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An account is given in this review of the basic experimental results and theoretical concepts concerning the
superfluid A and B phases of 3He. The A and B phases of 3He possess the most complicated order parameters
of all presently known ordered materials, resulting in a rich spectrum of properties of these phases: magnetic,
acoustic, superfluid, and others. The theoretical description has been carried out on a phenomenological level,
establishing the structure of the superfluid phases of 3He on the basis of general concepts of Cooper pairing
with nonzero angular momentum and the set of experimental data. A separate section is devoted to linear and
nonlinear NMR in superfluid 3He. NMR experiments and theory have played an important role in
understanding the structure of the superfluid phases of 3He.
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1. INTRODUCTION

The helium isotope with atomic weight 3, as well as
helium-4, forms a liquid which does not solidify at nor-
mal pressure all the way down to absolute zero tempera-
ture. The nuclear spin of 3He is 1/2; therefore, unlike
the spinless 4He, liquid 3He is a Fermi liquid with a de-
generacy temperature near 1 K. It is well known that at
a sufficiently low temperature and in the presence of ar-
bitrarily weak interparticle attraction a Fermi liquid is
unstable to Cooper pairing of particles, resulting in a
transition to a superfluid state. More accurately, the
transition occurs even if the attraction takes place at
some one value of L, the orbital angular momentum of
relative motion of paired particles. Thus, in supercon-
ductors Cooper pairing of electrons occurs in the s-
state. The search for superfluidity in 3He started in
1959, when it was shown theoretically by L. Pitaev-
skil1* that due to the strong repulsion of 3He atoms at
short distances atomic pairing, caused by Van der
Waals attraction, must occur in a state with nonvanish-
ing angular momentum L (for an estimate of the transi-
tion temperature see Ref. Ib). Models for superfluidity

of 3He were developed in following years in the spirit of
the DCS theory of superconductivity, among which two
models of superfluid Fermi liquids with Cooper pairing
in the p state stand out, the so-called Anderson-Morel2

and Balian-Werthamer3 models.

Meanwhile, the development of cryogenic techniques
made it possible to work in the temperature region of
the order of 10"3 K. There exist three methods by which
one can reach such low temperatures; solution of 3He in
4He, adiabatic magnetization, and the Pomeranchuk ef-
fect. The latter consists of the fact that at temperatures
below 0.3 K the entropy of liquid 3He Sx = yT is lower
than the paramagnetic entropy of solid 3He S3 = In2.
Therefore, compressing 3He adiabatically till the melt-
ing curve, we transform part of helium-3 from the liq-
uid to the solid state, thus lowering the temperature of
the mixture. Cooling by the Pomeranchuk effect was
first achieved by Anufriev4 in 1965. It is by this method
that Osheroff, Richardson, and Lee5 discovered in 1972
a small break, and then, after an interval, a jump on
the curve of the time dependence of the pressure of a
liquid and solid 3He mixture in the millikelvin tempera-
ture region.
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FIG. 1.

It was shown that the break was explained by a phase
transition (Tc= 2.6 • 10"3 K) of liquid helium from the
normal state to a superfluid phase, called the A phase,
and the jump—by a phase transition (TAa = 2.07 • 10"3 K)
of the A phase to another superfluid phase, called the B
phase (see the phase diagram in Fig. 1). As a result of
intense experimental and theoretical study of the new
phases it was established that the A phase corresponds
to the model of ̂ -pairing, theoretically considered by
Anderson and Morel,2 and the B phase—to the Balian
and Werthamer3 model. The properties of the new
phases are surprisingly diverse, and recall in a number
of cases the properties of other ordered materials:
superconductors, magnets, and liquid crystals. Exper-
imental work in the millikelvin region is carried out in
several laboratories in the world, and now, after a
lapse of 10 years following the discovery of the small
singular features on the melting curve of 3He, a whole
new area in the physics of superlow temperatures was
generated, the physics of superfluid 3He.

The literature on superfluid 3He, numbering hundreds
of publications, contains several experimental6"11 and
theoretical12"16 review articles. Two collections of pa-
pers on superfluid 3He17-18 were translated into Rus-
sian. The superfluid phases of 3He are such rich and
interesting objects, that each group of properties, mag-
netic, acoustic, superfluid, etc., merits writing a
separate review. And yet there exists hardly any re-
view literature in Russian on superfluid 3He. The pres-
ent paper contains a brief description of the basic ex-
perimental results and theoretical concepts, making it
possible to establish the structure of the superfluid
phases of 3He. A separate section is devoted to nuclear
magnetic resonance, playing a major role in identifying
the phases of 3He.

The present article is subtitled "introduction to the
subject", and, naturally, contains many gaps which,
the author hopes, will be filled in subsequent more spe-
cialized reviews. One of these gaps is partially com-
pensated by a popular soft-cover book,19 devoted to the
superfluid properties of 3He-A, possibly the most inter-
esting and unusual aspect of what the discovery of the
new phases of liquid 3He brought to physics.

2. BASIC EXPERIMENTAL PROPERTIES OF THE
SUPERFLUID PHASES OF 3He

a) Phase diagram

The phase diagram of the new phases of 3He is shown
schematically in Fig. 1. Here S denotes the region of
solid 3He, starting above 35 atm, N denotes the region

of normal liquid 3He, and A and B, respectively, the re-
gions of superfluid 3He-A and 3He-B. The phase transi-
tion between the normal and superfluid phases is a sec-
ond order transition. The transition between the A and
B phases is of first order, with a latent heat near the
melting line close to 20 erg/mol. Two essential differ-
ences are introduced by the switching on of a magnetic
field. First, the direct transition from the N to the B
phase disappears in the region below 20 atm, i.e., as
shown by the dashed line in Fig. 1, in the presence of a
magnetic field the B phase is separated from the N
phase by a narrow band of the A phase. Secondly, in a
magnetic field the Tc line splits into two transitions (see
Fig. 2) with temperatures Tcl and Ta (the so-called A1

and A2 transitions),

7-,.,-7-c, = 6.10-» (K/Gauss) H.

between which 3He is in the state of the Ax phase.20

b) Specific heat
The temperature dependence of the specific heat is

similar to the behavior of the specific heat in supercon-
ductors. The specific heat ratio CS/CN at Tc, equal to
2.43 in the case of superconductors, is for He near 2.8
at high pressures, this being a manifestation of strong
coupling effects (see Ref. 21), while for vanishing pres-
sure CS/CN approaches 2.43.

c) Susceptibility
Magnetic susceptibility measurements of the A-phase

show that it coincides, within a few tenths of a percent,
with the magnetic susceptibility of 3He in the normal
state. This implies that if the transition mechanism is
Cooper pairing, the transition occurs in states with pair
spin S = 1 and two equally probable spin projections on
the direction of the field S, = ±1. It is precisely for this
pairing that pairs react to a magnetic field as atoms
with spin projections S,= ±|. The small change in the
susceptibility is due to renormalization of the Fermi
liquid parameters (of the order of A/eF ~10"3) during
the transition.

Following a sharp drop in the susceptibility with the
transition from the A to the B phase, a drop which dis-
appears together with the A phase with decreasing pres-
sure (see Fig. 3), in the B phase the magnetic sus-
ceptibility starts decreasing smoothly with tempera-
ture, reaching a value ~0.3xN at T= 0. This implies the
appearance in the transition to the B phase of states with
S,= 0, along with the paired states with spin projections

FIG. 2.
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FIG. 3.

S,= ±1 along the field direction which are characteristic
of the A phase. The susceptibility of a Fermi gas,
paired in the S = 1 state with three equally probable pro-
jections S, = 0,±1, should tend to 2XN/3 when the tem-
perature tends to zero, but due to Fermi liquid correc-
tions7-22-23 the limiting value of xB(T= 0) is near 0.3xN

(see Ref. 7). The dependence of the susceptibility of the
B-phase on T/T0, where Tc is the transition tempera-
ture at a given pressure, is nearly universal. This im-
plies that the transition temperature Tc is common for
the A and B phases. This is also indicated by the ab-
sence of a break in the Tc curve at the termination point
of the first order transition line (the point P on Fig. 1).

The fact that the susceptibility of the B phase is al-
ways smaller than that of the A phase leads to an impor-
tant thermodynamic consequence. Specifically, the A
phase becomes energetically more favorable than the B
phase in the presence of a magnetic field in a narrow
region near Tc. Therefore, as already noted, the re-
gion of existence of the B phase in a magnetic field is
always separated from the normal liquid by an A phase
band, which is illustrated on Fig. 1 by dashed lines.

We also note here that when the temperature is low-
ered in a magnetic field the phase transition to the
superfluid state occurs initially at Tcl for particles with
spins directed along the field, and then at Tc2 for parti-
cles with spins against the field. This follows20 from
the dependence of the transition temperatures on the
density of states at the Fermi surface, being different
for particles with spins along and against the field:

For this reason the Al phase (Fig. 2) is a superfluid
liquid containing pairs with S, = +1 only. The total spon-
taneous magnetization of the Ax phase, however, is in-
significant, of the order of ~(i\/cF)2K 10"6, for the mag-
netic moment of the superfluid component is compen-
sated with just this accuracy by the magnetic moment of
the normal component, having the opposite spin orienta-
tion.

d) Nuclear magnetic resonance

In normal 3He, placed in a constant magnetic field H0

and a varying field perpendicular to it, absorption oc-
curs at the Larmor frequency of spin precession u>0

= yH0. In 3He-A this frequency is shifted,

occurs also resonance absorption in a varying field
parallel to the constant field H0, at a frequency equal to
Wj, = OA(T). Absorption similarly occurs in the B phase
at frequency u>Bl, = f2fl(r), of the same order of magni-
tude as J5A(r). There is no frequency shift of the trans-
verse resonance in the B phase.

The frequency shift in the A phase implies the pres-
ence of a preferred direction in the liquid, to which the
spin system is locked. The theoretical treatment of
NMR, as well as comparison with experimental data,
will be carried out in the third section of this review.

e) Ultrasound attenuation
Measurements of ultrasound absorption in 3He show a

clearly expressed peak in transitions from the normal
phase to both the A phase and the B phase of superfluid
3He,25-26 explained by a destruction mechanism of Coop-
er pairs.15 In magnetic fields above 4 kOe a splitting of
the absorption peak into two peaks is observed for the
transition to the A phase,25 from which it can be con-
cluded that the phase transition is split into two transi-
tions with temperatures Tcl and T& (see sub section
2a).

The existence of a strong dependence of the speed and
attenuation of sound in the A phase on the mutual orien-
tations of the sound propagation direction and the direc-
tion of the applied magnetic field was demonstrated ex-
perimentally,27-28 and this along with NMR experiments
implies anisotropy of the A phase.

Besides ultrasound absorption at frequency u>=
we have specific absorption in the superfluid phases of
3He at lower frequencies, related to oscillations of the
absolute value of the order parameter, i.e., structural
oscillations of Cooper pairs (see reviews 15, 16). For
propagating waves of this type in the B phase of 3He a
behavior was recently discovered characteristic of
waves in nonlinear optical systems.29-30

f) Superfluid properties.

1) Viscous damping of an oscillating wire.31 The first
proof of superfluidity in 3He was provided by experi-
ments with an oscillating wire, in which the amplitude
and resonance frequency of a tight wire in a chamber
with liquid 3He were measured. The oscillation ampli-
tude in normal 3He a-(pTj)"1^2 decreases with tempera-
ture, which corresponds to an increase in the viscosity
of a normal Fermi Liquid: rj~ T~*. At the A transition
the amplitude starts increasing, at the B transition it
increases by a jump, and then increases more quickly
than could be expected from the growth generated by the
reduced viscosity, which in a superfluid Fermi liquid
must behave near T. as

The quantity nA depends on temperature, vanishing at
T= T,,, and far from Tc it corresponds to a field of ap-
proximately 50 Gauss. Moreover, in the A phase there

(see Ref. 32).

The splitting of the A transition in strong magnetic
fields was also verified by this method.310

2) Thermal fluxes.33-7-11 As is well known from the
example of 4He, the heat transfer mechaaism in a

162 Sov. Phys. Usp. 26(2), Feb. 1983 V. P. Mineev 162



superfluid liquid is mostly due to the motion of the nor-
mal component, so that the total current satisfies
j = p#n+ P,vs = 0. Measurements of heat resistance,
i.e., the ratio of the temperature difference AT at the
edges of a capillary to the heat flow AQ show that a hy-
drodynamic mechanism of heat transfer is also gener-
ated in liquid 3He below the transition temperature T0.
A sharp increase is also observed experimentally in the
heat resistance for a given thermal flux in superfluid
3He at temperatures near Tc. This effect is explained
within the two-fluid model by the fact that the thermal
flux is proportional to the momentum of the normal
compoae.it AQ ~pnvn~ -p,v,, and conservation of AQ for
r-rc, i.e., forps-0, is possible only for increasing
v,. A disruption of the laminar superfluid flow occurs
at some temperature T<TC when a critical velocity val-
ue v\ is reached. Critical velocity values thus mea-
sured near Tc (see Ref. 33, as well as Refs. 7, 11) are
near 0.5 cm/sec in 3He-B, and near 0.1 cm/sec in
3He-A.

3) Fourth sound.34'3*'7 A characteristic property of a
superfluid liquid is the fourth sound, propagating in
capillaries and pores filled by helium, whose sizes are
smaller than the viscous penetration depth of the wa-/e
\ = (rj/ijjp,)1^. The speed of fourth sound is proportional
to the square root of the density of the superfluid com-
ponent c4~ p\/2. Measurements of C4 near Tc are in good
agreement with the theoretical behavior p,/p~{l -(T/

4) Critical velocity and critical current. Measure-
ments of the period and damping of the oscillatory mo-
tion of superfluid 3He through a narrow orifice inside a
toroidal channel gave critical velocity v?.lues in both
phases of 3He of the order of several millimeters a
second.36 Similar values of i>c were observed by mea-
surements of transverse NMR frequency shifts in chan-
nels with moving 3He-A.37 The critical velocities of
superfluid flow in a capillary, thus found, differ strong-
ly from the Landau critical velocity, at which excita-
tions start being created in the superfluid liquid. The
Landau critical velocity can be measured by the motion
of charged ions in 3He. More precisely, the velocity of
moving ions is proportional to the applied field v = neE.
For low fields the mobility coefficient p. is determined
by the ion deceleration due to collisions with excitations
in the superfluid liquid. In high fields the dominant con-
tribution to the slowdown is provided by the mechanism
of breakdown of Cooper pairs. A change in slope in the
dependence of velocity on the applied field occurs at
speeds of the order of the Landau critical velocity
vc(T) = A(T)//>F (vc(0) = 10 cm/ sec), which is satisfied
experimentally quite well.38'39

The temperature dependence of the critical current
through thin capillaries in the B phase of 3He was also
found experimentally,40 being in complete agreement
with the law ;C~{1 -(T/TC)}3/2, following from the Ginz-
burg- Landau theory.

5) "Andronikashvili" type experiments.4 The vis-

cosity and density of the normal component of both the A
and B phase were measured41"45 by the torsional oscilla-
tion method, first used by Andronikashvili in superfluid
4He. The results obtained are in fairly good agreement
with theoretical predictions (a discussion and references
to numerous theoretical papers can be found in a review
of Ref. 16). In the following section we will address the
problem of the temperature dependence of pn(T) in the A
and B phases of 3He. We note here only that in the B
phase pn(T) is a scalar function, as in normal superfluid
4He, while in the A phase the quantity p"t(T) is a tensor,
i.e., it depends on the directions of the anisotropy axes
of the liquid.

6) Second sound. As is well known, the propagation of
temperature waves, second sound, being density oscil-
lations of the normal and superfluid components origin-
ating in the opposite phase, is possible in superfluid
liquids. So far it has not been possible to observe the
second sound signal in the A and B phases due to the
large value of damping a (c%= paTS2/pnC =* 1 cmVsec2),

a = ̂ -f^-(4'l + d + -M«105 cm'1

at frequency tu^ l kHz. In the Aj phase, however, the
superfluid component of which consists of particles with
spin oriented along the external field, and whose normal
component has oppositely oriented spins, second sound
is simply oscillations of magnetization, propagating
with velocity c\ = (p*j>/pn

Lti(yn/2m)z* 1 m2/c2 • 102[l - T/
Tcl] (see Refs. 46, 47), where x is the magnetic sus-
ceptibility, and y is the gyromagnetic ratio. The mea-
surements of this quantity48 are in excellent agreement
with the dependence given. The sound signal disappears
upon transition to the A phase (T =TC2). It was estab-
lished from the polarization of the transient signal in
this experiment that the superfluid component of the A1

phase indeed has a magnetization along the external
field, though the opposite orientation of pair spins is
also theoretically possible, since the density of states
at the Fermi surface could also decrease with increas-
ing Fermi level in a real Fermi liquid (see subsection
2b).

With this we conclude the brief list of basic experi-
mental results for the superfluid phases of 3He. Several
experiments will be described after the introduction of
the necessary theoretical concepts. To these belong:
linear and nonlinear NMR in the A and B phases, exper-
iments related to the anisotropic properties of the A
phase, the measurement of the normal density tensor,
and orbital magnetism.

For more detail on experimental results we refer to
reviews of Refs. 6—11, papers in collections of Refs. 17,
18, as well as the proceedings of the last two low-tem-
perature conferences LT-15 and LT-16.49-50

For experiments related to the dynamics of orbital
degrees of freedom in 3He-A see Volovik's review of
Ref. 19.
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3. STRUCTURE OF THE SUPERFLUID PHASES OF
'He

a) The order parameter in the A and B phases of 3He

Magnetic susceptibility measurements (see Section 1)
justify the hypothesis that Cooper pairing of 3He atoms
occurs in states with S= 1. According to the general
principles of quantum mechanics the angular momentum
of Cooper pairs with S= 1 can acquire only odd values
L= 1,3,5,. .. Cooper pairing with L = 1 is realized in
superfluid 3He, because any other angular momentum
value would make the existence of an isotropic B phase
impossible.

Indeed, the wave function if> of a pair with spin 1 can
be expanded in components of vector spin wave func-
tions x = ( X i , X o > X-i), where

(1)

are the eigenfunctions of the projection of the spin oper-
ator Sc on some preferred direction £, and v is a unit
vector in spin space with coordinate axes (|, r\, £). The
expansion of 4>, linear in the components of v, can be
written in the form

|) = l/3 dv. (2)

Here the expansion coefficients dt are linear combina-
tions of the eigenfunctions Y^S, <}>) of the projection
operator of orbital angular momentum L,. The average
over the spin variable

is the probability density of finding a particle at the
point with angular coordinates 9 and (p. In an isotropic
state, however, dd* is independent of angle, and this
can happen only if the three components of the vector d
form an irreducible representation. The rotational
group has only one three-dimensional irreducible repre-
sentation, whose basis are the eigenfunctions of the
angular momentum projection operator L, with L= 1,
i.e., the spherical harmonic functions YLl^6, 0):

(3)

1/2

Here n= (nf, ny,n,) is a unit vector, directed from one
particle in the Cooper pair to the other.1'

Thus, as components of the spin vector d one can
choose the functions Yllt(9, <f>), or simply the compon-
ents of the unit vector n, i.e., in the B phase d= A(r)n,
where A(T) is a temperature dependent factor. In the
general case [retaining the requirement d*d= A2(T)] the
spin space can be rotated, so that for the B phase

«»«">. (4)

where Rtk is an arbitrary three-dimensional rotation
matrix (in the absence of spin-orbit interaction), and
el* is a phase factor. The matrix

common for all Cooper pairs, is an order parameter in
the B phase of 3He.

It is easily verified that in the isotropic B phase the
mean values of the projection operator of the pair spin
and angular momentum on any axis vanish. Indeed, the
pair spin operator S is a generator of rotations in spin
space:

S ,(!/= —iellkdh. (6)

Consequently, (d*)*S/i* = 0. We also have for the angu-
lar momentum operator of the pair

r n d "1 l" B " B t ^\L:= 1 , \ (dj )* Lpdj dQ = 0. V */

On the other hand, it is easily verified that the wave
function (2), (4) is an eigenfunction of the operators S2

and L2 with eigenvalues S(S+ 1) = L(L+ 1) = 2.

We turn now to the A phase of 3He. Magnetic sus-
ceptibility measurements (see Section 1) show that there
exists in the A phase Cooper pairing with S= 1 and two
equally probable spin projections S?= ±1 in the external
field direction. The wave function of this state must be
of the form i/>x~(xi+e'* X-i)- Due to the equal probabil-
ity of the ±1 spin projections, the coefficients of Xi and
X_! can differ from each other only by an arbitrary
phase factor e1*. Using expression (1), we obtain for
the pair wave function (2) of the A phase

]/3/(n)Vv, (8)

where V is a unit spin vector, perpendicular to the spin
quantization axis £ (V(= cos(<£/2), V,= sin(«j>/2)), and
/(a) is the coordinate wave function of an A phase pair,
whose absolute value squared |/(n) 1 2 must contain in-
formation on the ansiotropy of the A phase. As we al-
ready know (see subsection 2c), the A and B phases
have an identical critical temperature Tc; consequently,
Cooper pairing in the A phase, as well as in the B
phase, occurs in the p-state (L= 1). The experimental
data (primarily NMR) are explained very well by as-
suming that/(n) is proportional to the spherical har-
monic Y^S, <£), the eigenfunction of the angular momen-
tum projection operator Lt with eigenvalue M= 1 (see
Eq. 3).

In the general case of arbitrary orientation of the co-
ordinate axes the coordinate wave function of a pair in
the A phase of 3He is

/(») =
i

YT ", n), (9)

1)By n we can also denote the common direction of opposite
momenta of particles in a Cooper pair.

where A' and A" are two orthogonal unit vectors, and
[A'A*] = 1 specifies the direction of the quantization axis
of angular momentum or the anisotropy axis of the A
phase. The square of the absolute value of the spatial
wave function of the A phase is |/(n) | 2 = (l/2)A2(T)[nl]2,
so that Cooper pairs in the A phase are flattened in the
direction of the anisotropy axis 1.

The matrix
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(10)

common for all Cooper pairs, is the order parameter in
the A phase of 3He. We note that in the Ai phase, where
pairing occurs only between particles and field spins
(see Section 2), the wave function of the pair is 4>~Xi-
Therefore, taking into account (1) and (10), we obtain
the order parameter in the Ax phase

is isotropic in the B phase

.4;V = y A (D (V[ - ,; - iAJ),

where V and V" are unit orthogonal vectors, perpen-
dicular to the spin quantization axis £.

Usually, instead of expanding in terms of the vector
wave functions (1), (2) in spin space, one uses an ex-
pansion in components of a symmetric spinor, i.e., a
basis of symmetric, unitary, two-row matrices

V|!=t(0(l) Os.

where the vector

d, = Aihnk = — -L Sp (Op

(ID

(12)

(14)

is already familiar, a= (ox, a,,,^) are the Pauli ma-
trices, and 4> is an abbreviated notation for the spinor
>l>at. It is useful to reduce the expressions for the order
parameters of the A and B phases of 3He to the notation
of Eq. (11). From (4) we have (for Rik = 6 f»)

^ B - ,A(7- ) e '«( -"^'"» "-- . ) , (13)^ \ nz nx -- in,j I

and from (8) [for V= (0,0,1)]

where/(n) is given by expression (9).

The notation (11), (12) is convenient in many respects;
thus, for example, it follows from (6) and (11) that

Sxj;= [od] op, (6a)

whence it is seen that in either phase d is orthogonal to
the pair spin S.

b) The normal density and susceptibility of the A and
B phases of 3He

The energy of single-particle excitations in superfluid
Fermi liquids, where the order parameter $> of (11) is a
unitary matrix (to which, as is easily seen, the A and B
phases belong), is determined by the equation

£=1 = ]/?*+dd* (15)

where |, as usual, is the energy of normal Fermi
quasiparticles, measured from the Fermi level. Using
(13) and (14), we obtain in the B and A phases, respec-

and EA = \tively, EB = V ? 2 + Mf5 and EA= /£2 + (1/2) A^T) [nl]2,
whence it is clear that the A phase possesses aniso-
tropic, and the B phase—isotropic physical properties.

Thus, for example, the normal component density,
defined as

k. a k. CT

where f is the Fermi quasiparticle distribution function,

and is a tensor in the A phase:

?&* = ?[!"' (f) Z . J j + y1 (7-) (6,,-M,)J;

where Y(T) = fdnY(n, T)/4ir is the Yoshida function,
equal to 0 for T= 0, and 1 for T= Tc:

(16)

(17)

Y" (T) = 3 f -jH- (ni)2 y (n, T), Y1 (7) = Y (71) — Y'< (T).
(18)

Fermi liquid corrections to the normal densities in the
A and B phases were not taken into account in Eqs. (16),
(17). The corresponding expressions can be found in
the reviews of Refs. 13, 16.

Near the walls of the 3He-A container the direction 1
coincides with the normal to the wall (see subsection
3g). Far from the walls the direction of 1 can vary with
the magnetic field (see subsection 3e). Measurements
of the superfluid component density of the A phase,
ps

u= p&ti — p"jt carried out by the Andronikashvili
method,42-43 have confirmed the tensor nature of this
quantity.

We now find expressions for the magnetic susceptibil-
ity of the A and B phases. The calculation is conven-
iently performed in the general case (15).

We choose the direction of the pair spin quantization
along the z-axis; the vectors d(n) are then located in a
plane perpendicular to this axis (see the end of the pre-
ceding subsection). If the external magnetic field H is
also perpendicular to the z-axis, for example, H||d(n),
Cooper pairs will not react to it, and a contribution to
the susceptibility will be provided only by Bogolyubov
excitations with energy

where p. is the nuclear magneton, and a = ±1. We note
that the vector d depends on the momentum direction n
on the Fermi surface, therefore the susceptibility must
be calculated separately for each direction n. Thus,
the susceptibility in directions perpendicular to the di-
rection of the spin quantization axis is defined as

xn="^V2"2 I <^('a7r/(^1)) - ' ^^
a

where N0 is the density of states at the Fermi surface,
and/ is the Fermi distribution function of Bogolyubov
quasiparticles. Expression (19) can be rewritten in the
form

(20)

where XN = V-zN0/2 is the susceptibility of the normal
Fermi liquid, and the quantity Y(n, T) was defined in
(18).

If the field H is directed along the spin quantization
axis 2, all particles (i.e., both pairs and excitations)
contribute:

(21)
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where

n (£) = ±[l—1(1 -

is the particle distribution function, and

e»=/!
Thus, xi coincides with the susceptibility of the nor-

mal Fermi liquid.

The full expression for the susceptibility tensor is ob-
tained by integrating the combination of (20) and (21)
over all directions n:

0, (22)

whence, using expressions (4) and (8), we obtain for
the susceptibilities in the A and B phases:

1)], (23)

(24)

where Y(T) = fd&Y(n, T)/4ir is the Yoshida function. As
could be expected, the susceptibility of the A phase de-
pends on direction. We note, however, that since XA

is maximum in directions perpendicular to V, the equi-
librium position of V is perpendicular to the external
field, while the experimentally measured x m tne free
geometry always coincides with x". More accurate ex-
pressions for the susceptibilities in the A and B phases,
including Fermi liquid corrections, are (see Refs. 13,
16):

:H1-(Z,/4)1 1 /nc \
V IT\,i\ I' V*0'

where Z0 is the Fermi liquid constant.

We note that the energy difference of the A and B
phases near Tc is of the order of the condensation ener-
gy, i.e., U*-.FB)~{l-(r/:rc)}2(seeRef. 13), so that
the difference of magnetic energies of the A and B
phases in a magnetic field is

Therefore, as already noted in Section 1, in the pres-
ence of a magnetic field the A phase is always energeti-
cally more favorable than the B phase in a sufficiently
close neighborhood of the transition temperature.

c) General problem of the phases of p-pairing in 3He

As has already been mentioned, the order parameter
in a superfluid Fermi liquid with p-pairing is a complex
3x3 matrix Alk (see Eq. (12), depending in the general
case on 18 real parameters. Expressions for Aik in the
B and A phases are given by Eqs. (5) and (10). The ma-
trix Alk transforms as a vector in the first subscript for
rotations in spin space, and as a vector in the second
subscript for rotations in coordinate space. The spe-
cific shape of A^ for a given phase is determined by
minimizing the Ajlk-dependent energy. In the absence of
spin-orbit interaction, which, as we will see below, is
extremely small, the free energy of 3He is real and in-
dependent of the mutual orientation of the quantization

axes in the spin and coordinate spaces. Consequently,
it should not change under transformations of the order
parameter of the type

Atk-*Ap<i = ft'pifl;,i,ei'fAlk; (27)

where Rli and R^ are, respectively, the matrices of
three-dimensional rotations of spin and coordinate
space, and e{* is a gradient transformation. Near the
phase transition, where Aik is small, the Ginzburg-
Landau expansion in powers of the order parameter can
be used for the free energy:

(28)
The formulated invariance requirements are satisfied
here because the first subscript of A^ in (28) is con-
tracted only with the first, the second— with the second,
and jPcond is real. The three-dimensional rotations form
the group SO,, and the gradient transformations form
the group U(l), equivalent to the group of one-dimen-
sional rotations, or the circle S1. Thus, the full group
G, with respect to which the free energy of superfluid
3He is invariant, is the direct product SQjX SQ,x U(l).

The functional (8) has several extrema, determined
by the equations 5.Foond/6/lit = 0. Which of the extrema
are minima, and which of the minima is absolute, de-
pends on the relations between the coefficients pt,
which, in turn, depend on temperature and pressure.
The problems of listing all minima, and then choosing
from among them the absolute minimum, are compli-
cated and have been solved only partially.51"55

The calculation of the coefficients P{ from the micro-
scopic theory is possible only in the "weak coupling"
approximation (see Ref. 51a) and is not particularly use-
ful, since in this case the absolute minimum in the
whole temperature and pressure region is realized for
the order parameter (5), corresponding to the B
phase.3-13 In calculations within the "weak coupling" ap-
proximation, A«E F , the interaction between Fermi
quasiparticles is assumed to be independent of the type
of pairing. However, as was first shown by Anderson
and Brinkman56 (see also Refs. 13, 21, 57-60), the
mechanism of Cooper pairing in 3He is exchange of spin
density fluctuations, i.e., paramagnons. The spin sus-
ceptibility, as well as the effective pair interaction in
the A phase is larger than in the B phase, which makes
the A phase energetically more favorable than the B
phase in the region of high temperatures and pressures.

d) Degeneracy spaces of the A and B phases

Many, primarily superfluid,19 properties of super-
fluid liquids result from the structure of the region of
variation of the order parameters, having in the A and
B phases the form [see Eq. (10) and (5)]:

Among all transformations (27), which keep the free
energy of the system invariant, only a part varies the
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order parameter. Thus, in the A phase these are the
three-dimensional rotations of coordinate space, which
alter the positions of the triplet of vectors (A', A", 1)
and form the SO3 group. Among the spin rotations only
those are important for the A phase, which vary the
orientation of the vector V, spanning the two-dimen-
sional sphere S2, and rotations around the direction of
V are unimportant. The gradient transformations of (27)
are equivalent for the A phase to the rotations A' and
A" around the direction of 1= [A'A"], therefore they
have already been taken into account. Moreover, A^
does not change under discrete transformations of the
form (V, A', A") ~(-V,-A', -A"), and consequently, the
points of the region of variation of the order parameter
of the A phase, going over into each other under such
transformations, are equivalent. The operation of
identification ("gluing together") of points of a set ac-
cording to this rule is called factorization. In the given
case we have a factorization of the direct product
S2x SO3 in terms of the set of two points Z2, denoted by
(S2 x SQj)/Z2. Thus, the complete region of variation of
the order parameter of the A phase is R*- = (S2xSO3)/Z2.
At all points of this region the functional (28) assumes
the same value which is the absolute minimum in a cer-
tain region of the phase diagram. Thus, as is usually
the case in second order phase transitions, the mini-
mum energy is realized in the whole region of variation
of the order parameter, which it is naturally to call the
degeneracy space. It is easily seen that for the A phase
the degeneracy space RA is five-dimensional, and the 5
variables parametrizing RA are the Goldstone variables.
We recall that in a superconductor, or in the normally
superfluid 4He, where the order parameter is a com-
plex function 4> = \il>\e'*, the minimum of the condensa-
tion energy is realized on the circle S1, the region of
variation of the phase factor e1*. It is well known that
the stable singularities, quantized vortices in 4He, cor-
respond to closed contours, traversing the circle S1,
the degeneracy space of 4He, an integral number of
times. It can be shown similarly that the stable singu-
larities in 3He-A correspond to closed contours in the
five-dimensional space (S2xSO3)/22, which cannot be
contracted into a point.61"64

In the B phase the region of variation of the factor
e1* is the circle S1, while the region of variation of the
real orthogonal matrix Rik is the group of three-dimen-
sional rotations SO3. Thus, the complete degeneracy
space of the B phase is RB = S1 xSOj.61"64

e) Spin-orbit interaction

1) Dipole energy. The spin-orbit interaction in elec-
trically neutral 3He results from the magnetic dipole
interaction of the nuclear spins of particles:

with spin | and wave function (11) $= t(od)ffy, interacting
according to

where y is the gyromagnetic ratio. The dipole energy
.FD is obtained by averaging Eq. (29) using the apparatus
of second quantization (see Ref. 13). However, to find
the form of the energy of the mutual orientation of the
spin and coordinate axes, it is sufficient to solve the
simpler quantum-mechanical problem for two particles

' — 3(S'n)(S"n)); (30)

where n is the direction of the vector from the particle
with spin S1 to the particle with spin S2. The dipole en-
ergy is, obviously,

*; (31)

where $ is determined by expression (11).

To calculate the trace it is sufficient to transform
the operator V to the form

(32)

S = S1 + S2.

By means of relation (6a) the trace of (31) is now easily
calculated:

= £D j-^-[3(dn)(d*n)-dd*].

Hence we obtain from (12) the expression

(33)

(34)

in which the contractions of the space and spin sub-
scripts appear directly. For A{i in (34) we have in mind
the normalized matrix AlkA*li= 1, whose absolute value
has already been taken into account in the dipole inter-
action constant gD.

The magnitude of the dipole-dipole interaction con-
stant gD is defined7 as the product of the number of
spins per unit volume N by the dipole interaction energy
of two spins y^Va3 and by the fraction of orderd parti-
cles ( A/eF)2. Taking into account that Na3 =* 1 and that
N/£v = 2Na, where N0 is the density of states at the
Fermi surface, we obtain gD = (2>JfN0A)2. An exact cal-
culation13 gives

^ f^Aln^) 2 . (35)

(36)

(37)

Therefore the spin-orbit interaction energy (34) is
everywhere low in comparison with the condensation en-
ergy (37), except for a narrow region AT=* 10"8 K near
the transition temperature, where, as shown in Ref. 65,
the so-called vector phase of 3He must exist. The pres-
ence of spin-orbit interaction must also lead to the ap-
pearance of nuclear ferromagnetism, though extremely
small, of the A phase of 3He with magnetic moment
density65

M « 10-" (I - — } "' (Gauss/cm3)

(compare with electron ferromagnetism of the A phase,
considered in the following subsection).

Near the critical temperature13

gD (T) = lo->> (!--£) (erg/cm3),

while the condensation energy (28) is
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2) The A phase. Using the expression for the order
parameter of the A phase (10), we obtain from (33)

density of the A phase can be written in the form

= const-gl)(T)(V\)*. (38)

Thus, in the A phase the dipole energy is minimum
when V= ±1. In the presence of a spin-orbit interaction
the order parameter of the A phase (10) is

= ] A (T) [A' iAJ). (39)

The region of variation of the order parameter (39), the
degeneracy space of the A phase in the presence of the
dipole interaction RA coincides with the region of varia-
tion of the reference expression (A', A",l) the three-di-
mensional rotation group SQj.

3) The B phase. Using for the real orthogonal matrix
Rik, i.e., the matrix of three-dimensional rotations of
(5), a parametrization by means of the rotational angle
8 around the direction u:

Hit, = Si* + (Wjioi, — 6,ft) (1 -cos6) -eiMG>, sin 6,

we obtain in the B phase from (34)

(40)

(41>
The dipole energy of the B phase is minimum when the
angle of rotation 9 of the spin space relative to the co-
ordinate space around an arbitrary axis (!) 90

= arc cos(-|)^ 104°. The order parameter of the B
phase in the presence of spin-orbit interaction is

,, (o>,eo). (42)

To elucidate the geometric structure of the degener-
acy space of the B phase in the presence of spin-orbit
interaction we recall that the group of three-dimension-
al rotations SO3, parametrized by the angle 0 and the
axis o>, is a sphere of radius n, whose points are the
ends of the vectors 0u> of length 9, directed along w,
and drawn from the center of the sphere. Diametrically
opposed points on the surface of this sphere correspond
to the same rotation, since rotations by an angle JT
around oppositely directed axes coincide. The spin-or-
bit interaction fixes the length of the vectors 9u>= 00w.
The degeneracy space of the B phase in the presence of
spin-orbit interaction is RB = S^S2,83'64 where the cir-
cle S1 is the region of variation of the phase factor ei9

in (42), and the sphere S2 is the region of variation of
the vector 90w (see Fig. 4).

f) The superfluid phases in a magnetic field

1) The A phase. As follows from the expression for
the magnetic susceptibility (25), the magnetic energy

FIG. 4.
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, = const + J

X a = X N - (43)

The energy (43) is minimum when the vector V is per-
pendicular to the field H. Recalling that the spin-orb it
interaction aligns the vectors 1 parallel or antiparallel
to V, we obtain that in the presence of a constant mag-
netic field 3He-A acquires the so-called Leggett config-
uration: 1|[ VxH. The degeneracy in this case is still
not fully removed. Indeed, the vector V can rotate
freely around the direction of H in the plane perpendicu-
lar to H, and, moreover, the vectors A' and A" can ro-
tate around the direction 11| V. Consequently, in the
presence of a spin-orbit interaction and a magnetic field
the degeneracy space of the A phase is #A= S*x S1.

Near Tc(see Ref. 13)

Gauss
(44)

Comparison of this quantity with the dipole energy (36)
shows that near rc the magnetic energy exceeds the di-
pole energy in fields above 30 Gauss.

2) Orbital magnetism of the A phase. It was shown by
Leggett86 that the presence of orbital angular momentum
in each Cooper pair must lead to a shift in the electron
terms of atoms, i.e., to the appearance of electron ro-
tation around atoms (electron- rotation interaction), a
consequence of which is a finite magnetic mome.it of
each pair, directed for each pair in the common 1 di-
rection. Thus, 3He-A is a liquid orbital ferromagnet,
and its Hamiltonian in a magnetic field must contain a
term linear in the field, besides the quadratic one:

An estimate gives66

Xm w W~- (Gauss) ( 1 - •£ ) XN ,

which exceeds by several orders the nuclear magnetic
moment of the A phase, considered in the preceding
section (xN~10~B). We know (see subsection 2e) that the
sound attenuation in the A phase depends strongly on the
mutual orientation of the vector 1 and the direction of
sound propagation. 15>16i27'2B The dependence of sound at-
tenuation on the sign of the applied field was established
precisely by this method,67 and the quantity Xm found was
in fair agreement with Leggett's estimate.66 We also
note here that similarly to the magnetic moment in the
A phase Leggett has theoretically predicted an electric
dipole moment in the B phase, generated by the parity-
violating weak electron-nuclear interaction.

3) The B phase. We turn now to the B phase in a mag-
netic field. The spin- orbit interaction in the B phase
fixes the angle of rotation 90= arccos(-i), but retains
the degeneracy in directions of the rotation axis u>. In
this case we have for the rotation matrix [see Eqs.
(40), (42)]:

,— V loe,

V. P. Mineev

(45)
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The susceptibility in the B phase (26) is isotropic,
therefore the magnetic field does not exert a direct
orienting action on the axis direction w. An effect of
orientation is generated only through corrections to the
order parameter of the B phase due to the presence of a
magnetic field, since any further interaction "deforms"
the original phase (compare with the "unpairing" effect
of a magnetic field in superconductors). Thus, to find
the order parameter in the presence of a magnetic field,
it is necessary to minimize the sum

^cond+^magn, (46)

where the condensation energy Fcon;1 is given by expres-
sion (28), and the magnetic energy Fmin can be written
as

(47)

where 6x= X N ~ Xs [see Eqs. (22), (26)], and the matrix
Aik is normalized to unity, AlkA*k= 1. A minimum of
(46) will be realized (see Refs. 69, 14) on the deformed
B phase

(48)

where a and /3 are constants of the order of 6\/Faotf

The mutual orientation of H and u> can be found by sub-
stituting (48) into expression (34) for the dipole energy:

2 ( AQ\

Taking into account (45), we obtain from (49) (see Ref.
69):

Calculations69 give in the weak coupling limit the quan-
tity pgD?* 4- 10"12 erg/cm3 Gauss2, independent of tem-
perature.

Thus, in the B phase the equilibrium direction of the
vector Si is parallel or antiparallel to the external mag-
netic field. In the presence of a field the region of vari-
ation of the vector u, the sphere S2 (Fig. 4), is com-
pressed to the two points Z2, lying at the ends of the di-
ameter of this sphere, directed parallel to the external
field direction H. The degeneracy space of the B phase
in a magnetic field is S.B= Sl x Z2.™

g) The superfluid phases in an inhomogeneous state

1) Gradient energy. In the presence of inhomogenei-
ties in superfluid 3He the condensation (28), dipole (34),
and magnetic (43), (50) energies must be supplemented
by a gradient energy, whose density in the lowest
quadratic order in the gradient has for T~TC the gen-
eral form:

Ki (51)

Calculations in the weak coupling approximation13 give
for T -T :

the case of sufficiently slow spatial variations of the or-
der parameter, the characteristic scale of which is
smaller than the coherence length ij(T'). An expression
for f(T) is obtained, as usual, by comparing the con-
densation energy (28) with the gradient energy (51):
|(T) = -fKjoL ~ £0/Vl-(r7rJ, where K is the common
value of the coefficients K{. Numerically £0 can be
found from the BCS estimate £0= Kvf/\. Since both the
Fermi velocity VF and the gap Ap in 3He are smaller by
approximately 3 orders of magnitude than in supercon-
ductors, the coherence length in 3He is of the same or-
der of magnitude as in superconductors, £(,=* 10"5-10"6

cm.

Similarly comparing the gradient (51) and dipole (34)
energies, we obtain the dipole length ^D^(K^2/gD)i/2

^(102-103)|0. Similarly comparing the gradient and
magnetic energies (43) and (50), we find the magnetic
length |m ̂ (Ktf/Fj1 /2. In the A phase £m < £D in fields
stronger than 30 Gauss, and for the B phase |m > £D for
practically all fields and temperatures not too close to
r.-

3) Currents. An expression for the superfluid current
is obtained from Eq. (51) by a Galilean transformation
of the order parameter

In the approximation linear in u we have

where

/I = ̂ - Im (K^ViAn, ( 52)

Substituting the expression for the order parameter in
the A phase (10) into (52), we obtain71

+ -|L rot I -2*- 1(1 roll)}, (53)

(54)

where

Similarly, in the B phase we have, using (52) and (5)

(55)

It is hence seen that the superfluid current in the B
phase is proportional to the superfluid velocity potential
vs= (K/m)v$, implying that the superfluid properties of
the B phase do not differ from the superfluid properties
of ordinary 4He. As a consequence of the more compli-
cated structures of the order parameter of the A phase
we have a more complicated expression for the super-
fluid current (53). Volovik's review19 is devoted to the
unusual properties of the A phase.

Similarly one also finds the spin current:

(56)

2) Characteristic lengths. Naturally, a restriction to
corrections quadratic in the gradient is possible only in

where 8t is the angle of rotation of the vector d in spin
space (for the corresponding expressions see Refs. 72,
14).
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h) Interaction with the walls

1) The A phase. The boundary conditions for the or-
der parameter of the A phase at the surface of the con-
tainer of 3He were obtained in Ref. 73, where it was
shown that the longitudinal component Alf of the order
parameter Au (the z-axis is directed along the normal
v to the wall) changes significantly more strongly (it
vanishes) than the transverse Aix, Aly. This implies
that the surface energy of the A phase will be minimum
if the order parameter A* = /I7ZA(r) x K,(A^+ »A£) has
no longitudinal components at all, i.e., 1= A'xA" = ±v.
The vector V is arbitrarily directed.

2) The B phase. In contrast to the anisotropic A
phase, the presence of a preferred direction v must al-
ter the nature of the spherically symmetric B phase.
The result of a treatment similar to that we carried out
for the B phase in a magnetic field ( see preceding sub-
section) gives72'74'14 the boundary condition w= ±v.

Thus, in the presence of walls or external fields (as
well as superfluid currents) the order parameter distri-
bution in a container with superfluid 3He can have a
quite complicated structure. These distributions, which
have been designated as textures, have been investigat-
ed intensely (see Refs. 14,16,19,63,64,70,72).

4. NMR IN SUPERFLUID 'He

Studies of magnetic properties of 3He have played the
principal role in solving the problem of which model of
Cooper pairing can be used to describe the observed A
and B phases of superfluid 3He. The principal contribu-
tion is due to A. Leggett,75 who constructed the theory of
spin dynamics of 3He, on the basis of which the problem
of phase identification was solved. Various NMR ex-
periments and their interpretation within the Leggett
theory are still the source of rich information on di-
verse properties of 3He, such as relaxation of magnet-
ization, spin waves, solitons and textures, second
sound in the At phase, and others. The two nonlinear
Leggett equations for the vectors S and d (see below),
having many qualitatively different solutions, are inter-
esting also from a theoretical point of view, and their
study is ongoing. In this section we derive the Leggett
equations, and elaborate several experimental conse-
quences of these equations.

a) The Legett equations and their simplest
consequences in the A and B phases.

1) The Leggett equations. The dynamics of a spin
system in a constant magnetic field H0 is described by
the equation

(57)

(here y is the gyromagnetic ratio), from which it fol-
lows that the magnetization yS processes around the
field direction with angular frequency w0= yH0. There-
fore, if the system is placed in an external varying field
H(<), perpendicular to H0, resonance absorption will be
observed at the frequency u>0.

As already noted (see subsection 2d) transverse field

absorption is observed in superfluid 3He at the frequency
w = (wj+J22(r))1/2, and, moreover, resonance absorp-
tion of longitudinal oscillations H(t) ||H0 occurs at fre-
quency nA(T).24 This implies that the spin system does
not precess freely, but clings to a preferred direction
inside the liquid. This direction, as we know, is the
direction of the orbital angular momentum 1. The en-
gagement of the spin system occurs due to the spin-or-
bit interaction

V)*, (58)

which tends to align the vector spin wave functions
d= (l/2l/2)v(A' + t'A",n) in the direction parallel or anti-
parallel to 1. Unlike (38), in (58) we used the notation
$l2

/i/2y2= (3/5)gD, the convenience of which becomes
clear below. Thus, the equations of spin dynamics con-
sist of equations of motion for the vectors S and d.

We note, to avoid confusion, that the notation yS is
used here for the magnetization generated under the ac-
tion of an external magnetic field in the A and B phases
of 3He which do not have a spontaneous magnetic mo-
ment (we do not take into account the negligibly small
orbital ferromagnetism of the A phase; see subsection
2e). Unlike the total spin of the Cooper pair, for which
we also used in Section 3 the notation S, the total spin
of the liquid per unit volume does not have to be perpen-
dicular to the vector spin wave function d. The com-
ponents of the total spin S are interrelated and related
with the components of the vector d by the usual quan-
tum-mechanical commutation relations:

[S,, (59)

(60)

Writing down the Hamiltonian of the system in an exter-
nal field taking the spin-orbit interaction into account

(61)

(62)

where in the general case (see Eq. 33)

FD = 3gD(T) j-5J-|nd(n)|',

and x is the magnetic susceptibility, we obtain with the
aid of (59)-(62) the Leggett equations75:

V[SH] + RD

where

is the moment of dipole forces.

(63)

(64)

Equations (63) are, naturally, valid in the frequency
region w« A/ft, for which the absolute value of the or-
der parameter remains constant, and only the angle-de-
pendent spin part of the order parameter varies with
time.

2) The A phase. In the case of the A phase d(n)
= V( A' + iA", 0)72* /z, and Eqs. (63) acquire the form
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(65)

In Eqs. (65) the motion of spin variables is considered
for frozen orbitals 1= const, (the adiabatic hypothesis),
since T, the relaxation time of 1, is very long (see the
review of Ref. 19) in comparison with the reciprocal of
the magnetization precession frequencies: u>T>103.

The spin precession around the field direction H0,
parallel to the z-axis, is described, for small trans-
verse spin deviations from the equilibrium value S, = S0

= \H0/y and small deviations of V from the equilibrium
direction V= 1, parallel to the x-axis, by the equations

(66)

which are obtained from (65) by linearization. Hence

and, consequently, the transverse resonance frequency
is W l=K+nA)1/2 .7 5

Similarly we have from (65) for the spin longitudinal
oscillations, i.e., oscillations of the z-component of the
spin about the equilibrium value S0,

V = ±1. Therefore, in a container with 3He-A it is pos-
sible to have domains, regions with opposite mutual or-
ientations of V and 1, separated by thin transition lay-
ers—the domain walls. These domain walls have a
thickness of the order of the dipole length £D = (KA2/
CTjj)1/2, and are topologically stable structures70—planar
solitons. The frequency shift of longitudinal and trans-
verse NMR in 3He-A, related to local oscillations of the
vectors S and V near domain boundaries, was observed
experimentally76; theoretically, this problem was treat-
ed in Ref. 77.

3) The B phase. In the B phase there is no shift of
the transverse resonance; however, as in the A phase,
longitudinal resonance does take place. The spin dy-
namics equations of the B phase are obtained from the
general Leggett equations (63)-(64). Recalling that in
the B phase d((n) = Riknke

i<!>, where Rilt is the matrix of
three-dimensional rotations (40) around the direction
u> by the angle 9, we have (see Ref. 78):

. yQ2

= v(SH]+ ^--iicosin 8(14 4cos9),

,= - - - s i n 20>,
2-

(67)

(68)

where the notation gD = xfig/Sy2 has been used. At equi-
librium with H= H0 the magnetization is S0= xH0/y and
is directed opposite to the field ( y < 0 ) , u is in the field
direction, and 9 = 90= arccos(-j). For longitudinal
small magnetization oscillations we have from (67):

where <[> is the angle of rotation of V around the direc-
tion of H0|| Z, measured from the direction of 1-LH0. As
seen from these equations, small oscillations take place
about the equilibrium positions S f = S0, $ = 0 with fre-
quency nA(r).

The oscillations of the longitudinal magnetization in
the A phase are found in complete analogy with the non-
stationary Josephson effect.13-75 As we know, the super-
fluid part of 3He-A can be treated as a mixture of two
superfluid components with spin projections St= ±1 on
the direction of the magnetic field. The difference in
the number of particles of these components is propor-
tional to the equilibrium magnetization: S0= )(H0/y.
The deviation from its equilibrium value of the differ-
ence in particle numbers corresponds to an appearance
of a "chemical potential" difference 5^ = (rVx)(Sz - S0),
equal to the rate of change of the "phase difference" *
of the wave functions of the two components. Oscilla-
tions of the number of particles of each component
arise as a result of the oscillations of the phase differ-
ence *. The maximum oscillation amplitude corre-
sponds to a rotation of the vector V by the angle it to the
equivalent position -V. This regime is similar to
"phase slipping" in superconductors and in 4He. In the
given case the Josephson effect takes place in the whole
volume of the liquid, and the spin-orbit interaction plays
the role of the tunnel junction.

It follows from the form (58) of the dipole energy in
the A phase that there exist two equilibrium directions

fi v ' ,c <n (68a)" = ~^~Wz— "(M'A

whence follows the presence of longitudinal resonance
with frequency OB(T). It is also seen from Eq. (68) that
no frequency shifts occur for small transverse oscilla-
tions of the spin S. Indeed, in this case the first of Eqs.
(68) becomes Sj, = yfS^HJ.

b) Nonlinear NMR in the A and B phases

A remarkable confirmation of the correctness of Leg-
gett's equations was provided by NMR pulse experi-
ments, in which the precession of magnetization S was
studied for large angles of deviation from the direction
of a constant field.79 The most impressive discovery
was the appearance of a frequency shift of transverse
NMR in the B phase at deviation angles of the magnet-
ization from the external field larger than 104°. Solu-
tions of the Leggett equations for nonlinear NMR in
strong fields rH»gD (%»fiAiB) were first obtained by
Brinkman and Smith.80 In the present discussion we fol-
low the general method of finding solutions, well-suited
for the case H>»nA i B , suggested by Fomin.81

1) NMR equations in strong fields. For strong mag-
netic fields the theory contains the parameter (J2A B/
u^0)

2, small in the whole temperature interval for fields
#>30 Gauss in the A phase, and fields #>100 Gauss in
the B phase; fi|/nA = 5/2. To understand better the
simplifications occurring in strong fields, we transform
the Leggett equations (63) to a coordinate system rotat-
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ing with the Larmor frequency GI>O = yH0

S = RD(d),

d(n)=j£[Sd(n)). (69)

As follows from (69), in this system the vectors d, re-
taining their mutual orientation, precess quickly with
angular velocity /S/x^ w0 around the direction of S,
and both the absolute value and direction of the vector
S vary slowly during a time ~n^ifl. It is easily shown
that under these conditions the projection of the direc-
tion of S on any of the vectors d(n) is conserved. In-
deed, taking the scalar product of the second of Eqs.
(69) by s = S/S and integrating over time from 0 to
t » l/w0, we obtain

tion of S on the 2-direction: S,= S cos/3. In these vari-
ables the Hamiltonian (61) can be rewritten as

P. T)l, (7°)

where the measurement unit of S is taken to be S0 = x#o/
y, the magnetic field unit is H0, and U= U0/xff-

The variables S, and S are naturally considered as
independent canonical momenta, while the angles a and
y are their conjugate coordinates. The Hamilton equa-
tions following from (70) are

(71)

a (t) d (t) s (0) d (0) + d («) s (t) At.
o .

The integral in the right hand side of this expression
obviously vanishes, as does the integral of the product
of a quickly oscillating function by a slowly varying (al-
most constant) function. The conservation of projection
of the direction of S on the direction of any d, i.e., the
conservation of the orientation of S with respect to the
system of vectors d(») makes it possible to reduce the
number of variables in the original system of equations
(63) from six to four.

Experiments on NMR pulses are set up as follows.
An equilibrium magnetization S0= \H0/y is initially
created in some direction. Then a magnetic field Hlt

perpendicular to H0, is switched on for a time T, and
the equilibrium magnetization precesses around the di-
rection of //!, inclined to the original direction by the
angle |30 = yH^T. Following that, the field H^ is switched
off, and the magnetization starts precessing around the
direction of the external field H0, while at the same
time the system of vectors d precesses around the di-
rection of magnetization. With the purpose of describ-
ing this motion we introduce, in addition to the fixed co-
ordinate system x,y,z (z is parallel to H0), a moving
system £,TJ , £, rigidly bound with the vectors d, and we
assume that initially S is directed along £ and has the
equilibrium value \H0/y. As can be proved, the direc-
tion of S always coincides with the direction of £ , im-
plying that the variables describing the motion will be
the three Euler angles a,j3, y, specifying the orientation
of the moving coordinate system with respect to the fix-
ed one, and the magnitude of the spin S. We recall that
a and /3 are, respectively, the azimuthal and polar an-
gles of the fixed J-axis, and y is the angle of rotation of
the | and 17 axes around the ̂ -direction (Fig. 5). Instead
of the variable /3 it is convenient to consider the projec-

As is seen from the equations, the angular velocities
a and y can be in resonance y = -a, near which it is
convenient to transform from the two fast variables a
and y to one fast variable and one slow variable $ = a
+ y. The new momenta, canonically conjugate to these
variables, are, respectively, P= S,-S and S - 1. The
generating function of this canonical transformation is

In the new variables the Hamiltonian (70) appears as:

(72)
Averaging the Hamiltonian (70) over the fast variable

a, we obtain a new Hamiltonian

where

The new Hamilton equations are

(73)

(74)

(75)

As seen from these equations, the momentum P= St-S
is conserved. The invariance of P is, naturally, adia-
batic, i.e., P is conserved accurately up to terms ne-
glected in the averaging. The quantity P is determined
by its initial value P= cos/30- 1. The system (75) has
stationary solutions * = *„ and S
equations

*-'-•£•

S0, satisfying the

(76)

When the stability condition of these equations, 82V/9*2

>0 is satisfied, the magnetization S performs a pre-
cession around the direction of the field H at a frequen-
cy (see Eq. 75)

*>j. =«>,,( — 1 +- (77)

where, as can be seen, the frequency shift depends on
the initial angle of inclination of the magnetization, /30.
We recall that the gyromagnetic ratio y is negative for
3He, therefore formally <x>0= yH<0.
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Small deviations of S and * from the stationary values
S0 and $0 lead to oscillations with frequency (see Eq. 75)

d*V(<V, P) I
— (78)

transforming at /30 = 0 to the ordinary longitudinal mag-
netization oscillations.

To find explicit expressions for ui^ and w,, in the A
and B phases of 3He we need expression (74) for the
average dipole energies in the A and B phases.

2) The A phase. Substituting into (62) the order pa-
rameter of the A phase, expressed in terms of the
Euler angles:

d, = -^=- #»(<*, P, Y)K,(A' + iA', n),

where

V J. H0, V || 1 = A' x A', R,, (a, p, 7)

is the matrix of three-dimensional rotations, parame-
trized in terms of the Euler angles (see Ref. 81), we
obtain

(79)

(80)

The potential energy (80) for any deviation angles p
of the magnetization, i.e., for any P varying in the in-
terval from 0 to -2, has qualitatively the same struc-
ture characterized by two stable minima * = 0, TJ, as is
the case for P= 0 (see Eq. 58). By means of (80) we
obtain from (77) an expression for the magnetization
precession frequency (see Ref. 80a):

The averaging of t/A over the fast variable a gives

J_fli
8 (D» + 3cos (81)

going over as j3 — 0 to the result of the linear theory for
the frequency shift in the A phase (see subsection 4a2).

The frequency of small longitudinal magnetization os-
cillations (78) is given by the expression81 a

„ / Q . \ 2 / oo\

3) The B phase. Similarly for the B phase, substitut-
ing into (62)

where w ||#0, and integrating over the solid angle, we
have:

implying UB= V. The angle * in (83) is measured from
ea= arccos(-3), i.e., * = a + > + e 0 . Expression (83)
naturally transforms for p= 0 to expression (41) for
the dipole energy in the B phase. The two minima of
this potential, determined by the equation

COS On = —
P+l/2
P+2

start approaching each other as P decreases from zero
toP= -5/4. In this interval ( 0 < 0 < 104°) we have

V(P,*0)=0, and, consequently, there is no precession
frequency shift. At the point P= -5/4 (0= 104°) bifur-
cation occurs, the minima coalesce, so that in the
interval from P= -5/4 to P= -2 (104°<j3<180°) there
is one minimum $„= 0:

and a precession frequency shift80" takes place

IB OB / 1 , ...ot (84)

The frequency of small longitudinal oscillations for
P varying from 0 to -5/4 equals

and in the interval (-5/4,2):

(85)

(86)

The agreement of expressions (81), (84) with experi-
mental results,79'82 among which we want to point out
the appearance of a frequency shift of the transverse
resonance in the B phase for deviation angles of the
magnetization from the magnetic field direction higher
than 104°, is a convincing confirmation of the theoreti-
cal concepts concerning the structure of the A and B
phases of superfluid 3He.

The expressions for the NMR frequencies in the A
and B phases (81) and (84) were obtained by an approach
valid in strong magnetic fields, developed by I. A. Fo-
min.81 A remarkable fact, noted by S. P. Novikov,83 is
that for the B phase the Leggett equations admit a peri-
odic solution in magnetic fields of arbitrary strength.
Indeed, expression (83) for the dipole energy of the B
phase depends only on the angle £ and on the combina-
tion a + y. Thus, the variable a in the exact equations,
containing not 4 but 6 variables, will be cyclic. This
implies that one can seek a solution stationary in all
variables except a. The corresponding calculations
were carried out by I. A. Fomin et al.M It has been
shown that in a magnetic field of arbitrary strength
there is no frequency shift of the transverse resonance
in the B phase for deviation angles of the magnetization
from the magnetic field direction less than 104°. For
angles larger than 104° the frequency shift is deter-
mined by the equation

•), (87)

whose solution transforms into (84) for strong fields
w0»nB, and to the frequency of the periodic solution in

(g3) a vanishing field (o)0= 0), found in Ref. 85.
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