
phased by two-way satellite communication.5 The last
method gives the ideal solution to a fundamental problem
of positional astronomy—establishment of the celestial
coordinate system—by virtue of the simplicity of its
algorithms and the fact that the result of the geometric
solution is independent of all geophysical and geodynam-
ic theory. The celestial coordinate system anchored by
the cosmic radio sources will be stable at a level of
10~3 arc sec for decades and on the 10"2 arcsec level
over many centuries.

Measurement of the relative positions and displace-
ments of points on the earth's surface based on mea-
surements of the parameters of interferometer bases in
a coordinate system anchored by cosmic radio sources
is the object of geophysical and geodynamic applications
of radioastrometric VLBIs. An attractive prospect is
the use of radio-emitting satellites specified in cosmic
radio source coordinates as a means of mapping the
celestial coordinate system; this would make it possi-
ble to use simplified systems for radiointerferometry
of these satellites in geodynamic research. Further,
satellite radiointerferometry could be used to tie the
radioastrometric earth coordinate system to the
earth's center of mass and to tie the radio celestial co-
ordinate system to the optical system.6 On the whole
the use of VLBI to determine the coordinates of natural
and artificial cosmic radio sources and earth rotation
parameters and for mutual space-time coordination of
widely separated interferometer stations forms the
basis for a high-precision coordinate-and-time service
for various scientific and practical requirements.

The capabilities of radiopositional astronomy are
limited by the error involved in taking into account the
equivalent atmospheric refraction defined as the ratio
of the unknown path advance of the interfering signals
in the earth's atmosphere to the length of the inter-
ferometer base. An effective way of reducing this error
is to use differential-interferometry methods with run-
ning determination of the atmosphere's electrical
thickness from thermal radar data. Here the error of
allowance for the mutual atmospheric path advance of
the interfering signals at centimeter wavelength is
estimated at -1.5-3 cm, which, on a base of ~6
thousand km, would give an angle-determination error
of ~(0.5-1) • 10~3 arcsec in a single measurement ses-
sion.

The achievements of modern radio positional astrono-
my are best illustrated by the results of the first ob-
serving campaign to study the earth's rotation, within
the framework of the international MERIT project.7

Use of radioastrometric VLBIs made it possible to ob-
tain the coordinates of the pole accurate to -0.0013
arcsec or 5 cm in linear measure, and Universal Time
UT1 accurate to -0.07 msec, all during a one-day mea-
suring cycle. During the same interval of time, the
distance between the interferometer stations was deter-

mined with an error of 2-3 cm for bases up to 6000 km
long and 5-7 cm for bases up to 8000 km. The coor-
dinates of the observed radio sources have been deter-
mined with an accuracy of thousandths of arcsec.

Radioastrometric experiments are now being conduct-
ed on existing radio telescopes that are burdened with
other programs, and are therefore of episodic nature.
Further, the informativeness of existing VLBI facilities
with independent receiving systems is limited by the
memory capacity of the systems used to record the in-
terfering signals, and they are processed not only with
a delay, but rather slowly, owing to the constant un-
certainty as the position of the interference response in
frequency and in the lag that results from desynchron-
ization of the time scales and instability of the frequen-
cy standards at the interferometer stations. All this
precludes organization of the continuous series of ob-
servations required for positional-astronomical stud-
ies. Obviously, realization of all the capabilities of
radio positional astronomy will require the creation of
specialized VLBI complexes that incorporate satellites
for synchronization of the time scales at the stations
receiving and transmitting the received information to
the processing station and operating in real time. A
plan for the corresponding hardware has been worked
out in the USSR with participation of representatives
from practically all the radio-astronomy and positional-
astronomy organizations in the country, and its imple-
mentation will produce a unique broad-profile physical
instrument.8
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B. V. Chirikov, Dynamic chaos in classical and
quantum systems. Dynamic chaos (d. c.) is defined as

the random motion (usually oscillatory) of a fully de-
terminate classical system (syn.: dynamic stochastic-
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ity). The paper considers one of the typical prob-
lems—a small perturbation (parameter s « 1) of a fully
integrable Hamiltonian system. The existence of a
critical perturbation (ec r>0) below which quasiperiodic
oscillations persist for most paths assuming nonlinear -
ity of the unperturbed system and sufficient smoothness
of the perturbation, has been established by the Kolmo-
gorov-Arnol'd-Mozer theorem. An effective estimate
of ccr is obtained by analyzing the structure of nonlinear
resonances and their interaction.2 It has been possible
in this way to solve the familiar Fermi-Past-Ulam
problem of randomization of oscillations of a nonlinear
string,3 Budker's problem of retention of a particle in
an adiabatic magnetic trap,4 and others (see Refs. 2,
5-8).

If E »£„) the motion becomes chaotic for most initial
conditions and admits of simple statistical description
with a diffusion equation.2 The mechanism by which
d. c. arises involves strong (exponential) local instabil-
ity, which is characterized by the average divergence
rate of nearby paths or by the metric entropy h [sec"1] .9

The latter is a convenient practical criterion of d. c. in
computer modeling.2 According to the algorithmic the-
ory of dynamic systems, the condition h>0 is necessary
and sufficient for randomness of nearly all paths,10 and
the randomness concept is introduced on the basis of
the complexity and unpredictability of the individual
paths in accordance with intuitive "true"-randomness
conceptions. We note the complexity of the chaotic path
consists not in the equations of motion, but in the initial
conditions of the path, and reflects the continuity of the
phase space (p. s.) in classical mechanics.11 In the author's
opinion it is possible and useful in view of these results
to proceed in a contrary manner, defining the random
process as the motion of a classical deterministic sys-
tem with h >0.

When £«£cr, d. c. is preserved in narrow layers
around the separatrices of the resonances.2'12 For mul-
tidimensional oscillations, this results in universal
(for all e-0) instability—Arnol'd diffusion throughout
the entire system of stochastic layers intersecting in
the p. s.2'8'13 Despite the lower velocity, it may play a
definite role in magnetic traps,4 colliding-beam sys-
tems,14 and the Solar System.15

Dynamic chaos is impossible in quantum mechanics
owing to the discrete nature of a closed system bounded
in p. s.16 and the discreteness of the p. s. itself. How-
ever, the correspondence principle requires a transi-
tion to classical mechanics, including to d. c. This
contradiction is resolved in Ref. 7 with the aid of the
notion of temporary or transitory chaos, i.e., by intro-
ducing various time scales on which various statistical
properties of d. c. are simulated.

The shortest, dynamic scale rd is obtained directly
from Ehrenfest's theorem and, with consideration of
the exponentially rapid spreading of the packets, is
equal7-17 to Td~ln(n)//z, where n»l is the characteristic
quasiclassic parameter. Quantum dynamics agrees
fully with classical dynamics on this scale.

The diffusion scale TD » rd, which was observed in

Ref. 18 and explained in Ref. 7, is more interesting and
unexpected. Consider, for example, a classical system
specified by the mapping (/,9) -(/, 0):

/ = /-f fc sin 0. ( r = 0 - r r / ~ (1)

i.e., a rotator acted upon by short "bushes" (fcsinO)
with period T. Many nonlinear-oscillation problems
can be reduced to such a model including motion in the
vicinity of a separatrix.2 For k>ka = 1/T, we have un-
limited diffusion with respect to / at a rate E/t = (f)/
2t~k2/$k<.T, and t is the number of iterations of the
mapping). In the quantum case (/= n is the "rotator"
level number, k is the number of quanta per push, and
K= 1), the same diffusion is preserved on the interval
t •£. TD with the additional condition k »1 (k ~ 1 is the
quantum limit of stability19). At tz TO the diffusion
rate drops sharply (Fig. 1, curve 2 at t< 150; the
straight line corresponds to classical diffusion). In this
example, k=20, T= 1/4, TD~k2/8= 50, rcl~ln(l/r)/
2fecl = 0.8. At t>tdthere is no local instability in the
quantum system (7zqu=0). This is illustrated in Fig. I20

by the reversal of the velocities (^~^*) a' time t= 150,
followed by "antidiffusion," i.e., a return to the initial
state (with accuracy better than 10"6). Curve 1 charac-
terizes the classical system with the same parameters
(E(t) is the average over 103 paths, the scale is un-
changed). Here fccl= ln(*r/2) >0 and the computing er-
rors (~10~12) "restore" diffusion after -30 iterations
following velocity reversal.

The relaxation toward the equilibrium state at t» TD

(open circles in the left-side of Fig. 2, k= 40) is de-
scribed satisfactorily by the expression 4E(<)//fe2

= TDln(1.5J/rD) (solid line; TD = 140) up to t~rR

~T0NlnN, where JV~£2/6~TD is the number of excited
eigenfunctions. During relaxation, the diffusion Gaus-
sian distribution becomes an equilibrium distribution

f3(n), which is compatible with a simple exponential at
n» 1 (Fig. 2; the dark circles represent t= 103, the
open circles / = 104, and the straight line/s(n)= exp(-n/
21); k= 10). By virtue of the discreteness of the spec-
trum (this is not mandatory for the nonclosed system
(1), but in the present case it proceeds from the
boundedness of diffusion), the fluctuations of B(t) are
clearly regular (upper curve in Fig. 2; k= 10, TD~13,

FIG. 1.
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TH~600). Nevertheless, the eigenfunctions are not only
Shnirel'man ergodic21 (i.e., their Wigner functions are,
on the average, uniformly distributed in the accessible
region of p.s.22), but are also, apparently, Gaussian
random functions (Shnirel'man's hypothesis). Numeri-
cal modeling indicates that the spatial structure of I >p\*
resembles that of JV~fe2/6 randomly distributed classi-
cal particles.
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M. I. Rabinovich, Pathways to and properties of
stochasticity in dissipative systems. The traditional in-
terest of physicists in the stochastic behavior of nonlin-
ear dissipative systems has become even deeper in re-
cent years. During the last five years (for earlier re-
sults see, for example, Ref. 1), stochastic self-oscilla-
tions which are determined by the complex dynamics of
a system and not by external noise (mathematically, the
strange attractor consists of such oscillations), have
been observed experimentally and investigated in a wide
variety of applications—biological membranes excited
by a periodic field, Josephson junctions, autocatalytic
chemical reactions, convective fluid flows, etc; the ex-
periments that were performed stimulated theoreticians
and as a result a complete analytic description of the
transition was achieved for certain cases that was later
confirmed by suitably designed experiments. From a
physical point of view, there is considerable interest in
the establishment and recognition of several basic
phenomena during this period: the transition of dissipa-
tive nonlinear systems to stochastic behavior on a
change in parameters conies about in only a few differ-
ent ways: these transition pathways are often found to
be common not only for systems of arbitrary physical
nature, but, near the transition boundary, also for

lumped and distributed systems (for example, flows in
cells2); the stochasticity properties of dissipative and
Hamiltonian systems are also similar in many cases.

The paper discusses specific results obtained recently
in this area by the USSR Academy of Sciences Institute
of Applied Physics (IPF). Among them: observation of
a transition to stochastic behavior through doubling of
the period in a parametrically excited nonlinear chain3

and in a model that describes the decay of a pair of
quanta in the same state in a nonequilibrium medium
(stochastic modulation)4; use of the fractal dimension of
strange attractors to estimate the closeness of the sto-
chastic behavior of a dissipative system to the behavior
of stochastic Hamiltonian systems or one-dimensional
mappings5; establishment of the fact that on transition
to stochasticity via a hierarchy of period doublings, the
width of the spectral peaks observed in the power spec-
trum of the stochastic motion increases in accordance
with the universal law Aw~(r-rc)°, where the critical
index is p= 2.42.. .6; detection of stochastization of
soliton motion in periodic fields within the framework
of the nonintegrable models encountered in solid-state
physics, plasma physics, etc.7
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