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Correct use of the Wigner representation of quantum mechanics, which is realized with joint distributions of
quasiprobabilities in phase space, requires the use of certain specific rules and attention to a number of
properties which distinguish the quasiprobability from a true probability. This paper is mainly concerned with
these problems. In the Wigner representation the quantum Liouville equation appears instead of the
Schroedinger equation. The solution may have no physical meaning unless it is subjected to a necessary and
sufficient condition which selects an allowed class of distributions which describe quantum-mechanical pure
states. This condition contains Planck's constant and imposes, besides the uncertainty relations, severe
restrictions on the possible form of the Wigner function. When this condition is satisfied, one can reconstruct
the wave function from the Wigner function. In the case of an oscillator, the quantization condition for the
energies of the stationary states does not follow from the Liouville equation, but from this supplementary
condition. Unlike the true probability density, any Wigner function (except Gaussian ones) of a pure state
takes on negative values. Another important peculiarity is that the quasiprobability is not concentrated on
certain hypersurfaces, but is "smeared out" over the entire phase space. These and other features considered
in this paper should be kept in mind when using the Wigner representation in quantum-mechanical problems.
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1. INTRODUCTION

In 1932 Wigner1 suggested a representation of quantum
mechanics by means of joint distributions of the proba-
bilities (or, more precisely, the quasiprobabilities) for
coordinates and momenta in phase space. Until recently
this method has not been much used, and even is usually
not mentioned in quantum-mechanics textbooks. The
Wigner representation is now finding wider application
in nonequilibrium quantum statistical mechanics (cf.,
e.g., Refs. 2-7). Meanwhile, this representation can
also be used successfully in purely quantum mechanical
problems, so that the number of papers in which it is
applied has begun to increase.8"16 For example, the
Wigner representation has turned out to be very conven-
ient for studying quantum systems with Hamiltonians
quadratic in the coordinates and momenta.8'10'11'15 It
was used by Korsch and Berry12 to study the stochastic
nature of a quantum dynamical system, and by Korobkin
and Sazonov9 for the approximate solution of a nonlinear
Schrodinger equation. As has been emphasized in pa-
pers by Shirokov,13'14'17 the Wigner representation in-
volves only concepts that are common to both quantum

and classical mechanics. Therefore it is especially
convenient in the consistent derivation of quasiclassical
methods, in which, for example, one of the interacting
systems is described by quantum mechanics and the
other by the classical theory. With the Wigner repre-
sentation it is easy to obtain quantum corrections to
classical results. For example, in Ref. 14 an integral
equation is derived whose iteration leads to the succes-
sive inclusion of quantum corrections to the classical
solution, and an analogous formalism for scattering
theory is developed in Ref. 13.

A comparatively detailed exposition of the theory of
the Wigner representation is given in a paper by
Moyal.17 Then this theory was considerably extended in
a series of papers by Shirokov, which are surveyed in
Ref. 17. Their algebraic approach makes possible the
construction of a rigorous and consistent mathematical
theory. Precisely owing to this, however, it remains
relatively unknown to wide circles of physicists, since
it requires the use of a special formalism.

Besides papers in which the Wigner representation is
used for the solution of specific problems, there are
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many devoted to studying the properties of this repre-
sentation, which in some ways are very unusual and
violate the seemingly intuitive properties of the method.
We shall deal with the results of these papers at appro-
priate points in this review. Here we note that several
papers devoted to such generalizations of the Wigner
representation will not be discussed. For example,
Ref. 20 considers a gauge-invariant Wigner function
that arises in the solution of problems involving an
electromagnetic field. Reference 19 examines repre-
sentations of quantum mechanics by means of distribu-
tions which are more general than Wigner's. In partic-
ular, reflecting distributions allowing the description
of spin variables are introduced in that paper. Refer-
ence 21 considers a generalization of the quantum Liou-
ville equation, which describes diffusion in phase space,
and uses it to discuss the problem of a damped oscilla-
tor. Finally, in the cited papers by Shirokov a whole
class of representations of quantum mechanics in phase
space is considered, which includes the Wigner repre-
sentation as a special case.

The present paper has two purposes. First, by means
of the generally accepted formalism of quantum me-
chanics we analyze those physical ideas which lead to
the Wigner representation. In doing so, we confine our-
selves to quantum-mechanical problems only (for sim-
plicity considering only the one-dimensional case), and
do not consider problems of quantum statistical me-
chanics. Second, we consider only methodological
questions associated with the correct use of the Wigner
representation. Unfortunately, to this day one encoun-
ters in the literature the assertion that by means of the
Wigner function one cannot find average values of arbi-
trary quantities; this comes simply from incorrect use
of this function. We give special attention to one partic-
ular property of the Wigner representation, which is
due to the fact that by no means every function W(p, q)
that satisfies all the requirements of probability theory
can be a "joint density of coordinate and momentum"
for a pure quantum state. This is clear from the very
fact that a pure state is uniquely described by a function
of one variable, ty(q), whereas the "joint probability
density" is a function of two variables. Therefore the
admissible quantum densities that correspond to pure
states can be described by those functions of two vari-
ables that can be uniquely described (in a definite way)
in terms of a function of one variable. This imposes on
the function W(p, q) an extremely strong condition,
which contains Planck's constant. This purely mathe-
matical circumstance leads not only to the well known
restriction on W(p,q) which leads to the uncertainty re-
lation, but also to other physically very important con-
clusions. For example, it turns out that the quantum
equation for the evolution in time of the Wigner function
in general describes not only the solutions that corre-
spond to quantum mechanics, but also "extraneous"
solutions. And only in case the initial condition for the
evolution equation satisfies a suitable condition which
has just been mentioned can the extraneous solutions be
excluded, so that the quantum evolution equation (the
quantum Liouville equation) becomes equivalent to the
SchrSdinger equation, and then the wave function can be

reconstructed from the Wigner function up to a phase
factor independent of the coordinates. This fact ap-
pears most distinctly in the treatment of the quantum
oscillator. It is well known (cf., e.g., Sec. 4 of the
present paper) that the quantum Liouville equation for
the oscillator is identical with the classical equation.
Then where does a difference between them arise? It
is found that in this case the correct description of the
quantum oscillator can be obtained precisely from the
general restriction on the possible form of the quantum
distribution, and Planck's constant appears in the de-
scription only when the correctly stated initial condition
is used.

Accordingly, attention to the restrictions imposed on
the possible form of quantum distributions is extremely
important and eliminates the difficulties pointed out in
Ref. 18.

It is also interesting to note that besides the standard
uncertainty relation, which in the language of the Wig-
ner function is a relation between its second moments,
this function also satisfies another general limitation.
It is found (see Sec. 5 of this paper) that its absolute
value is bounded by the quantity (irK)'1, and this is
another manifestation of the uncertainty relation.

We now briefly describe the content of this paper.
The following part of the Introduction is devoted to an
analysis of the formal obstacles to the introduction of a
purely probabilistic language in quantum mechanics. In
Sec. 2 we examine the connection between the rules for
ordering noncommuting operators that are introduced
in quantum mechanics, and the possibility of defining
an operator for the "joint probability density" of coor-
dinate and momentum. It is shown that the Weyl order-
ing and the corresponding Wigner function are in a cer-
tain sense the most acceptable. In Sec. 3 the properties
of the Wigner function are analyzed. We show how by
its use one can calculate the quantum averages of any
function of the coordinate and momentum. Here it turns
out that the rules that assure that the averages so cal-
culated agree with the quantum-mechanical values do
not always correspond to the standard rules of proba-
bility theory. We then consider the restrictions on the
general form of functions W(p,q) that can describe pure
quantum states. It will be shown that the uncertainty
relation can be derived from this restriction. In Sec. 4
the quantum Liouville equation is derived. It is shown
that it can be satisfied by solutions that have no physi-
cal meaning, but that the imposition of the previously
noted restrictions on the initial distribution automati-
cally "filter out" the extraneous solutions. Then it is
proved that the Wigner representation of quantum me-
chanics is equivalent to the traditional representations.
Section 5 gives an analysis of the questions associated
with nonpositivity of the quasiprobability. It is shown
that the eigenvalues of the quasiprobability operator
are equal to ±(TTK)~I, and the quasiprobability itself is
bounded by the condition | W\ ^(wK)'1. A proof is given
that the only nonnegative Wigner function that corre-
sponds to a pure state is a joint Gaussian distribution
for the coordinate and momentum which satisfied the
limitation that follows from the uncertainty relation.
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It is further shown that the function W(p, q) averaged
with a Gaussian weight over phase space satisfies the
condition 0 « W(p, q) « (irK)'1 , if the dimensions of the
cell over which the average is taken exceed (irK). Sec-
tion 6 is devoted to the formulation of general conclu-
sions.

Let us now consider the statement of the problem in
more detail. As is well known, the state vector )$(£))
determines the probability density of the coordinate,
W(q, t ) = \ ( q \ ;/)(/)} | 2 and that of the momentum, W(p, t)
= \ ( p \ (t)) | 2, and also enables us to find the average val-
ues of functions that depend on both p and q1 '

</(P, 9 )> = <f (0 I /(P. ?) If (*)>•

In the case when /depends only on q, we have

<f (0 l / ( ? ) If «> = Wte, t ) f ( q ) d q .

In exactly the same way we have

<f (t) | F (p) | H> (t) ) = J W (p, t) F (p) dp.

However, the dynamics of quantum mechanics is de-
termined by the Schrodinger equation for | #(£)), and
there is no equation that determines directly the time
dependence of W(q,t) or W(p,t). At the same time,
when \if>(t)} has been found from the Schrodinger equa-
tion we can find mean values of any function f ( p , q ) .

The question arises: Is it impossible to get a de-
scription of a quantum system directly in terms of
probabilities, without resorting to the wave function?

Let us consider the classical problem with the Hamil-
tonian

H = (p2/2m) + V (q).

The classical equations of motion q=p/m,p= — V'(q) to-
gether with the initial conditions q(Q) = qa, p(0) = f>0 deter-
mine the trajectory q ( t ) , p ( t ) . If, however, f o r / = 0 w e
are given not the initial conditions q(0),p(Q), but only
their probability distributions W0(q), W0(p), then the dy-
namics of the system will be described not by the equa-
tions q = p/m, p = -V'(q), but by the equation
of evolution for the joint probability density W(p,q,t) or
the Liouville equation

,^Wo(P,q). (1.1)

We emphasize that Eq. (1.1) describes not a system of
many particles, as in statistical mechanics, but the
evolution of the probability distribution of the coordinate
and momentum of one particle, if its initial state is
specified only in a probabilistic way.

We see that in classical mechanics there is no equa-

°We use the following notations: Operators are indicated with
the sign ": q and ̂  are coordinate and momentum operators,
[q,p\ = iK, I q) are eigenvectors of the operator^: q I q)
= q I q), satisfying the conditions (qr \q") =S(q' —q"), / I q)dq
( q |= I, where 1 is the unit operator. I p) are analogous
eigenvectors of the operator p, with p\p)=p I p), (p' I p")
= f>(p'-p"), f\p)dp(p\=l. As is well known, (q\p) =
(27rft)"1/2 expdqp/K). Wave functions in the q and p repre-
sentations will be denoted as •<l>(q,t) = (q\>l>(t)) and $(p,t)
= (p I *fe».

tion describing the evolution of W(q,t) or W(p,t); there
is only the Liouville equation for the joint probability
density W(p, q, t). Therefore a corresponding quantum
equation for W(q,t) or for W(p,t) cannot exist.

However, despite the fact that in quantum mechanics
we can find the mean value of any function f ( p , q ) , there
does not exist any joint probability density W(p, q,t). In
fact, if such a function existed, we would have the rela-
tion

(f (t) lf(p, q) I f (*)> = j J W (p, q, t) f (p, q) dp Aq. (1.2)

However, we have, for example, pq2p=^(p2q2 + q2p2)
+ K2. At the same time, if Eq. (1.2) were valid, then we
would obtain from it the same average value for /x

= pqzp and f2=^(p2q2 + q2pz), whereas these two/'s differ
byfc?

Accordingly, it is impossible to construct a joint
probability density for coordinate and momentum such
that by averaging functions /(/>, q) over it we can obtain
their quantum mean values (<i>\f(p,q) |^i). The direct
cause of this is that if f1(p,q)*fz(p,q), it can still turn
out that fi(p,q)=f2(p,q).

Nevertheless, it is possible to introduce a function
W(p,q,t) such that the use of Eq. (1.2) with suitably or-
dered functions {/(/>, q)} gives their correct quantum-
mechanical mean values, and which satisfies an equa-
tion of evolution which is the generalization of Eq. (1.1)
to the quantum case. Such a function was first intro-
duced by Wigner1 for a system of many particles for the
purpose of studying quantum corrections to thermody-
namic functions. This function is to a large extent
analogous to a joint probability density for coordinate
and momentum, although it also has a number of pecul-
iarities which do not allow it to be treated as such. We
shall call it the quasiprobability, or, more exactly, the
quasidensity of the joint distribution of q and p.

2. DEFINITION OF THE JOINT QUASIPROBABILITY
OF COORDINATE AND MOMENTUM

As we have found, the formal obstacle to the intro-
duction of a joint probability distribution W(p,q,t) is
the lack of an unambiguous correspondence between
functions of operators and functions of commuting vari-
ables p, q. When operators p, q are replaced by num-
bers p, q different functions /,(/>, q) can go over into the
same function f(p,q). This is another aspect of the well
known problem of quantization, or the setting up of
rules by which to each f unction f ( p , q ) of commuting
variables p, q one assigns a single function f ( p , q) of the
noncommuting operators.

To remove this ambiguity, we apply certain quantiza-
tion rules; i.e., we fix a method by which to each func-
tion/^, q) of the numbers p,q there is uniquely as-
signed a f unction f ( p , q ) of the noncommuting operators
p,q. If only functions of this type are used in quantum
theory, no ambiguity will arise. Functions of other
kinds can always be reduced to the chosen form by us-
ing the commutation relations.
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To introduce the correspondence between the func-
tions f ( p , q) and f ( p , q) it suffices to define an operator
function F(\, /i), which is a generalization of the func-
tion F(\, n) = exp[i(\p + nq)]. In fact, an arbitrary ana-
lytic f unction f ( p , q ) can be obtained from F(X, jj.) by
means of the operation

t Ir, «\ f / * ^ ^ ^ \ I? l\ ..N I7 (P» ?) ~ / I ~ "0JT5 ~J" "du" / ' ' W l^-n-=o«

Since the operators 8/8X and 8/8/1 commute, there is no
ambiguity in writing out/(8/i8X, 8/i8/i). Therefore, if
we adopt some operator generalization of the function
F, for example

f i ( < W — e « . ^z( i W = « « p i *s = -5r('i + 'i)

and so on, we can define the ordered operator function
{/(p,q)} by means of the formula

(2. la)

Hereafter we shall take {f(p,q)} to be the ordered func-
tion of the operators p,q corresponding to the function
f ( p , q ) according to the operation (2.1). Furthermore,
for example, {(f1(p,q)f2(p,q)} is the function of the op-
erators p, q corresponding to the c-number function

For different functions F(\, fj.) there will be different
operator functions {/(/>,<?)} differing in the order of the
noncommuting factors p,q. If then, using the commuta-
tion relations, we bring them to the same order, addi-
tional terms will in general appear. Not all functions F
are equally suitable for our purpose. To choose the
most suitable, we turn to the properties of the charac-
teristic function of probability theory.

If p and q are random numbers, the mean value of the
function F(\, fi) = exp[i(X/> + y.q)] is the characteristic
function of the joint probability distribution for p, q:

%
<pp, (K, |i) = (F (X, |i)> = j j exp [l(Kp + n?)] W(p,q)ApAq. ( 2. 2)

[Here the angle brackets 0 . .} denotes the statistical av-
erage over the fluctuations of p,q characterized by the
joint probability density W(p,q).] The probability den-
sity is expressed in terms of <pp<1 by the inverse Fourier
transformation:

(2.3)

As is well known, the characteristic function of a prob-
ability distribution has the following properties22:

a) <f>py(0,0) = l; b) ^,(0, /i)= <exp(tfi?)>= <p (ji), v/JX,0)
= ?,(x); c) ^.(X,ji)=^(-X,-M);dj<iPjx,n)|«l;e)*[the
(inverse) Fourier transform of] ^(X, /i)is a positive def-
inite function; in particular, W(p,q) & 0 [is W(p,q) is a
true probability density].

* Translator's note: This last statement has been changed
from the original text, which stated that <f^ (X, M) is itself
a positive definite function. Being the mean value of a com-
plex function F, ip^ is, in general, complex. As stated here,
property e) is as obvious from the foregoing discussion as
the other four properties are.

In the same way as CF(X, /n)) determines the charac-
teristic function, the quantum average (i/>|.F(X, /j.)i^} can
be taken as the definition of the quantum characteristic
function in the state |$) and the operator .F(X, /i) can be
taken as the operator of the characteristic function.

As an obvious extension of the properties a),b) we
have the conditions

F (0, (i) = exp F(k, 0) = exp (2.4)

If the function F satisfies these conditions, then in con-
structing by means of Eq. (2.1) the functions {f(p,q)},
functions of the form/(/>) o r f ( q ) , which depend on only
one variable, are obtained from the corresponding func-
tions / ( />) , f (q ) by the simple replacement p — p,q—q.

The generalization of property c) is the condition

F*(k, n) = F(-X, -|i). (2.5)

It follows from Eq. (2.1b) that when the condition (2.5) is
satisfied real functions f * ( p , q ) =f(p, q) will be converted
into Hermitean operators {/(/>,?)}* = {/(/>,<?)}.

To assure that the condition | (i/>| F(\, M) 1^)1 « 1,
which generalizes property d), will hold, we require
that the operator F be unitary:

r (X, M) F (X, M) = F (X, (K, n) = 1. (2.6)

As for the condition of positive definiteness, it cannot
be generalized to the quantum characteristic functions.
In a number of cases this leads to violations of the con-
dition that the probability density is positive, as we
shall discuss in detail later.

Let us go back to the functions F^, F2. It is clear that
J?(X, p.) = F2(-\,-n); that is, the condition (2.5) does
not hold for these operators, because of which real
functions f ( p , q) will correspond to nonhermitean op-
erators. The function F3 satisfies the condition (2.5).
However, the unitarity condition (2.6) does not hold for this
function. Using the well known formula (cf., e.g., Ref.
23)

= exp(.4)exp(S)exp (-y[4, B]) , (2.7)

which holds provided the commutator [A, B] is a c-num-
ber, one can show easily that -F3(X, /j,)FJ(X, fj.)
= cos2(JzXpi/2)-1*1. Therefore, although the operator
Fa is suitable for the construction of symmetric opera-
tor functions, it is not suitable for the operator func-
tions, it is not suitable for the role of the operator
characteristic function.

Therefore we shall use the following operator of the
characteristic function, which satisfies all the require-
ments (2.4)-(2.6) which we have formulated:

The conditions that uniquely require the choice of the
operator F in the form (2.8a) have been analyzed by
Krflger and Poffyn.24 It turns out that various sets of
requirements can be formulated that lead to this same
choice.

By means of Eq. (2.7) the operator F0 can be put in
these forms:
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F, (K, (i)=-cxp (frp/2) cxp (iji?) exp (ttp/2),

F0 (X, n) = exp (tug/2) exp (iX/>) exp (iug ;2),

/"„(>., u) - exp( — j>,(i7i/2) exp(iAp) exp(ip.g

/'„ (/., |i) ---= exp (i?i[i7i/2) exp (

Using the formula2'

exp (iXp) | g) — I 7 — AS)

(2.8b)
(2.8c)
(2.8d)
(2.8e)

(2.9)

and applying the operator F0 taken in the form (2.8d) to
the expansion of the unit operator in the basis \q), (see
footnote1'), we easily get still another useful represen-
tation of the operator F0:

/„ ( exp ((>?') d?' (?' -!- -M (2.8f)

The various representations of F0 are convenient in
various particular cases. For example, if it is neces-
sary to calculate dF0/d\, it is convenient to use Eq.
(2.8b), and to calculate 9F0/3/j. it is convenient to use
Eq. (2.8c).

If we use the function Fa(\, M) to determine ordered
operator functions by means of Eq. (2.1), the results
are what is called Weyl symmetric ordering.25 We note
that the use of F3 also leads to a symmetric ordering,
but it is not identical with the Weyl ordering. For ex-
ample, for the operator generalizations of the function

Equations (2.1) and (2.8) enable us to find the ordered
operator {f(p,q}} corresponding to a c-number function
f ( p , q ) . Another problem frequently arises, that of rep-
resenting a given operator A in Weyl-ordered form.
This means that one must find a c-number function
A(p,q), called the Weyl symbol of the operator A, such
that A = {A(p,q)}. We shall show that this problem is
solved by the following formula (cf., e.g., the supple-
ment to Ref. 25, which presents quite a number of prop-
erties of Weyl symbols):

A(p, 7)= exp(tp|/«) - -f I (2.12)

To do this we find, using Eq. (2.1b), the operator
{A(p, q)} for which the role of the function A(p, q) is
played by the right member of Eq. (2.12):

{A (p, «» =4^5 j j j j (

We perform the integration over p, which leads to 5(/\
), and then that over \:

(*(i>, 5)} = ̂  j f j d- ,dEditexp(-in?)P0 (-f-,1^) <^»— |-l "A I «+T

Substituting tlie representation (2.8f) for F0 we have

Integration over pi leads to 6(^ - q'), and we have

In the rest of this article we shall understand {/(/>, q)}
to mean the operator obtained from f ( p , q) by the formu-
las (2.1) with the use of the operator characteristic
function F0 defined by Eqs. (2.8).

An extremely interesting property of operator func-
tions, which follows from their definition, is as follows:
If A = {A(p, q)} and B = [B(p, q)}, then C = AB
*{A(p,q)B(p,q)}. Instead of this we have the equation
AB = {C(p,q)}, where C(p,q) is expressed in terms of
A(p,q) and B(p,q) by the following formula,18 which can
be derived easily by using Eqs. (2.1b), (2.7) and (2.8a):

C (p, 7) = (nh)'- j \ j \ dPldg,dp,dg., A (p,, 7,) B (pt, q,)

:< exp ((Zi/h) [g (p, - p,) - p (7, - 7=) + 7i/>» - 9: PiD- (2.10)

In connection with Eq. (2.10) it must be kept in mind that
from A — A(p,q) it does not follow that A"~~ [A(p, q)]".
For example, let

// lp, g) = i p - / 2 m ) -I- (;n(.)2j5/2).

Then

H .-- {// (p", 7*)} - (p"/2m) + (ma>-q-/2).

But, using the formula f>2q2=j(p2q2 + q2p2 given a few
lines back, we obtain

/ £ / • ) / " "M / ''' i ™2<o*<74 , ta-pV \ p* , m-'io4?4

{H > (p, q)} :- {-^T-f- - 4 -- r - 5—) = -j^r -- -- j -

-^-2. (2.11)

2 'This formula can be derived easily by inserting between
exp(z \p) and ! q) the expansion of the unit operator in the
basis I />) and then going back to the basis \q).

(A(P,

Introducing new variables ?±l/2 = (jr
li2 and using the for-

mula for the expansion of the unit operator in the basis
\q), we have finally

(A("p, q)}=\ \ | ?,} d?2 (q, \A | „} d?, (7, |=fJ . l = -4. (2.13)

Accordingly, by Eq. (2.12) we can find for an operator
A its Weyl symbol A(p, Rafter which Eq. (2.1) can be
used to represent the given operator in Weyl-ordered
form.

Let us return to the operator .F0(X, ji) of the character-
istic function. The quantum characteristic function
ip(A, /i) can be expressed in terms of it by the formula

cp (A, |i) = <i|> | F0 ( I , n) | t>. (2.14)

Consider the mean value of an arbitrary function of the
operators p,q; using Eqs. (2.1a) and (2.14) we have

The right member of this equation is of the same form
as the corresponding formula of probability theory.
Therefore the quantum mean value (# | {/}| #) is ex-
pressed in terms of the quantum characteristic function
<p by the standard formula of the theory of probability.

If we use the definition (2.1b) for {...}, we obtain

(ty I { (/ (P* 7)} I ̂ ) — 1 1 / (P' 7) W (p, q) dp d7, (2.15)
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where 3. SOME PROPERTIES OF THE QUASIPROBABILITY

W(p, ?) = 5-i (2.16)

Accordingly, the function W(p,q), which we shall call
the quasiprobility density of the joint distribution of co-
ordinate and momentum, or the Wigner function, en-
ables us to calculate quantum -mechanical mean values
with Eq. (2.15), which also is of the form standard in
probability theory. We note that Eq. (2.16) can be put in
the form

W(p, ?) = I W(p, q) (2.17)

where the quasiprobability density operator, which de-
pends on the c-number arguments p, q is given by

(2.18)

It follows from Eq. (2.1b) that W(p,q) = {&(p- p)5(q-q)}.

If we use the representation (2.8f) for F0(\, jx) and
substitute it into Eq. (2.18), then after integration over
IJ., which leads to 5(q - q'), we obtain the operator W in
the q representation:

If we substitute this representation of the operator W
into Eq. (2.17) we obtain (after replacing the integration
variable ij with -£)

(2.20)

Let us consider the density matrix for a pure state,
p(q\,q^ = >l>(<lJ$*(q^ and introduce new coordinates q
= (qi + q2)/2,t = q2-qi- Then Eq. (2.20) can be written in
the form

W(P, ?) = (2.21)

Accordingly, the quasiprobability density can be re-
garded as the Fourier transform of the density with re-
spect to the difference variable.

We point out that if instead of the function .F0(X, jx) we
had chosen some different function which goes over into
exp[t(X£ + p.ijr)] when p — p,q— q, then by means of it we
could have chosen an ordering of the operators and a
quasiprobability W which would lead to correct quantum
mean values. For example, if we were to choose for F
the function Fl = exp(i\p) exp(tM^), then we would arrive
at an ordering in which operators p would always be to
the left of operators q, and the function W would be of
the form

(2.22)

where

) = 0> I ' eip (-

From the point of view of getting correct results of
calculations, this function is not inferior to the Wigner
function (2.20). However, the properties of the function
Wj are further from those of a probability density (for
example, Wf * Wt. In this respect the Wigner function
(2.20) is in a certain sense the closest in its properties
to a probability density.

a) Compatibility with the one-dimensional
distributions

If we integrate the Wigner function given by Eq. (2.20)
over p we obtain

\ W(p, (3.1)

i.e., the integral of the joint probability density over p
leads to the probability density for the coordinate q.
We obtain the same result by integrating Eq. (2.16) over
p. Here after integrating over p we obtain in the inte-
grand the function (i/» | F0(0, (j.) | >j>), and according to the
condition (2.4) imposed on F(\, p.) this gives
(il>\ex.p(iiJ.q)\il>), the characteristic function of the coor-
dinate probability distribution. In just the same way,
integrating Eq. (2.16) over q, we obtain in the integrand
(4>|exp(iXp)|i/>), the characteristic function for the mo-
mentum. Consequently,

W(p, (3.2)

Thus the Wigner quasiprobability distribution, like all
other densities constructed so as to satisfy the require-
ment (2.4), meets the natural demand that the two-di-
mensional distribution be consistent with the one-di-
mensional ones. Besides this it is clear from Eq. (3.1)
that the double integral of the Wigner function over p
and q is equal to unity if the wave function is normalized
to unity.

b) Calculation of higher moments

Let us now consider the consequences arising from
the relation (2.10). Suppose we have a Hermitean op-
erator A=f(p,q) corresponding to an observable A.
This operator also need not be in Weyl-ordered form,
but by using Eqs. (2.12) and (2.1) or the commutation
relation [q,p] = iK we can always perform identical
transformations to write it in the accepted standard
form: A = {A(p,q)}.

After this we can find the mean value of the observ-
able A for the state |$) by means of Eq. (2.15):

01 > = \A 1 1|> > W (p, q) dp d?.

We may, however, be interested in the means of certain
powers of the observable A. For example, the mean
square of the quantum fluctuations of A in the state | fy)
is given, as is well known, by the formula (A2) - (AY
= <;/) \A2 1 $) - (<I^\A\ i/i )2, and to find it it is necessary to
calculate {>ii\A2\tl>). But the operator

is not in the necessary ordered form, so that Eq. (2.14)
cannot be directly applied to it. If, however, we bring
it into this form by means of the commutation relations
or find its Weyl symbol from Eq. (2.10), i.e., the func-
tion C ( p , q ) such that

then in general C(p, q)*Az(p, q). Therefore

<42> = (*H I2 | *>= C(P< l)WApAq^ 42Wdpd?. (3.3)
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Accordingly, despite the fact that for (il>\A\ip) we have
the usual representation of probability theory in terms
of the integral of AW , no such representation holds for
($\A2\$). In other words the integrals

\ \ A" (p, q) H*(/?, q) dp dg

for n= 2, 3, . . . are not the mean values of the corre-
sponding powers of the observable A.

This fact, besides the possibility that W takes on
negative values, of which we shall speak in detail later,
is a manifestation, of one of the essential difficulties in
interpreting quantum mechanics in purely probabilistic
language. The point is that after we have, in the quan-
tization process, set up a correspondence between dy-
namic variable operators and observables, the possible
values of the observables are the eigenvalues of the
corresponding operators. Furthermore, if an observ-

where

able assumes the value A
of course A2 $„) = A^\!pn),

n,
i.e.

so that ) = A then
the operator .A2 corre-

sponds to the observable A2. At the same time the law
of correspondence between operators and the functions
that represent these operators in the phase space (p,q)
is different, so that from the correspondence A
= {A(p,q)}~A(p,q) it does not follow that A2~~ A\p, q).
For example, if

then, according to Eq. (2.11),

Therefore, if

(E, - «| | // |

then

(3.4a)

(3.4b)

c) Restriction to an allowed class of quantum-
mechanical distributions for pure states

It follows from Eq. (2.20) that the function of two var-
iables W(p,q) can be uniquely expressed in terms of a
function of one variable ip(q). This fact decidedly re-
stricts the class of possible functions W(p,q). It is
useful to formulate this restriction in terms of the func-
tion W(p,q) itself. To do this we take the Fourier
transform of Eq. (2.20) with respect to p, and get as the
result

dp

Denoting q±(\K/2) =
form

we rewrite this equation in the

(3.5)

The integral in the left member of Eq. (3.5) must be
factorizable in the variables qltqz', it follows that the
Wigner function that describes a pure quantum state
necessarily satisfies the condition

In what follows it will be seen that this condition is very
important.

First let us show that the restriction (3.6) on the form
of the function W, together with the condition W*= W is
not only a necessary but also a sufficient condition for
W to describe a pure state. Indeed, regarding Eq. (3.6)
as an equation for p(ql,q2>, we find that its general so-
lution is of the form f { q l , q 2 ) = f ( q ^ ) < p ( q ^ . Then, from
the representation of p(qi,q2) in terms of Wand the con-
dition W* = W it follows that p*(qi, q2) = p(q2, qj. From
this we see tha.if*(q1)<p*(q2)=f(q2)<p(ql), and conse-
quently (p*(q2)/f(q2) = <p(ql)/f*(q1) = const = A = A*. Then
<f(q) = Af*(q), and if we introduce the notation F(q)
= A l f 2 f ( q ) we get for the function p(q1,q2), which satis-
fies the condition (3.6), the representation

Accordingly, if the function W satisfies the condition
(3.6), then it describes the pure state that corresponds
to the wave function F(q).

Writing Eq. (3.5a) in the variables q = (ql + q2)/2,\
= (ql-q2)/K, we have

The right member of this equation contains the Planck
constant K, and in the left member it can be contained
only in W. Consequently, if the function W satisfies the
condition (3.6), it necessarily contains Planck's con-
stant.3'

In Eq. (3,5a) let us set q2 = q0 and <?! = <?. Then

/'('/) -[' '*(7o)r' j «'(/ '- ^^rkj^PliV'to-'/o)/'!] '!/ '-

Setting qi = q2 = q0, we have

A value of q0 can always be chosen such that F*(qa) * 0.
Substituting this expression in the formula for F(q), we
get the relation

e x p [ i / > (? - ] dp \ W(p,

(3.7)
which allows us to reconstruct the wave function F(q),
up to a phase factor, from the Wigner function. It is
easy to verify that if the function W is given by Eq.
(2.20), and consequently satisfies the condition (3.6),
then substitution of this function in Eq. (3.7) leads to the
relation F(q) = il>(q)exp(ia), a* = a.

Accordingly, Eq. (3.6) is a necessary and sufficient
condition for the function W to describe a pure quantum
state, and if it is satisfied the wave function can be re-
constructed, up to a constant phase factor, from the
Wigner function.

(3.6)

3)The writer is very grateful to V. I. Ritus, who called atten-
tion in his critique of this article to the possibility of proving
in this manner that Planck's constant appears in the Wigner
function.
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If we apply the inversion formula (3.7) to a function W
which does not satisfy the condition (3.6), we also can
obtain some function F(q). However, if we substitute
this function into Eq. (2.20) instead of fy(q), the recon-
stricted function W(p,q) will not be the same as the or-
iginal one. This agreement or disagreement can be
used also as a necessary and sufficient criterion for
whether or not the state described by a function W is a
pure state.

Since the condition (3.6) indicates that it is possible
to reconstruct the wave function, quasidensities that
satisfy this condition automatically satisfy the uncer-
tainty relation. First let us illustrate this with an ex-
ample. Consider a joint Gaussian distribution for p and
q. The general form of this is:

f (P —P)3 2r (P — P)(q— 1)
Op

(3.8)

here q,p are the mean values, aQ, ap the root-mean-
square deviations, and r is the correlation coefficient
of the coordinate and momentum. It follows from Eq.
(3.6) that the parameters of the distribution must be
connected by the relation

aX(l-'"2)=ft2/4. (3.9)

Since 0«r2« 1, it follows from Eq. (3.8) that a, a.
Accordingly, an arbitrary Gaussian distribution cannot
correspond to a pure quantum-mechanical state. Only
if its parameters are connected by the relation (3.9) will
will it describe a pure state of a quantum-mechanical
system.

We shall make several remarks in connection with the
distribution (3.8),(3.9). First, as has been shown in
Ref. 28, a Gaussian distribution with its parameters re-
lated by Eq. (3.9) is the only positive Wigner distribu-
tion for a pure state (see Sec. 5); all other Wigner func-
tions that describe pure states necessarily take on neg-
ative values for some values of p, q. The Gaussian dis-
tribution (3.8), (3.9) corresponds to the correlated co-
herent states introduced in Ref. 29. For these states
the sign of equality is attained in the general uncertain-
ty relation which holds for a given value of the correla-
tion coefficient r:

o!
Aa|(l —r2)>-|-1<[^, 5]>|2. (3.10)

The uncertainty condition in this form was first estab-
lished in Refs. 30 and 31 for Hermitean operators in
pure states, and was extended in Ref. 29 to the case of
nonhermitian operators in mixed states.

We note that from the condition (3.9) one can also de-
rive relations for higher statistical moments. Since
for the Gaussian probability distribution the higher mo-
ments can be expressed in terms of the second-order
moments, we have the relation

For larger values of n there is roughly a linear in-
crease of the right member of this equation with n.

The relation (3.6) can be used to test whether an ar-
bitrarily chosen function W(p, q) can represent a pure

quantum state. For example, it is easily verified that
a function W(p,q) which is constant inside a rectangular
region in the (p, q) plane and zero outside this region
cannot describe a pure quantum state.

The formal proof that a quasidensity W(p,q) that sat-
isfies the restriction (3.6) agrees with the uncertainty
relation is very simple. Indeed, we have to show that

p, «) dp d?J > (3.11)

where

'= \ \ PW(P, q)dpttq, ? = qW (p, q)ApAq.

But it follows from Eq. (3.7) that from a function W(p,q)
that satisfies the condition (3.6) we can reconstruct ty(q)
up to a constant phase factor. Also it has already been
shown that the average values (!p\p\ip), {<li\p2\^}, (ip\q\$),
(ip I q21 $) are equal to the corresponding averages found
by using W, if this function is constructed from the giv-
en 4>(q). Since when the condition (3.6) is satisfied the
correspondence between $(q) and W(p,q) is reciprocal-
ly unique, the mean values in question are identical and
the relation (3.11) holds, since it has been proved for
mean values calculated as (4> \... \ 4>).

We point out a further property of the function W(p, q)
which holds for pure states. Starting from Eq. (2.20),
it is easy to show that

*

f ^ W2 (p, q) dp dq = (2^H)~1.

This property distinguishes the Wigner function of a
pure state from those of mixed states. In the general
case the relation is

W* (p, q) dp (2HS)- (3. 12)

with the sign of equality only for a pure state.

Before deriving the relation (3.12) we give a useful
formula which expresses the transition probability from
state |i/)j) to state |i/O in terms of the Wigner functions
Wj(p,q)=(il>l\W(p,q)\$i}

2x/i ( \ W, (p, q) n\ (p, q) dp dq = | <if; K f t > I 2- (3.13)
J J

This formula is easily proved by direct calculation of
the integral involved, if one uses the representation
(2.20) for the Wigner functions.

Let us consider mutually orthogonal states |^L}, |$2),
.. .,((>Pi\4>k)

= 6^) with the corresponding Wigner func-
tions Wi(p,q), and form from them the mixed state de-
scribed by the function

W(p, ?) = I! a,Wi (p, q).

Obviously the probabilities ai must satisfy the condi-
tions

0 < a , < l , 2 *i = 1- (3-14)

Consider the expression

\ \ W~ (p, q) dp dq = 2 2 "i** j j WtWkdp dq.

Since in our case (^j|^i)=6,ft, it follows from Eq. (3.13)
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that

W-(p,

But by Eq. (3.14) £ or f« 1, so that the relation (3.12)
holds. The equality Z/ a\= 1 is possible only in the case
when one of the coefficients ak is equal to unity and the
rest are equal to zero, i.e., in a pure state. Owing to
this Eq. (3.12) is sometimes used as a criterion for
testing whether a state is a pure state. Here, however,
it must be kept in mind that the equality sign in Eq.
(3.12) is a necessary, but by no means a sufficient,
condition for a pure state. It can be so used only if it
is already established that W is a linear combination of
Wigner functions of pure states with coefficients satis-
fying the conditions (3.14). But if we are considering
some actual Wigner function W, concerning which we
know only that it satisfies the normalization condition
and gives the equality sign in Eq. (3.12), we are not jus-
tified in assering that it is the Wigner function of some
pure state. Moreover, in general it can fail to be a
Wigner function at all, since it may lead to negative
mean values of operators known to be positive. As an
example, consider the function

(3.15))-1 (Kjg - 2g° - 1) exp (-t

where

£=---^7 [(//-. 2m) + (m<a-<i-i2)}.

It can be verified easily that this function satisfies the
normalization condition and makes Eq. (3.12) an equal-
ity. But the condition (3.6) is not satisfied for it, and
the function (3.15) is not the Wigner function of a pure
state. In this case it is easy to explain the apparent
contradiction. The point is that the function (3.15) can
be represented in the form

! (/>. ?) —-3- P. 9).

where Wt(p,q) are Wigner functions corresponding to
stationary states of the harmonic oscillator [see Eq.
(5.43)]. The coefficients are chosen here so thatZ/ a,,
=Z/ al= 1, and therefore the sign of equality holds in
Eq. (3.12). The contradiction is due to the fact that the
conditions (3.14) are violated and one of the "probabili-
ties" is negative.

When the conditions (3.14) are violated the Wigner
function of the mixed state is not positive definite, and
this can manifest itself in that when it is used to calcu-
late the mean, value of a clearly positive quantity the re-
sult may turn out negative. This contradiction, how-
ever, cannot appear for every positive operator. For
example, if one of the coefficients (say a3) is negative
but the positive operator A being averaged satisfies the
condition A \ i/)3) = 0, the mean value obtained can be non-
negative. Therefore for mixed states a check that the
Wigner function is positive definite (that the coefficients
ak are positive) must precede the use of the criterion
(3.12). Such a check, however, is a very complicated
problem.

At the same time, the criterion (3.6) is both a neces-
sary and a sufficient condition for the "purity" of a
state, and its use gives rise to no difficulties.

4. THE EQUATION OF EVOLUTION OF THE
QUASIPROBABILITY (THE QUANTUM LIOUVILLE
EQUATION) AND SOME OF ITS CONSEQUENCES

a) Derivation of the equation of evolution

Since the dynamics of a quantum system is deter-
mined by the Schrodinger equation

Mf0), (4. 1)

the Wigner function W(p, q) constructed from a solution
of Eq. (4.1) will also depend on the time. Let us find the
equation of evolution for this function.

It is simplest to start from the equation for dql,q2,t)

In accordance with Eq. (2.21), which connects p and W,
we set ?i>2 = 9:':(5/2). Then in the new variables we ob-
tain the equation

We now differentiate Eq. (2.21) with respect to t and
substitute Eq. (4.2):

(4.2)

We transform the first term, bringing d/dq outside the
integral sign and integrating by parts over £:

- -
m dq 2

ifi ifi aw
m h itq

We transform the second term, noting the formula

|» e.xp(ips/'0 = (-7- -jj; }" <»P (fp|//i),

from which it follows that for functions V analytic at the
point q

V (? ± -|-) Px]>(i;.;

Then we have

As the result we get the equation of evolution for the
function W, written in operator form:

This same equation can also be written in a different
form:
dW p dW , 2

— " -

(4.4b)
This is obtained if in the right member of Eq. (4.3) we
substitute the inversion of Eq. (2.21):

P ( ? — 1-> ?~r-f-) = j W(P'> 9)«xp( — ip'£/»)d/>'.

Equation (4.4) is the quantum generalization of the
classical Liouville equation (1.1). It was derived in
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Wigner's paper.1 We shall call it the quantum Liouville
equation.

We now discuss some properties of Eq. (4.4).

b) The classical limit

If we expand the potential V in series at the point q,
Eq. (4.4a) can be written in the form of the following
expansion:

Accordingly, when we neglect quantities of the order
K2 the quantum Liouville equation goes over into the
classical equation.

The transition to the classical limit can be examined
in more detail. To do so we represent Eq. (4.4a) in the
form

We introduce the notation

gral equation
W (p, q, t) = W® (p, q, t)

and write Eq. (4. 6) in the form of an inhomogeneous
classical Liouville equation,

(4.8)

The solution of Eq. (4.8) with the initial condition
W(p, q, 0) = W0(p, q) can be written in the form

p, g, t; PO, So, Q)W0(pi,

a G(f< 1, I; Po, 90, 'o)1(Po- 1o-

'" (4.9)
here G is the Green's function of the classical Liouville
equation, which is of the form

G (p, g, f, Pa, So, <o) = 6 (P — P ('; '., Po, «o)) 6 (9 - 9 ('; <o, Po, 9o)), (4.10)

where p, q are the solutions of the classical equations of
motion

with the initial conditions

P(V, '«, Po, 9o) = Po, 9 Co; 'o, Po, 9o) = 9o-

We now substitute Eq. (4.7) into the right member of
Eq. (4.9).

The result is the equation

W(p, q, t) = , q, t) + APoAq0G(p, q, t; Po, q0, ta]

Here we have introduced the notation

WW (p, q, t) = j J G (p, q, t; p,, 9o,0) W, (p0,9o) dp0d?0. (4.12)

If we use the Fourier transform of the function
W(pa, qa, t0) with respect to pa in the right member of
Eq. (4.11a) and perform the action of the operator 8/
8/>0) the equation can be put in the form of a pure inte-

Equation (4.11) was derived by Shirokov.1* We shall ex-
plain its meaning. The function Wm\p,q,t) defined by
Eq. (4.12) is formally the solution of the classical Liou-
ville equation corresponding to the initial distribution
Wa(p, q). Therefore, if we consider the solution of Eq.
(lib) in the form of an iterative series, its next terms
will bring in quantum corrections to the classical solu-
tion. It must be remembered, however, that in our
treatment of pure quantum-mechanical states by means
of the Shirokov equation the function W0(p0, q0) in Eq.
(4.12), and consequently also the function w'°\p,q,t)
will already contain the Planck constant [owing to the
restriction (3.6)]. Therefore it would be more correct
to call W (0)(/>, q, t) not the classical solution, but an in-
itial classical distribution developing according to the
laws of quantum mechanics.

c) Existence of extraneous solutions and their
removal

If the potential V(q) is of the form V0+ Vtq + V2q
2, then

1
—

Accordingly, for the oscillator problem the classical
and quantum Liouville equations are identical, and the
right side of Eq. (4.5) vanishes identically. However,
as is well known, the solution of the problem of the
quantum oscillator is decidedly different from the clas-
sical solution. Therefore in the Wigner representation
the difference between classical and quantum mechanics
does not reduce merely to a difference between the
quantum and classical Liouville equations. With this
example we shall demonstrate that Eq (4.4) is satisfied
not only by the solutions that correspond to quantum
mechanics, but also by some "extra" solutions. In-
deed, for the oscillator problem the quantum Liouville
equation is satisfied by any solution of the classical
equation.

Because the quantum Liouville equation is liner, the
"extra" solutions can describe the evolution of linear
combinations of Wigner functions corresponding to dif-
ferent pure states. Furthermore, if the coefficients of
this linear combination satisfy the conditions (3.14),
then we have to do with the evolution of a mixed state,
whereas if these conditions are not satisfied [as in the
example (3.15)], the "extra" solutions have no physical
meaning at all.

For quantum-mechanical problems the initial condi-
tion for Eq. (4.4) must satisfy the relation (3.6), i.e.,

] = 0. (4.13)

At the same time, the initial condition for the classical
Liouville equation can be an arbitrary positive function.
As has already been pointed out, owing to the condition
(4.12) Planck's constant is involved not only in the
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quantum Liouville equation, but also in the initial con-
dition for it. Therefore the quantum features of the
problem can also be due to specifically quantum initial
conditions. For example, in the case of the quantum
oscillator this is precisely the case.

We shall show that if the condition (4.13) is satisfied
for the initial distribution, then it will also be satisfied
at all later times. In fact, when this condition holds we
can reconstruct from W(f>,q,Q) the wave function of the
initial state. Since by Schrodinger's equation a pure in-
itial state remains pure throughout time, the Wigner
function also, calculated from the solution of the Schro-
dinger equation for t>0 will describe a pure state, and
consequently will satisfy the condition (3.6).

Accordingly, if the initial distribution of the quasi-
probability belongs to the class of admissible quantum
distributions, it will remain admissible over the course
of time.

d) Equivalence of the Wigner and Schroedinger
representations of quantum mechanics

We have so far been studying the Wigner representa-
tion of quantum mechanics by starting from the Schro-
dinger representation. We shall now show that if we
take as foundation the Wigner representation, then from
it we can obtain the Schrodinger representation. It is
clear that, along with the quantum Liouville equation,
we must include in the formulation of the Wigner rep-
resentation the condition (4.13), since otherwise, as we
have already seen, this equation can be satisfied by so-
lutions that have no bearing on quantum mechanics, and
are even devoid of physical meaning.

Accordingly, let the function W(f>, q,t) satisfy Eq.
(4.4), and let the initial distribution W (p,q, 0) = WQ(p, q)
satisfy the condition (4.13). We shall show that in this
case the wave function reconstructed from W(p,q,t) by
means of Eq. (3.7) will satisfy the Schrodinger equation
and the required initial condition for it. Thus we shall
show that there is a reciprocally unique correspon-
dence between the two representations.

As was shown earlier, if the condition (4.13) is satis-
fied at the initial time, then it is satisfied at all later
times. But in this case, as has been shown, the Wigner
function can be represented in the form

Substituting Eq. (4.14) into Eq. (4.4a), after obvious
transformations we can write the latter equation in the
form

After changing to the variables q±(£,/2) = q1 2, noting
(92/dq?) - (d2/dq2,) we obtain

Dividing this equation by F*(ql)F(q2)
form

we write it in the

'ar1^ ^T'' ~v ";i)/" ''''I5""w=*''"'
here <b(t) is an arbitrary function of the time, indepen-
dent of the coordinates.

Accordingly, the equation for F(q) can be written in
the form

<fi |f + |̂  ~[V'( ' /) + <t> (01 *'(<7. 0-0.

If we introduce the function

(4.15a)

--M]

which differs from F only by a phase factor independent
of the coordinates, then it satisfies the Schrodinger
equation

ift-H-= — "i" IP~ + ̂ " toH1- (4.15b)

It is also obvious that for f = 0 the wave function satis-
fies an initial condition which corresponds to the initial
distribution of the quasiprobability.

Accordingly, we have shown that from a quantum
Liouville equation with an initial condition satisfying the
restriction (4.13) on the allowable form of pure quantum
distributions, there follows the Schrodinger equation.
In particular, if the initial distribution satisfies, be-
sides the condition (4.13), the condition for it to be a
stationary distribution

then in Eq. (4.15a) the term iKdF/dt will be absent, and
the function *= -E will not depend on the time. In this
case Eq. (4.15a) takes on the form of the eigenvalue
equation for the energy

_ J!L— -?^.-f- V (q)F = EF. (4.15c)

Another way to describe stationary states, based on
subjecting the function W to a second equation of the
same type as the Liouville equation, is described in
Ref. 15. In that paper, as also in Ref. 34, there is also
an investigation of the eigenfunctions of the quantum
Liouville equation.

We shall illustrate the role of the condition (4.13) with
the example of the oscillator. If V(q) = mu>2qz/2, the so-
lution of Eq. (4.16) is of the form

Integrating the second term by parts, and using the fact
that the total integral is equal to zero for arbitrary p,
we equate its integrand to zero:

dq d\

i.e., an arbitrary function of the Hamiltonian is a sta-
tionary solution of the Liouville equation. But an arbi-
trary solution of this form does not satisfy the condi-
tion (4.13), which selects the admissible quantum dis-
tributions. Let us suppose for simplicity that f(H) is of
the form
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W,(p, (4.17) (5.1)

•with an unknown coefficient a. Substituting Eq. (4.17)
into Eq. (4.13) and calculating the integral, we easily
verify that it can be factored with respect to the vari-
ables q!,q2 only if

where

a = 2/fico, (4.18)

i.e., the stationary probability distribution for the os-
cillator can be of the form

... . . 1 r 2 / p2 . mu2g2 \ ~l t A i Q\

The mean value of the oscillator energy in this state is
given by

However, in order to find (E2) we must average over
the distribution W0(p, q) not the function H\p, q), but the
function H\p , q) -(flu/ 2)z , which, according to Eq.
(3.4b), corresponds to the operator H2 in the Wigner
representation. It is not hard to verify that

* i mmVi2 / * w ^ ]+~ — I -(—> J

(4.20)
We here encounter an important peculiarity of the

Wigner representation. On one hand, we see that (B")
= (Ku/2)n for n= 1, 2,. . . If we were dealing with an or-
dinary probability density, in this case it would have to
be

WCI(P, «) = -£. 8 ( H ( p , *)-%-),

i.e., it would have to be concentrated on lines of equal
energy. We see, however, that the quasiprobability
density corresponding to a fixed energy value E=Ku/2
is nevertheless "smeared out" over the entire phase
plane and is different from zero where H(p,q)#K<j)/2.

A second important circumstance to which we wish to
call attention is that we have obtained the quantization
condition on the oscillator energy not from the equation
of motion for W(p,q) (the quantum Liouville equation),
but from the supplementary condition which distin-
guishes those Wigner distributions that correspond to
pure quantum states. From this example it can be seen
quite clearly that in the Wigner representation Planck's
constant can enter the theory not only from the equation
of evolution (which is a consequence of the Schrodinger
equation), but also from the initial condition, which in
the quantum problem has to satisfy the supplementary
equation (4.13), which assures, in particular, that the
uncertainty relation is satisfied in the initial state.

5. CONDITIONS FOR NONNEGATIVITY OF THE
QUASIPROBABILITY AND THE SMOOTHED
QUASIPROBABILITY

We have already mentioned that the Wigner quasiprob-
ability W(p, q) does not satisfy the condition that it be
positive definite. Here we shall examine this question
in more detail. For this purpose we find the eigenval-
ues and eigenvectors of the operator W(p, q). Using Eq.
(2.19), we write it in the form

Let us consider the operator J2(f>, q):

Since

- T>

we have

Accordingly, the square of the operator J is equal to f:

>(p, ?) = l- (5.3)

Consequently, the eigenvalues of the operator J can be
±1, and the eigenvalues of the operator W, connected
with J by Eq. (5.1) are i^/?)'1.

Let us consider the action of J on some vector \4>):

i ?P(,> = /(p, 9) ! t>- (5.4)

Multiplying this equation on the left by (q' | and denoting
^'l^«) = ^«(<31')» we write the transformation (5.4) in the
coordinate representation:

As we have already explained, the eigenvalues of the
operator J are ±1. Therefore, in order to find the
eigenf unctions of this operator we must find the solu-
tions of the equation ^>^(q') = ±$(q') , or, if we use the
expression we have obtained for ^g,

(5.5)

Let us introduce instead of >l>(q') a new unknown function
a(q') in accordance with the equation

i|>(<!') = «P ( iM' / f t ) a (9 ' — «). a(«') = «p[— ̂ h' + rtjifto'-j-?)- (5.6)

Then, expressing ip in Eq. (5.5) in terms of a, we ob-
tain the equation

a ( 9 ' - « ) = ± a («- 9'). (5.7)

A solution of Eq. (5.7) corresponding to the eigenvalue
+ 1 of the operator J is an arbitrary even function a(q'),
and to the eigenvalue—1 corresponds an arbitrary odd
function a(q'). Accordingly, the operator 3 can be
called25 a parity operator.4' Its properties are de-
scribed in more detail in Refs. 25, 32, and 33.

An arbitrary even (odd) function a(q') can be written
in the form

^(x'y')dx. (5.8)
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Here the functions $* can depend on p, q as param-
eters, since the operator J ( p , q ) depends on them. Sub-
stituting the resulting values «*(<?') in Eq. (5.6), we
find that

Then for the eigenvectors \p,q, ±) we easily obtain

= <!> M*; />, 9) l (5.9)

We see that an arbitrary eigenvector of the operator
J can be expanded in terms of the vectors

IP, 'I', ±, *>=Y^ f \q'}exp(ipq'/hS(K(q'-g))d,,'. (5.10a)

The normalizing factor it'1'2 is here chosen so that for
•*.,-*' ^Q the normalization conditions

, <?; ±, x| />, 17; +• x ' )= -0

(5.11)
are satisfied. (Here we take simultaneously either the
two upper or the two lower signs.) Using the formula

|p') = (2nfi)-"2 j |g')exp(i/>,7'//0 (!<?',

which related the basis vectors of the coordinate and
momentum representations, we can perform the inte-
gration in Eq. (5.10a), writing the sine and cosine as
combinations of exponentials. We then arrive at the
formulas

2 [exp(- |p —

(- ixg) | p - l fix) — cxp (ixg) |p— fix)].

Using these formulas we can easily verify that the
eigenf unctions so found form a complete system:

||p, q; +, x)(p, ?; +, x| + |p, ?; — , x) (p, q; — , x|] dx

'<p ' | = i. (5.12)

According to Eq. (5.1) we have the relations

W (p, q) | p, q; ±, v.) = ± (nfi)-1 I P, g; ±, x ) . (5.13)

An arbitrary state vector | $) can be expanded in terms
of the eigenvectors of the operator W. Using Eq. (5.12),
we get the expansions

)-- \ \P, q\ ±, x > d x < p , q: ±,

(5.14)

| ^t(/>, q}) and | tf-(p, <?)) can be interpreted as the projec-
tions of the state vector onto subspaces of states making
positive and negative contributions to the quasiprobabil-
ity at the point (p, q). It must be kept in mind that these
expansions are different for different values of p, q. It
follows from Eq. (5.11) that (#J$-> = 0, and from both
(5.13) and (5.14) that

W(p. q) | l | -±> = ± (5.15)

Using the expansion (5.14), Eq. (5.15), and the ortho-
gonality relation (j/ij$_) = 0, we can write the Wigner

function W= ty \ W\ $ in the form32

W(p, q) = (nW-Ifd|-+ | t+) - it- (5.16)

Accordingly, W(p,q) can be represented as the differ-
ence of two nonnegative quantities, and the sign of W
depends on their ratio.

Let us find the quantities
tion

If we use the nota-

if (p, ?; ±, x) = (p, q; ±, x [ i f ) ,

then on the basis of Eq. (5.14) we have

and from Eq. (5.10a)

(5.17)

(5.18)

Substituting Eq. (5.18) in Eq. (5.17) and performing the
integration over x, we easily obtain the formulas

(p, ?) |r|-+ (p, ? )> = 2-' [1 +
(P, ?) it fp, •?)> - 2-1 [i - .-

(5.19a)
(5.19b)

Since (4>±\'l>±/'-
striction32

I W(p, q)

0, from these equations follows the re-

(5.20)

The bound on | W\ can be interpreted as another mani-
festation of the uncertainty relation, applying here not
to the second moments of the function W, but to its form
as a whole. It follows from Eq. (5.19) that since W(p,q)
— 0 for [p | — °° , \q | — °°, then here too

Accordingly, even if the Wigner function is positive, the
contribution to it from states with negative probability
is always different from zero.

It is easy to ascertain when does the Wigner function
takes on values ±(vK)~l. To do so we resolve the wave
function into the sum of even and odd parts,

Then, using Eq. (2.20), we obtain

XhW (0, 0) = f lj>« (q) If (-9) dg = ( [| ^even(q) I2 - I f oddfe) I'l d9-
J ^

Forming the sum and difference of this equation and the
normalization integral

1 = H*e v e n(«)l2+ I *odd (9) 1*1 <to,

we have

1 + itSW (0, 0) = 2 f | ifeven|» d,, l - n f i W ( 0 , 0) = 2 f
J J

d l 2d5 . (5.21)

From this it follows that if ^WWlMW = 0, then W(0, 0)
= T(?*)"1, and conversely, of TV(0,0) = ±(7*)'1, then
*.yen,odd(«r) = 0 almost everywhere.

Now, following Ref. 28, we shall show that a neces-
sary and sufficient condition for the Wigner function of
a pure state to be nonnegative is that it be described by
a wave function of the form

) = exp - - Rea>0 . (5.22)
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The proof that the condition is sufficient is trivial: Cal-
culating from Eq. (2.20) the function Wa<b(p,q) corre-
sponding to the state tyttb(q) and writing Rea = a1,Ima
= a2, Re6 = 61(Im6 = 62, we easily find that Wa<t>(p,q) is
the joint Gaussian distribution of coordinate and mo-
mentum of the form (3.8) with parameters

? = — ̂ -, P=—(ajfti—o,68).
(5.23)

which, of course, satisfy Eq. (3.9). The resulting func-
tion satisfies Watb>0 for arbitrary a,b,p,q.

We shall now prove that the condition (5.22) is neces-
sary. Suppose the function W(p, q) corresponding to
some normalized wave function if>(q) satisfies the condi-
tion W(p,q) > 0. Along with this function we consider
the Wigner function that corresponds to a wave function
of the form (5.22), in which « 2 =0 and b = z is an arbi-
trary complex number. This function is of the form
(3.8) and everywhere strictly positive. Let us now con-
sider the integral of the product of these functions and
use Eq. (3.19):

2nh j j W(e, ?)»'„,, (P, < | )d />d?= |< i |> | 1>0lZ)|2. (5.24)

Since the function of Gaussian form Wa[,>0 (strictly
positive) and W(p,q) * 0, for arbitrary z the integrand
here is nonnegative and there can always be found a re-
gion (perhaps multiply connected) in which it is strictly
positive (since W cannot be identically zero owing to the
normalization condition). Therefore the integral on the
left side of Eq. (5.24) is strictly positive and does not
vanish for any value of the complex variable z. It fol-
lows from this that the function

is an entire analytic function of the complex variable z,
with no zeros. Let us estimate |.F(z)|2, applying the
Schwartz inequality:

If (z)|s< f | i p ( S ) l 2 d ? f exp [ —a,g2—(z + z*)9ld«=i /_ iL B XI) [152l!"|
J •> V a, -p 1. "l J

From this inequality it follows that the order of in-
crease5' of the function F(z) does not exceed 2. Ac-
cordingly, F ( z ) is an entire analytic function having no
zeros and with order of increase not larger than 2.
Then, according to a well known theorem of Hadamard
(cf. e.g., Ref. 35) F ( z ) is of the form

f (z) = exp (az2 + PZ -f 7).

Substituting this expression in Eq. (5.25) and setting z
= i"*-, we have

\ = exp(-ax2+ipv~f) .

Accordingly, the Fourier transform of the obviously in-
tegrable function $*(#) exp(-a!^2/2) is a function of
Gaussian form. It follows that the function
ip*(q) exp(-ai92/2) is itself Gaussian, and consequently
the function ifi(q) itself is of the form (5.22).

5'The order of increase of a function F ( z ) is defined as the
limit p = lim,,JlnlnAf(|z l)/ln |*|], where M ( \ z \ )

We note that for a* = a (i.e., a2=0) the wave function
(5.22) describes a coherent state \z), which is an
eigenfunction of the annihilation operator a = q/2l + (ill
n)p, where I = (2a1)'

1/z- In the general case, when a2*0
the state described by the wave function (5.22) is not a
coherent one. However, as is shown in Ref. 29, one
can introduce creation and annihilation operators

-9 + 1 cos tp * KPK-5-. (5-26)

satisfying the usual condition [a,a*] = 1, but such that
the eigenfunctions of the operator a (called by the writ-
ers correlated coherent states)

a | z, q > ) = z | z, < p > (5.27)

are described by wave functions of the general form
(5.22) with 02*0. The Wigner function constructed by
means of correlated coherent states is Gaussian and has
the parameters

o2 = /2/cosa f, Op = fi'2/ sin <p,

(5.28)

Furthermore the coordinate and momentum are corre-
lated (with correlation coefficient r), and the sign of
equality is attained in the uncertainty relation (3.10).

In the general case, if the initial state of a quantum
system is described by a wave function (5.22), so that
W(p, q,t=Q)>0, then in the course of time the junction
W(p,q,t) does not remain Gaussian, and consequently
begins to take on negative values. An exception is the
case when the Hamiltonian of the system is quadratic.
In this case the property of nonnegativity of the Wigner
function is preserved in time.33

We shall now show that with some coarsening of the
description one can always achieve positivity of the
quasiprobability. For this purpose we must consider
not the density W(p, q), but the "probability" that the
phase point will be in a finite region &p&q of the phase
plane; i.e., we must consider the quantity

> 9)= (5.29a)

where the integration extends over the region (p,q)
e A/>Atf- For simplicity we consider instead of the re-
gion ApA<? with a sharp boundary a region with a some-
what "smeared" boundary, and introduce the quantity

l. (5.29b)

(5.30)

Following Ref. 36, we substitute in Eq. (5.30) the rep-
resentation (2.20) of the Wigner function. Doing the in-
tegration over p, we obtain

The equivalent cell area on the phase plane is

2*" 2AJ

If we introduce here new variables of integration q + q'
= <j'li2, after simple transformations we obtain the
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result

exp ( -

where we have introduced the following notations:

Expanding exp(yq'1q'2) in Taylor series, we obtain

(5.31)

with the notation

It can be seen from Eq. (5.31) that for y & 0 all the
terms of the series are nonnegative, and consequently

single term with « = 0, and this leads to the same for-
mula (5.33) as obtained by another method.

Reference 16 considers smoothed Wigner functions
and analyzes several examples, including the case of
the hydrogen atom. Reference 38 gives quite a number
of weight functions G(p,q) for which

G(p, q) W(p,

(it must be noted that here no displacement of the argu-
ments p',q' is made; that is the positive nature of the
smoothed function is established only for the point p = Q,
<7=0).

After the averaging the restriction (5.20) on W(p,q)
takes the following form [we use Eqs. (5.29b), (5.30),
and (5.32)]:

(5.32)

The simplest case is y = 0, i.e., A,,A, = #/2. Then in Eq.
(5.31) there is left only the term with « = 0, and we ob-
tain (writing P0 for JPAW,|.,0)

(5.33)

The same result can be derived by examining the
trace of the operator

i.e., considering the eigenvalue problem

Pf.f^t.p, I)\P- <fi = if\p< «)• (5.35)

Then, if we look for the eigenvectors in the form of an
expansion in terms of \q'), the equation for (q' \p, q} is
reduced by the substitution

to the integral equation

Here we have used the notation

APA,-(»/2) l/'aT/i
"" ' ^ ' '

(5.36)

(5.37)

Using the well known formula for the Hermite polynom-
ials37

oo

f tfn(
J

( — (i— !/
V /l-v- /

we obtain the solution of Eq. (5.36) in the form

<Dn (q') = Hn(<l' 1/AprtA, ), <?„=<?(,»". Q, = A^V^))'

with w = 0,1,2,.., Using Eq. (5.37), we obtain for the
eigenvalues of the operator P^a,:

-_r
ApA,

.=0 ,1 ,2 , (5.38)

For as 0 all the eigenvalues are nonnegative. From
Eq. (5.37) we see that the condition a^ 0 is identical
with Eq. (5.32). For a=0 there is left in the expansion
of the operator PAMe in terms of its eigenvectors the

; Jf Jj oxp [ - (,=/2A|) - (pf/2Ap)] (nft)-' dp,dg, = 1,

that is,

(5.39)

Consequently, it is permissible for all the "probabil-
ity" to be concentrated in one cell of phase space. We
note that the normalized quantity P0(p,q)/iiK can be
treated as a smoothed density of quasiprobability:

W (p,q) = l(2n)W»AJ-' j j f (q') exp [ - IS*-- ^f-] W f- (5.40)

It follows from Eq. (5.39) that the smoothed density W
is restricted by the condition W«(jr^)"1. Moreover,
since W& 0, we have

0< W(p, gX(n^)-1. (5.41)

It must be pointed out that despite the fact that the av-
eraged quasidensity W cannot assume negative values,
it can still not be regarded as an ordinary probability
density, which could lead to genuine quantum averages.
This is due, first, to the fact that exact quantum aver-
ages can be obtained only by using the quasidensity W,
which can also take on negative values. Calculations
with the smoothed density W in general lead to errors.
Second, the rules of correspondence remain in force
between operators and the functions that represent them
in phase space, which lead to relations contradicting
the usual rules of probability for the calculations of
higher moments [cf. Eq. (3.3) and text following it].
Therefore, even after averaging, the positive Wigner
quasidensity still has properties very different from
those of the usual probability.

As an example we consider the Wigner functions for
the oscillator. The wave function for the nth stationary
state is

(5.42)

The corresponding quasiprobability density can be cal-
culated exactly and is given by

(5.43)
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here Ln(x) are the Laguerre polynomials (L0= 1,1^ = 1
-x,L2 = l -2x + (x2/2),. ..). For «=0 we have a joint
Gaussian distribution, in which coordinate and momen-
tum are statistically independent. It is identical with
the distribution (4.19), which we derived earlier from
other considerations. For n= 1 we have

Here we encounter a case of negative quasiprobability
density, since W1(p,q)<0 for

With increasing level number n the first zeros of the
Laguerre polynomial decrease in absolute value, as a
result of which the regions where Wn(p, q)<0 become
narrower and narrower elliptical strips in the (p, g)
plane.

Let us now examine the smoothed quasiprobability
(5.40). The calculation with this formula leads to the
expression

(5.44)
(this relatively simple expression for Wn is obtained
only in the case when the averaging parameter A| in
Eq. (5.40) is taken equal to K/2mu; in all other cases
the averaged quasidensity is not a function of the oscil-
lator energy only). The maximum of the function Wn is
located at (p2/2m) + (m w2q2/2) = nKw. For large n this
value of the argument is in the region where the aver-
aged Wigner function varies most smoothly.

If we calculate the mean values of various powers of
the energy in the nth state, using the unaveraged Wig-
ner function and converting the various powers of the
energy operator to the Weyl ordered form, then we
naturally obtain the exact values ((£„)"> = [(n + j)K u>]".

If, on the other hand, we use the smoothed quasiden-
sity for the calculation, the mean values of the energy
found with it are £B=(n + l)^w; i.e., they exceed the
true means by Ku/2. Meanwhile the spacing of the en-
ergy levels is correct. Let us also find the quantity Wn.
If we use the formula

\ P
• ?) lTT-

/ Tito \ 2 i

T)

we obtain Ej; = (7zw)2(w2 + 3n + 7/4). For the mean square
"fluctuation" of the energy we then find

and for the fractional "fluctuation"

For n.— °° the fractional "fluctuation" approaches zero,
so that the smoothed probability distribution for the
quantity (E/n) in the nth stationary state approaches a 6
function for n — °°.

Of course, the true values are (E2)- <f^2=0, so that
the difference of this quantity from zero characterizes
only the error incurred by replacing Wn with Wn.

In this example it can be seen how the transition to
the classical limit occurs in the Wigner representation.
For w-°° the quasidensity Wn(p,q) itself does not ap-
proach the limit Q[H(p,q)-(n + j)Ku], but becomes a
more and more rapidly oscillating function.^ At the
same time the smoothed quasiprobability Wn strongly
distorts the results of the calculations for small n, but
becomes asymptotically exact (if we neglect the shift of
all levels by Kw/2) for n — °°.

6. BASIC CONCLUSIONS

The Wigner representation of quantum mechanics is
equivalent to the traditional interpretation, but for its
proper use requires that certain specific rules be fol-
lowed and attention paid to a number of properties that
distinguish the Wigner quasidensity from a true prob-
ability density.

Instead of the Schrodinger equation we have in the
Wigner representation the quantum Liouville equation
for Wigner's joint quasiprobability density of coordinate
and momentum. Solutions of this equation can also fail
to correspond to quantum-mechanical problems unless
the initial conditions for the equation are subjected to a
supplementary restriction, which selects the admissi-
ble class of quantum conditions that describe pure
states. When this condition is satisfied one can recon-
struct the wave function from the Wigner function. This
supplementary condition contains Planck's constant and,
besides the uncertainty relation, brings with it very
severe limitations of the possible form of the Wigner
quasidensity; by no means every distribution that
agrees with the uncertainty relation can correspond to
some quantum problem. If the Wigner quasidensity
does not depend on the time and satisfies the indicated
restriction, it leads to an orginary stationary state in
quantum mechanics. For the quantum oscillator the
quantum Liouville equation is identical with the classi-
cal one and the condition for quantization of the ener-
gies of stationary states arises precisely from the re-
striction of the admissible form of pure-state quantum
distributions.

The Wigner quasidensity W(p,q) itself, together with
the rules by which the calculation of average values is
conducted, has a number of specific properties which
distinguish it from a true probability density. First of
all, it can take both positive and also negative values.
Its absolute value is limited by the condition | W(p,q)\
^ (Trfz)"1. The second essential difference between the
quasiprobability and ordinary probability is due to the
fact that the integrals of various powers of a function
A(p,q), multiplied by W(p, q) are not the quantum mean
values of the corresponding powers of the operator A;
these last must be calculated by more complicated for-
mulas. From this follows, for example, the peculiar
property of the quasidensity that for stationary states
with fixed energies it is not concentrated on the lines of
equal energy in the (p,q) plane. Accordingly, the
"blurring" of the quasidensity does not indicate a cor-
responding spread of "random variables" described by
this density, since the rules for calculating mean val-
ues with W are not the same as the rules of probability
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when one deals with statistical moments of higher de-
grees.

When smoothed with a Gaussian weight, the quasiden-
sity (its smoothed value W) becomes nonnegative, pro-
vided the equivalent averaging area is large enough,

* VK. Also it then satisfies the condition 0« w
However, the smoothing of the density leads

to errors in the calculations of mean values, as com-
pared with exact quantum-mechanical means.

The smoothed density W takes on more importance in
the transition to the classical limit. As can be seen
from the example of the quantum oscillator, for high
excited states the Wigner quasidensity Wn becomes a
remarkable finely etched function, taking on positive
and negative values in closely spaced regions in the
(p,q) plane. At the same time, as n increases, the
smoothed quasidensity Wn becomes concentrated around
the line H(p, q) = En and takes on a 5-like form so that
the fractional error in the calculation of mean values by
its use approaches zero. Accordingly, in the passage
to the classical limit it is W, not W, that becomes
more important.

Drawing a final conclusion, we can say that, if cor-
rectly used, the Wigner representation can be a conven-
ient instrument in quite a number of quantum-mechani-
cal problems. By means of the Wigner function one can
calculate mean values of any physical quantities that
may be of interest. In itself, however, the Wigner
function is without physical meaning, and the intuitive
value of the Wigner representation is in a large degree
illusory. In any case, a too literal treatment of the
quasiprobability as a true probability can lead to incor-
rect conclusions even when the quasiprobability is in-
deed nonnegative.

The writer expresses his sincere gratitude to V. V.
Dodonov, D. A. Kirzhnits, and V. I. Man'ko, whose
discussions have been very helpful to him in writing the
final version of this article.
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