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The picture is presented as developed in the early
Jforties of nuclear fission, both neutron induced and
Spontaneous, and of the fission products decay and
of neutronemissionaccompanying fission. The paper
was written when the authors were working in the
Institute of Chemical Physics in close contact with
I. V. Kurchatov, N. N. Semenov and 1. I. Gurevich.

FROM THE EDITORIAL BOARD OF USP. FIZ. NAUK

From the moment of the discovery of the fission of
uranium nuclei by Hahn and Strassmann (January 1939),
Igor’ Vasil’evich Kurchatov participated very actively in
projects along this new direction of research having un-
derstood its tremendous significance and, possibly,
having a presentiment of the role which, he was fated to
play in the solution in our country of the “uranium prob-
lem”. He immediately initiated relevant research in his
laboratory in the Leningrad Physicotechnical Institute
and followed with unflagging attention the theoretical
work on the physics of fission being carried out in Len-
ingrad in the Physicotechnical Institute and in the Insti-
tute of Chemical Physics.

Therefore in connection with the eightieth anniversary
of the birth of I. V. Kurchatov, the editorial board of
Usp. Fiz. Nauk considers it appropriate to publish the
article by Ya. B. Zel’dovich and Yu. B. Khariton which
was written in Leningrad in 1941 and is closely related
to the scientific interests of I. V. Kurchatov.

We note that the first part of this article was pub-
lished in 1941 in the September issue of Usp. Fiz. Nauk,
i.e., already after the beginning of the war (this issue
was sent to press on July 15, 1941). It turned out that
the next issue of “Uspekhi” appeared only after a large
gap—in 1944, when the situation with the uranium prob-
lem had undergone a change and the corresponding pub-
lications were for obvious reasons suspended in the
whole world.

The article by Ya. B, Zel’dovich and Yu. B. Khariton
which is being published now is of definite historical in-
terest. It is published using the typewritten text pre-
pared for typesetting and retaining the markings of the
technical editor of the Journal and the approval of the
then editor-in-chief—E. V. Shpol’skii.

The editorial board takes this opportunity to congrat-
ulate one of the authors—Yu. B. Khariton on the award
to him of the highest distinction of the Academy of Sci-
ences of the USSR—the Lomonosov medal for 1983.

PART |

In our earlier article' we have presented in detail the
history of the discovery of a new type of radioactive
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processes—the fission of a uranium nucleus irradiated
by neutrons into two fragments of approximately equal
mass. We have also described there the principal ex-
perimental fact established at the present time as a re-
sult of research carried out in a number of laboratories
and published in a number of articles which followed

rapidly one after another throughout 1939 and the first
half of 1940.

In the present article we shall treat in greater detail
the problem of the theoretical description of this com-
pletely new type of radioactive processes. The princi-
pal articles in this field are by Niels Bohr and his col~
laborator Wheeler.? -Simultaneously and independently
the theory has been developed by Ya. I. Frenkel’ (Physi-
cotechnical Institute, Leningrad).?

In our presentation we shall follow the more detailed
paper of Bohr except for those parts of it which at the
present time are subject to doubt,

At the present time all authors are in agreement with
the qualitative treatment of the new type of phenomenon
which was advanced by L. Meitner and Frisch.* Devel-
oping the general scheme of nuclear reactions proposed
by Bohr,® in which the nucleus is compared to a liquid
drop, Meitner and Frisch note that for a sufficiently
large nucleus surface tension can no longer oppose the
action of the forces of electrostatic repulsion, With a
constant ratio of the electric charge to mass (as is ap-
proximately the case in the periodic system of the ele-
ments) the long-range forces of Coulomb repulsion in-
crease more rapidly as the nuclear mass and charge
increase simultaneously than the short-range forces of
“surface tension” of the nuclear liquid. Therefore for
a large nucleus one can expect a process analogous to
the fission of a large charged drop into smaller drop-
lets.

Below we shall start with the problem of the energy
balance in fission; later in the second section we shall
discuss the problem of the critical size of a nucleus and
the current state of the problem of the critical shape
through which the nuclei pass on fission; in Part II of
this article we shall discuss in greater detail the prob-
lems of the kinetics of nuclear fission and the probabil-
ity of other processes competing with fission, i.e.,
problems determining the probability of nuclear fission
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upon neutron capture; we shall there also deal with the
state of the fission fragments and with the theory of the
processes of the emission of neutrons that follow fis-
sion; and, finally, with the problem of nuclear fission
under the action of various particles other than neu-
trons.

§1. ENERGY BALANCE IN THE REACTION OF
NUCLEAR FISSION

We must first of all investigate the problem of the
change in the energy of the nucleus when it undergoes
fission into two parts approximately equal in charge
and mass. The principal difficulty in the case of inter-
est to us of fission of heavy nuclei is the fact that the
ratio of mass to charge in the periodic system is not
quite constant. It increases slowly as the charge and
mass increase. A direct examination of the Mendeleev
table, the atomic weights and the atomic numbers of the
elements convinces us that in fission, for example, of
the uranium nucleus into two equal parts retaining the
total mass and the total charge we obtain two palladium
nuclei with a mass of approximately 119-120 units of
atomic weight, while the atomic weight of ordinary pal-
ladium is considerably smaller and amounts to only
106.7. Thus, as a result of fission of a heavy nucleus
we obtain two nuclei with an unusual charge to mass ra-
tio. On the one hand this unusual charge to mass ratio
is the reason for the instability of such a fragment nu-
cleus leading to a series of further radioactive transfor-
mations of the fragments. It is the investigation of
these radioactive transformations that led to the dis-
covery of the fission processes. On the other hand the
unusual charge to mass ratio in fragment nuclei im-
pedes us from directly utilizing the fairly extensive in-
formation on mass defects accumulated by the present
time, i.e., information concerning internal energies and
stability of ordinary isotopes of the elements.

It will now be necessary for us to find a method for
estimating the energy of nuclei with a very unusual
charge to mass ratio.

We recall that relativity theory establishes a relation-
ship between the mass and energy of a body which for
our purposes can be written in the form E - E,=(M
—M,)c?, where E and M are the energy and mass in one
state, and E; and M, are the same quantities in the oth-
er state, and ¢ is the velocity of light. One unit of
atomic weight is equal to the energy of (3- 10'°)2/6- 102
=1.5 X10™ ergs per atom =(3-10%2/96500- 10’
=933 000000 eV =933 MeV, the electron mass is equal
to the energy of 0.51 MeV. In future we shall refer to
mass defects expressed in millions of electron-volts.

According to present concepts a nucleus consists of
neutrons and protons. We shall express the nuclear
charge in numbers of elementary charges; Z coincides
with the ordinal number of the element in Mendeleev’s
table. Z is equal to the number of protons in the nucle-
us and is an integer. The mass defects of elements
with respect to oxygen are less than 500 MeV, there-
fore rounding off the atomic weights of the isotopes of
the elements to the integer A we shall directly obtain
the number of heavy particles of which the nucleus con-
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sists, i.e., the sum of the number of protons and the
number of neutrons.

We also note that when we speak concisely of the
mass defect of a nucleus, we in fact mean the mass de-
fect of the neutral atom, i.e., of a nucleus +Z elec~
trons. If we compare the mass defects of two nuclei of
the same atomic weight (isobars), but with a charge
differing by unity, then we obtain the energy of the
process of transformation of one atom into the other
one. Physically the transition from Z to Z +1 is the
emission of an electron or 8-activity; the inverse
process is the capture by the nucleus of an electron
from a shell (K-electrons nearest to the nucleus are
captured). The existence of different nuclei of a given
atomic weight (isobars) in nature is associated with the
stability of a nucleus with respect to spontaneous pro-
cesses of 8-transformation and electron capture which
do not require external irradiation by some sort of
particles, do not require overcoming energy barriers
and therefore proceed relatively easily. If the ordinary
stable elements correspond for a given atomic weight
to a minimum of the total energy of the nucleus, then
for elements in which for a given atomic weight the nu-
clear charge deviates from this value, we can expect
that the energy will be expressed by the following for-
mula:

M(Z, A)—M(Z,, A)

=5 By(Z—Z,). a®

In this formula Z is the charge of the nucleus under
consideration. Z, is the charge mentioned above at
which the energy of the nucleus is minimal for a given
A. Generally speaking, Z, need not be an integer. The
isobars occurring naturally are grouped around the val-
ue of Z,. The values of Z, are given in Fig. 1 by a sol-
id line,

The quantity B,, which characterizes the sharpness
of the maximum, i.e., which characterizes the change
in energy on deviation from the charge which minimizes
the energy, cannot be obtained from the existing exper-
imental material on mass defects and energy of stable
nuclei, since in stable nuclei the deviations of the value
of Z from Z, are too small. However, we can approach
the calculation of the value of B, theoretically with the
aid of the following considerations.

We shall attempt to establish what determines the us-
ual ratio between the charge and the mass of a nucleus,
i.e., the ratio between the number of neutrons and the
number of protons in a nucleus corresponding to mini-
mal energy. In any theory of nuclear forces acting be-
tween neutrons and protons one might expect that these
forces reach saturation and yield a minimum of energy
for equal numbers of neutrons and protons in the nu-
cleus. And indeed, for light elements the mass to
charge ratio is quite close to 2, which exactly corre-
sponds to Z - A = A, the equality of the numbers of neu-
trons and protons. What determines the deviation of

UNear the minimum in the expansion in terms of (Z - Z,) the
first order term is absent and we neglect terms of order
higher than the second.
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this ratio of A/Z from 2, i.e., the deviation of the min-
_imum of the energy from conditions in which the num-
ber of neutrons and the number of protons are equal?
On the one hand we should take into account that the
self-energy of protons and neutrons is slightly differ-
ent; on the other hand—and this is more significant,
—in addition to the short range “chemical” nuclear
forces holding the nucleus together it is also necessary
to take into account the forces of electrostatic repul-
sion which are the greater, the larger is the nuclear
charge. It is these forces that introduce asymmetry
between protons and neutrons and determine the fact
that the minimum energy corresponds to a number of
protons smaller than the number of neutrons. If the
chemical energy of the nucleus is a minimum when the
two numbers are equal, then the existence of the elec-
trostatic energy will give rise to a displacement of the
minimum in the direction of nuclei for which the num-
ber of neutrons is greater than the number of protons.
But it is not difficult to evaluate the magnitude of the
electrostatic energy of the nucleus. In principle, as
well as the electrostatic forces the difference between
the neutron and proton masses is also significant; this
difference determines the energy that might be released
by the transformation of a neutron into a hydrogen atom
outside the nucleus. This energy is known and amounts
to only 0.78 MeV.

We write the expression for the mass of a nucleus in
the following form:

Mz, A=Cp+5 B, (Z——;—A)’-{-(Z—%A) (M,— M)

317232
bt @

where the value of C, does not depend on Z, (Z - 1A) is
one-half of the difference between the number of protons
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TABLE L
A - z Ba MeV A Z4 By MeV
50 230 35 150 62.5 1.2
60 275 33 160 | 654 11
70 312 25 170 69.1 N
80 350 22 180 729 10
90 394 2.0 19 76.4 1.0
100 440 20 200 800 0,95
110 477 17 210 835 0.92
120 508 15 220 87.0 088
130 539 13 230 90.6 0.6
140 580 12 240 93.9 0.83

and the number of neutrons in the nucleus [Z - (4 - Z)]/
2. In this formula the first two terms describe the
chemical energy of the nucleus; the form in which they
are written corresponds to the fact that the chemical
energy is a minimum for Z=A - Z; the third term rep-
resents the difference between the neutron and proton
masses; the fourth term represents the energy of the
electrostatic interaction. The electrostatic energy was
obtained by considering a sphere with a constant density
of volume charge and making the usual assumption that
the nuclear radius is equal to 7,4'/3, where 7, is the
radius referred to a single particle. The value of 7, has
been known for a long time from the theory of a-decay
in which the probability of decay depends on the value of
the energy barrier near the surface of the nucleus, i.e.,
depends in an essential manner on the nuclear radius.
The most probable value is 7,=1.48-10™% cm.

Differentiating formula (2) with respect to Z and set-
ting the resultant expression equal to zero we obtain
the value of Z, which makes the energy a minimum,
and which depends on B). Comparing this with the
known data on the average, most probable, value of Z,
for stable elements, we can obtain the value of B) in
formula (2) which characterizes the minimum of the
chemical energy, and from this with the aid of elemen-
tary calculations obtain the value of B, in formula (1).

Table I gives the values of Z, and B, in formula (1)
as functions of atomic weight. We shall not here go in-
to greater detail of Bohr’s calculations that take into
account small fluctuations of energy depending on
whether the numbers of neutrons and protons in the nu-
cleus are odd or even,

With the aid of the estimate obtained above of the en-
ergy of the nucleus as a function of its atomic weight
and the number of charges over a wide range of varia-
tion of both quantities we can now answer the question
concerning the energy liberated in the breakup of a
heavy nucleus.

Table II gives the results of such calculations for sev-
eral typical nuclei.

In the third column of Table Il we have given the en-
ergy liberated in the fission of the initial nucleus (first
column) into two products shown in the second column;
in fission the sum of the charges and the sum of the
atomic weights are conserved. However, the fission
products obtained undergo further transformations as a
result of the unusual ratio of the number of protons to
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TABLE II.

Energy liberated,
in MeV
Enitial Fission —
nucleus products b
in fission subse-
quently
ng | s% | —n 2
Snfd” | Mng® 10 12
Eidy | Sefp™ % 13
Pb3S  [Nplo1ee 120 32
Ui | pal®| 200 31

the number of neutrons; thus, a product of uranium fis-
sion, palladium, of atomic weight 120 must transform
into the stable tin isotope SnjZ° by emitting four elec-
trons (four B-particles). The additional energy liber-
ated in this process is given in the last column of Table
II; for greater details concerning the B-activity of the
fragments see Part II.

We see that up to atomic weight equal to 100 the nu-
clei are energetically quite stable with respect to fis-
sion®’, Above this limit the transformation of the nu-
cleus into two fragments of equal mass separated by a
great distance becomes energetically favorable.

It is interesting that the fission of a nucleus into three
equal parts becomes favorable beginning with the atomic
weight of 110. Uranium upon fission into three equal
parts would liberate even somewhat more energy than
upon fission into two parts. Fission of uranium into ap-
proximately ten equal parts would take place without
liberation and without expenditure of energy.

We are particularly interested in energy relationships
in the case of uranium fission. Just as in Table II we
consider the fission of a nucleus obtained by the cap-
ture of one neutron by the nucleus of the main uranium
isotope UZ® giving rise to UZ’.

Figure 2 shows the amount of energy liberated in the
fission of uranium brought about by different methods.
The number of protons in the nucleus of the fragment
formed is plotted along the horizontal axis and the num-
ber of neutrons in the same nucleus along the vertical
axis. The atomic weight of the fragment equal to the
sum of these two numbers is constant along straight
lines forming an equilateral right-angle triangle with
apex at the origin. Stable nuclei are shown by points in
the diagram. Finally, the ellipses shown in the figure
are lines along which the liberation of energy in urani-
um fission is constant and is equal to the quantity

2 At an atomic weight near 100 the fission of a nucleus stable
with respect to a change of Z (cf., Fig. 1 and Table I) leads
to the formation of two nuclei which differ little from nuclei
stable with respect to a change in Z or corresponding atomic
weight. Therefore an estimate for the limit of energy sta-
bility can be given directly on the basis of Aston’s mass de~
fect curve.

269 Sov. Phys. Usp. 26(3), March 1983

20
" ]
INE Y
: %
M.
A J R
S /e .2,
N % FIG. 2
p S K [
<&

protons

W W@ W
marked on the ellipse (expressed in MeV). Specifying
the charge and atomic weight of one of the fragments

we naturally completely determine the charge and atom-
ic weight of the other fragment.

Thus, if one of the fragments is a normal nucleus of
ruthenium (charge 44, atomic weight 100—lower aster-
isk), then the second nucleus must be cadmium (charge
48, atomic weight 139, number of neutrons 91—upper
asterisk). In the fission of a uranium nucleus into two
such fragments 150 MeV of energy must be liberated.

It is easily seen that points representing the two frag-
ments in Fig. 2 must always lie on a straight line pass-
ing through the center of the ellipses on opposite sides
of the point corresponding to the energetically most fav-
orable direction of nuclear fission. Therefore for the
energetically most favorable direction of the fission
process the nuclei formed lie at a considerable distance
from the Milky Way representing the stable isotopes.
Transformation of the fragments into stable isotopes is
associated with the emission from three to six g-parti-
cles.

The estimate of the energy of such unusual nuclei de-
veloped above will enable us later to elucidate com-
pletely the question of the subsequent radioactive trans-
formations of the fragments.

The elementary calculations carried out above com-
bining the most general experimental data on atomic
weights of different nuclei and simple theoretical con-
siderations concerning the nature of nuclear forces
show in complete agreement with experiment that fis-
sion of a heavy nucleus is a process liberating the
greatest amount of energy. The tremendous energy of
the fragments and their great ionizing power are widely
used by experimenters who can unambiguously distin-
guish fission from other radioactive processes.

§2. STABILITY OF A HEAVY NUCLEUS

The energy stability of a nucleus with respect to fis-
sion into two fragments separated by a large distance
does not guarantee directly the possibility of such a
process because in actual fact fission must pass
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through a state when the two fragments are close to one
another or even incompletely separated. As a result of
electrostatic repulsion of the fragments the energy of
such a state will be much larger than the energy of the
state considered in the preceding section, in which the
fragments have been separated by a large distance and
their interaction can be neglected. In order to eluci-
date the problem of the probability of nuclear fission
and of the conditions existing in the course of fission it
is necessary to examine more closely the mechanism
itself of the process and to determine those intermedi-
ate phases through which the process of nuclear fission
proceeds.

We shall preface the presentation of the mathematical
theory by a curious calculation due to I. I. Gurevich,

Representing the nucleus as a sphere consisting of
individual small spheres—protons and neutrons, we
find the fraction of them lying on the surface; it turns
out that with the densest packing a nucleus consisting
of 238 particles has on its surface approximately 130
particles—more than half of the total number.

Naturally, under such conditions all calculations in
which the energy is divided into a volume and a surface
part or calculations made of the change in energy ac-
companying a change of nuclear shape, cannot lay claim
to accuracy. The calculations are of an illustrative na-
ture, their results must be checked by experiment as
much as possible. A sober evaluation of the degree of
approximation will enable us to omit a number of calcu-
lations.

With the above qualifications we now begin the discus-
sion of the energy of different nuclear shapes.

Above in formula (2) we investigated the dependence
of the energy on the charge for a nucleus of constant
shape and dimensions and a constant total number of
particles. In this approach we have included the sur-
face energy together with other terms in the constant
C,. Now, in contrast, we consider the changes in the
shape of the nucleus for constant mass and charge and a
constant ratio of the numbers of neutrons and protons.
The terms in the expression for the energy that depend
on this ratio may be omitted.

We represent the total energy of a nucleus at rest as
a sum of the electrostatic and surface energies

E=Ww+Q (3)

Following Frenkel’, Bohr, and Wheeler we calculate
the electrostatic energy for a body of a given shape,
whose volume is equal to 4773A /3 [cf., formula (2) of §1]
with a constant volume charge density, with the total
charge being equal to ¢Z. We represent the surface en-
ergy as a product of the surface of the body by the (con-
stant) value of the surface tension g¢.

According to the estimate of Feenberg® the best value
is
4nrlg =14 MeV. (4)
For curiosity sake we point out that from (4) it fol-

lows that ¢=10% dyne/cm? (in the case of water ¢=80,
in the case of liquid mercury ¢ =500).
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Formula (3) with a constant ¢, as Ya. I. Frenkel’ jus-
tifiably observes, is closer to the truth than the calcu-
lation of Frisch and Meitner based on the influence of
the charge on surface tension.

We now seek the dependence of the energy on the
shape of the body. The electrostatic energy is a maxi-
mum for a sphere; in contrast, the surface energy at-
tains a minimum in the case of a sphere. The spherical
shape will always give an extremum of the total energy.
Let us investigate the energy of shapes close to a
sphere.

It is obvious that the surface energy will always in-
crease for any deviation from the spherical shape of
the nucleus, while the electrostatic energy of the nu-
cleus, conversely, attains a maximum for a spherical
shape, in which the individual elementary charges are
situated closest to each other. Any perturbation of the
spherical surface diminishes the electrostatic energy
and increases the surface energy. If the former is suf-
ficiently great with respect to the latter the gain in
electrostatic energy in the deformation of the nucleus
may exceed the energy required to increase the sur-
face, i.e., the work done against the surface tension
forces.

Frenkel’ considers ellipsoids of revolution. Denoting
the semiaxes by ¢ and b, restricting ourselves to small
deviations from the spherical shape, a - b <<a, and tak-
ing into account the constancy of the volume ab®=const,
we write his result in the following form:

w=w,[1—-&(232)]. }
o=a[1+5()]:
where W, and @, refer to a sphere. Formulas (5) are

equally valid for prolate (a>b) and oblate (e <b) ellip-
soids of revolution. The total energy is given by

(5)

E=E -+ (252) 2Q— ). (6)

Thus, the stability of the spherical shape of a charged
drop depends on whether the electrostatic energy is
greater than or less than twice the surface energy. The
sphere is stable when

W, <2Q,. n

The same result was obtained more rigorously by
Bohr and Wheeler. In general terms they describe a
small perturbation of the spherical surface by a sum of
spherical harmonics and expand the total energy in a
series in terms of the coefficients of the harmonics.
For W,<2Q, the minimum corresponds to the vanishing
of all the coefficients, i.e., to an unperturbed sphere.
When W,> 2@, deformation of the sphere becomes en-
ergetically favorable.

Investigation of small perturbations gave us the cri-
terion for stability. What will occur in the case of a
strong perturbation corresponding to a significant de-
formation of the sphere? Will the nucleus for W,>2Q,
find a stable shape differing from a sphere? Are there
limits of stability for W,<2Q,?
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There are several theoretical articles in the litera-
ture in which the authors, taking the shape of the nu-
cleus to be in the form of an ellipsoid of revolution,
seek the dependence of the energy of the nucleus for
given values of charge and mass on the ratio of the axes
of the ellipsoid without restricting themselves to small
deformations. However, in considering an ellipsoid of
revolution we inevitably arrive at the result that even
when the spherical shape becomes unstable there exists
a certain finite ratio of the axes of the ellipsoid corre-
sponding to a minimum energy, i.e., seemingly a stable
one; we reach the conclusion that a heavy nucleus can
exist in a shape significantly different from a sphere.
Here we should note at once that such a method of in-
vestigation is incorrect in principle, since it does not
follow from any considerations, and in particular in the
case of finite large deformations of the nucleus, that it
must at all times remain an ellipsoid of revolution. It
is directly obvious that the appearance of a minimum in
the energy in the case of a finite deformation is associ-
ated with our artificial assumption that the nucleus
must be an ellipsoid, since under this assumption we
cannot achieve a transition from a single nucleus to two
separate fragments.

Thus, the method of considering an ellipsoid of revo-
lution which is mathematically complex must moreover
be applied with great care to the problem of nuclear fis-
sion and has sense only for small perturbations,

The available information on surface tension leads in
the case of uranium to the relationship W,=1.71 Q,.
Apparently the uranium nucleus (and a fortiori all other
nuclei) is stable in the shape of a sphere. A small de-
formation requires an expenditure of energy. And yet,
as we have determined in §1, the formation from a ur-
anium nucleus of two nuclei separated by a great dis-
tance is accompanied by a tremendous liberation of en-
ergy. Taking the spherical state for one limiting point
and the separated fragments for the other limiting point
of a line, motion along which describes fission, we de-
termine that for uranium and for other nuclei the en-
ergy attains a maximum somewhere in the middle of
this line.

Bohr points out justifiably that estimates of stability
based on values of surface tension obtained by indirect
methods are not reliable, and the information of inter-
est to us must be obtained from experimental data on
fission by comparing them with theory. We continue the
theoretical discussion of the problem.

Let us find the energy of the fragments. The volume
of a fragment is equal to ;=2 while the surface of a
fragment is equal to 2°2/3 of the surface of the initial
nucleus so that for two equal fragments we have

a=a=2T30, (8a)

where @, refers, as before, to the initial nucleus prior
to fission,

The charge of the fragment is equal to half of the in-
itial charge, the radius has been decreased by a factor
of 2}/3 so that we have
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W, = W, = const %‘ = const =2 3w,. (8b)

We compare the energy of the system after fission E’
with the initial value E;

_2 1
E’=WI+W2+QI+Q2=2 3W0+23Qo: (9)
1 _z
E'—E,=(2—1)Q—(1—2 %) w,. (10)

Fission becomes energetically favorable beginning
with the value
1

3
Wo>—2—;_lz Qs W, >>0,7Q,. (11)
1—2 3
The result obtained above (Table II) for uranium and
other nuclei according to which the energetic possibility
of fission is attained considerably earlier than the limit
of stability of the spherical shape, is thus of a general
nature and follows from a comparison of (11) and (7).

We obtain significant information by calculating the
energy at the moment when the nucleus has already sep-
arated into two parts, but the fragments still have not
had time to become separated and are in contact with
each other. QObviously such a state is a necessary link
in the chain no matter through what shapes the process
of fission proceeds. Since the fragments carry charge
of the same sign the energy of the system at the time of
contact £” is certainly greater than the energy E’ in the
state when the fragments have become separated.

Frenkel’ has evaluated E” for two spherical fragments
in contact with each other. The electrostatic and sur-
face energy of each fragment retains its values (8a) and
(8b). But to them there is added the electrostatic ener~
gy of the interaction between the fragments

(%)
Wy=—27_, (12)
2Re-2

where Z, and R, are the charge and radius of the initial
nucleus, and Z/2 and R, 2'/° are the same quantities
for the fragments. Comparing this with the expression
for W,, we obtain

1 2 1 1
5 obuwr . o o . S !
Wiy =g-23W,; E'=E'+ W,,=2" 3w, 4 2300_'_2_2 231y,
L S NORIPS (13)
% o+ Qo-

1_7- 1

1 -
E"_.E—_—_(23—I)QU——(I—-24'2J)W(,- (14)

For the possibility of fission from the condition
E"—E<O

we obtain

—TQ°=2'4 Q) (15)
3

$The value 2.17 in Frenkel’s paper is either a misprint or
an error.
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The calculation leads to an unexpected result] An im-
pression is created that for W,/q, exceeding 2 by not
very much, i.e., for

2<%3<2.4, (16)

the heavy nucleus can no longer exist in the shape of a
sphere, but also it cannot fall apart for it lacks the en-
ergy to go through the shape of two fragments in con-
tact. Frenkel’ concluded from these calculations that
already for uranium the condition (16) holds and the
uranium nucleus in this case exists in a shape signifi-
cantly different from a sphere. This question was dis~
cussed recently by Yu. A, Zysin and one of the authors
of this article.”

It turns out that Frenkel’s results are essentially as-
sociated with the arbitrary assumption that fission pro-
ceeds through the shape of two spheres in contact. It is
evident that at the last moment of fission when the frag-
ments are in contact with each other at only one point
the energetically most favorable shape will be that of
two elongated pears. An exact determination of this
shape encounters very great mathematical difficulties,
but the extremum nature of the problem makes such an
exact calculation unnecessary. Considering ellipsoids
of revolution elongated along the axis along which the
contact occurs Zel’dovich and Zysin have shown that for
.the most favorable choice of the ratio of the axes of the
ellipsoid the total energy of the system turns out to be
less than the energy of the initial heavy nucleus not only
for W/Q,= 2.4, but also for W,/Q,=2 and beyond right
down to W,/Q,=1.64.

Consideration of shapes still closer approaching the
minimal ones, and in particular of pearlike asymmetric
shapes can lead only to a further diminution of the val-
ue 1.64 obtained, and this is of no great physical inter-
est. Already from the result obtained above we can
draw the physical conclusion essential for us that in the
case when near W,/ Q,= 2 the spherical shape of the nu-
cleus becomes unstable, the fission of the nucleus pass-
ing through the shape of two elongated ellipsoids in con-
tact with each other is quite possible and is not ener-
getically forbidden. This overthrows the arguments of
Ya. L. Frenkel’, and the assumption proposed by him of
the possibility of existence of nonspherical nuclei be-
comes unfounded.

Above we have collected all information on the energy
relationships in the case of fission which could be ob-
tained by simple calculation. It is summarized in
Figs. 3 and 4. In both diagrams the energy of the sys-
tem is plotted along the vertical axis and the parameter
& describing the process of fission is plotted along the
" horizontal axis; this parameter is so chosen that it is
equal to O for a spherical initial nucleus and takes on
the value equal to 1 for the case of two fragments in
contact, and 2 for fragments separated by a large dis-
tance. Solid lines represent reliable results of calcu-
lations; dotted lines connect them in the simplest man-
ner, i.e., they represent the thinking of a person with
minimal fantasy who holds to established facts as close
as possible.
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FIG. 3.

Figure 3 refers to the case 2< W,/Q,<2.4. A small
deviation from the spherical shape near &=0 leads to a
decrease in the energy (the line A8}, in accordance with
the instability of a sphere for W,/Q,>2. For &=1 the
point C, for spherical fragments (Frenkel’) lies above
E,, for ®=2 for the same fragments the point D, lies
considerably below E,. The curve ABC,D, must inevi-
tably have a minimum for 0<$ <1 at some point.

However, calculations for fragments in the shape of
ellipsoids (the points C, and D,) enable us to draw a
monotonic curve ABC,D,. Strictly speaking it is not
possible to assert that we have excluded the possibility
of a minimum on the energy curve in the course of fis-
sion, but in any case our calculations have made the
existence of such a minimum very improbable,

Figure 4 has been drawn for 2> WO/Q0> 1.64. The
segment AB describing the effect of small deformations
shows an increase in energy. The position of C; and D,
can be seen from the diagram; for us it is more impor-
tant that, as before, the points C, and D, lie below E;*’.

There must necessarily be a maximum in the energy
at some point M along the line ABC,D,. The height of
the maximum determines the energy of excitation re-
quired for fission,

FIG. 4.

' Making the calculation more precise we can most likely
lower the value of W(/Q,, for which the relationship E”<E,
still holds and C, lies below E;. The point D, always lies
below C, since the fragments repel each other no matter what
their shape.
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FIG. 5.

While small deformations of the nucleus require an
expenditure of energy, a sufficiently strong deforma-
tion leads to a state in which the nucleus will be unsta-
ble (this will occur after M, for &> &, in Fig, 4).

The existence of a maximum, the existence of a defi-
nite critical energy are extremely important for the
understanding of the process of fission.

However, Fig. 4 is clearly insufficient: we are at-
tempting to describe the change of shape by a single pa-
rameter; without a more precise specification such a
description is ambiguous. We shall improve the situa-
tion by going over to the following diagram.

Figure 5a shows lines of constant energy as a function
of two variables a, 8 characterizing the shape of the nu-
cleus. In actual fact one should imagine a similar pic-
ture in a space of a very large number of dimensions,
but even in Fig. 5a we can determine the principal qual-
itative features of the process.

The origin represents the spherical shape of the nu-
cleus. Small deformations of it, i.e., small displace-
ments from the origin of coordinates in any direction
are associated with an increase in energy. However,
for a certain finite deformation we arrive at a saddle
point, and with subsequent deformation the energy falls
again,

The dotted line shows a path leading through the sad-
dle point. The height of the pass above the valley sur-
rounding the origin of coordinates represents that min-
imum energy which must be supplied to the nucleus in
order that it could pass through the saddle point and
fall apart. Figure 5b shows the variation of the energy
as the point moves along the dotted line of Fig. 5a pass-
ing through the saddle point.

In order that in Fig. 4 the height of the energy maxi-
mum should correspond to the critical energy it is nec-
essary to choose the parameter & in such a manner that
as & is varied the nucleus would move along the dotted
line through the saddle point of the energy surface.

The calculation of the nuclear shape at the saddle
point needed for the determination of the critical energy
presents great mathematical difficulties which up to the
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present time have not been overcome by anybody. A
rigorous formulation of the problem starts with the cir-
cumstance that in the desired state the energy is an ex-
tremum: it is a maximum along one coordinate (P) and
a minimum along all the other coordinates.

Physically the extremum of the energy means that
mechanical equilibrium has been attained.

In a liquid with a free surface and a surface tension
q, the value of the pressure P at the surface of the lig-
uid depends on the curvature of the surface:

P=gqg e=,i,+,i,- ‘ a7

where g is the average curvature, the sum of the recip-
rocal radii of curvature in two perpendicular directions.

In a charged liquid each element of volume experi-
ences volume electrostatic forces together with forces
of pressure; denoting the intensity of the field by V, the
potential by ¢ and the charge density by d we obtain the
conditions for equilibrium:

gradP= — Vd= —dgradp, }

P 4-¢-d==const. (18)

Finally the equation for equilibrium yields at the sur-
face of the drop

q-8--9p-d =const, (19)

In (19) q and d are constants characteristic of the nu-
clear liquid; g depends on the shape of the surface at a
given point, the potential ¢ at the given point of the sur-
face can be calculated in the usual manner for a given
spatially distributed charge.

Equation (19) yields as a result of this a most compli-
cated integrodifferential equation for the surface bound-
ing the nucleus.

Important results can be obtained utilizing the meth-
ods of similarity theory.

We shall below interpret & as the totality of param-
eters required for a complete description of the shape
of the nucleus. The total energy of the system is given
by

E(®)=W(®) 4 QD). (20)

The sign of the function in (20), just as the variable
&, is of symbolic nature. E, W, @ are functionals of the
shape of the surface.

We seek the “value” &,, for which E(®,) is an extre-
mum (a saddle point) and we are particularly interested
in the value of the critical energy E(&,) - E,, where E,
refers to the unperturbed nucleus (sphere). The func-
tionals E, W, @ depend not only on the shape, but also,
naturally, on the charge, the magnitude of surface ten-
sion and the nuclear radius. For different nuclei the
critical shape and the critical energy are different,

From dimensional considerations alone, even without
writing out the expressions for W and @, it may be eas-
ily seen that these quantities depend on the charge and
the surface tension in the same manner as W, and Q,.
Therefore they can be represented in the following man-
ner:
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W=W,a(P) Q=Q, -6(d), (21)

where g and b are dimensionless functionals of the
shape, common for all nuclei; thus, b is the ratio of
the surface of a body of shape & to the surface of a
sphere of equal volume. From this we obtain

E=Wya(®)+ Q6B =0, | gla(@)+2 (1]
=00c (g0, ®). (22)

In the expression (22) ¢ is a dimensionless functional
which depends in addition to the shape & only on the di-
mensionless ratio W,/Q,.

The ratio Wo/ Q, is the only determining criterion for
the problem, the only quantity varying from one nucleus
to another when we seek &,. We finally obtain

o=, (5): 2030 (%),
E(q)t)"“Eo=Qo""(gf)‘— Wo—Q
—ole(@ B (E).  w

where ¢’ and f are no longer functionals, but ordinary
functions of the variable W,/Q,.

The nature of the dependence of f on W,/Q, is shown
in Fig. 6. In constructing f we proceed by considering
limiting cases.

For the value of the parameter W,/Q,=2 the critical
‘energy is equal to 0. For the value of the same param-
eter equal to 0, i.e., in the case of fission of an un-
charged drop, fission must proceed entirely as a result
of external forces overcoming the total difference be-
tween the surface energy of the initial drop and the two
fragment droplets; in the latter case the required en-
ergy expressed in terms of @, is equal to 2-272/3 -1
=0.261, while in the case of a charged nucleus a consid-
erable part of the increase in the surface energy is
compensated by the decrease in the electrostatic en-
ergy®.

The middle portion of the curve for f in Fig. 6 be-
tween 0 and 2 has been interpolated by Bohr with the aid
of approximate methods of calculation developed by
him. However, this interpolation, in particular in the
region of greatest interest from 1.2 to 2, is apparently
not very reliable, although up till the present we have
not seen anything better in the literature.

Bohr describes the deformation of the nucleus by
spherical harmonics. The second spherical harmonic
P,(cos8) (where 8 is the width of the point being consid-
ered on the surface of the sphere) describes the elonga-
tion of the sphere.

Figure Ta shows the shape corresponding to
R(8) =Ry[1 43P, X{cos )] a,=0. (25)

5)Bohr obtains by more complicated arguments also the first
term in the expansion of f near zero:

W

Q'

f, characterizes the energy of spheres in contact: f;=0 for

Wo/Q¢=2.4, cf. formula (15} and the dashed line in Fig. 6.

f= f1=0261 —0.108 (24)
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Figures Tb and 7c show shapes corresponding to per-
turbations taken in the form of P,(cos6) and P,(cos8)
respectively with positive coefficients a, and a,.

Bohr seeks the critical shape in the following manner:
having assumed a definite value of a,, i.e., a definite
elongation of the nucleus, he obtains the value of a,,
which makes the energy a minimum for a given value
of a, It turns out that, a,= a,(a,)<0; comparing Fig.
7a and Fig. Tb we see that the conditions a,>0, a,<0
correspond to the shape of Fig. 7d in which a constric-
tion is formed at the middle of the nucleus.

If a, is expressed as a function of o, from the condi-
tion that the energy be a minimum, one can, on ne-
glecting all the other terms, obtain the energy as a
function of @, for a sequence of shapes sensibly describ-
ing the deformation leading to fission. A direct calcu-
lation yields the value of &, which maximizes
Ela,, a,(@,)] and the critical value of E itself.

The dimensionless parameter W,/Q, introduced above
enters into all the calculations. It is evident that the
calculation is good only as long as the critical deforma-
tion is small, which occurs near W,/Q,=2 (near the
stability limit). Bohr’s result

E,. —E 0 W,\®  M21 | A
% === (2~ 5) —wm -
is given in terms of the powers of the deviation from the
limiting value.

(26)

Figure 6 has been interpolated by Bohr more or less
arbitrarily between the limiting expressions (24) and
(26).

In the region of practical interest Bohr in fact utilizes
expression (26). Formula (26) is very sensitive to W,/
Q,, and therefore an inverse determination of W,/Q,
from experimental data on the critical energy of fission
is expedient. As we shall see the energy of fission of
uranium of atomic weight 239 having captured a neutron
is close to 6 MeV. The surface energy of heavy nuclei
Q, is of order of 530 MeV. Comparing these values
with formula (26) Bohr found W,/Q,=1.48 for uranium
239. This value agrees quite sensibly with the available
information on nuclear radii; nevertheless, too great
a significance should not be attached to it.
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There exist indications of the inapplicability of Bohr’s
approximate calculation for W,/Q,<1.8; at the same
time very recently the value of the critical energy for
the fission of uranium 239 has itself been subjected to
reexamination®’,

However, even if we become reconciled to the fact
that we do not know the exact shape of the curve for
f(W,/Q,) the very concept of the existence of a smooth
curve will enable us to order the nuclei of different ele-
ments in terms of the increasing difficulty for fission,
and will allow us to encompass the set of experimental
facts.

We write the expression for W, and Q,:

w, =312, (27
5rpA?
1
b= 44 (ry A, (28)

We recall that r, is the radius ascribed to a single
elementary particle, ,A'? is the radius of a nucleus
of atomic weight A containing A elementary particles

Wy _ 3 22
60.—2Ovtrgq A (29)

The factor 3¢2/20mrq consists of constants common
to all nuclei.

8In a preliminary communication Knipp and Present? point
out that from their calculations there follows the possibility
of an asymmetric critical shape of the nucleus which in this
case describes the experimental fact that the fragments ob-
tained in fission, as a rule, differ appreciably from each
other in mass. Thus,! fission is ohserved with the ratio
Ay Ay=0.37: 0.63. We might rather have expected that
in the case of a symmetric shape it would be more likely
‘that the mass and charge of the fragments would be closer
to each other. However, the principal result—specifically
the critical ratio of the electrostatic energy to the surface
energy, equal to 2, and qualitatively the picture of Fig. 6,
remains unaltered under these conditions. It is not altered
also by the considerations of Berestetskil and Migdal.®

275 Sov. Phys. Usp. 26(3), March 1983

TABLE II1.
Z‘Z Ecr —E 0

4 z A MeV
Least abundant (0.006%) uranium isotope © 234 92 36.2 4.8
Rare (0.7%) uranium jsotope P 235 92 36.0 a.1
Protactinium | . ., . . . . . .. 231 91 35.9 5.2
Principal (99.3%) uranium isotope . 238 92 35.5 5.8
Thorium. « v v v v v v v e e e 232 90 35.0 6.6
Radium . . . . . . . . o o v ... 226 |88 344 76
Mercury, . . . . . . . . .. .. 196—204 (80| 32.7-31.3 | 11—15
Tin ..o 112—124|50| 22.5—20.2 | 40—50

Thus, comparing the expression for Z%/A for differ-
ent nuclei we establish the order in which they must be
placed according to increasing difficulty of fission’’ as
shown in Table III.

Nothing is known concerning the fission of the last
three substances, and they have been included in Table
III only for purposes of comparison.

In Table III we, following Bohr, have also attempted
to estimate the critical energy of fission for different
nuclei.

Our estimate is based on an analysis of experimental
data on fission accompanying neutron bombardment; it
should be regarded as being more reliable than the for-
mula (26) itself with the aid of which the extrapolation
has been carried out.

Before going on to a detailed examination of the most
important process of fission following neutron capture
we consider the problem of the probability of spontane-
ous fission. As we have seen there is every reason for
thinking that for all existing atoms, in particular, for
the heaviest uranium nucleus, the value of W,/Q; is
considerably smaller than two, is smaller than the crit-
ical value; from this follows the existence of an energy
barrier. The critical energy required for fission (the
difference between the energy at the saddle point and the
energy of the unexcited nucleus) is supplied as a result
of neutron bombardment in the form of the binding en-
ergy (“condensation energy”) of the neutron and in the
form of kinetic energy of the neutron. However, along
with this, quantum mechanics establishes the possibil-
ity of the passage of a nucleus through a state forbidden
by classical theory, the so called tunnelling transition
below the barrier. Together with establishing the cor-
rect point of view concerning the mechanism of fission
Frisch and L. Meitner noted that spontaneous fission of
a nucleus by means of the tunnelling transition is not
very probable, since the nuclear mass is very high.

The critical energy needed for uranium fission has by
now been established quite well. However, a calcula-
tion of the probability of the barrier transition requires
the knowledge not only of the critical energy (the height
of the barrier), but also an estimate of the width of the
barrier, i.e., the length of the tunnel. Moreover the

D The critical energy is equal to the product @« f (W,/Q,).

We assume that in going from one nucleus to another f varies
much less sharply than @, and arrange the nuclei according
to the decreasing values of the argument of f.
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width of the barrier appears in the expression for the
probability of the process in the exponential term. It is
exceedingly difficult to make an estimate of it.

The calculation presents a natural generalization of
the theory of a-decay. The expression for the barrier
penetrability is given by the exponential

exp (— V24 (E,—Ey)- %), (30)

where A is the mass of the nucleus, and a is the effec-
tive width of the barrier.

For the term preceding the exponential Bohr chose
the frequency of oscillation of the nucleus about its
spherical shape.

The reciprocal probability of spontaneous fission
(equal to the mean lifetime in the absence of other ra-
dioactive processes) is expressed by the formula

t=10"%exp (V2A (£, —Eo)~%) sec. (31)

If the lifetime is expressed in years, A in units of
atomic weight, the energy in MeV, and the width of the
barrier in units of r, (cf., §1), then the formula can be
brought to the following form:

f == 10~ B H0146: VA€ —E years. (32)

For uranium, substituting £, - E,=6 MeV, A=238
and assuming o = 3(238)!/3/2—a value intermediate be-
tween the diameter and the radius of a nucleus, Bohr
found

£==10-20+5t — 1023 years = 1030 sec. (33)

For comparison we note that the time for fission of a
nucleus possessing sufficient energy (not requiring a
tunnelling transition) is of the order of 10™° sec.

Bohr’s estimate leads to a lifetime tremendous even
by comparison with the lifetime for the a-decay of u-
ranium (4-10° years). The time for spontaneous fission
of 10%? years would correspond to the formation of a
single pair of fragments per day in a mass of 1 kg of
uranium; a process with such a probability could hardly
be observed, particularly taking into account the exis-
tence of atmospheric (cosmic) neutrons and the difficul-
ty of complete shielding from them.

The experiments of the Sovient physicists Petrzhak
and Flerov'® noted in our previous article show that in
actual fact uranium fission proceeds with a considerably
greater probability with a half-transformation time of
the order of 10'® years, which makes it accessible to
observation using contemporary experimental tech-
niques.

The time of 10'® years is obtained if we ascribe the
observed number of fissions to the principal uranium
isotope. Ascribing it to the 235 or 234 isotopes we ob-
tain respectively 10'* and 10'2 years.

It follows from Bohr’s estimate that the critical en-
ergy of fission of uranium isotopes is lower, of the or-
der of 5.1 MeV for U®® and 4.8 MeV for U4,

Retaining a=1.54'/%, we obtain respectively 10'® and
10'® years for the isotopes.
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Bohr’s estimate describes the experimental data of
Petrzhak and Flerov if one assumes that the observed
spontaneous fission is due to the light isotopes, and one
chooses for a(barrier width) the value 1.38 A'/3 in-
stead of 1.5 A3,

One should admire the tact with which Bohr chose
prior to the experiments of Petrzhak and Flerov a sen-
sible value for the width of the barrier; some discrep-
ancies between the measured probability and the prob-
ability predicted by Bohr for spontaneous fission are
associated with the extreme sensitivity of expressions
(31),(32) to factors contained in the exponential,

In popular press one often meets the assertion that
the discovery of Petrzhak and Flerov explains why the
periodic system of the elements does not extend furth-
er, and is terminated at the element No. 92-uranium®’,
Formally this is not quite so; for the existence of the
last element—uranium a-decay is much more impor-
tant than spontaneous fission; it is quite probable that
for the nearest transuranium elements this relationship
remains in force, and we do not observe them not be-
cause they undergo fission too fast, but because of the
excessively rapid a-decay. The discovery of spontan-
eous fission does not establish an exact boundary for
the periodic system. But in a wider sense it is indub-
itable that there is a connection between spontaneous
fission and the boundaries of the periodic system.

With a significant increase in Z (by several units) the
increase in Z*/A will lead to a sharp decrease in the
critical energy, and then very rapidly as a result of the
exponential dependence of expressions (31),(32), the
probability of spontaneous fission will grow catastroph-
ically.

If we base ourselves (in the absence of a better one)
on the estimate of the critical energy (26) and on the

" value of W,/Q,=1.48 for uranium following from it, the

absolute limit of stability (WO/Q0= 2) will be attained
for Z,/A=48, i.e., for Z of the order of 125 (we as-
sume roughly that A increases proportionally to Z).
Such a nucleus will live no longer than for 107 sec.

We now consider spontaneous fission occurring accord-
ing to the mechanism of the tunnel transition discovered
by Petrzhak and Flerov and we shall seek a nucleus with
a lifetime of the order of 1000 years. From formulas
(30), (31), and (32) it follows that the corresponding
probability of fission willbe attained at a critical energy

of fission of the order of 2.5-3 MeV; for such a de-
crease in the critical energy we require Z%/A to be of
order of 40-40.5, which corresponds to Z of the order
of 100-102. It is not possible to construct a stable nu-
cleus with a larger value of Z by increasing A for rea-
sons indicated in §1: in such a nucleus processes of

B -transformation will take place, Z will increase for a
constant A, and a nucleus with a larger value of Z and
Z% A will undergo spontaneous fission.

From the experimentally observed probability of
spontaneous fission one can make important qualitative
conclusions for our further discussion: accordance to

8)The amount of uranium, which is of the order of 10°¢ of the
total mass of the earth, is very great.
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a remark of I. I. Gurevich the effective width of the
barrier of the order of a nuclear radius, itself indicates
that the critical deformation leading to fission can by no
means be regarded as small and that all the calcula-
tions of the critical shape made on the assumption of
the smallness of the deformation may at best be only of
an illustrative nature,

On the other hand, the exceedingly small probability
of the quantum mechanical tunnelling mechanism defi-
nitely indicates the classical nature (with very small
corrections for quantum mechanics) of energetic fis-
sion induced by neutron or some other bombardment,

We return to the question of the fission of nuclei un-
der neutron bombardment. Present day views devel-
oped by Bohr® are based on the fact that a heavy nucleus
is a system consisting of many particles with a large
number of degrees of freedom. Every process occurr-
ing as a result of some method of exciting the nucleus
begins from the formation of an excited (heated) com-
pound nucleus with a comparatively long lifetime. The
lifetime of an excited nucleus of the order of 1075 sec
is much longer than the time during which a neutron of
energy of several MeV traverses a distance of the order
of a nuclear radius, 1072/10°=10"%, and is considerab-
ly longer than the period of nuclear oscillation, 107
sec.

Such a relationship enables one to speak in the case of
neutron bombardment of the formation of a compound
nucleus for which the value of Z does not differ from the
value of Z of the initial nucleus, while as a result of
neutron capture A has been increased by unity.

Figure 8 shows values of the critical energy of fission
(according to Bohr’s semi-empirical estimate) for dif-
ferent compound nuclei obtained as a result of neutron
capture; the nuclei are placed in a series according to
the values of the parameter Z?/A. The reader will note
that in place of U23®, UZ® PaZ! the figure shows UZ°,
UG, Pafie.

The numerical value of the energy taken off this
curve, and particularly the value of the slope of the
curve, possibly, differ considerably from the true val-
ues. However, the order in which Bohr has placed the
elements in the figure must indubitably be preserved.
As can be seen from the diagram, the nuclei that should
undergo fission most easily are the rare light isotopes
of uranium. Protactinium occupies a position interme-
diate between the main and light isotopes of uranium.
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Finally, the fission of thorium must require a consid-
erably greater expenditure of energy and correspond-
ingly is more difficult and occurs with a smaller prob-
ability. At the same time the capture of a neutron not
only changes the atomic weight of the nucleus, but si-
multaneously, and this is the most important feature, is
also the principal source of energy for the process of
fission. Even in the case when fission occurs under the
action of slow, thermal neutrons, whose kinetic energy
is negligible, the process of fission differs significantly
from spontaneous fission. Indeed, even the slowest
thermal neutron on fusing with a nucleus liberates a
considerable amount of energy, of the order of 5-6
MeV —the condensation energy of the neutron. The
compound nucleus that captures the neutron becomes
energetically highly excited. Fission represents one of
the possible reactions for such an excited system. At
the same time re-emission of a neutron is also possi-
ble. Capture which is followed by re-emission of a neu-
tron is nothing other than neutron scattering. If the nu-
cleus captures a neutron of considerable kinetic energy
then on being re-emitted it is not very probable that the
neutron would carry away all the kinetic energy with
which it approached the nucleus thus leaving the latter
in a changed state. It is much more probable that the
evaporating neutron will carry away only a part of the
initial kinetic energy leaving the nucleus excited. How-
ever, at best the energy of excitation does not exceed
the kinetic energy of the neutron, while in the case of
neutron capture the energy of condensation (binding en-
ergy) of the neutron is added to the kinetic energy. In
the case of neutrons with energy not exceeding 4--5 MeV
inelastic scattering does not lead to fission.

Finally, the last possibility for the excited compound
nucleus still containing both the kinetic energy of the
absorbed neutron and its heat of condensation, is the
emission of energy in the form of a y-quantum. Asa
result of the loss of energy the total energy of the nu-
cleus will turn out to be lower than the heat of evapora-
tion of a neutron, the nucleus can no longer reevaporate
the neutron, and also cannot undergo fission. We thus
obtain a relatively stable nucleus of atomic weight in-
creased by unity.

The question of what exactly happens under neutron
bombardment of a given element is first of all a ques-
tion of competition, of the ratio of the probabilities of
the three most important processes indicated above—
fission, neutron scattering, i.e., capture with a subse-
quent reevaporation of the neutron, and, finally, the
capture of a neutron with the emission of energy in the
form of a y-quantum. Inthe next section we shall ex-
amine in greater detail the probability of each of the
three processes enumerated above, utilizing for this
purpose the method of the activated complex. The gen-
eral indefiniteness which still exists in the theory of
fission will not allow us to draw quantitative conclu-
sions; however, the use of the theory of the activated
complex will enable us to establish on the basis of gen-
eral theoretical considerations the character of the
principal dependences and above all—the dependence of
the predominating direction of the process on the exci-
tation energy.
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The best proof of the power of theoretical analysis is
the explanation given by Bohr!! of the involved situation
of the action on uranium of neutrons of different energy.
This explanation (cf., §4), ascribing different effects to
different uranium isotopes guided experimenters and at
the present time has led to direct confirmation in ex-
periments with isotopes separated with the aid of mass-
spectrographs.'®'?
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