B. V. Chirikov, Dynamic chaos in classical and the random motion (usually oscillatory) of a fully de-
quantum systems. Dyaamic chaos (d. c.) is defined as terminate classical system (syn.: dynamic stochastic-
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ity). The paper considers one of the typical prob-
lems—a small perturbation (parameter ¢ <« 1) of a fully
integrable Hamiltonian system. The existence of a
critical perturbation (g, >0) below which quasiperiodic
oscillations persist for most paths assuming nonlinear-
ity of the unperturbed system and sufficient smoothness
of the perturbation, has been established by the Kolmo-
gorov-Arnol’d-Mozer theorem. An effective estimate
of €. is obtained by analyzing the structure of nonlinear
resonances and their interaction.? It has been possible
in this way to solve the familiar Fermi-Past-Ulam
problem of randomization of oscillations of a nonlinear
string,® Budker’s problem of retention of a particle in
an adiabatic magnetic trap,* and others (see Refs. 2,
5-8).

If ¢ > ¢, the motion becomes chaotic for most initial
conditions and admits of simple statistical description
with a diffusion equation.? The mechanism by which
d. c. arises involves strong (exponential) local instabil-
ity, which is characterized by the average divergence
rate of nearby paths or by the metric entropy # [sec™].°
The latter is a convenient practical criterion of d. c. in
computer modeling.?2 According to the algorithmic the-
ory of dynamic systems, the condition »>0 is necessary
and sufficient for randomness of nearly all paths,!® and
the randomness concept is introduced on the basis of
the complexity and unpredictability of the individual
paths in accordance with intuitive “true”-randomness
conceptions. We note the complexity of the chaotic path
consists not in the equations of motion, but in the initial
conditions of the path, and reflects the continuity of the
phase space (p. s.) in classical mechanics.!' Inthe author’s
opinion it is possible and useful in view of these results
to proceed in a contrary manner, defining the random
process as the motion of a classical deterministic sys-
tem with 2>0.

When g < ¢, d. c. is preserved in narrow layers
around the separatrices of the resonances.?'? For mul-
tidimensional oscillations, this results in universal
(for all ¢ =~ 0) instability—Arnol’d diffusion throughout
the entire system of stochastic layers intersecting in
the p. s.2%'3 Degpite the lower velocity, it may play a
definite role in magnetic traps,* colliding-beam sys-
tems,'? and the Solar System.s

Dynamic chaos is impossible in quantum mechanics
owing to the discrete nature of a closed system bounded
in p. s.'® and the discreteness of the p. s. itself. How-
ever, the correspondence principle requires a transi-
tion to classical mechanics, including to d. ¢. This
contradiction is resolved in Ref. 7 with the aid of the
notion of temporary or transitory chaos, i.e., by intro-
ducing various time scales on which various statistical
properties of d. ¢. are simulated.

The shortest, dynamic scale 7, is obtained directly
from Ehrenfest’s theorem and, with consideration of
the exponentially rapid spreading of the packets, is
equal™!” to 7,~1In(n)/h, where n> 1 is the characteristic
quasiclassic parameter. Quantum dynamics agrees
fully with classical dynamics on this scale.

The diffusion scale 1, > 7, which was observed in
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Ref. 18 and explained in Ref. 7, is more interesting and
unexpected. Consider, for example, a classical system
specified by the mapping (I, 8) ~(7,6):

T=I-+ksin0, 8= 0-7F (1)

i.e., a rotator acted upon by short “bushes” (k sing)
with period 7. Many nonlinear-oscillation problems
can be reduced to such a model including motion in the
vicinity of a separatrix.? For k >k = 1/T, we have un-
limited diffusion with respect to I at a rate E/t = (I2)/
2t~ k*/4k_,, and t is the number of iterations of the
mapping). In the quantum case (I = n is the “rotator”
level number, % is the number of quanta per push, and
#=1), the same diffusion is preserved on the interval
t < 7, with the additional condition £ >>1 (k~1 is the
quantum limit of stability*®). At ¢2 7j, the diffusion
rate drops sharply (Fig. 1, curve 2 at 1 <150; the
straight line corresponds to classical diffusion). In this
example, k=20, T=1/4, 7,~k*/8=50, 7, ~In(1/T)/
2h,,=0.8. At t>¢ there is no local instability in the
quantum system (k o,=0). This is illustrated in Fig. 1%
by the reversal of the velocities (¢~ ¢*) at time ¢= 150,
followed by “antidiffusion,” i.e., a return to the initial
state (with accuracy better than 107%). Curve 1 charac-
terizes the classical system with the same parameters
(E(t) is the average over 10° paths, the scale is un-
changed). Here h  ~In(%27/2)>0 and the computing er-
rors (~107'?) “restore” diffusion after ~30 iterations
following velocity reversal.

The relaxation toward the equilibrium state at > 7,
(open circles in the left-side of Fig. 2, k= 40) is de-
scribed satisfactorily by the expression 4E(t)/k?
= 75 In(1.5¢/7,) (solid line; 7,~140) up to t~7,
~7,NInN, where N~k?/6~ 7, is the number of excited
eigenfunctions. During relaxation, the diffusion Gaus-
sian distribution becomes an equilibrium distribution
f(n), which is compatible with a simple exponential at
n> 1 (Fig. 2; the dark circles represent = 10%, the
open circles ¢ = 10%, and the straight line f,(n) = exp(-n/
21); £=10). By virtue of the discreteness of the spec-
trum (this is not mandatory for the nonclosed system
(1), but in the present case it proceeds from the
boundedness of diffusion), the fluctuations of E{f) are
clearly regular (upper curve in Fig. 2; k=10, 7,~13
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FIG. 2.

T~ 600). Nevertheless, the eigenfunctions are not only
Shnirel’man ergodic® (i.e., their Wigner functions are,
on the average, uniformly distributed in the accessible
region of p.s.??), but are also, apparently, Gaussian
random functions (Shnirel’man’s hypothesis). Numeri-
cal modeling indicates that the spatial structure of |¢|?
resembles that of N~%?/6 randomly distributed classi-
cal particles.
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