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Even a simple list of the papers by Mikhail Aleksan-
drovich Leontovich on the subject of thermodynamics
and statistical physics'™?® shows that his interests were
very broad. PBut what js striking is not the breadth sc
much as the originality and depth of his analysis of these
problems. The questions that occupied Leontovich many
years ago remain current to this day.

For example, in an annctation tc his article “Cn ki-
netice cf fluctuations,” which was published more than
fifty years age, we read:

A method is presented for determining the spectrum
of fluctuations i.e., for determining the statistical
averages of the squares of the spatiotemporal Fourier
expansion of the fluctuations. The method is applied
to concentration and density fluctuations in liquids.
The consequences of the theory which bear upon the
fine structure of the lines of the scattering spectrum
are discussed in connection with the available experi-
mental data.

This said it all, with the utmost clarity and precision.

Another paper by Leontovich, entitled “On the free
energy of nonequilibrium states,” might be carried
over almost in its entirety to a contemporary course in
statistical physics. Here also the goal and result are
formulated with extreme clarity:

The free energy of a nonequilibrium state can be de-
fined more generally than is ordinarily done by taking
into consideration the additional potential energy in the
presence of which the nonequilibrium state becomes as
equilibrium state. The relationship of this definition
to the Boltzmann principle is analyzed.

The method proposed in this article for describing
a wide range of nonequilibrium states was given a more
detailed exposition in Leontovich’s book Statistical
Physics.®

It is impossible here to analyze and evaluate from a
modern point of view all of Leontovich’s papers on
thermodynamics and statistical physics.'™® Let us ex-
amine just one of them® in greater detail—“The funda-
mental equations of the statistical theory of gases from
the standpoint of the theory of random processes.” The
choice of this particular paper, of course, was not ac-
cidental, as will become clear from this article.
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This truly remarkable paper appeared in No. 5 of the
journal Zhurnal Eksperimental’noi i Teoreticheskoi
Fiziki for 1935, Its ideas represented a significant de-
parture from the existing level of the statistical theory
of nonequilibrium processes.

Up to the time that this paper was written the statisti-
cal theory of nonequilibrium processes was based on the
famous Boltzmann equation. This equation implied the
law of increasing entropy (the H thecorem of Boltzmann).
It served as a basis for the equations of gas dynamics
and the equations describing the free-molecular flow of
a gas. This was indeed a triumph of the kinetic theory.
It seemed that this theory was close to completion.
Only a few prominant physicists of the time understood
that this was only the first stage in the development of
the statistical theory of nonequilibrium processes. In
Leontovich’s paper we read:

The kinetic theory treats processes in gases. It is
a statistical theory, inasmuch as equation (1) [the
Boltzmann equation] is based on the statistical propo-
sition of the Stosszahlansatz. The structure of this
theory, however, is undoubtedly very imperfect. The
quantity fdwdo(dw =dv, dv, dv,, do =dxdydz) must be
assigned the value of some statistical average (mathe-
matical expectation) of the number of particles in a
volume dwdo of phase space pu—only then can the irre-
versible character of equation (1) and its consequences
be understood. However, in the framework of the
theory itself the meaning of this mathematical expec-
tation remains extremely unclear, since one does not
consider the probabilities which are used to generate
these mathematical expectations. The theory is
therefore also unable to give any information on the
fluctuations in the gas and how they change in time.?
(Ref. 6, p. 211).

In fact, the Boltzmann kinetic equation was treated
as an equation for a determinate (not random) distribu-
tion function. Accordingly, in the transition from the
kinetic equation to the gasdynamic equation, the gasdy-
namic functions —the density p(r, t), the velocity U(r, #),
and the temperature T(r, t)—turned out to be determi-
nate. As a result, effects due to fluctuations of the dis-
tribution function (kinetic fluctuations) and to fluctua-
tions of the gasdynamic functions dropped out of con-
sideration.
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The situation was as follows: In the classical papers
of Rayleigh, Planck, Einstein, and Smoluchowski it
was shown that even in an equilibrium state fluctuations
play a fundamental role in many phenomena. For ex-
ample, density fluctuations govern the scattering of
light, and fluctuations of the electromagnetic fields are
manifested in thermal radiation. Without allowance for
the fluctuations of the medium in which the Brownian
particles move one cannot explain this “perpetual mo-
tion.” This list could, of course, be extended. For
example, in recent years we have come to understand
the fundamental role of fluctuations in second-order
phase transitions. Nevertheless, for many years non-
equilibrium fluctuations remained outside the sphere
of interest of kinetic theory. There were several rea-
sons for this,

Working from Smoluchowski’s equation, Leontovich
obtained for the case of a rarefied gas a Markov-type
equation for the most general distribution function f, of
a system of N particles. The equation which he ob-
tained was irreversible right from the start. Here the
question of the reasons for the irreversibility did not
come up. Leontovich wrote:

It should be noted that I have not touched upon the
basic physical question of the extent to which the sta-
tistical description of the processes in terms of tran-
sition probabilities can be related to or put into cor-
respondence with the description of quantum (or
classical) mechanics. I think only that this statistical
scheme is the most expedient for setting forth in a
more complete form the actual content of the kinetic
theory (Ref. 6, p. 213).

Thus, the matter of how the reversible equations of
mechanics are related to the irreversible equations of
the statistical theory of nonequilibrium processes re-
mained an open question. This problem was promoted
to the forefront. The problem of constructing a syste-
matic fluctuational theory of nonequilibrium processes
withdrew to the background and for a long time did not
attract the attention of researchers.

Important contributions toward solving the problem of
substantiating the kinetic theory were given in the pa-
pers by N.N. Bogolyubov, M. Born and H.S. Green,
and J.G. Kirkwood. In Bogolyubov’s now-classical
monograph Problems of Dynamical Theovry in Statisti-
cal Physics (1946) a method is developed for obtaining
the Boltzmann kinetic equations (for a rarefied gas) and
the kinetic equations of Landau and Vlasov (for systems
of charged particles). Thanks to these papers, it be-
came clear in what way and af what cost one can obtain
from the reversible equations of mechanics the irre-
versible equations of kinetic theory.

As a result, many questions which had disturbed in-
vestigators simply went away. However, new ques-
tions, also of a difficult nature, arose. One of these
was the question of nonequilibrium fluctuations.

In Bogolyubov’s derivation of the kinetic equations —
the closed equations for single-particle distribution
functions —the hypothesis (principle) of total attenuatira
of the original correlations played an important role.
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Here it was (implicitly) assumed that the long-lived
correlations (with a time 7, of the order of, or larger
than, the relaxation time of the single-particle distri-
bution functions) do not play an appreciable role. The
kinetic and hydrodynamic fluctuations thereby dropped
out of consideration.

We note that Bogolyubov!? cites Leontovich’s article,®
but not in connection with the question of fluctuations of
the distribution functions. In §2 of this book!* is the
comment: “The study of the functions F, in many cases
can be simplified appreciably by the introduction of a
special functional, the generalization of the generating
functions employed by Leontovich® in the theory of
stochastic processes with a discrete phase space.”

Leontovich’s paper® was subsequently almost forgot-
ten, and it did not have an appreciable influence on the
development of the theory of nonequilibrium fluctua-
tions. The dissipative equations for the many-particle
distribution functions were discovered anew by other
authors —for example, in the works of I. Prigogine,

R. Brout, and M. Kac (see Chs. 4 and 11 in Ref. 15,
Ch. 10 in Ref. 16, Ch. 2 in Ref. 17, and Ch. 24 in Ref.
18).

For example, the study of the kinetic equations for
many-particle distribution functions (master equations)
occupies many pages in the splendid book!® by the Amer-
ican mathematician M. Kac, which is a record of lec-
tures on a number of problems in statistical theory.
Kac, unfortunately, was not acquainted with Leonto-
vich’s paper at the time he was working on these lec-
tures. On the basis of Liouville’s equation, V.N.
Zhigulev?® established a chain of dissipative equations
for the sequence of distribution functions of a rarefied
gas which is a direct consequence of Leontovich’'s
equation. Attempts at approximate solution of this
chain of equations for the purpose of studying the effect
of turbulent fluctuations on the velocity distribution of
the particles of a rarefied gas have recently been un-
dertaken by Japensee investigators (see Ref. 21).

We shall return later to the discussion of dissipative
equations for many-particle distribution functions. For
now we shall only point out the following.

When large-scale and long-lived fluctuations are tak-
en into account in kinetic theory, new contributions ap-
pear in addition to those incorporated in the Leontovich
equation. These contributions are governed by fluctua-
tions which have lifetimes much longer than the mean
free time and so cannot be taken into account in the
Boltzmann scheme. These additional contributions
are particularly large for states which are far from
equilibrium, such as in the presence of well-developed

1)Duri.ng a school on statistical physics in Jadwisin, Poland,

Kac told me that after his book appeared in Russian, a physi-
cist from Leningrad had sent him a copy of Leontovich’s
article (Ref. 6). Kac asked me, “How could he [Leontovich]
have known and understood all this back in 1935?” 1 felt
that Kac’s pride had been wounded. When later in the con-
versation I mentioned Leontovich’s friendship and collabora-
tion with A. N. Kolmogorov, Kac immediately replied, “Oh

It was Kolmogorov who taught him this.”
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turbulence. Here both the thermodynamic functions and
the kinetic coefficients are appreciably altered.

Let us now return to the question of fluctuations in the
distribution function of a rarefied gas.

The first step in the kinetic theory of fluctuations was
taken by B.B. Kadomtsev?® in a calculation of the fluc-
tuations of the distribution function of an equilibrium
rarefied gas. The result was obtained by using a lin-
earized Boltzmann kinetic equation as the relaxation
equation in the theory of equilibrium fluctuations de-
veloped in the papers of H.B. Callen and T.A. Welton,?
S.M. Rytov,? and L.D. Landau and E.M. Lifshits. 2%
In an analogous way L. P, Gor’kov, I.E. Dzyaloshin-
skii, and L.P. Pitaevskii® calculated the equilibrium
fluctuations for the Fokker-Planck equation and the lin-
earized Landau equation.

Kadomtsev’s formula was generalized to nonequilib-
rium states by various methods in the papers of Sh. M.
Kogan and A. Ya. Shul’'man, S.V. Gantsevich, V. L.
Gurevich, R. Katilus, the present author, and others
(see the review of Ref. 27, Chs. 5 and 11 in Ref. 15,
and §19. 20 in Ref. 28).

One of the ways of constructing a theory of nonequili-
brium fluctuations is based on the use of the dissipative
equation for a many-particle distribution function (§18
and Ch. 4 in Ref. 15). However, the starting point here
is different from that of Leontovich’s paper.

The initial equation in Ref. 15 is the Liouville equa-
tion—a reversible equation for the distribution function
fx- The transition from this equation to a dissipative
equation for the smoothed many-particle distribution
function fn is accomplished by averaging over a physi-
cally infinitesimal volume V,. To make such a transi-
tion possible, Bogolybov’s principle of total attenuation
of the initial correlations is replaced by the condition
of partial attenuation of the initial correlations: Only the
small-scale correlations, for which

Teor << Tp, Teor << lp. (1)

are attenuated: here 7, and [ are the intervals of time
and length that are adopted as physically infinitesimal
For a rarefied gas, when the density parameter € =n»3
is much smaller than unity, the quantities 7 ,and [, in
the kinetic stage of relaxation can be defined in the fol-
lowing way (§18 in Ref. 15 and Ch. 7 in Ref. 18):

w~Vegt b~Velgt, Np~ #»1 for e=mi<t. (2)
[
The introduction of the quantities 7, and I, enables one

to separate correlations into large-scale and small-
scale. As a result, on can write for f, the equation

afn ain | oin 0Dy I
3t T Z (v’ 3y +F, ap; Z ar; )
1gigN 1<igN
=Ty (ry - < Prr )3

(3)

here we have introduced the notation I, for the corre-
sponding collision integral. This integral can be writ-
ten either in the Bogolyubov representation [as in (18.10)
of Ref. 15]

o Txy Po -
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Iy= Z b(r;—ry) Sd(l'i_rl) 6;,51

1<i, JEN A
X[y Ty Py o von TP (—00), ...y 1y Py(—00), ..o, Tx, Py B)
— N (T Py oo T P ooy Ty Pp -2 T Py Bl

(4)

or, more conveniently for comparison with Leonto-
vich’s equation, in the Boltzmann representation

2 o
In= 3d‘pijSpildpijlvl_vjlé(ri—_rl)
1<i, J <N 0 [}
X 1w (Fgs Pas oy Toy Piy o s T Py« o o1 Tya P 1)
—fn (0 Py - T Pir o s Tp Py oo BNy Pan D))

(5)
In expressions (4) and (5) the “width” of the function
6(r, —r,) is characterized by I,.

Equation (3) with collision integral (5) corresponds to
equation (42), (43) of Leontovich’s paper (the quantity
I, in (42) is defined in Ref. 6 on p. 231). The difference
lies in the following:

In equation (42) of Ref. 6 the collision integral lacks
the second term in the square brackets in (5) [with the
function fy(xy, ..., %;, ..., %,. . ., Xy, )], which is im-
portant, for example, in proving the law of increasing
entropy of the entire system (see below). However, in
going over from equation (42) to the Boltzmann equa-
tion, Leontovich® does, of course, include the contribu-
tion of this term.

Or the left-hand side of equation (3) there is an addi-
tional term that does not appear in (43) of Ref. 6; this
term takes into account the interaction of the particles.
This term, as we shall see, is important in the study
of the contribution of the large-scale fluctuations.

Let us consider the most important consequences
of equation (3) with collision integral (5) [or (4)].

With the aid of equation (3), we shall find an equa-
tion for the single-particle distribution function:

fu(ry, Py 2) =1

:VS ?N(rl, ey Py Piroea P t)drg .. drydp, ... dpy.

(6)
In the integration over r,,...,ry,p,, ..., Py, all the
terms with i#1 drop out. All the terms in the sum
Z}K, < w under the integral over r,, p, ave on equal foot-
ing; one may therefore set j=2 and replace the sum-
mation by a factor N -1, which is the number of terms
in the sum over j. Finally, we let (N -1)/V—=N/V=n.
This vesults in the following equation:
[4 afy Wy, 47

8 i
—,#+VTHL+F0TI,1=” S o, op, fa(rp Pu Tp Py £) drydp,

In £

+"'5 d‘PizS Pz dpye S dpy | vi— vy | [?z("v Py I1s Py B)
0 0

—fa(® P2 T P D,

(D

which corresponds to equation (63) in the paper by
Leonotovich. The only difference is that on the right-
hand side of equation (7) there is an additional term
(the first term on the right-hand side) which takes into
account the contribution from large-scale fluctuations
(see below).

Yu. L. Klimontovich 368



Let us introduce the two-particle correlation func-
tion:_ By definition, with allowance for the fact that
f1=f1, we have

]72 == fyfy - Er (8)

It can then be said that equation (7) is not closed, since
it contains the correlation function £, in addition to the
function f,. For this reason, even when the first term
on the right-hand side is neglected this equation differs
from the Boltzmann equation. It is the first equation of
a chain of coupled equations for the smoothed (over a

physically infinitesimal volume V) functions f,, &,, Z,,. ..

(see Ref. 15). In contrast to the Bogolyubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy of equations
for the ordinary distribution functions, the system un-
der study is approximate because of the smoothing over
the volume, and for this reason is dissipative.

In equation (7) the correlation function g, enters in
two ways which are, in a sense, complementary. In
the second term on the right-hand side of equation (7)
the function 2, appears inside the integral that takes in-
to account the contribution of binary collisions. In or-
der to obtain the Boltzmann collision integral, one must
set 2, =0 inside it. Now how is one to justify such an
approximation? In this regard Leontovich writes:

This relation [relation (7) without the first term on
the right-hand side, auth.] will have the same form as
the “fundamental equation of the theory of gases” [the
Boltzmann equation, auth. ] if one replaces [in our
notation, auth.] f,(p;, pi) by f,(p3)/,(p}) and, corre-
spondingly, f,(p,, p,) by f1(P;)f,(p,). Such a replace-
ment might be justified if it were proved that as the
total number of particles goes to infinity, the quan-
tities giving the dispersion of the numbers of
particles in definite states increase in proportion to
N. By analogy with the “limit theorem” proved for
a discrete series of states, such a behavior of the
dispersion and, hence, the validity of such a limit
theorem in this case as well seem probable to me,
although I have not been able to prove it. As a re-
sult of the indicated replacement, equation (63) [our
Eq. (7) without the first term on the right-hand side,
auth. ] goes over to equation (1) [the Boltzmann equa-
tion, auth. ]

Thus Leontovich assumed g,=0 in the collision inte-
gral only in the thermodynamic limit: N— oo, V-,
but N/V finite. In Bogolyubov’s book!* the Boltzmann
equation is a closed equation for a single-particle dis-
tribution function obtained on the basis of the principle
of total attenuation of the initial correlations. One can
discern a certain connection between these approaches.
In both cases we arrive at a closed equation for a de-
terminate (not random) distribution function. For this
reason, as we have already mentioned, all phenomena
governed by kinetic and hydrodynamic fluctuations drop
out of consideration.

To estimate the role of the function £, in the collision
integral, let us use the condition of partial attenuation
of the initial correlations [condition (1)]. Assuming
(for small-scale correlations) that the correlation
length r. . ~7, (7, is the diameter of an atomic sphere),
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we obtain the estimate

This is what provides the grounds for dropping the
functions g, inside the collision integral. The large-
scale correlations are included in the first term on the
right-hand side of (7). As a result, the equation for the
function f, assumes the form [Eq. (18.6) in Ref. 15)

2t oy af ~
C,{l -V ﬁr: “FTP’II‘:]B (ryy Py t) 1 (ry, py, £): (10)

here
/p-=n j doy, :‘ v dpyg j dpy | vy —vg |
] i
(e pa )y fy (e pl ) — 7y (240 pge t) fy(ry Py 1))
(11)
is the Boltzmann collision integral, and

{ 0D 9

T=n 3 on e B2 (ri pio Ty Pof) drpdp, (12)

is an additional integral determined by the large-scale
fluctuations. The force F in Eq. (10) is given by the
expression

D (|r—r| , , , ’
DUt 1 (e, pr, £y dr dp'. (13)

Fir. N=F,—n ﬂ

Thus, under the condition of attenuation of small-
scale correlations, the equation for f, is of the form
(10). This equation is dissipative. Here the dissipa-
tion due to the exclusion of small-scale correlations
enters explicitly through the Boltzmann collision inte-
gral. Additional dissipation due to the functions £, (the
integral I') is also possible. Before discussing this
matter, let us make the following remark.

Instead of using Eq. (3) for the function fN as the ini-
tial equation, one can use the equation for the micro-
scopic phase density smoothed over a volume V:

Ni,opyth= ¥ 8(r—r, —pi (2)).
r, py 1) Ly (e —r; () 6 (p—p: (2) (14)
Let us denote this by N. Averaging thig equation (see
§22 in Ref. 15) and using the equality ( N) =nf, and the
condition of attenuation of the small-scale correlations,
we again arrive at Eq. (10). Now, however, the inte-
gral I is represented in a different, but equivalent form:

Tir, p, =
-+ \ G0 ey FONON L ey = — L 9 (BF8N)
no) ar - n p ’
) (15)
here 6N =N -nf, and
§F = — ‘\ %‘261\7(1", p’, t)dr' dp". (16)

In this approach Eq. (10) must be supplemented by an
equation for the correlator of the fluctuations of the
phase density N.

Of course, the equation for such a correlator, by vir-
tue of the nonlinearity of the system, will contain a
more complex, ternary correlator. This sequence of
equations can be closed under the condition that the
fluctuations are small. This condition is valid for a

Yu. L. Klimontovich 369



wide class of problems if the averaging volume V is
suitably chosen so that it contains many particles
(N, >»>1).

One may, of course, turn not to the equations for the
moments of the fluctuations 0N, but instead use Eq.
(12), which expresses the integral f in terms of §,. The
equation for g, is of the form given by (18,25) in Ref.
15. In (18.25) the condition that the fluctuations 5N be
small corresponds to the approximation g, =0, g, <f,/

2

In the zeroth order approximation in the fluctuations,
the integral I in (10) is zero, and we return to the kinet-
ic equation of Boltzmann. In the next approximation the
equation for the correlator {(SN6N) can be written in the
form of an equation with a source A(x, x’, t)—a function
determined by the single-particle distribution function
[Eq. (22,21) in Ref. 15]. The source is represented as
a sum of two terms:

Az, 2, 1) = Ag (2, 7', 1) + 4 (z, 7', V). %))
The first term Ay is determined by the atomic structure
of the subsystem in the physically infinitesimal volume
V,. The collisions of the particles of volume V, are not
a continuous process. A shot effect is present.

The second term on the right-hand side of (17) is due
to_the dissipative effect of the large-scale fluctuations
6N, and so the function A can be expressed in terms of
the integral I [(22.23) in Ref. 15].

In summary, there is a sort of dual superstructure
on top of the level of description by means of the Boltz-
mann equation.

The “first level” is governed by the molecular struc-
ture, which leads to a shot effect in the collision proces-
ses. For this reason the source Ag(x, x’,t) is called
molecular.

The “second level” is governed by the large-scale
fluctuations and is not directly related to the molecular
structure of the system. The source A might therefore
be called turbulent.

In specific situations one of these two factors may be
dominant. Then one can distinguish two more particular
generalizations of the Boltzmann equation. Let us first
consider the case in which source A=0. In this approx-
imation one has I=0 in (10), and equation (10) coin-
cides with the Boltzmann equation. Thus the function
fa(r, p, t) can be determined independently of the prob-
lem of calculating the fluctuations of the distribution
function.

However, since the function f, is introduced, as was
proposed in Leontovich’s paper, in the form of a
«“mathematical expectation” (nf, =( N)), there exists
fluctuations 5N =N ~(N). In the present case the
source A(x, x’', t) in the equation for the correlator
(6NGN) is specified completely by the function
Ag(x,x’,t). This function can be expressed as fol-
lows in terms of the function f, [(10.12) in Ch. 11 of
Ref. 18]:

An 0]y - g — (B +-8I )l nd (e — 1) 8 (p — ) i (k. B, 1) (18)
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here Gf, is an operator determined by the linearized
Boltzmann collision integral. The subscript zero on
the second term in the square brackets indicates that
the collision operators act only on the distribution func-
tion [and not on the function 6(p — p’)].

The correlator (6N6N), .. , can serve as an initial
condition (¢=1') for calculating the double-time corre-
lator, which satisfies the equation

g B 6, F L) (6NN ‘
gt Vapt 6l + F oY ONON e 1w 0 =0, £ 8 (19)
The system of equations for the single-time and double-

time correlators is equivalent to the Langevin equation
for the function 6N:

(20)

The left-hand side of this equation is of the same form
as the linearized Boltzmann equation. The moments of
the Langevin source are given by the formulas

(y (l', P, t)) == Ov
(g p, )y, p, 1)) =Ap(z, 2, ) 8 (t — ).

@1

Thus the intensity of the Langevin source in the linear-
ized Boltzmann equation for the fluctuations 5N is given
by expression (18). The latter in turn serves as a
source in the equation for the single-time correlator

of the fluctuations 5N for A=0.

For an equilibrium state the second term (with sub-
script zero) in formula (18) drops out, and we arrive
at the result of Kadomtsev’'s paper on kinetic fluctua-
tions in an ideal gas under equilibrium conditions. For
a nonequilibrium state formulas (21) and (18) are equiv-
alent to those given in Refs. 27, 28, and 15.

It follows from what we have said that results (18)~
(21) can be obtained on the basis of the dissipative equa-
tion introduced by Leontovich, together with collision
integral (5).

Let us now establish the connection between formula
(5) [or (4)] and the well-known Prigogine-Brout expres-
sion for the collision integral in the equation for the
many-particle function of a gas which is spatially homo-
geneous with respect to the coordinates of all the
particles. These distribution functions are defined by

?_\' (T4 P1y -++» Tyyy Py B) 7= ‘;—N?N (Pgs +«-s P> 1) (22)
The expression for the integral I, (p,, ..
from (5) and is of the form:

.+ Py, t) follows

2n oc
" ] ,
In Py - s Pr» )=+ Z 5 dq:i}j Piydpiylvi— vyl
1<, FEN 0 0 .
X I (Pry ooy Pis coes Pis <een P 8)—IN(Pys <o 4Pis s Pjy o es Pys )]

(23)

By using Eq. (4), one can also write this integral in the
Bogolyubov representation.

Formula (23) incorporates binary (Boltzmann model),
but strong interactions. In the approximation of a per-
turbation theory in the interaction, it implies the result
of Prigogine and Brout (Ch. 2 in Ref. 17). The corre-
sponding equation for the single-particle distribution
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function (neglecting large-scale correlations) coincides
with the kinetic equation of Landau.

Let us turn now to the other limiting case, in which
the turbulent source A is dominant on the right-hand
side of (17). In this case, as we know, equation (10)
does not reduce to the Boltzmann equation.

The additional contribution to the dissipative charac-
teristics that is determined by the integral I can be sig-
nificant. In particular, this contribution governs the
anomalous electrical conductivity of a plasma.>®*!®

Let us now return to equation (3) for the many-particle
distribution function f, and consider some of its pro-
perties.

In an equilibrium state the collision integrals (4) and
(5) go to zero when the multidimensional Maxwellian
distribution
(24)

7 1 t - i
In(Pi -y pas 1) ’WWEXP(‘ Z m)

1IN
is substituted into them.

If the collision integral (5) [or (4)] is multiplied by
the function -k Infy(r,,p,, ..., Ty, Py, ¢) and integrated
over all the variables, we then have

—k ‘\, In ]7N~IN drydpy ... drydpy 0. (25)
This property provides for the undiminishing of entropy

of the insulated system

S)=—k g 1n 7N'I~N drydp, ... drydpy, (26)
i.e.,
= =0 (27

The equal sign corresponds to an equilibrium state.

With the aid of equation (3) together with the collision
integrals (4) and (5) [or (23) for the spatially homo-
geneous case] one can estimate the relaxation times in
the various stages of the time evolution. For example,
in the kinetic stage, which is described by the Boltz-
mann equation, we obtain for the relaxation time the
familiar expression

Lret 1

o~ e~ (28)

T
Vonrd

The relaxation time is thus determined by the mean
free time of some given particle [such as particle
number 1 in Eg. (10)].

With the aid of expression (23), for example, one can
estimate the minimum relaxation time (7., ), ,—the
time in which any single particle of the system “forgets
its path.” This is sufficient for the system as a whole
to be unable to return to the initial state when the signs
of the velocities of all the particles of the system are
reversed. It follows from (23) that

(29)

1 1
(Trel Jmin ~TTrel -~ NVqnrd *

Thus, the minimum relaxation time is smaller by a
factor of N than the mean free time. This time char-
acterizes the initial stage in the onset of irreversibility.
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One can see from what we have said that Leontovich’s
paper had great potential. The author regrets that he
first read this paper when Leontovich was already
gravely ill and unable to discuss any questions. One
can only be amazed at how much Leontovich was ahead
of his time in his understanding of the fundamental
questions of statistical physics.

In conclusion, the author wishes to point out that other
types of dissipative equations are possible for many-
particle distribution functions.

Dissipative equation (3) is written for the distribution
function of the complete set of variables r,, p,, ..., ry,
py of the N-particle system under consideration. Dis-
sipation arises in this system when small-scale corre-
lations are excluded. This is what dictates an incom-
pleteness in the description.

A different situation is considered in Ch. 10 of Ref.
16 (see also Ch. 24 of Ref. 24). An equation is sought
for the distribution function of the variables of the main
system, which consists of N particles with an arbitrar-
ily strong interaction between them. Here dissipation
is established by the incompleteness of the description
in the auxiliary variables of the extended system. In
contrast to the case of (3) with the collision integral (5),
here one obtains an equation for the many-particle dis-
tribution function which is nonlinear in the function fy.

In the equilibrium state the “collision” integral in
this equation goes to zero when the Gibbs canonical
distribution with the Hamiltonian of the main system is
substituted into it. Here the H theorem of Boltzmann
is also valid. The minimum relaxation time, as in
(29), is proportional to 1/N.

The kinetic equations for the many-particle distribu-~
tion functions are too complicated to solve. However,
they can prove extremely efficient for constructing ap-
proximate equations corresponding to different levels of
description and are well suited for describing the kine-
tics of coherent states during nonequilibrium phase
transitions.

Basic to these studies is Leontovich’s paper® on
“The fundamental equations of the kinetic theory of
gases from the standpoint of the theory of random pro-
cesses.” This paper will no doubt be studied for many
years to come by students of the development of the
statistical theory of nonequilibrium processes.

Iy, A, Leontovich, “On Lewis’ principle of equilibrium,” Z.
Phys. 33, 470 (1925).

ZM. A. Leontovich, “Toward a kinetics of fluctuations,” Z.
Phys. 72, 247 (1931).

3M. A. Leontovich, “Principles of thermodynamical statistics,”
Zh. Eksp. Teor. Fiz. 2, 366 (1932).

M. A. Leontovich, “Statistics of continuous systems and the
course of physical processes in time,” Phys. Z. Sowjetunion
4, 35 (1933).

M. A. Leontovich (together with A, N. Kolmogorov), Phys, Z .
Sowjetunion 4, 1 (1933).

®M. A, Leontovich, “Fundamental equations of the kinetic
theory of gases from the standpoint of the theory of random
processes,” Zh. Eksp. Teor. Fiz. 5, 211 (1935).

Yu. L. Klimontovich 371



™. A. Leontovich, “On the free energy of a nonequilibrium
state,” Zh. Eksp. Teor. Fiz. 8, 844 (1938).

M. A. Leontovich, Statisticheskaya Fizika [Statistical Physics],
Gostekhizdat, Moscow (1944).

M. A. Leontovich, “Charge-density fluctuations in an electro-
lytic solution,” Dokl. Akad. Nauk SSSR 53, 115 (1946).

100\, A. Leontovich (together with V. I. Bunimovich), “Distribu-
tion of the number of large deviations in electrical fluctua-
tions,” Dokl. Akad. Nauk SSSR 53, 21 (1946).

Uy, A, Leontovich, Vvedenie v Termodinamiku [Introduction
to Thermodynamics], Gostekhizdat, Moscow (1950); 2nd ed.
(1951).

12, A, Leontovich, “Diffusion in a solution near the critical
point of vapor formation,” Zh. Eksp. Teor. Fiz. 49, 1624
(1965) [Sov. Phys. JETP 22, 1110 (1966)].

13M. A. Leontovich, “Maximum efficiency of direct utilization
of radiation,” Usp. Fiz. Nauk 114, 555 (1974) [Sov. Phys. Usp.
17, 963 (1975)1.

14N, N. Bogolyubov, Problemy Dinamicheskoi Teorii v Statisti-
cheskol Fizike, Gostekhizdat, Moscow (1946) [“Problems of a
dynamical theory in statistical physics,” in: Studies in
Statistical Mechanics (ed. by J. de Boer and B. E. Uhlenbeck),
Vol. 1, North-Holland, Amsterdam; Wiley, New York (1961),
pP. 5-515.

Byu. L. Klimontovich, Kineticheskaya Teoriya Neideal 'nogo
Gaza i Neldeal’nof Plazmy [Kinetic Theory of Nonideal Gases
and Plasmas], Nauka, Moscow (1980).

18yu. L. Klimontovich, Kineticheskaya Teoriya Elektromagnit-
nykh Protsessov [Kinetic Theory of Electromagnetic
Proceeses], Nauka, Moscow (1980).

TP, M. Kuni, Statisticheskaya Fizika i Termodinamika
[statistical Physics and Thermodynamics], Nauka, Moscow
(1981).

372 Sov. Phys. Usp. 26(4), April 1983

18yu. L. Klimontovich, Statisticheskaya Fizika [Statistical
Physics], Nauka, Moscow (1982).

19\, Kac, Some Stochastic Problems in Physics and Mathema-
tics, Dallas Field Research Laboratory, Socony Mobil Qil
Co., Dallas, Texas (c1957) [Russ. Transl. Nauka, M., 19671,

2y, N. Zhigulev, Teor. Mat. Fiz. 7, 106 (1971).

g, Tsuge, “Kinetic theory and turbulence,” Invited paper,
Thirteenth International Symposium on Rarefied Gasdynamics,
Novosibirsk, July 4-10, 1982; to appear in Rarefied Gaso-
dynamics, Plenum Press (1983).

22p_ B, Kadomtsev, Zh. Eksp. Teor. Fiz. 32, 943 (1957) [Sov.
Phys. JETP 5, 771 (1957)1.

By B, Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

Ug M, Rytov and M. L. Levin, Teoriya Ravnovesnykh Teplo-
vykh Fluktuats ii v Elektrodinamike [Theory of Equilibrium
Thermal Fluctuations in Electrodynamics], Nauka, Moscow
(1967).

%1, D. Landau and E. M. Lifshitz, Statisticheskaya Fizika,
Nauka, Moscow (1976) [Statistical Physics, 2 vols., 3rd ed.,
Pergamon Press, Oxford (1980)].

%1, P.Gor’kov, I, E. Dzyaloshinskii, and L. P. Pitaevskil, Tr.
IZMIRAN, No. 17(27), 239 (1960).

s, V. Gantsevich, V. L. Gurevich, and R. Katilus, Riv. Nuovo
Cimento 2, 1 (1979). .

BE. M. Lifshitz and L. P. Pitaevskii, Fizicheskaya Kinetika,
Nauka, Moscow (1979) [Physical Kinetics, Pergamon Press,
Oxford (1981)1.

1., A. Artsimovich and R. Z. Sagdeev, Fizika Plazmy dlya
Fizikov [Plasma Physics for Physicists], Atomizdat, Moscow
(1978).

Translated by Steve Torstveit

Yu. L. Klimontovich 372



