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The scientific researches of M. A. Leontovich in
optics and acoustics, performed by himself, with his
teacher L. I. Mandel'shtam, or with his colleagues and
pupils, constitute a considerable contribution to
science and have served as the starting point and the
foundation for new fields of research.

This original work has now led to the development of
extensive fields of study in molecular optics and mole-
cular acoustics.

1. SCATTERING OF LIGHT BY A SURFACE

The beginning2) of M. A. Leontovich's researches in
optics goes back to 1926 when, at the early age of 23,
he collaborated with A. A. Andronov to develop a
general quantitative theory of molecular scattering of
light by the surface of a liquid.1

Thirteen years before this paper, L. I. Mandershtam
laid the foundations of the theory of light scattering by
the surface of a liquid. His results referred to the
case where the scattered ray of light lay in the plane of
incidence and made a small angle with the specularly
reflected ray.

Leontovich and Andronov considered the most general
case and obtained the corresponding formulas, the
validity of which was confirmed experimentally. They
examined fluctuational "roughness" whose amplitude £
was much smaller than the wavelength \ of the radiation
incident on the surface. This "roughness" was develop-
ed into a two-dimensional Fourier series and the
problem was to determine the intensity of light reflected
and refracted in different directions by the deformed
surface.

It follows from the solution of the problem that there
are reflected and refracted waves similar to those pre-
dicted by the Fresnel formulas for a perfectly smooth
separation boundary. However, in addition to these
waves there are also waves diffracted (scattered) by
plane diffraction gratings (sinusoidal diffraction gratings
or Fourier components of the above Fourier series).

4)Translator's note: The Russian text uses combination In-
stead of Raman. This is emphasized in this translation by
placing Raman in parentheses.

2)M. A. Leontovich's very first paper was published in
Zeitschrift fur Physik in 1925. It was entitled "On the Lewis
equilibrium principle".

When light is incident on a sinusoidal grating there is a
unique diffracted wave whose direction depends on the
angles and the wavelength. In practice, diffraction
gratings have finite size, so that the diffracted light will
include a set of diffracted waves from each "grating".
This was taken into account by Leontovich and Andronov
who found the resulting general formulas for the inten-
sity of any scattered ray.

It is clear from the theory developed by them that the
intensity of light scattered in any direction is a function
of the angles and depends on the parameters of the
material. It is given by

7 dQ = /„ (1)

where dO is a solid angle element within which the light
flux is calculated, /0 is the incident intensity, s is the
area of a portion of the infinite grating, 9 and <p are the
polar angles, U = 2v/a, a is the length of the side of the
illuminated square, the mean square of the fluctuation
is given by
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cl = fcT/4iry*, c2 = Cf6/47ry*)A.2, y* is the surface tension, g
is the gravitational acceleration, and 6 is the density
difference between the media forming the separation
boundary.

*(#, if) in (1) is a complicated but known function.
Since the term X2c2y* =£6A.4/4ir can always be neglected
in comparison with the other terms in the denominator
of (2), the intensity of light that has undergone molecu-
lar scattering by the surface is shown by (1) to be
inversely proportional to X2, whereas for bulk scatter-
ing the intensity is inversely proportional to A.4

(Rayleigh's Law). This theory is distinguished by a
considerable degree of generality. It is invalid only in
a narrow temperature range near the critical point at
which the "roughness" becomes appreciably greater
than the wavelength. Outside this narrow range, the
theory gives a full description of surface scattering by
nonabsorbing media and predicts accurately both the
intensity and the polarization.

In a separate brief note2, M. A. Leontovich examined
the scattering of light by the surface of mercury (a
material of finite conductivity). He showed that, in this
case, the scattered light was elliptically polarized, and
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determined the ratio of the semiaxes of the ellipse as a
function of the angle of scattering for normal and for
45° incidence on the separation boundary. The results
of these calculations are in agreement with experimen-
tal data.

M. A. Leontovich did not confine himself to the com-
parison of his theory with experimental data, but
decided to undertake himself the experimental verifica-
tion of his general formulas, although he did limit this
experimental work to the special case of scattering by
static surface roughness.

M. A. Leontovich is usually considered to be a pure
theoretician, but this was not the case. In the field with
which we are concerned here, there are three experi-
mental papers due to M. A. Leontovich himself but, of
course, his main achievements have been in theoretical
physics.

The first of these papers was devoted to the scattering
of light by slightly matt surfaces.3 M. A. Leontovich
applied the results obtained with Andronov1 to such
surfaces, and analyzed the difference between scatter-
ing by static fluctuations and slightly matt glass sur-
faces. He concluded that, in the latter case, his calcula-
tions could be compared with experiment only for
quantities that did not explicitly involve the mean square
roughness "amplitude" |f|2 (see below). When this was
so, the ratio of the characteristic size of surface
roughness to the wavelength X had to be small. This is
how Leontovich himself wrote about the conditions of
his experiment: "The experiments were performed
with matt glass plates having good light transmission.
These were in the form of unpolished glass plates in-
tended as eventual mirrors. The degree of surface
roughness depended on the precise time at which the
surface polishing process was stopped.3' As already
noted, the following were investigated: (1) the state of
polarization of diffusely scattered light and (2) the
dependence of the relative intensity on the direction and
wavelength of light.

Here it is important to note that, for the plates that I
have used, which had the maximum transmission, the
condition f/A« 1 could hardly have been regarded as
satisfied, so that one would have expected only ap-
proximate agreement between experiment and theory.

To summarize, these experiments clearly showed
that, firstly, the results of observations were increas-
ingly closer to the calculations as the degree of rough-
ness was reduced and, secondly, for the lowest degree
of roughness that I have used, the agreement with the
theory was satisfactory."

There follows a detailed account of the results of
measurements of polarization and relative intensity.
A table of measurements is reproduced and is accom-
panied by a careful discussion of these data. The fun-
damental paper containing improved theory and an
account of the careful measurements concludes with
acknowledgements to L. I. Mandel'shtam and G. S.

3)I was not able to produce the required slightly matt surfaces
by treating the surface with hydrofluoric acid.

Landsberg whose merciless critique it evidently sur-
vived.

While M. A. Leontovich was working in the laboratory
of L. I. Mandel'shtani in the Department of Physics of
Moscow University (now the M. V. Lomonosov Moscow
State University), the laboratory of S. I. Vavilov was
enquiring into the nature of the quenching of the
fluorescence of molecules observed in viscous liquids.

In a separate paper M. A. Leontovich solved the
problem of fluorescence quenching by collisions bet-
ween excited fluorescing molecules and other dissolved
molecules. He considered the diffusion problem and
obtained a formula for the mean time between the exci-
tation of a molecule and its first collision, and derived
the dependence of fluorescence energy on concentration
and diffusion coefficient. The theoretical conclusion
was compared with the experimental data of S. I. Vavilov
and his collaborators.

2. RAMAN AND RAYLEIGH SCATTERING OF LIGHT

M. A. Leontovich began his work in L. I. Mandel'-
shtam's laboratory at the university at a time of
unusually intensive and successful work at this labora-
tory on the experimental and theoretical examination of
the scattering of light by solids.

After transferring, in 1925, to the Department of
Physics of Moscow University, L. I. Mandel'shtam put
forward the interesting and also at that time exceeding-
ly difficult problem of detecting the change in the fre-
quency of scattered light due to the modulation of the
latter by the thermal elastic Debye waves that are
always present in the medium at temperatures other
than absolute zero.

The expected change in the frequency was of the order
of 10"5 of the incident frequency.

It is now well-known that the Landsberg-Mandel'shtam
experiment revealed that the change in frequency when
light was scattered by a quartz single crystal was
greater by three or four orders of magnitude, and this
was readily observed in a simple (and by present
standards, rather poor) spectrograph.

This was the phenomenon of combination (Raman)
scattering—one of the most significant discoveries of
the 20th century. The discovery was made in the
presence of M. A. Leontovich who was working in the
laboratory and could hardly avoid being party to these
remarkable researches.

In fact, an experimental investigation by M. A.
Leontovich,5 performed together with G. S. Landsberg,
appeared soon after and was devoted to the temperature
dependence of the red and violet satellites in the com-
bination (Raman) spectrum of quartz.

They base their results on the fact that the intensity
of the Rayleigh or, as they call it, the fundamental,
scattered line is proportional to absolute temperature.

They described the temperature dependence of the
combination (Raman) line intensities as follows: "The
intensity of the combination lines is probably deter-

357 Sov. Phys. Usp. 26(4), April 1983 I. L. Fabelinskii 357



mined by the number of elementary processes respon-
sible for energy transfer between light and matter, and
depends on temperature in a totally different way
(quantum statistics and classical statistics)."

Leontovich and Landsberg continue to use the language
of light quanta and proceed as follows: "From this
point of view, one would expect the appearance of the
red satellite when a light quantum interacts with either
an excited or an unexcited system. Violet satellites can
appear when the quantum collides with an excited
system. The number of excited systems increases with
temperature very rapidly, but the number of unexcited
systems decreases with temperature very slowly.

As the temperature increases, one would therefore
expect an increase in the intensity of the violet satel-
lites, whereas the intensity of the red satellites should
remain practically unaltered".

This quotation reproduces almost exactly, in words,
the content of the formulas used in that paper.

Complex and laborious photographic photometry
eventually yielded quantitative results that showed that
the intensity of the 21.5-^m satellite varied in accord-
dance with theoretical predictions in the range between
20° and 210°C, namely, the intensity of the violet
satellite increased by a factor of three whereas the
intensity of the red satellite remained practically con-
stant. Moreover, the intensity of the fundamental line
was proportional to the absolute temperature.

This was the first investigation of this kind and
played an important role in the understanding of the
mechanism responsible for the new phenomena. All
its conclusions continue to be valid.

The third experimental paper by M. A. Leontovich is
concerned with the following fundamental question: if
the 9.13-/im satellite found in the first pioneering paper
by Landsberg and Mandel'shtam for Iceland spar
(CaCO3) was due to the oscillations of the CO3 group,
does it also occur in the case of the water solution of
potash (I^CC^) in which the CO3 group is also present?

M. A. Leontovich carried out just such an investiga-
tion using an aqueous solution of potash. In this, he
was forced to perform repeated filtration of the solu-
tion in order to free it from extraneous particles.

In his experiment he found a 9.26-/^m satellite in a
KjCOa solution, which was very close to the wavelength
of the satellite seen in Iceland spar, so that this result
could be regarded as an experimental verification of the
fact that this satellite characterizes the natural vibra-
tions of the CO3 group.

This was a difficult experimental investigation.
Suffice it to say that 90-hour exposures were frequently
necessary.

It seems to me that this paper contains a further
very important result. The author mentions it in pass-
ing and only in parentheses: "Apart from this particu-
lar satellite [a weak diffuse band that is undoubtedly
due to scattering in water (X**3 /^m)], there is no sign
of other satellites in the K.,CO3 solution although one

would have expected to see traces of a further satellite
corresponding to A = 34.4 /urn, since this is also due to
the internal oscillation of the CO3 group". This is the
first or, at any rate, one of the first, observations of the
combination (Raman) band of water that has played such
an outstanding role in the study of intermolecular in-
teractions, including hydrogen bonding, and has revealed
so much information about one of the most important
materials on Earth, namely, ordinary water.

3. THEORY OF MOLECULAR SCATTERING OF LIGHT
BY CRYSTALS

The range of M. A. Leontovieh's scientific interests
was very wide, and Mikhail Aleksandrovich worked hard
and successfully. By the time he was 26, he had
published 14 papers, mostly in Zeitschrift fur Physik
which was the leading physics journal of the"day.

The principal achievement of the laboratory in which
M. A. Leontovich worked at the time was the then
recent discovery of combination (Raman) scattering of
light, and the attention of the laboratory was largely
directed toward the development of research on com-
bination (Raman) scattering.

M. A. Leontovich began with the development of a
classical theory of combination (Raman) scattering.
The first theoretical paper was published by him
jointly with L. I, Mandel'shtam and G. S. Landsberg,7

but a more general problem arose, namely the develop-
ment of a classical theory of molecular scattering of
light by solids. M. A. Leontovich was a pioneer in this
field and—this is particularly important—his work
mapped out the correct general way ahead for theoreti-
cal studies in the molecular optics of solids, which is
now an extensive branch of physics.

Leontovich, Mandel'shtam and Landsberg7 realized
that a complete theory of combination (Raman) scatter-
ing had to be a quantum mechanical theory but, at very
high temperatures, a classical approach to intensity
calculations could be attempted.

In the classical approach, the scattered light was
looked upon as radiation diffracted by the elastic
oscillations or waves propagating through the crystal,
and the spectrum of such oscillations was known as a
result of the theoretical work of Debye and Born. It is
well known that these oscillations can be divided into
acoustic (or Debye) and optical (or Born) oscillations or
waves in the crystal.

The scattered light is none other than the light dif-
fracted by the thermal waves propagating through the
crystal and forming "diffraction" gratings.

Whereas acoustic oscillations are characterized by
density variations, Leontovich, Mandel'shtam and
Landsberg7 pointed out that in optical oscillations
".... we are concerned not with density oscillations but
with changes in the mutual distances of atoms or com-
plexes of atoms in the lattice (structure oscillations)".
They go on to point out that if such displacements lead
to changes in the refractive index, the result should be
an optical inhomogeneity due to this oscillation of the
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diffraction gratings. The variation in the refractive
index with time that accompanies such oscillations leads
to a change in the frequency of the scattered light.

This qualitative picture suggests that the scattered
light should contain a fundamental line, split as a result
of the modulation of the scattered light by the fre-
quencies of the elastic oscillations or by the acoustic
branch of the frequency dispersion curve. These shifts
should be small. Moreover, the scattered light should
also contain highly shifted lines due to the modulation
of the scattered light by the "structure oscillations" or
the modulation by frequencies lying on the optical
(infrared, as they preferred to call them7) frequency
branches.

Of course, it is a far cry between the qualitative
picture and the quantitative calculation, but this calcula-
tion is in fact performed in Ref. 7. The basic scheme
is as follows.

It is assumed that the optical dielectric permittivity
tensor £JA is distorted by the displacement ur of the
lattice elements, and the resulting change in permit-
tivity is represented by

(3)

where u is the displacement of the r-th particle in the
unit cell of the crystal lattice. The quantity g^ja is to
be understood as representing 2g^yi{wr{ (£ assumes the
values x, y, z) and the quantity glyit is a tensor of rank
3 for given r.

Following Born, the oscillation u(r) is represented by

rjl>j COS ( : <]>) COS (fcr), (4)

where N is the normalizing factor equal to the total
number of cells in the crystal, pt is the amplitude of
natural oscillations, ari are eigenvectors defining the
direction of the natural oscillations, r is the radius
vector of the unit cell, and k is the wave vector.

The expression given by (4) also takes into account
the frequency of acoustic oscillations but, since the
authors were interested only in the optical or infrared
part, they retained only o>oj in the expansion u>j = u)w

+ u)j-&-t-u^fe2 (fe = |k| is the wavenumber) and omitted the
indices from there on (thus retaining a single structure
oscillation in the description). The scattered intensity
was then determined by introducting the fictitious
electromotive force F defined by

f'oPx— X-M-R-'1 \e*»£° 1-AEI 2£Z; (5)

where E° = cos(v0t -s0*) and va is the frequency of the
incident light.

For the light scattered by a volume element dr in the
direction of the y axis, the field strength is

E ._J>l_(g r l u ld iv - -4-^- )F( i - -£ - ) , (6)

where c is the velocity of light and R is the separation
between volume element dr and the point of observation.
Substituting (3)-(5) into (6), we obtain the expression for

the electric field of the scattered wave. We shall omit
all the intermediate steps, which can be found in Ref. 7,
and merely note that the final result indicated that the
scattered light contained fields with frequencies v+
= 1/0 + 0) and v. = v 0 - u > . These are, in fact, the satellites
or combination (Raman) lines. Classical theory shows
that the amplitude ratio for the red and violet satellites
is equal to (v0+w}z/(v0 -u>)2. This ratio is equal to
unity when u>«i>0> which means that classical theory
assigns equal intensities to the violet and red satellites.
This can be right only at very high temperatures, and
is not valid for ordinary media at room temperature.
Subsequent calculations showed that the ratio of the
scattered light intensity I(v) at frequency v to the
intensity /0 of the incident light at frequency v0 yields
the following result:

J (v )
(7)

where G = -/o5 (gai.t^n), a3 is the volume of a unit cell
of the crystal, Ga a is a measure of the change in the
refractive index in the course of the oscillations (and
is different for different frequencies), and W is the
average energy of the oscillator. Hence it follows, in
particular, that the behavior of the intensity of the
satellites is also determined by the zero-point energy.
Since G is unknown, the authors were unable to find a
numerical value for the ratio (7).

This paper also contains a number of statements re-
lating to the polarization of the combination (Raman)
lines, but this problem is treated in detail in a separate
paper by M. A. Leontovich8, published in the following
year by which time the quantum theory of combination
(Raman) scattering had been developed.

Since both quantum and classical theories lead to the
same result for the polarization of combination (Raman)
components, M. A, Leontovich developed the classical
theory of the polarization of Raman lines.8

It is noted in Leontovich's theory that all the polariza-
tion properties of the scattered radiation can be derived
from the following expressions for the components of
the electric vector of the scattered light:

(8)

The tensor G a B is the same as in Ref. 7. M. A. Leonto-
vich continues in the following words: "To determine
the polarization of the scattered light, we must first
establish the conditions that are satisfied by the tensor
as a consequence of the symmetry of the crystal. These
symmetry conditions have a different form for simple
and multiple oscillations".

Leontovich then carries out an analysis that enables
him to find, for simple natural oscillations, the compo-
nents of the tensor that are nonzero for the triclinic,
monoclinic, rhombic, tetragonal, trigonal, hexagonal,
and cubic systems.

He then performs a still more complicated analysis
to find the nonzero components of the tensor Ga s for
doubly degenerate oscillations, and constructs the cor-
responding table (Table II) at the end of the paper.
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Finally, he compares theoretical calculations with
experimental results obtained by Cabannes (quartz and
Iceland spar) and Menzies (quartz), and achieves
qualitative agreement between the two.

In an annotation added in proof, he discusses the
effect of the rotation of the plane of polarization in the
crystal, and the influence it has on the determination of
polarization in combination (Raman) scattering.

The next substantial step in theoretical research
was made by M. A. Leontovich in collaboration with
S. L. Mandel'shtam9'10. They considered the scattering
of light by density fluctuations in a crystal by analogy
with the Einstein theory of light scattering by density
and concentration fluctuations in liquids and solutions.

They used the Einstein approach in which fluctuations
are expanded into a Fourier series in space, and
made a statistical calculation of the mean squares of
the coefficients of this expansion. The problem then
reduces to ensuring that the final formulas contain the
measured quantities. They solved this problem and
did, in fact, obtain the formulas for the relative inten-
sity of light scattered by crystals of cubic and trigonal
symmetry.

In the case of a cubic crystal, the relative intensity
turned out to be (here and elsewhere in the paper we
are retaining the original notation)

O)

where r is the scattering volume, k is Boltzmann's
constant, pi is the refractive index, r is the separation
between the scattered volume and the point of observa-
tion, pn, are the optoelastic constants, and ci4 are elas-
tic constants.

Subsequently, many workers followed the path indicat-
ed by the above paper, and we now have solutions for
the scattering of light in the most general case for any
crystal in any crystallographic direction.

The paper by M. A. Leontovich and S. G. Kalashni-
kov11 was devoted to the effect of thermal oscillations
on the scattering of x-rays by crystals, and in a certain
sense belongs to the same range of investigations.

The theory of scattering of x-rays, in which the effect
of thermal oscillations is taken into account, is due to
Debye, Waller and Zener (1914-1936).

They represented the thermal displacements of the
atoms by the superposition of the elastic Debye waves
mentioned above.

The problem was solved by explicitly considering the
normal oscillations of the lattice and the spectrum of
these oscillations, which gave rise to a very consider-
able complication of the theory.

To determine the contribution of the thermal motion
of lattice atoms to the scattering process, it is suffi-
cient to know Trfi, where |, and 7jt are the projections
of the instantaneous thermal displacements of two
atoms on a particular direction. Leontovich12 gave a
general method for evaluating quantities of the form

£,??,,, which reduces to the solution of a certain statis-
tical problem.

By exploiting the Leontovich theorem, the authors of
Ref. 11 were able to determine the temperature factor
as a function of the mean square atomic displacement
for crystals of arbitrary symmetry.

This led to a simpler theory, as compared with theo-
ries available before, and at the same time a more
accurate calculation was made of the thermal scattering
of x rays.

Leontovich13114 developed a quantitative theory which
could be used to determine the intensity of light scat-
tered by a nonuniformly heated crystal.

Almost 50 years ago, Mandel'shtam pointed out15 that
the intensity of light scattered by elastic waves with
little damping in the medium is determined not only by
the temperature at a given point, but also by the entire
temperature distribution in the medium. Moreover, he
noted that the difference increased with decreasing
damping of the elastic wave responsible for the scat-
tering of light.

M. A. Leontovich considered the quantitative theory of
this interesting phenomenon twice. First13 (1935) he
developed a complex theory that actually applied to the
special case of a one-dimensional model of a solid.
Four years later he returned to this topic14 and ex-
amined the more realistic case of a three-dimensional
body that was infinite in the x, y plane and finite in the
z direction. The temperature gradient was assumed to
lie in the z direction.

M. A. Leontvich determined the intensity distribution
of elastic waves in a medium in the same way that is
used in optics to determine the light intensity distribu-
tion in a medium capable of absorption and emission,
for example, as in the case of thermal emission. In
the Leontovich theory, elastic waves are looked upon as
a set of noncoherent rays of different direction. Energy
transfer between these waves and high-frequency elastic
waves in the crystal occurs through emission and ab-
sorption,

Leontvich's theory was concerned with the solution of
the rigorous problem with realistic boundary conditions,
and led to the following expression for the intensity due
to molecular scattering of light. We reproduce the ex-
pression for the case where the temperature gradient
GT - (TI - T<)/1 is parallel to the direction of the incident
beam of light and lies along the positive z axis (6 is the
scattering angle):

(10)

where T0 is the temperature at the lower end of the
crystal, T, is the temperature at the upper end of the
crystal of thickness I, T is the temperature at the point
z, a is the amplitude sound-absorption coefficient,
R is the reflection coefficient for elastic waves on the

)M. A. Leontovich also found /(s) for a parabolic dependence
of the temperature of the body on the position coordinate.
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separation boundary, and c is a constant that includes
all quantities that do not depend on temperature and
absorption of elastic waves. When there is no gradient
and the temperature is uniform, I=cT.

Experimental verification of this theoretical result
could have been expected to reveal a fundamental new
way of determining the damping coefficient in the ultra-
sonic part of the acoustic spectrum.

Experiments undertaken by G. S. Landsberg and A. A.
Shubin, that were capable of about 10% accuracy, did
not reveal any intensity difference between the uniform-
ly heated quartz crystal and the crystal placed in a
temperature gradient.

V. V. Vladimirskii noted in 1942 that a nonuniformly
heated body should exhibit an asymmetry between the
red and violet Mandel'shtam-Brillouin components.
This problem was ignored for a long time, and a suit-
able experiment was not put forward.

The problem surfaced again about three years ago,
and has been widely discussed in the literature, mainly
by theorists (see, for example, Ref. 17), but to some
extent by experimentalists as well. However, it is still
too early for any definite results.

4. RESEARCH IN ACOUSTICS

Interest in acoustic problems apparently arose both
because of the unusual situation that emerged as a result
of studies of molecular scattering of light (now known as
Mandel'shtam-Brillouin scattering) and because of the
discrepancy between the measured and calculated (from
the hydrodynamic theory) absorption of sound in poly-
atomic gases and liquids.

New ideas—and they were purely qualitative at first—
were put forward to overcome these fundamental diffi-
culties.

In a lecture18 that he gave just before the publication of
his paper,19 Leontovich states: "The Institute of Physics
of Moscow University and the Physics Institute of the
Academy of Sciences are engaged on several research
projects on the absorption of sound in gases and liquids
under the guidance of L. I. Mandel'shtam".

The theory of absorption of sound in gases with allow-
ance for viscosity and thermal conductivity was de-
veloped as far back as 1868 by Kirchhoff, who showed
that the absorption coefficient was proportional to the
square of the frequency, viscosity, and thermal con-
ductivity.

Experiments performed in the ultrasonic range con-
firmed the theoretical frequency dependence, but the
measured absorption coefficient turned out to be much
higher than the theoretical prediction.

The fine structure of the Rayleigh lines in crystals
and liquids was discovered in 1930, and the Mandel'-
shtam-Brillouin components of this structure were
found to be due to elastic thermal waves of frequency
/=2«z;sin (0/2)/X and half-width 6o> = 2aw, where n is

the refractive index of the medium, v is the velocity of
ultrasound, and a is the amplitude absorption coeffi-
cient of the ultrasonic waves.

Estimates show that/^1010 Hz. When the absorption
coefficient a measured in the ultrasonic range at 107Hz
is extrapolated parabolically to 1010 Hz, it is found that
a is so high that it is not meaningful to speak of a wave,
i.e., the Mandl'shtam-Brillouin waves cannot be ob-
served.

On the other hand, experiment shows that the Mandel'-
shtam-Brillouin waves are observed and are relatively
narrow. This fact is in direct conflict with the hydro-
dynamic theory.

Difficulties in the interpretation of experimental data
in terms of a theory that takes into account only shear
viscosity and ordinary thermal conductivity were ana-
lyzed in detail by Mandel'shtam and Leontovich.20 They
came to the conclusion that both contradictions could
largely be removed by taking volume viscosity 77' into
account in the hydrodynamic theory (which had been
done before by Rayleigh) and by allowing for relaxation
processes during the evolution of the frequency depen-
dence.

The first careful examination of the hydrodynamic and
kinetic theories of propagation of sound in polyatomic
gases is due, as we have said, to Leontovich.19 Gener-
ally speaking, both the first (77) and the second (77') co-
efficients of viscosity and the first (v) and the second
(v') thermal conductivities have to be taken into account
in the theory of propagation of sound.

Theoretical studies based on the kinetic theory of
propagation of sound enabled Leontovich to show that,
at low frequencies or, more precisely for O>T«! (o> is
the frequency of sound and T is the mean free time be-
tween collisions between the gas molecules), allowance
for the second viscosity was essential, whereas i>' = 0.
Moreover, it became clear that, in this frequency
range, allowance for 77' was entirely equivalent to al-
lowance for v'', and that only one of them needed to be
taken into account. At more or less the same time,
Kneser pointed out a new mechanism for additional ab-
sorption of sound in polyatomic gases, namely, energy
transfer from external to internal degrees of freedom,
and developed a molecular theory of absorption of sound
in gases, which was found to be in good agreement with
experiment.

Leontovich showed that, in polyatomic gases and when
o>T«l, losses accompanying energy transfer from ex-
ternal to internal degrees of freedom were represented
by the second viscosity.

The hydrodynamic theory predicts that the amplitude
sound absorption coefficient is given by18

-TT+i r - i -v ( l™)J ; (ID

where a is the Laplace velocity of sound («2=yp/p) and
y = cp /cv. From gas-kinetic data it follows that rj/p
^a2r and hence aA (sound attentuation within one wave-
length A) turns out to be of the order of I /A (I is the
mean free path).
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The hydrodynamic theory is valid provided only this
ratio is small. The viscosity 77' often plays a very im-
portant role.

For example, in liquid benzene, the value of a mea-
sured in the ultrasonic frequency range is greater by a
factor of 90 than the value obtained when only rj is taken
into account.

In the Kneser theory of absorption of sound, only 17
and v need be taken into account; as far as 77' and v'
are concerned, they are already taken into account in
an explicit form.

The expression obtained by Kneser for the sound ab-
sorption coefficient yields a quadratic dependence of a
on frequency for u>T«l and no dependence on frequency
for <i)T» 1. Thus, inclusion of second viscosity brings
about an agreement between theory and experiment, and
difficulties connected with the quadratic extrapolation of
a can be removed by deriving a Kneser type expression
for a in liquids.

Sound absorption and dispersion in liquids were ex-
amined by Mandel'shtam and Leontovich in a broad fre-
quency range.20 The solution they obtained for this ex-
ceedingly difficult and general problem formed the be-
ginning of a new branch of molecular acoustics.21

This purely theoretical investigation was complicated
by the very nature of the problem. It is difficult to sum-
marize it briefly, but we shall try to outline the overall
scheme, and will then reproduce the most important re-
sults.

The second viscosity r\' was not neglected in any of
the cases considered. For liquids, this viscosity does
not have the relatively simple significance that it has in
polyatomic gases, and it is important to note that liquids
were not treated as gases with liquid densities. It was
clearly understood that the difference between a gas and
a liquid was not only quantitative but—and this is more
important—also qualitative.

Mandel'shtam and Leontovich write: "We assume that,
in addition to the pressure/*, density p, and tempera-
ture T, the equation of state also includes certain
parameters £ (or several such parameters) that are
functions of f> and T in the state of equilibrium. How-
ever, in the general case, when equilibrium does not
obtain, they satisfy a certain 'reaction equation'. As
expected, these assumptions lead to viscous stresses
during uniform expansion".

The physical significance of the internal parameter,
or internal parameters 4 , - , i = \, 2, 3, ...., maybe
different in different cases. They may be the concen-
trations of components forming a liquid, or the concen-
trations of excited or associated molecules. "It may
also be considered that the £ determine, in some way,
the internal structure of the liquid. As yet, there is
little point in assigning any special meaning to these
variables".

To simplify the problem, it is assumed in the first
part of the paper that the internal state of a liquid can
be described by a single parameter |. In equilibrium,

I is found from the condition 3*/9£ =0, where * is the
free energy per unit mass.

It is important to note that, in the limit of very low
sound frequency, it may be considered that the liquid
is in equilibrium at each instant of time, so that the
velocity of sound is determined by the adiabatic com-
pressibility. At high frequencies, on the other hand,
the parameter £ (internal state of the liquid) does not
have time to change within one period of the sound wave,
and the velocity of sound is determined by the adiabatic
compressibility at constant £ : "At intermediate fre-
quencies, there is dispersion of sound". This is how
the authors describe the overall picture of the pheno-
menon whose theory they are attempting to construct.

To construct this theory, they had to write down the
equation for £. Mandel'shtam and Leontovich state that
this equation can be obtained on the basis of the follow-
ing considerations: "Firstly, since we are interested
in small departures from the state of equilibrium (small
sound amplitudes), we may expect this equation to be
linear.

Secondly, the equation may be assumed to involve
first-order derivatives of T, p, and £ with respect to
time In general, this assumption signifies that
changes in £ occur instantaneously.

Thirdly, the condition of equilibrium for constant p,
T, i.e., the condition for constant £, is that a*/8£ must
vanish."

The consequence of these conditions is that the re-
quired "reaction equation" must have the following form
when the variable is appropriately chosen:

f - — K- —S-^-A ai>

where K is a constant.

(11')

Equation (11') must be augmented with the energy
equation which Mandel'shtam and Leontovich obtained on
the assumption that the effect of shear viscosity and
thermal conductivity on the absorption of sound was less
than the effect due to the above processes (as they are
reflected in bulk viscosity). In that case,

p£_ni = 0; (12)
p

where E is the energy per unit mass and/) is the pres-
sure.

After evaluation of the relationships between E, p,
p, *, and their derivatives, it turns out that

PE Ap) , (13)

where l/T = /f*£E, T is a constant describing the time
necessary to reach equilibrium, and the subscripts
represent differentiation with respect to £ or some
other variable as the case may be. When E(T, p, |)
= *- T#rand/>=P(T, p, £)=P2*p, equation (12) may
be written in the form
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constant £, For sound of frequency u>, the quantities
AT, Ap, A£ are proportional to exp(zu)^), and equations
(13) and (14) become

(1 »OT, \ t . - 7 ^ - . \ 7 - ; ^Ap. (15)

F.V=-c\r I^-An (16)

where c is the specific heat (=ET). The square of the
complex velocity of sound H^is given by

(17)

If we now bring in (15) and (16), and also the standard
thermodynamic expression for specific heats, we obtain

(18)

The expression for the adiabatic velocity is obtained for
a; — 0, and vx corresponds to w — °°. It turns out that T'
differs from r by the ratio (a£/aT)j/(a£/a 7%. The
real velocity of sound and the amplitude absorption co-
efficient are given by

i „ i . 1- Re— a. « > l m —.

To a good approximation, all this leads to the following
expressions:

1 tu'V-lnWi'o)1'— II / t n\
"2 l - l -uH ' 1 ' * '

^S^11 • (20)

More generally, this theory predicts that

TPT\
~I ' (20')

where c, pT are thermodynamic variables referring to
equilibrium, and are therefore known, and JSE , P j are
the derivatives of energy and pressure, which are de-
termined by the nature of the variation of | in the
course of reaction. These quantities can be obtained
only under special assumptions about the nature of pro-
cesses taking place in liquids, whereas *£E can be
found if we know the fluctuation A|2 =

Equation (20) gives the expression for the absorption
coefficient due to bulk viscosity which is the dominant
coefficient in many liquids, including benzene. Equa-
tion (20) shows that a cc u>2 for low frequencies (OJT« 1),
which is in agreement with the classical formula given
by (11), whereas for high frequencies (o>r»l ) , equa-
tion (20) assumes the form

(21)

and this signifies that a is independent of frequency at
high frequencies, which provides a natural explanation
of the presence of narrow Mandel'shtam-Brillouin lines
in the scattered spectrum.

The relationship between rj' and T' can be readily es-
tablished if we equate the expressions given by (20) and
(11) for CUT' «1, having substituted r\ - v = 0. This yields

We also note that (11) is valid only if «A«1, whereas
(20) is valid for any a . On the other hand, the relaxa-

tion theory formulas (19) and (20) are meaningful and
describe sound propagation only in the presence of dis-
persion, i.e., if va*v«,. Experimental studies of the
Mandel'shtam-Brillouin spectrum have, in fact, re-
vealed the presence of this dispersion (~ 10-15%).

The work of Mandel'shtam and Leontovich was the
starting point of an extensive branch of molecular
acoustics, which has continued to develop even since.

As has already been noted, Mandel'shtam and Leon-
tovich assumed21 that, in general, there may be a large
number of the £ parameters, and a corresponding num-
ber of the T' parameters. They investigated this prob-
lem at the end of their paper, and obtained the following
result:

(22)

The general relaxation theory of sound absorption in
liquids, developed by Mandel'shtam and Leontovich21,
was applied by Leontovich22 to the absorption of sound
by strong electrolytes. "The internal state of a strong
electrolyte is characterized by the 'ionic atmospheres'
of its ions, which depend on temperature and density.
The latter vary during sound propagation, which in turn
affects the pressure in the solution. However, these at-
mospheres are not established instantaneously, and the
time for this to happen is determined by the relaxation
time T."

M. A. Leontovich22 went on to develop a complex
theory which involved the Debye theory of strong elec-
trolytes.

This theory enabled him to determine r in the expres-
sion for the absorption coefficient and dispersion, and
also the quantity t£ - w2,. It turns out that this difference
is proportional to the ion concentration raised to the
power 3/2, whereas the absorption coefficient for
u)r«l is proportional to the square root of the concen-
tration. The dependence of v and a on frequency is
more complicated than is indicated by (19) and (20), be-
cause the state of the ionic atmospheres is determined
by a distribution function and not by a single parameter.

Leontovich and Shaposhnikov23 then developed the
theory of sound propagation in weak electrolytes. They
noted that "the theory of absorption and dispersion of
sound in a weak electrolyte is an almost direct replica
of the Einstein theory for gases." In reality, this
"replication" is not all that simple. Absorption and
dispersion can be expressed in terms of the degree of
dissociation, which can be measured directly, so that
it is possible to determine T, which in turn depends on
the rate of dissociation of the molecules of the electro-
lyte into ions.

5. RELAXATION THEORY OF THE SPECTRUM OF
LIGHT SCATTERED BY ANISOTROPY
FLUCTUATIONS IN LIQUIDS

The time-dependence "structure" of the medium, or
the natural vibrations of its molecules, which modulate
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incident light and are responsible for the appearance of
the combination (Raman) lines, is now well understood,
but the theory of the intensity of satellites is still being
developed.

Scattering of light by pressure fluctuations gives rise
to the Mandel'shtam-Brillouin components, whereas
scattering by entropy fluctuations is responsible for
the central or Rayleigh line. These types of scattered
light have now been extensively investigated, and Leon-
tovich's studies contributed in no small measure to our
present understanding of this subject.

There is also light scattered by anisotropy fluctua-
tions, which is represented in the spectrum by a broad
continuous band with a maximum at the frequency of the
exciting line. Although this scattered spectrum was
discovered as far back as 1928, a theory of the phe-
nomenon did not exist before Leontovich's work. More-
over, quite a few fanciful suggestions were put forward
about the nature of the phenomenon itself.

The first rational pronouncement on the nature of the
depolarized scattered spectrum, i.e., the wing of the
Rayleigh line, is due to Landau and Placzek24 who put
it as follows: "The structure of this part of the Ray-
leigh line wing in the case of liquids is largely deter-
mined by the Debye relaxation time."

In 1941, just before World War H, M. A. Leontovich
published the first quantitative theory of the depolarized
scattered spectrum.25 This paper was destined to play
a major role in the subsequent development of the theory
and in guiding experimental work that eventually led to
quantitative measurements of the anisotropy relaxation
time and to the discovery of new phenomena in the spec-
trum of depolarized scattered light.

Leontovich's theory established a relationship between
such phenomena as depolarization of scattered light, the
Kerr effect, and the Maxwell effect (flow birefringence).

Leontovich's quantitative theory is based on the Max-
well viscosity scheme, and takes into account scatter-
ing by pressure fluctuations (Mandle'shtam-Brillouin
components) and the component of anisotropy fluctua-
tions (orientation of anisotropic molecules) that is de-
termined by deformational fluctuations.

It is assumed in the Leontovich theory that the state
of the liquid at any point can be fully characterized by
the temperature, the strain tensor eilt, and the aniso-
tropy tensor £ J 4 . Leontovich notes25 that the introduc-
tion of only two tensors restricts the range of the theory
but, since this was the first attempt at providing a
theory of a complex phenomenon, this simplification
was justified.

The time dependence of the anisotropy tensor is de-
termined by the reaction equation [cf. equation (11')],
which has the form

(23)

where the anisotropy tensor is £ik = eik- ( l /3)6 i f i f f- 5JS

(a is the expansion coefficient) and, as in the Maxwell
theory of viscosity, it is assumed that

i} - P* (24)

where 77 is the viscosity and y. is the shear modulus.

The scattered spectrum can be found by determining
the time dependence of the fluctuations, which can be
obtained from the equations of motion given in Ref. 25.
These equations split into three groups.

The first group describes longitudinal waves respon-
sible for the Mandel'shtam-Brillouin components. It
also follows from these equations that the longitudinal
wave is accompanied by a change in the ansiotropy.

The second group describes the propagation of trans-
verse waves which, in the case of slow motion, form
the usual "viscous" transverse waves whereas, for fast
motion, they become transverse waves in a solid.

Finally, the third group of equations describes the
perturbation of anisotropy that is not accompanied by
the motion of the liquid. Purely conventionally, one
can say that this group of equations describes trans-
verse anisotropy "waves."

The intensity distribution in the scattered spectrum
can be determined by first finding the scattered wave
field. M. A. Leontovich seeks the light field scattered
by a volume V in the following form:

E = (25)

where u>0 is the frequency of the exciting light, Pf is the
polarization, q is the wave vector, and Aej)1 =
+ Ae'jft. Moreover, in view of the fact that Ae'jis is
small, it can be assumed to be proportional to £j lk and,
consequently,

As!,, - A (26)

Equations (26) and (23) lead us to the conclusion that
the time for which birefringence is present, which is
determined by AEJS, is equal to the anistropy relaxation
time T. Consequently, r determines the time necessary
for the Kerr effect to become established or to vanish,
or the corresponding time for flow birefringence (Max-
well effect).

For slow motion, for which £ can be neglected, we
have

(27)

where M =Ar is the Maxwell constant.

Equations (25) and (27) can now be used to determine
the field E. The intensity /(w) is proportional to the
mean square of the coefficients in the Fourier trans-
form (25). Leontovich used this approach to determine
the intensity distribution in the spectrum of the scattered
light for different polarizations of the incident and scatter-
ed light. These formulas describe the Mandel'shtam-
Brillouin components generated by the longitudinal and
transverse waves, and also the intensity distribution in
the spectrum due to anisotropy fluctuations (the Ray-
leigh line wing).

The formulas are relatively complicated and unwieldy,
but they were used by Mikhail Aleksandrovich's wife,
Tat'yana Petrovna, to obtain a graphical representation
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1.0

FIG. 1. Distribution of intensity in the spectrum of the scatter-
ed light:25

of the depolarization coefficients over the spectrum.
The results of these calculations are shown in Figs.
1-3. The intensity is plotted along the vertical axis
and the frequency (in units of o>/!\) along the horizon-
tal axis (nL is the frequency of a Mandel'shtam-
Brillouin component).

The Rayleigh line wing extends over tens or even hun-
dreds of reciprocal centimeters, whereas the Mandel'-
shtam-Brillouin components are confined to an interval
of 1 cm"1 around the exciting line.

The Leontovich formulas become simpler for fre-
quencies in the Rayleigh line wing that are much greater
than £2L. The depolarized scattered spectrum is then
given by

13 A'kT 2i (28)

Consequently, if the intensity distribution in the spec-
trum is in fact as given by (28), we have the real pos-

sibility of being able to determine the numerical value
of the anisotropy relaxation time T and then comparing
it with the time constants for the Kerr and Maxwell
effects.

/z

ie\

FIG. 2. Same as in Fig. 1:

FIG. 3. Distribution of the depolarization coefficient p (w) over
the spectrum:25

• o, a,t=o.i, 3--

It is this theory that gave rise to a new line of re-
search in molecular optics, which has been so success-
ful and continues to develop both theoretically and ex-
perimentally.
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Dissipative equations for many-particle distribution
functions
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This article deals with the papers by M. A. Leontovich on the subject of thermodynamics and statistical
physics. Primary attention is given to the paper entitled "The fundamental equations of the kinetic theory of
gases from the standpoint of the theory of random processes," which was published in 1935 in Zhurnal
Eksperimentarnof i Teoreticheskoi Fiziki, No. 5. This paper is one of the basic works in the modern statistical
theory of nonequilibrium processes.

PACS numbers: 05.20.Dd, 05.70.Ln, 01.60. + q

Even a simple list of the papers by Mikhail Aleksan-
drovich Leontovich on the subject of thermodynamics
and statistical physics1"13 shows that his interests were
very brond. Eut what is striking is not the breadth so
much as the originality and depth of his analysis of these
problems. The questions that occupied Leontovich many
years ago remain current to this day.

For example, in an annotation tc his article "On ki-
netics cf fluctuations," which was published more than
fifty years ago, we read:

A method is presented for determining the spectrum
of fluctuations i. e., for determining the statistical
averages of the squares of the spatiotemporal Fourier
expansion of the fluctuations. The method is applied
to concentration and density fluctuations in liquids.
The consequences of the theory which bear upon the
fine structure of the lines of the scattering spectrum
are discussed in connection with the available experi-
mental data.

This said it all, with the utmost clarity and precision.

Another paper by Leontovich, entitled "On the free
energy of nonequilibrium states," might be carried
over almost in its entirety to a contemporary course in
statistical physics. Here also the goal and result are
formulated with extreme clarity:

The free energy of a nonequilibrium state can be de-
fined more generally than is ordinarily done by taking
into consideration the additional potential energy in the
presence of which the nonequilibrium state becomes as
equilibrium state. The relationship of this definition
to the Boltzmann principle is analyzed.

The method proposed in this article for describing
a wide range of nonequilibrium states was given a more
detailed exposition in Leontovich's book Statistical
Physics. B

It is impossible here to analyze and evaluate from a
modern point of view all of Leontovich's papers on
thermodynamics and statistical physics.1"13 Let us ex-
amine just one of them6 in greater detail—"The funda-
mental equations of the statistical theory of gases from
the standpoint of the theory of random processes. " The
choice of this particular paper, of course, was not ac-
cidental, as will become clear from this article.

This truly remarkable paper appeared in No. 5 of the
journal Zhurnal Eksperimental'noi i Teoreticheskoi
Fiziki for 1935. Its ideas represented a significant de-
parture from the existing level of the statistical theory
of nonequilibrium processes.

Up to the time that this paper was written the statisti-
cal theory of nonequilibrium processes was based on the
famous Boltzmann equation. This equation implied the
law of increasing entropy (the H theorem of Boltzmann).
It served as a basis for the equations of gas dynamics
and the equations describing the free-molecular flow of
a gas. This was indeed a triumph of the kinetic theory.
It seemed that this theory was close to completion.
Only a few prominant physicists of the time understood
that this was only the first stage in the development of
the statistical theory of nonequilibrium processes. In
Leontovich's paper we read:

The kinetic theory treats processes in gases. It is
a statistical theory, inasmuch as equation (1) [the
Boltzmann equation] is based on the statistical propo-
sition of the Stosszahlansatz. The structure of this
theory, however, is undoubtedly very imperfect. The
quantity /doido(dct) = dvx dw, dvr, do = dxdydz) must be
assigned the value of some statistical average (mathe-
matical expectation) of the number of particles in a
volume dwdo of phase space p.—only then can the irre-
versible character of equation (1) and its consequences
be understood. However, in the framework of the
theory itself the meaning of this mathematical expec-
tation remains extremely unclear, since one does not
consider the probabilities which are used to generate
these mathematical expectations. The theory is
therefore also unable to give any information on the
fluctuations in the gas and how they change in time.1

(Ref. 6, p. 211).

In fact, the Boltzmann kinetic equation was treated
as an equation for a determinate (not random) distribu-
tion function. Accordingly, in the transition from the
kinetic equation to the gasdynamic equation, the gasdy-
namic functions—the density p(r, t), the velocity U(r, t),
and the temperature T(r, t)—turned out to be determi-
nate. As a result, effects due to fluctuations of the dis-
tribution function (kinetic fluctuations) and to fluctua-
tions of the gasdynamic functions dropped out of con-
sideration.
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The situation was as follows: In the classical papers
of Rayleigh, Planck, Einstein, and Smoluchowski it
was shown that even in an equilibrium state fluctuations
play a fundamental role in many phenomena. For ex-
ample, density fluctuations govern the scattering of
light, and fluctuations of the electromagnetic fields are
manifested in thermal radiation. Without allowance for
the fluctuations of the medium in which the Brownian
particles move one cannot explain this "perpetual mo-
tion. " This list could, of course, be extended. For
example, in recent years we have come to understand
the fundamental role of fluctuations in second-order
phase transitions. Nevertheless, for many years non-
equilibrium fluctuations remained outside the sphere
of interest of kinetic theory. There were several rea-
sons for this.

Working from Smoluchowski's equation, Leontovich
obtained for the case of a rarefied gas a Markov-type
equation for the most general distribution function/^ of
a system of N particles. The equation which he ob-
tained was irreversible right from the start. Here the
question of the reasons for the irreversibility did not
come up. Leontovich wrote:

It should be noted that I have not touched upon the
basic physical question of the extent to which the sta-
tistical description of the processes in terms of tran-
sition probabilities can be related to or put into cor-
respondence with the description of quantum (or
classical) mechanics. I think only that this statistical
scheme is the most expedient for setting forth in a
more complete form the actual content of the kinetic
theory (Ref. 6, p. 213).

Thus, the matter of how the reversible equations of
mechanics are related to the irreversible equations of
the statistical theory of nonequilibrium processes re-
mained an open question. This problem was promoted
to the forefront. The problem of constructing a syste-
matic fluctuational theory of nonequilibrium processes
withdrew to the background and for a long time did not
attract the attention of researchers.

Important contributions toward solving the problem of
substantiating the kinetic theory were given in the pa-
pers by N.N. Bogolyubov, M. Born and H.S. Green,
and J. G. Kirkwood. In Bogolyubov's now-classical
monograph Problems of Dynamical Theory in Statisti-
cal Physics (1946) a method is developed for obtaining
the Boltzmann kinetic equations (for a rarefied gas) and
the kinetic equations of Landau and Vlasov (for systems
of charged particles). Thanks to these papers, it be-
came clear in what way and at what cost one can obtain
from the reversible equations of mechanics the irre-
versible equations of kinetic theory.

As a result, many questions which had disturbed in-
vestigators simply went away. However, new ques-
tions, also of a difficult nature, arose. One of these
was the question of nonequilibrium fluctuations.

In Bogolyubov's derivation of the kinetic equations —
the closed equations for single-particle distribution
functions—the hypothesis (principle) of total attenuate '.i
of the original correlations played an important role.

Here it was (implicitly) assumed that the long-lived
correlations (with a time TC()I. of the order of, or larger
than, the relaxation time of the single-particle distri-
bution functions) do not play an appreciable role. The
kinetic and hydrodynamic fluctuations thereby dropped
out of consideration.

We note that Bogolyubov14 cites Leontovich's article,6

but not in connection with the question of fluctuations of
the distribution functions. In §2 of this book14 is the
comment: "The study of the functions Ft in many cases
can be simplified appreciably by the introduction of a
special functional, the generalization of the generating
functions employed by Leontovich6 in the theory of
stochastic processes with a discrete phase space. "

Leontovich's paper6 was subsequently almost forgot-
ten, and it did not have an appreciable influence on the
development of the theory of nonequilibrium fluctua-
tions. The dissipative equations for the many-particle
distribution functions were discovered anew by other
authors—for example, in the works of I. Prigogine,
R. Brout, and M. Kac (see Chs. 4 and 11 in Ref. 15,
Ch. 10 in Ref. 16, Ch. 2 in Ref. 17, and Ch. 24 in Ref.
18).

For example, the study of the kinetic equations for
many-particle distribution functions (master equations)
occupies many pages in the splendid book19 by the Amer-
ican mathematician M. Kac, which is a record of lec-
tures on a number of problems in statistical theory.
Kac, unfortunately, was not acquainted with Leonto-
vich's paper at the time he was working on these lec-
tures.1' On the basis of Liouville's equation, V.N.
Zhigulev20 established a chain of dissipative equations
for the sequence of distribution functions of a rarefied
gas which is a direct consequence of Leontovich's
equation. Attempts at approximate solution of this
chain of equations for the purpose of studying the effect
of turbulent fluctuations on the velocity distribution of
the particles of a rarefied gas have recently been un-
dertaken by Japensee investigators (see Ref. 21).

We shall return later to the discussion of dissipative
equations for many-particle distribution functions. For
now we shall only point out the following.

When large-scale and long-lived fluctuations are tak-
en into account in kinetic theory, new contributions ap-
pear in addition to those incorporated in the Leontovich
equation. These contributions are governed by fluctua-
tions which have lifetimes much longer than the mean
free time and so cannot be taken into account in the
Boltzmann scheme. These additional contributions
are particularly large for states which are far from
equilibrium, such as in the presence of well-developed

^During a school on statistical physics in Jadwisin, Poland,
Kac told me that after his book appeared in Russian, a physi-
cist from Leningrad had sent him a copy of Leontovich's
article (Ref. 6). Kac asked me, "How could he [Leontovich]
have known and understood all this back in 1935?" I felt
that Kac's pride had been wounded. When later in the con-
versation I mentioned Leontovich's friendship and collabora-
tion with A. N. Kolmogorov, Kac immediately replied, "Oh
It was Kolmogorov who taught him this."
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turbulence. Here both the thermodynamic functions and
the kinetic coefficients are appreciably altered.

Let us now return to the question of fluctuations in the
distribution function of a rarefied gas.

The first step in the kinetic theory of fluctuations was
taken by B.B. Kadomtsev22 in a calculation of the fluc-
tuations of the distribution function of an equilibrium
rarefied gas. The result was obtained by using a lin-
earized Boltzmann kinetic equation as the relaxation
equation in the theory of equilibrium fluctuations de-
veloped in the papers of H.B. Callen and T.A. Welton,23

S. M. Rytov,2* and L.D. Landau and E.M. Lifshits.25

In an analogous way L. P0 Gor'kov, I.E. Dzyaloshin-
skif, and L.P. Pitaevskii26 calculated the equilibrium
fluctuations for the Fokker-Planck equation and the lin-
earized Landau equation.

Kadomtsev's formula was generalized to nonequilib-
rium states by various methods in the papers of Sh. M.
KoganandA. Ya. Shul'man, S.V. Gantsevich, V. L.
Gurevich, R. Katilus, the present author, and others
(see the review of Ref. 27, Chs. 5 and 11 in Ref. 15,
and §19. 20 in Ref. 28).

One of the ways of constructing a theory of nonequili-
brium fluctuations is based on the use of the dissipative
equation for a many-particle distribution function (§18
and Ch. 4 in Ref. 15). However, the starting point here
is different from that of Leontovich's paper.

The initial equation in Ref. 15 is the Liouville equa-
tion—a reversible equation for the distribution function
fg. The transition from this equation to a dissipative
equation for the smoothed many-particle distribution
function/^ is accomplished by averaging over a physi-
cally infinitesimal volume Vt. To make such a transi-
tion possible, Bogolybov's principle of total attenuation
of the initial correlations is replaced by the condition
of partial attenuation of the initial correlations: Only the
small-scale correlations, for which

^cor ^ Tp, ''cor "̂  *p. (1)

are attenuated: here TP and lt are the intervals of time
and length that are adopted as physically infinitesimal
For a rarefied gas, when the density parameter z=nr*0

is much smaller than unity, the quantities TP and Zp in
the kinetic stage of relaxation can be defined in the fol-
lowing way (§18 in Ref. 15 and Ch. 7 in Ref. 18):

-= (2)

The introduction of the quantities TP and Zp enables one
to separate correlations into large-scale and small-
scale. As a result, on can write forfN the equation

9tn
-

d/v
~

aft,"

here we have introduced the notation IN for the corre-
sponding collision integral. This integral can be writ-
ten either in the Bogolyubov representation [as in (18.10)
of Ref. 15]

X[7w('i , Pi. • • • ' r!Pi(-°°)> . - . , r;, P,( — oo), . . . , rA,, pw, t)

— 7rt(*i< Pi. • • •, *<> PJ, . .., Tj, pj, . . ., TJV, pw, ()],

(4)
or, more conveniently for comparison with Leonto-
vich's equation, in the Boltzmann representation

7W = 2 j A<fll \ P l jdPU I V j - V j | 6(l, — Tj)

Isji, J^W 0 0

X l7w (* i. Pi- • • • , 'I, P.' , •

— 7»('i. PI, • • •.
Pi, • • - , ' » , Pw.

. Pi-
(5)

In expressions (4) and (5) the "width" of the function
6(r , - r,) is characterized by Zp.

Equation (3) with collision integral (5) corresponds to
equation (42), (43) of Leontovich's paper (the quantity
!„ in (42) is defined in Ref. 6 on p. 231). The difference
lies in the following:

In equation (42) of Ref. 6 the collision integral lacks
the second term in the square brackets in (5) [with the
f unction /^(x^, . . . , xt, . . . , x^,. . . ,xs, t)], which is im-
portant, for example, in proving the law of increasing
entropy of the entire system (see below). However, in
going over from equation (42) to the Boltzmann equa-
tion, Leontovich6 does, of course, include the contribu-
tion of this term .

On the left-hand side of equation (3) there is an addi-
tional term that does not appear in (43) of Ref. 6; this
term takes into account the interaction of the particles.
This term, as we shall see, is important in the study
of the contribution of the large-scale fluctuations.

Let us consider the most important consequences
of equation (3) with collision integral (5) [or (4)].

With the aid of equation (3), we shall find an equa-
tion for the single -particle distribution function:

= V j (r, ..... rN, p, ..... pw, t) dr., ... drw dp2 . . . dpw.

(6)
In the integration over r2, . . . , r^, p2, . . . , pN, all the
terms with t# 1 drop out. All the terms in the sum
TJI<J * w under the integral over r^, p^ are on equal foot-
ing; one may therefore set j = 2 and replace the sum-
mation by a factor N-l, which is the number of terms
in the sum over j. Finally, we let (N - l)/V-~N/V = n.
This results in the following equation:

•$- + v IT + F° ̂ r - " 1 ^f ̂  ̂  (r" p" "• p"() clr' dp'
2jl 00

+ n] d<Pi2J Pi2dpi2 J dp2 1 v, — v2 1 l f t ( T t , p',, r,, p|, t)
0 0

— 7a(f i> Pa, 'i, Pi. ')].

(7)

which corresponds to equation (63) in the paper by
Leonotovich. The only difference is that on the right-
hand side of equation (7) there is an additional term
(the first term on the right-hand side) which takes into
account the contribution from large-scale fluctuations
(see below).
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Let us introduce the two-particle correlation func-
tion. By definition, with allowance for the fact that
f i = f l t we have

/2- /1/I L?2- (8)

It can then be said that equation (7) is not closed, since
it contains the correlation function gz in addition to the
function /j. For this reason, even when the first term
on the right-hand side is neglected this equation differs
from the Boltzmann equation. It is the first equation of
a chain of coupled equations for the smoothed (over a
physically infinitesimal volume Vp) functions /1( g2, g3,...
(see Ref. 15). In contrast to the Bogolyubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy of equations
for the ordinary distribution functions, the system un-
der study is approximate because of the smoothing over
the volume, and for this reason is dissipative.

In equation (7) the correlation function g2 enters in
two ways which are, in a sense, complementary. In
the second term on the right-hand side of equation (7)
the function gz appears inside the integral that takes in-
to account the contribution of binary collisions. In or-
der to obtain the Boltzmann collision integral, one must
set g2 = 0 inside it. Now how is one to justify such an
approximation? In this regard Leontovich writes:

This relation [relation (7) without the first term on
the right-hand side, auth. ] will have the same form as
the "fundamental equation of the theory of gases" [the
Boltzmann equation, auth. ] if one replaces [in our
notation, auth. ] /2(p2, p[) by/^p^/^pj) and, corre-
spondingly, /2(p.j, pj by /^Pa)/^?!). Such a replace-
ment might be justified if it were proved that as the
total number of particles goes to infinity, the quan-
tities giving the dispersion of the numbers of
particles in definite states increase in proportion to
N. By analogy with the "limit theorem" proved for
a discrete series of states, such a behavior of the
dispersion and, hence, the validity of such a limit
theorem in this case as well seem probable to me,
although I have not been able to prove it. As a re-
sult of the indicated replacement, equation (63) [our
Eq. (7) without the first term on the right-hand side,
auth. ] goes over to equation (1) [the Boltzmann equa-
tion, auth. ]

Thus Leontovich assumed g2 = 0 in the collision inte-
gral only in the thermodynamic limit: N —• °°, V-~°°,
but N/V finite. In Bogolyubov's book14 the Boltzmann
equation is a closed equation for a single-par tide dis-
tribution function obtained on the basis of the principle
of total attenuation of the initial correlations. One can
discern a certain connection between these approaches.
In both cases we arrive at a closed equation for a de-
terminate (not random) distribution function. For this
reason, as we have already mentioned, all phenomena
governed by kinetic and hydrodynamic fluctuations drop
out of consideration.

To estimate the role of the function gz in the collision
integral, let us use the condition of partial attenuation
of the initial correlations [condition (1)]. Assuming
(for small-scale correlations) that the correlation
length ra>r~r0 (r0 is the diameter of an atomic sphere),

we obtain the estimate

**>"-, since (9)

This is what provides the grounds for dropping the
functions g2 inside the collision integral. The large-
scale correlations are included in the first term on the
right-hand side of (7). As a result, the equation for the
function/j assumes the form [Eq. (18.6) in Ref. 15)

(10)

here

IB--=n j dcp,2 i .)., dp!2 \ dp2 | v, — v 2 j

•' (/, (ri- P',- t) f, (r,, p|, t) -/, (r,, p2, t) /, (r,, Pl,

is the Boltzmann collision integral, and

/ - n \ -^ii ^_ ^2 (r,, Pl, r2, p2() dr2 dp2 (12)

(ID

is an additional integral determined by the large-scale
fluctuations. The force F in Eq. (10) is given by the
expression

F(r . n = F0- n /.(r-, p', f)<1r'dp'. (13)

Thus, under the condition of attenuation of small-
scale correlations, the equation for/! is of the form
(10). This equation is dissipative. Here the dissipa-
tion due to the exclusion of small-scale correlations
enters explicitly through the Boltzmann collision inte-
gral. Additional dissipation due to the functions g2 (the
integral / ) is also possible. Before discussing this
matter, let us make the following remark.

Instead of using Eq. (3) for the function/, as the ini-
tial equation, one can use the equation for the micro-
scopic phase density smoothed over a volume Vt:

.V(r, p, 0= (14)

Let us denote this by N. Averaging this equation (see
§22 in Ref. 15) and using the equality (N)=nf1 and the
condition of attenuation of the small-scale correlations,
we again arrive at Eq. (10). Now, however, the inte-
gral 7 is represented in a different, but equivalent form:

—
op

, < .
(IF (ID = - - - - - J

n op

here 5ff = N-nf1 and

6F= - -6A'(r ' , p', ( )d r ' dp ' .

(15)

(16)

In this approach Eq. (10) must be supplemented by an
equation for the correlator of the fluctuations of the
phase density N.

Of course, the equation for such a correlator, by vir-
tue of the nonlinearity of the system, will contain a
more complex, ternary correlator. This sequence of
equations can be closed under the condition that the
fluctuations are small. This condition is valid for a
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wide class of problems if the averaging volume Vp is
suitably chosen so that it contains many particles
(tf,»l).

One may, of course, turn not to the equations for the
moments of the fluctuations 6JV, but instead use Eq.
(12), which expresses the integral Jin terms of g2. The
equation for g2 is of the form given by (18.25) in Ref.
15. In (18. 25) the condition that the fluctuations 5N be
small corresponds to the approximation Jr3 = 0, gz «fj
/a-

In the zeroth order approximation in the fluctuations,
the integral fin (10) is zero, and we return to the kinet-
ic equation of Boltzmann. In the next approximation the
equation for the correlator (GNGN) can be written in the
form of an equation with a source A(x, x', t)—a function
determined by the single-particle distribution function
[Eq. (22, 21) in Ref. 15]. The source is represented as
a sum of two terms:

A (x, x', t) = AB (x, x', t) + A {x, x', t). (17)

The first term AB is determined by the atomic structure
of the subsystem in the physically infinitesimal volume
V,,. The collisions of the particles of volume Vt are not
a continuous process. A shot effect is present.

The second term on the right-hand side of (17) is due
to the dissipative effect of the large-scale fluctuations
5N, and so the function A can be expressed in terms of
the integral/[(22.23) in Ref. 15].

In summary, there is a sort of dual superstructure
on top of the level of description by means of the Boltz-
mann equation.

The "first level" is governed by the molecular struc-
ture, which leads to a shot effect in the collision proces-
ses. For this reason the source AB(x, x1, t) is called
molecular.

The "second level" is governed by the large-scale
fluctuations and is not directly related to the molecular
structure of the system. The source A might therefore
be called turbulent.

In specific situations one of these two factors may be
dominant. Then one can distinguish two more particular
generalizations of the Boltzmann equation. Let us first
consider the case in which source A = 0. In this approx-
imation one has / = 0 in (10), and equation (10) coin-
cides with the Boltzmann equation. Thus the function
/j(r, p, t) can be determined independently of the prob-
lem of calculating the fluctuations of the distribution
function.

However, since the function/! is introduced, as was
proposed in Leontovich's paper, in the form of a
"mathematical expectation" (nf1=(N)), there exists
fluctuations 5N =N-(N). In the present case the
source A(x, x', t) in the equation for the correlator
(6AT6JV) is specified completely by the function
AB(x,x', t). This function can be expressed as fol-
lows in terms of the function/! [(10.12) in Ch. 11 of
Ref. 18]:

p')/1(r, p, t); (18)

here 6/p is an operator determined by the linearized
Boltzmann collision integral. The subscript zero on
the second term in the square brackets indicates that
the collision operators act only on the distribution func-
tion [and not on the function 6(p- p')].

The correlator (SJVSJV),^,_, can serve as an initial
condition (t=t') for calculating the double-time corre-
lator, which satisfies the equation

= 0, t>f. (19)

The system of equations for the single-time and double-
time correlators is equivalent to the Langevin equation
for the function 62V:

p, t) = p, t). (20)

The left-hand side of this equation is of the same form
as the linearized Boltzmann equation. The moments of
the Langevin source are given by the formulas

(y (r, p, t) > - 0, (21)
(y (r, p, t) y (i, p', t ) ) = AE (x, x', t) 6 (t - t ' ) .

Thus the intensity of the Langevin source in the linear-
ized Boltzmann equation for the fluctuations 5N is given
by expression (18). The latter in turn serves as a
source in the equation for the single-time correlator
of the fluctuations 5N for A = Q.

For an equilibrium state the second term (with sub-
script zero) in formula (18) drops out, and we arrive
at the result of Kadomtsev's paper on kinetic fluctua-
tions in an ideal gas under equilibrium conditions. For
a nonequilibrium state formulas (21) and (18) are equiv-
alent to those given in Refs. 27, 28, and 15.

It follows from what we have said that results (18)-
(21) can be obtained on the basis of the dissipative equa-
tion introduced by Leontovich, together with collision
integral (5).

Let us now establish the connection between formula
(5) [or (4)] and the well-known Prigogine-Brout expres-
sion for the collision integral in the equation for the
many-particle function of a gas which is spatially homo-
geneous with respect to the coordinates of all the
particles. These distribution functions are defined by

fs('i. Pit •••> rw, pw, O r =-p j f / jv (P i t •

The expression for the integral /^(P!
from (5) and is of the form:

(22)

. . . , pw, t) follows

'"(Pi ..... PN, <) = " d(Pu Pi;dPulvi-v;l
l^i, JXJV 0 0

X[ / JV(PI , .. ., Pi, ..., p,!, . .., pw,i) — 7w(pi ..... Pi, - . . , P J , . . - , p.y, t)\._

(23)
By using Eq. (4), one can also write this integral in the
Bogolyubov representation.

Formula (23) incorporates binary (Boltzmann model),
but strong interactions. In the approximation of a per-
turbation theory in the interaction, it implies the result
of Prigogine and Brout (Ch. 2 in Ref. 17). The corre-
sponding equation for the single-particle distribution
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function (neglecting large-scale correlations) coincides
with the kinetic equation of Landau.

Let us turn now to the other limiting case, in which
the turbulent source A is dominant on the right-hand
side of (17). In this case, as we know, equation (10)
does not reduce to the Boltzmann equation.

The additional contribution to the dissipative charac-
teristics that is determined by the integral / can be sig-
nificant. In particular, this contribution governs the
anomalous electrical conductivity of a plasma.29'18

Let us now return to equation (3) for the many-particle
distribution function fN and consider some of its pro-
perties.

In an equilibrium state the collision integrals (4) and
(5) go to zero when the multidimensional Maxwellian
distribution

• (Pi, - - . , PA (24)

is substituted into them.

If the collision integral (5) [or (4)] is multiplied by
the function -fe In/^r^ plt .. ., TN, pN, t) and integrated
over all the variables, we then have

<lr.vtlpA.>0. (25)

This property provides for the undiminishing of entropy
of the insulated system

5(8) = —k \ In fwTw dr, dp, . . . drw dp.v.

i.e.,

(26)

(27)

The equal sign corresponds to an equilibrium state.

With the aid of equation (3) together with the collision
integrals (4) and (5) [or (23) for the spatially homo-
geneous case] one can estimate the relaxation times in
the various stages of the time evolution. For example,
in the kinetic stage, which is described by the Boltz-
mann equation, we obtain for the relaxation time the
familiar expression

Vd --^-T^r- (28)

The relaxation time is thus determined by the mean
free time of some given particle [such as particle
number 1 in Eq. (10)].

With the aid of expression (23), for example, one can
estimate the minimum relaxation time (Tr,,)mlll—the
time in which any single particle of the system "forgets
its path. " This is sufficient for the system as a whole
to be unable to return to the initial state when the signs
of the velocities of all the particles of the system are
reversed. It follows from (23) that

(29)

Thus, the minimum relaxation time is smaller by a
factor of N than the mean free time. This time char-
acterizes the initial stage in the onset of irreversibility.

One can see from what we have said that Leontovich's
paper had great potential. The author regrets that he
first read this paper when Leontovich was already
gravely ill and unable to discuss any questions. One
can only be amazed at how much Leontovich was ahead
of his time in his understanding of the fundamental
questions of statistical physics.

In conclusion, the author wishes to point out that other
types of dissipative equations are possible for many-
particle distribution functions.

Dissipative equation (3) is written for the distribution
function of the complete set of variables rlt plt... ,TN,
pN of the JV-particle system under consideration. Dis-
sipation arises in this system when small-scale corre-
lations are excluded. This is what dictates an incom-
pleteness in the description.

A different situation is considered in Ch. 10 of Ref.
16 (see also Ch. 24 of Ref. 24). An equation is sought
for the distribution function of the variables of the main
system, which consists of N particles with an arbitrar-
ily strong interaction between them. Here dissipation
is established by the incompleteness of the description
in the auxiliary variables of the extended system. In
contrast to the case of (3) with the collision integral (5),
here one obtains an equation for the many-particle dis-
tribution function which is nonlinear in the function /„.

In the equilibrium state the "collision" integral in
this equation goes to zero when the Gibbs canonical
distribution with the Hamiltonian of the main system is
substituted into it. Here the H theorem of Boltzmann
is also valid. The minimum relaxation time, as in
(29), is proportional to l/N.

The kinetic equations for the many-particle distribu-
tion functions are too complicated to solve. However,
they can prove extremely efficient for constructing ap-
proximate equations corresponding to different levels of
description and are well suited for describing the kine-
tics of coherent states during nonequilibrium phase
transitions.

Basic to these studies is Leontovich's paper6 on
"The fundamental equations of the kinetic theory of
gases from the standpoint of the theory of random pro-
cesses. " This paper will no doubt be studied for many
years to come by students of the development of the
statistical theory of nonequilibrium processes.
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