical models which are valid over broad ranges of the
parameters and which systematically incorporate evap-
oration effects. One method for describing the transi-
tion of a system from a condensed state to a gaseous
state181'182 is to combine the quasiharmonic model173

with a modified van der Waals model of the liquid
state.116 This is purely a fitting procedure and does
not provide a correct quantitative matching. At the
same time, experimental data on the isentropic ex-
pansion of shock-compressed metals157'185 provide the
information required for developing semiempirical
equations of state which give a quantitatively correct
description of the liquid-vapor (or-plasma) transition.

Gasdynamic calculations across a broad range of
physical conditions have required the development of
equations of state which are valid over a broad range
and which give a correct and thermodynamically com-
plete description of the properties of the substance over
an extensive part of the phase diagram, with a consis-
tent account of melting, evaporation, dissociation, ion-
ization, etc. An expansion of the range of applicability
of the semiempirical equations of state to single out ex-
plicitly the physical asymptotic behavior has resulted
in a significant complication of the terms of the ther-
modynamic potential in (8.1) and has increased the
number of adjustable parameters, because of the need
to describe the corresponding extreme situations. Var-
ious principles have been used to construct wide-range
equations of state for many materials:
metals,157'176-184'187 water,188'190 and sodium chlo-
ride.188-191

FIG. 33. Absolute-zero isotherms (1) and isentropes (2) of
molecular and metallic hydrogen.183 3—Experimental data;
4—gasdynamic calculations.

0.7 1.0 1.3 a 1.6

FIG. 34. Shock adiabatics (m) and cold curve (P0) of
tungsten.186

492 Sov. Phys. USD. 26(6), June 1983 A. V. Bushman and V. E. Fortov 492



Figure 35 shows an example of a consistent descrip-
tion, from a common equation of state,157 of some var-
ied experimental data on lead: shock adiabatics, the
sound velocity during shock loading and the temperature
in an unloading wave. The agreement between the cal-
culations of Ref. 157 and the experimental results is
also illustrated by Fig. 36, which shows the theoretical
and experimental data on the thermodynamic properties
of aluminum in the critical region and in the liquid
phase. From Figs. 35 and 36 we see an exact (within
the experimental errors) agreement of the theoretical
and experimental characteristics over broad ranges of
the thermodynamic parameters—from standard condi-
tions to pressures of hundreds of megabars. In addition
to the satisfactory description of the varied experimen-
tal data, including data obtained under melting and
evaporation conditions, the equations of state of alumi-
num,184 copper, and lead157 also take ionization into ac-
count and give the correct asymptotic behavior at high
temperatures and large volumes. We wish to empha-
size that the wide-range semiempirical equations of
state presently available are the best method for a con-
sistent and accurate description of the thermodynamics
of substances over a broad part of the phase diagram.
These equations of state generalize the results of ex-
periments and model-based calculations.

We see from this review of model equations of state
that the last two decades have seen much progress in
methods for describing the thermodynamic properties
of media in which there is a strong interparticle inter-
action. The progress in the development of new model
equations of state has, in general, made it possible to
describe the behavior of a substance in various states
of aggregation—a description required for solving most
problems in applied physics. Nevertheless, there are
still many unmapped areas on the phase diagram, which
at present do not seem accessible to study. We thus
have a fertile soil for future theoretical and experi-
mental research, which will call upon new ideas and
new experimental methods. In this review we have at-
tempted to draw a complete and up-to-date picture of
the situation in this broad and rapidly developing field

2 4- s a r,io3K
FIG. 36. Equation of state of aluminum In the near critical
region.167 M—melting region; R—boiling curve; D—recti-
linear diameter; p—half-sum of the densities of the liquid
and gas phases; L —static measurements of the density of
the liquid. Points: Critical points estimated from thermo-
dynamic scaling principles.156

of modern physics.
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15 The curves of the ground-state energies of the various
phases as functions of rs are very similar, and for this
reason the positions of the transition points are highly sensi-
tive to extremely small differences in the potentials.3S>3?

2)The density dependence of the pseudopotential has not been
studied.

3'Optical measurements84 also point to a substantial deforma-
tion of the energy spectrum of a dense plasma.

4'A qualitative improvement of the description at low
pressures, reflecting the individuality of the various sub-
stances, has been achieved by using a model combining
aspects of the quasiclassical and band theories.73

^Arguments regarding the scaling of the dynamic adiabatic
and dimensionless equations of state are given in Refs.
161-163.

6)The condition y/V =const causes y to fall off very rapidly
with the volume—in contradiction of other theories at a
substantial degree of compression. Although the condition
•y/V1''2 = const is more suitable, it does not give the correct
asymptotic result y = 2/3 in the limit V — 0. Finally, a
direct experimental test of the applicability of the approxi-
mation Y/V' = const has been carried out for several metals
at modest degrees of compression,166 lVF0S 0.6. The re-
sults for q cover the broad range from 0.6 (Fe) to 1.8 (In).

* 8 12 16 20 24

FIG, 35. Phase diagram of lead.157 Points—Experimental;
Al—melting region; R—boiling curve; tn—shock adiabatics
(the dashed curves show the predictions of the Thomas-Fermi
model); T—isotherms, a: Sound velocity on the shock adiabat.
b: A=B' — 2« in an isotropic unloading wave.
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