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A number of facts established in numerous experiments on the nonlinear collective interaction of a
monoenergetic electron beam with plasma and never previously satisfactorily explained became
understandable after the concept of dense bunches, into which an electron beam separates, was developed in
the 1970s. In this review, in addition to a description of these facts, the results of theoretical investigations of
the formation and evolution of bunches under the conditions of stationary beam injection into a plasma with
different parameters are presented. The role of higher-order harmonics of the electric field, dissipation, and
plasma temperature is discussed. Special attention is given to experiments concerned with a direct study of the
dynamics of electron bunches in plasma. Possible reasons for the observed rapid breakup of these bunches are
enumerated. Results of experimental and theoretical investigations of the equilibrium state of bunches,
created outside the plasma and then injected into it, are also examined. Under certain conditions, such
bunches are conserved in a plasma much better than bunches that form spontaneously, while the periodic
quasistationary waves created by them (Bemstein-Green-Kruskal waves) propagate much farther than
evolving waves, which are excited when a continuous beam is injected into a plasma.
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INTRODUCTION

Physical objects in which a collective interaction oc-
curs between an electron beam and a plasma or in
which at least the conditions for such an interaction are
present are as widespread as they are varied. They in-
clude low-pressure arcs with a heated cathode, high-
voltage glow discharges, polar auroras in the atmos-
phere, and plasma forming during electron-beam work-
ing of materials (welding and melting). Proposals and
successful attempts are being made to use this phenom-
enon purposefully to achieve different aims: to create
plasma in plasmochemical reactors, ion sources, in
active experiments in space; to generate microwave
radiation; and, to heat plasma. It is not at all surpris-

ing that the electron beam-plasma system is still at-
tracting persistent interest after more than 50 years.

The interest in beam-plasma interaction, however, is
equally due to the fact that these interactions reflect the
fundamental properties of plasma. We should note es-
pecially the abundance of, in general, coupled instabili-
ties and nonlinear oscillations that can occur in the
beam-plasma system.

Let us first menion the easily excitable high-frequen-
cy electron branches of oscillations.1 Different types of
low-frequency excitations with the participation of ions
can also be excited by beams.2 For sufficiently intense
electronic Langmuir oscillations, wave interaction
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processes (their decay, modulation instability, and col-
lapse3"5) which also proceed with the participation of
ions and which, in particular, lead to one of the chan-
nels for dissipation of high-frequency waves, could also
be important. If to this we add that the appearance of
collective fields in a weakly ionized medium is also ac-
companied by gas discharge effects,6 then it becomes
clear how difficult it is to create an all-encompassing
unified description of an electron-beam plasma. As with
many other complex systems, here, we must for the
time being be satisfied primarily with the results that
can be obtained by studying some particular process,
chosen from those above, separately from the others.

The high-frequency electron motions in a plasma with
a beam, examined in what follows, are in this sense not
an exception. However, we can be sure that the infor-
mation on the basic properties of nonlinear electron
waves is necessary to understand correctly the entire
complex of phenomena both in electron-beam plasma
and in ion-beam systems.7 On the other hand, many
well-known experimental facts are explained by the mo-
tion of just the electron component by itself. It is not
accidental that collective beam-plasma interaction was
first manifested precisely in the excitation of high-fre-
quency plasma oscillations.8"11

The mechanism of excitation of electron waves was
understood after the discovery of the beam-plasma in-
stability,12-13 which stimulated extensive theoretical in-
vestigations of the beam-plasma interaction in the linear
approximation, as well as corresponding experiments.
The results obtained are contained in reviews and mono-
graphs (see, for example, Refs. 1,14-16).

Further success in the development of the theory of
relaxation of a beam in a plasma was achieved in the
study of one of the types of beam-plasma systems,
namely, a plasma containing a beam with a broad elec-
tron velocity distribution function. Based on a descrip-
tion of the excitation of a large number of waves with
random phases in such a system, a quasilinear theory
was constructed,17"19 according to which the bump on the
tail of the smoothed distribution function f0(v) must
gradually spread, due to the interaction of small oscil-
lations (/' «/„) toward small velocities until the final
state, the state with a "plateau," is reached. In accord-
ance with the evolution of the distribution function, the
spectrum of excited waves must also become wider.

The basic results of the quasilinear theory were con-
firmed experimentally in Ref. 20, where special mea-
sures were taken so that the beam injected into the
plasma consisted of electrons with a continuous velocity
distribution over a wide range of values.

We should menion, however, that under the conditions
of most of the other experiments the quasilinear theory
is not applicable and it does not explain all the observed
facts taken as a whole, although attempts have been
made to interpret separate data based on this theory.
The situation here was resolved only after the impor-
tant role of phase focusing of the electrons in a fast
monoenergetic beam into dense bunches was established
by computer21-22 and laboratory23 experiments.

Subsequent theoretical and experimental investiga-
tions showed that many nonlinear properties of the
beam-plasma system are determined by the dynamics
of these charged bunches, called "macroparticles,"24 in
the field of the monochromatic wave excited by them.

A number of theoretical aspects of the dynamics of a
beam in monochromatic plasma waves are clarified in
Ref. 25. At the same time, the relationship between the
results of numerous experimental and theoretical inves-
tigations has not yet been analyzed.

In this paper, we give a systematic description of the
effects of beam-plasma interaction, related to excita-
tion of regular longitudinal waves by bunches of elec-
trons. Only nonrelativistic beams are considered,
since unambiguous experimental data on bunching in a
plasma have been obtained precisely for such beams.
The experimental facts, which, having remained with-
out a satisfactory explanation for a long time, stimu-
lated the development of the theory of beam bunching in
a plasma, are described in Sec. 2. Section 3 is con-
cerned with Van Kampen waves.26 The possibility of
such waves in a plasma is related to modulated beams,3

and for this reason it is impossible to circumvent the
problem of their relation to the waves usually observed
in the beam-plasma system. This section, together
with Sec. 4, can be viewed as an introduction to the the-
ory of bunching of a beam injected in a steady-state
manner into the plasma (Sec. 5). Results of a direct ex-
perimental verification of this theory are presented in
Sec. 6. The nonlinear periodic stationary Bernstein-
Green-Kruskal waves (BGK waves),27 in which bunches
also play an important role, are discussed in Sees. 7
and 8. Special attention is devoted to conditions re-
quired for their excitation. It is precisely the clarifi-
cation of these conditions that permitted realizing
quasistationary BGK electron waves experimentally.28'29

2. CHARACTERISTICS OF ELECTRON-BEAM
EXCITATION OF TRAVELING LONGITUDINAL
WAVES IN A PLASMA

The variety of problems involving the interaction of
electron beams with plasma naturally led to numerous
experiments, distinguished by the parameters of the
plasma and the beam, magnitude of external fields,
diagnostic methods, etc. Nevertheless, the systems
studied have a number of common characteristics.
This fact is not always emphasized, but it is the com-
mon characteristics that, on the one hand, indicate the
generality of the processes occurring under a wide
range of experimental conditions and, on the other,
form the first touch-stone in the theory of beam-plasma
interaction. It is from this point of view that the dis-
cussion of the present empirical section, which is con-
cerned with describing the "macroscopic" picture of
beam excitation of traveling longitudinal waves, should
be approached.

a) Experimental apparatus, conditions, and
parameters

We shall list the most important conditions for the
beam-plasma experiment (Fig. 1).
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FIG. 1. Diagram of apparatus for a beam-plasma experiment.
1) electron gun, 2) to pump, 3) uhf resonator for modulating
the beam, 4) uhf power input, 5) pressure drop channel, 6)
plasma chamber, 7) beam in plasma, 8) probe, 9) beam col-
lector, 10) to instruments analyzing oscillations.

1) The beam is introduced into the plasma from out-
side the plasma through the plasma boundary. In a
number of arrangements, a small modulation is super-
posed on the beam entering the plasma by means of a
uhf resonator, probe, or coil. With pulsed beam injec-
tion, the pulse duration greatly exceeds the time for an
instability to develop, so that the conditions for beam-
plasma interaction are, essentially, the same as for
stationary beam injection.

2) The velocities of the electrons in the beam have a
small thermal spread in the plane of injection, i.e., the
relation &v/v0«1 is satisfied, where VQ is the average
velocity of electrons in the beam, and &v is the inter-
val over which the electron velocities are distributed.

3) The plasma is created in the interaction region
either independently of the beam by some discharge or
by the beam itself.

4) In many arrangements, an external magnetic field
oriented along the beam axis is used. In spite of the
fact that in a magnetic field the number of possible
branches of oscillations increases, in many cases it
was possible to separate out effects related to excita-
tion of longitudinal waves traveling along the beam. As
will be evident from the material presented in what fol-
lows, these effects do not differ essentially from those
observed without a magnetic field.

5) The beam passing through the plasma falls on the
collector, which limits the extent of the interaction re-
gion. The strong effect of the collector on the oscilla-
tions is well known.30"32 This effect is related, in par-
ticular, to secondary electron emission.32 However, in
most of the experiments described below, this effect is
apparently insignificant. Standard methods are used to
analyze the longitudinal velocity distribution function
for electrons in the beam in the plane of the collector.

The most characteristic data from a number of exper-
iments, in which the "macroscopic" effects described
below were observed, are displayed in Table I. In par-
ticular, this table presents information concerning the
illustrations used in this review. The values of param-
eters which are of fundamental significance in compar-
ing a particular experiment with theory (A///, nb/ns,etc.)
are also indicated.

b) Properties of excited oscillations

It is evident from Table I that, in accordance with the
wide range of parameters of the beam-plasma system
studied, in different experiments oscillations with, gen-
erally speaking, strongly differing frequencies in a wide
region of the uhf range (102-104 MHz) were observed.
In the absence of a magnetic field, the measured fre-
quencies of the waves are close to the electron plasma
frequency in complete agreement with the linear theory
of beam-plasma interaction. The correspondence be-
tween the frequencies of traveling waves and the linear
theory is also usually noted in experiments performed
in an external magnetic field.

The most important characteristic of the excited
waves is the spatial distribution of their intensity. For
sufficiently sensitive detectors of the oscillations, it is
possible to make measurements throughout the entire
volume of the interaction chamber, and if the chamber
consists of a dielectric material, then measurements
can be made outside the chamber as well.42'44-54 How-
ever, measurements with a probe show that the most in-
tense oscillations are detected when a probe is intro-
duced into the region penetrated by the beam. Outside
the beam boundaries, the signal amplitude decreases by
several orders of magnitude.43

Several examples of the axial distribution of the in-
tensity of oscillations, taken from different papers, are
presented in Fig. 2. Analogous dependences are also
obtained in other experiments. In spite of the some-
times enormous difference in the experimental condi-
tions (see Table I), these dependences are characterized
by the presence of a distinct main peak: a region with
strong oscillations. Over the preceding section, the
amplitude usually increases exponentially with distance.
Beyond the maximum, on the other hand, the nature of
the damping of the waves depends strongly on the spe-
cific experimental conditions. In some cases,34'39"41'50

the amplitude decreases rapidly and monotonically, as
in Fig. 2b-d, and in others,30-43-45'52 another peak is ob-
served on the decreasing section (Fig. 2a, e , f) , but with
a much lower amplitude. Be that as it may, the results
of numerous measurements (apparently, the only ex-
ception is Ref. 55) point to the existence of a localized
region with the most intense oscillations at some dis-
tance away from the plane in which the beam enters the
plasma. This distance depends on the parameters of
the system, increasing with increasing beam energy
and decreasing with increasing beam density.11'34'42-51

A very important property of the oscillations, which
determines the behavior of the system at the nonlinear
stage, is their high degree of regularity even in the ab-
sence of preliminary modulation of the beam. As is
evident from the table, the half-width of the measured
frequencies of the spectra A/ is usually much less than
the fundamental frequency, especially in experiments
with a weak beam and an independently formed plasma.
As the beam density increases, when the oscillations
begin to affect the average plasma parameters, the
spectrum becomes somewhat wider. It has been estab-
lished that in this case the oscillations can be generated
in bursts, which correspond to different branches of the
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TABLE I. Parameters of beam—plasma experiments.*

Parameters 1 1 1 . ' ) 1 1 r. :1 i '">"!> r. ;t!1

Energy of beam '2*>
electrons, eV •

Beam current, A
.Beam diameter, cm
Type of gas, pressure,

mm Hg
Frequency of excited

oscillations/. GHz

Plasma frequency,
GHz

Electron cyclotron fre-
quency, GHz

Relative half-width of
spectra of oscillations,
a///

Temperature of plasma
electrons. eV

Ratio of beam density
to plasma density.
»b/"p

Origin of plasma**

Pulse duration. MS

Method of external
modulation

0 . < 2—0 . 1

0.5
HgO-10-3

1.5

>/

0

n. 1—0.4

a

Stationary

Absent

20. e
0.034

Hg 1.2-10-3

0.7

«0.65

0

2-10-2

2—8

a

Stationary

Absent

!05',' r. 3*

40—120

10-3— 5 -10-2

0.3-0.5
Hg 1-10-s

0.75—1.5

»/

0

0.02—0.2

b

Stationary

Absent

i n s o r. 35

8-10'

1
0.5

9- 10--

2.7

2.4

0

0.14

0.03

b

2

1) Absent

2) Resonator

r.'61) r. 3"

<3-10!

(I— 2) -10-3
0.2—0.4

Ar, H.. N2
ID-2— 10-J

2—3

~ f

0

0.2

b

Stationary

Absent

1963 r. 37,
1965 r. 38

15-103

5—8
1

Ail
10-i_10-3

0.83

1.26

2.6

0.06—0.1
(unmodu-
lated)

40

0.1

c

3.6

1) Absent
2) Coil

1963 r.so

100

0.13
0.5
Hg

(1—2) -ID-'
2

0

0.15

a

Stationary

Absent

1965 r. 39

20—40

0.03—0.25

Hg
(0.2— !)• 10-s

0.1—0.5

» /

0

0.15-0.2

3

a

Stationary

Absent

1967 r. «a

(1 — 1.5)- 103

(5— 25) -10-3
0.3
Ha

2. 5-10-2

1.35

» /

0.5

»0.08

0.07

c

Stationary

Absent

1967 r."

4-10=— 10s

0.02—0.1
0.9
He

6-10-'
0.3—0.9

0.6—1.5

1.1

0.15-0.2

10—25

0.04

d

3

Probe

1969 r. -3

100—200

(3— 30) -ID-3

»0.5
Ar

10-3-10-2
0.5—1.5

<;
0

0.01-0.1

c

Stationary

1) Absent
2) Resonator

*The range of the parameters or their average value is presented.
**a) Near-cathode region of the arc with heated cathode; b) auxiliary discharge, created along the beam path; c) beam-plasma
discharge; d) plasma flowing out of the auxiliary discharge into the vacuum.

Parameters

Energy of beam electrons,
eV

Beam current. A
Beam diameter, cm
Type of gas, pressure,

mm Hg
Frequency of excited os-

cillations/, GHz
Plasma frequency, GHz

Electron cyclotron fre-
quency, GHz

Relative half-width of
spectia of oscillations,
A///

Temperature of plasma
electrons, eV

Parameters

Ratio of beam density to
plasma density, n\j/np

Origin of plasma**
Pulse duration, ys

Method of ex ternal
modulation

1«69 r. «

(1-2). 10'

0 .1—1
1

Ne
4- 10-'
27—39

~ f

0

i

1969 r. «2

10-S— 10-'

b
1.5—10

Absent

1963 r. M

100—200

(4—250). 10-"
0.6
H,

1.5-10-s
0.145

0.19

0.78

0.1

11

1969 r. «

3- 10-"— 0,1

d
Stationary

Probe

1971 r. "

300—500

10-s— 10-'

Hg
10-'

4

»/

0.28

4

1971 r. J4

5- 10-"

b
Stationary

1) Absent
2) Coil

1972 r. «

385

2-10-3
0.6
Ar

5-10-'
0.31

0.28

0.195

1.5-10-* (un-
modulated)

3- 10-* (mod.)
8

3.7-10-'

c
Stationary

Probe

1973 r."."

100—500

(0.5— 8) -10-3

H2
10-'
0.1

2.6

14

5-10-«— 10->

d
Stationary

Absent

1973 r. «s
1976 r."

100—1000

^ 3- 10-'
0.6
He

(2— 8) -10-'
0.71

0.6

0.5

7-10-=

1—8

10-3— 10-=

d
Stationary

Probe

1973 r. M

103

0.02—0.1

He
5-10-3-5-10-2

0.2—1

0.6-1

0

0.3

10-*

c
Stationary

1) Absent
2) Resonator

1973 r."

100

10-s—10-3
0.5
Ar

10-'—10-3
1

*/

0.56

0.1

3—4

1973 r. B1

10-'— 10~3

b
Stationary

Absent

1975 r. «

(2— 10)- 103

(2— 60)- 10-=
0.5
Ar

7-iO-s-5-10-J
1.5

1.3

0.94

<2- 10-3

4-6

1975 r. 52

10-"— 2-10-2

d
3

Resonator

1979 r. 53

14-10'

(2— 20) -10-3

He, Ne
(3— 8) -10-"

8.8

1.03/

0

1.5-10-'

xO.7

19 79 r. ^3

b
1.5—10

not indicated

instability, i.e., the uhf spectrum changes with the
time.58'59 Oscillograms of the shapes of the high-fre-
quency signal under these conditions, together with a
subsequent correlation analysis of realizations, showed
that the oscillations can be represented by alternating
segments of quasiharmonic functions with different fre-
quencies and amplitudes.60 The lengths of some quasi-
harmonic trains attain many tens of periods.47'81

Even more regular oscillations are excited in a plas-
ma when the beam is weakly modulated by a monochro-
matic signal. If the amplitude of the modulation is suf-
ficiently high, then only oscillations with the imposed
frequency remain in the system.62"64 Oscillations at
other frequencies are suppressed.

Some idea of the frequency spectra in a beam-plasma
system and their evolution with distance is given by the
examples in Fig. 3.

Finally, we should note the nonlinearity of excited
regular oscillations. The presence of higher-order
harmonics in their frequency spectrum was already
noticed in Ref. 65. Higher order harmonics were then
observed also in other experiments (see, for example,
Refs. 23,38,44,46,47). A detailed investigation of the
behavior of the harmonics was made in Refs. 41,48, 51,
66. From the dependences presented in Fig. 2, it is
evident that all harmonics have a maximum situated at
the same location as the maximum of the first harmon-
ic. The higher the order of the harmonic, the farther
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FIG. 2. Intensities of the fundamental oscillation and the har-
monics (noted by numbers) as a function of the distance to the
plane of beam entry into the plasma, obtained in Ref. 33 (a),
42 (b), 51 (c), 23 (d), 45 (e), and 48 (f).

its growth begins from the entry point. This indicates
that the oscillations of harmonics do not arise at the
point of beam entry, but are formed at some distance
during the beam-plasma interaction.

c) Evolution of the distribution function of electrons
in the beam

Another very characteristic manifestation of excita-
tion of longitudinal waves by a beam in a plasma is the
strong spreading of the velocity distribution function of
electrons in the beam under conditions when pair colli-
sions are so rare that they should not affect the beam
significantly. For the time being, we are talking about
a distribution function averaged over a time interval
that is not only longer than the period of the high-fre-
quency oscillations, but also longer than the duration of
separate quasiharmonic trains, which we mentioned
above. At the early stages of beam-plasma studies, in
a series of experiments, data were obtained only for
this relatively easily measured distribution func-

U.34.37,40,42

As an illustration of the nature of the change in the
averaged distribution function with distance, we pre-

l.SO Zttf,GHz

jjBu-i— _
1.5 1.2 i^GHz

1.0 I.I 1.2 13 '.* >,S
A GHz

FIG. 3. Examples of narrow and wide spectra from Eef. 59
and evolution of a spectrum with distance.51 Unmodulated
beam.

FIG. 4. Normalized averaged energy distribution functions of
electrons in the beam. Measured at a distance of 26 cm from
the gun for different values of the beam current, /4 (mA):
2 (1), 10 (2), 12 (3), 16.5 (4), and 22 (5).

sent Fig. 4 from Ref. 40. As noted in Ref. 40, the in-
crease in the beam current is equivalent (in the sense
of its effect on the distribution function) to a displace-
ment of the probe-analyzer from the point of beam en-
try into the plasma.

It is evident that the beam ceases to be monoenerget-
ic as it propagates into the bulk of the plasma. The
spread of electrons over longitudinal velocities in-
creases especially rapidly near the maximum of the
axial dependence of the amplitude of the oscillations.
Beyond this region, the width of the distribution func-
tion can become comparable to the unperturbed velocity
of the beam. An important point here is the accelera-
tion of part of the electrons in the beam. Electrons with
energies 1 to 1.5 times greater than the initial energy
were also observed in other experiments, in particular,
experiments performed with the use of the optical tech-
nique, ff7>68 which definitely does not introduce any per-
turbations into the system studied.

An equally strong broadening of the averaged distri-
bution function accompanying the appearance of accel-
erated electrons is also observed when a beam that is
weakly modulated prior to being injected into the plasma
interacts with the plasma.23

d) Beam-plasma discharge

When the plasma is not highly ionized and the beam is
quite dense, the excited oscillations are manifested in
the glow of plasma. The oscillations affect the external
form of the beam-plasma system in two ways. First,
the high-frequency field distorts the trajectories of the
electrons in the beam and, in the absence of a magnetic
field, thereby alters the form of the more or less
clearly delineated glowing trace of the beam, arising
due to excitation of atoms by collisions with fast elec-
trons in the beam. On the other hand, since atoms ex-
cited by impacts of relatively slow plasma electrons,
whose average kinetic energy depends on the amplitude
of the collective oscillations, also make an important
contribution to the visible radiation, the brightness and
color of different regions of the system correlate with
the spatial distribution of the intensity of high-frequen-
cy fields.

A photograph of the cathode region of an arc dis-
charge in mercury is presented in Fig. 5a.69 The fol-
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FIG. 5. External view of beam-plasma discharge without a
magnetic field, a) Meniscus discharge and diagram illustrat-
ing it; b, c) modulated beam injected into gas, f/0~100 V;
d) unmodulated beam, f /0=1.35kV.

lowing regions are clearly distinguished in the plasma
penetrated by the electron beam: the cathode layer B;
almost parallel beam of electrons C; clearly deline-
eated, from the cathode side, zone with high brightness
E; and, deflected electron rays F. The sharp maxi-
mum in the axial distribution of the amplitude (see Fig.
2a) is observed precisely in region E, which was given
a special name, the meniscus. In some cases, radial
focusing of the beam was noted before the vigorous
scattering in the meniscus.32-70

The deflected electron rays and the glowing scattering
region are also observed when a premodulated beam is
injected into a gas,23 and in addition the details of the
light effects depend on the modulation frequency (Fig.
5b and c). As the accelerating voltage increases, both
in modulated and unmodulated beams, the boundaries of
the plasma formation, where the most intense oscilla-
tions are localized, become more diffuse (Fig. 5d).71

The characteristics of the plasma luminescence sug-
gest the obvious idea that the beam-excited longitudinal
high-frequency field can have a large effect on the
charged particle balance in the plasma. And indeed,
the measured values of the plasma density, created by
injecting a dense beam into a gas, exceed by orders of
magnitude the values which would be expected when only
pair collisions of beam electrons and atoms are in-
cluded. Moreover, the variation of the plasma density
with pressure has the character of gas breakdown:
when some critical pressure is attained, the plasma
density increases discontinuously with simultaneous ap-
pearance of intense uhf oscillations.

These and several other facts, established initially in
a magnetic field72'76 and later without it,23-50-71-77 served

as the basis for the description of a new form of gas
discharge: a beam-plasma discharge.6-78-79 In this
type of discharge, ionization is realized primarily by
plasma electrons, which are accelerated in the high-
frequency field of collective oscillations excited by the
beam. Many of the data presented in this review were
obtained under conditions when the plasma is created by
the beam itself by means of a beam-plasma discharge.

3. FOR PLASMA OSCILLATIONS

Before proceeding to an explanation of the character-
istics of regular electronic oscillations noted above
(this will be given in Sees. 5 and 6), it is useful to con-
sider the difference between the waves excited in the
plasma by a given beam and the waves that can appear
in the plasma in the absence of a beam.

We shall examine one-dimensional longitudinal waves
in a plasma with a stationary ionic background. At
first, we shall neglect the thermal motion of electrons.
In the general case, a beam of charged particles with
current density ;'„ with a constant component ja can pass
through the plasma. In the case of small perturbations
of the plasma, using a linear approximation for the
plasma (but not for the beam), it is easy to obtain an
equation for the irrotational electric field E:

d~E ( 2 p / ^/b /Q 1 \

where wp = V47re2wB/»w is the plasma frequency and np is
the plasma density. Equation (3.1) is the equation of an
oscillator, oscillating under the action of the force
created by the modulated beam.

Assume that at time t= 0 a beam with harmonically
modulated density moving with velocity v0 is introduced
into the plasma. Let us further consider the hypotheti-
cal situation in which the fields arising in the plasma do
not affect the motion of the particles in the beam, so
that for t> 0 we have jb = ̂ \ sin(otf - kgZ), where k0= <i>/v0.
In this case, the smallest dissipation [not reflected in
Eq. (3.1)] leads to the fact that after some transient
process, a state with forced oscillations, described by
the following particular solution of Eq. (3.1), is estab-
lished in the system:

(3.2)

Thus, if without the beam in a cold plasma oscilla-
tions are possible only with u>= o>p, then in the presence
of the beam waves with any frequency o> can exist:
there is no definite dispersion relation for these waves.

Is it possible to extend this result to a plasma with
nonzero temperature? For this purpose, restricting
the analysis to the case of small perturbations, we shall
use the linearized Vlasov equation for the plasma elec-
trons and the Poisson equation, in which we include the
presence of a modulated beam and, in addition, we shall
again assume that the beam is "rigid", i.e., the density
is not changed by modulation.

Let us write:

f dv ~ 4n -£- sin (tat -

(3.3)

(3.4)
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where /0 is the equilibrium velocity distribution function
for plasma electrons and / is the deviation from equi-
librium. The system of equations (3.3), (3.4) easily re-
duces to an inhomogeneous equation for /':

- -r^- sin (cof — k0z). (3.5)a/.
du

Since the solution of the homogeneous equation, cor-
responding to (3.5), in the case 8/0/8i><0 describes a
wave process with collisionless damping, while in the
real plasma collisional damping also exists, it is natu-
ral to expect that oscillations excited by the given
beam, after the transient process terminates, will go
over into the steady-state regime. Only a stationary
wave, synchronous with the beam, will remain in the
system, as in the case of a cold plasma.

The stationary wave is described by the particular
solution of Eq. (3.5)

/' (v, z, t) = fl (v) sin (<u( — A-0z).

Substituting this solution into (3.5) and integrating
with respect to the velocity, we obtain an equation for
the amplitude of plasma density oscillations «j = J/, dz;:

,*£. f J/s* dl,_ *2iL f J!!>*L4V.
mko J o> — kltv mk0v0 J o— k0v

(3.6)

This equation corresponds to a dispersion relation,
which includes an arbitrary constant jlt which does not
depend on fe0 and <o, i.e., any dependence between the
real w and ka is possible.

Such a dispersion relation was first obtained by Van
Kampen.26 Van Kampen waves can be interpreted as
polarization waves, accompanying the modulated beam.3

We would like to draw attention to the conditions for the
existence of linear stationary Van Kampen waves,
which are as follows:

1) The beam should not deform during motion through
the plasma. This condition is approximately satisfied
if a density modulated electron beam, so weak that the
excited electric field is negligibly small, is injected in-
to the plasma. A heavy ion beam is even better.

2) After injection of the given undeformed beam into
an initially unexcited plasma begins, some time should
pass in order for the transient regime in the system to
disappear.

We note that the experiments described in Sec. 2
clearly indicate the nonstationariness of regular waves
in the usual beam-plasma systems, in spite of the fact
that the conditions for the steady state (the beam is
continuously injected) exist.

Based on the analysis presented above it is natural to
relate this circumstance to the spatial variations in the
variable density of the beam. To describe better the
behavior of the latter in a plasma, we recall the basic
properties of beam dynamics in a vacuum, which have
been studied in detail in connection with problems in uhf
electronics.80'81

4. BUNCHING OF AN ELECTRON BEAM IN A
VACUUM

Let a one-dimensional monoenergetic electron stream
pass through a stationary ionic background, compensat-
ing the static electric field. We shall modulate the
beam velocity v harmonically in the initial section (z
= 0):

The perturbations introduced into the stream by the
modulations move together with the stream in the di-
rection z>0. For small perturbations (the criterion for
smallness will be presented below), the behavior of the
system can be described in terms of traveling (fast and
slow) linear waves of volume charge. On the other
hand, for arbitrary amplitudes, another, also well-
known approach involving the study of the evolution of
moving electron bunches, turns out to be more effec-
tive. Here we shall present only a qualitative picture
of this process. The method for describing it quantita-
tively will be briefly mentioned in connection with the
analysis of beam dynamics in a plasma.

Let us suppose that the stream at times t= 2«ir/t<j («
is an integer) is separated at the coordinate z = 0 into
parts by imaginary planes oriented perpendicular to the
stream and moving along the z axis with constant veloc-
ity, equal to the unperturbed velocity of electrons va.
Since the behavior of all such parts, having an extent X
= 27rt?0/o), will be identical due to the periodicity of the
process in time, we shall follow the electron layers
filling one of them. For this purpose, we shall "mark"
the layers by introducing the parameter t0, the time at
which the layer passes by the coordinate z0, and we
shall represent some of them, chosen with identical in-
tervals A<0, by points in the phase plane [(v - vj/vlt wf]
in a coordinate system moving with velocity v0 (Fig. 6).
For each coordinate z & 0 the time, measured from the
moment when the first of two imaginary planes men-
tioned above arrives at this coordinate, is marked
along the abscissa axis. The change in the position of
the chosen electron layers in the phase plane as a func-
tion of z illustrates well the dynamics of the beam.

For small z the motion of points in the phase plane
depends only on the initial state of the system. The
points in the positive half-period in Fig. 6a will move to
the left with increasing z and the points in the lower
half-period will move to the right. As a result the elec-
tron density begins to increase in the vicinity of the
phase TT. This bunching process will further greatly de-
pend on the ratio of the kinetic energy of modulation to
the possible potential energy, related to charge separa-
tion in the system.

If the magnitude of this ratio, which we shall denote
by TJ, is less than unity, then the electric field arising
with bunching and opposing it (Fig. 6b), turns out to be
sufficient first to stop the points in the phase plane and
then impart to them a reverse motion. In this case, as
shown in Fig. 6a-d, a periodic bunching and debunching
of electrons along z will occur. In other words, these
are nonlinear Langmuir oscillations, localized between
two chosen moving planes. For Tj« l , the degree of
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0 / \uit,

FIG. 6. Dynamics of electron layers in the phase plane, evo-
lution of time-averaged distribution functlon/(f) (left), beam
current density jb (continuous lines), and electric field E
(dashed lines). ri=v1w/vacat>, cob = V4Tej0/mt)oa— characteristic
frequency of the beam; a) z = 0, b) z^(Tr/2)v0/w^, c) z = i
d) 2S(3/2)jrr0/wb, e) z = Si=vl/vlw, f) 2 = 3^, g) z=6S

periodicity of beam bunching is low: the oscillations
are linear. In this case, the entire process can be de-
scribed as resulting from superposition of fast and slow
waves of volume charge propagating with constant am-
plitude.

For r\ > 1, bunches evolve in a completely different
manner. Now, the electric field can no longer establish
electron layers converging to the center of the period.
They overtake one another and the motion becomes
aperiodic. The extreme case, corresponding to rj~ »
is illustrated in Fig. 6a, e, f, and g. All points in the
phase plane move with increasing z parallel to the ab-
scissa axis with constant velocities, fixed at z = 0. An
electron bunch, whose density at the center approaches
infinity forms at St = D2/^ w: so-called phase focusing
occurs. Beyond the coordinate of the phase focus, due
to the fact that some electrons overtake others or, in
other words, due to the toppling of the wave, the bunch
consists of electrons that are distributed between three
streams, moving with different velocities (Fig. 6f). The
total width of the bunch increases, while its average
density decreases, although narrow density peaks are
observed at the boundaries. Still farther away from St

the electrons move beyond the boundaries of the inter-
val examined (Fig. 6g). As z increases, the number of
combined streams into which the beam separates in-
creases in an unbounded manner, and the electron den-
sity equalizes everywhere, with the exception of density
spikes which become increasingly more narrow with
their number remaining constant^82

5. THEORY OF SPATIAL EVOLUTION OF ELECTRON
BUNCHES IN PLASMA

It is natural to expect that phase focusing will also
occur in a plasma when conditions arise for modulation
of the beam velocity. The corresponding analysis,
more intuitive than well-justified, was made already in
the first investigations, but it appeared that it could not
be accommodated in any way to the rigorous linear the-
ory of beam-plasma interaction. In addition, the mod-
ulating fields observed at the plasma boundary were
much smaller than required for satisfactory corre-
spondence of the quantity St with the experimental data.
The problem remained unsolved until it was shown am-
biguously in numerical21'22 and laboratory23 experiments
that the mechanism of the nonlinearity of electron
waves, excited by the beam in the plasma, is precisely
phase focusing, leading to the formation of dense
bunches; in addition, the linear stage of beam instabil-
ity turned out to be included in a natural in this process,
describing its initial stage. The nonlinear dynamics of
a beam in a plasma under different conditions was then
analyzed in a number of papers both as a temporal
problem83"89 and as a spatial problem.90"96 Here we
shall consider primarily the latter, as satisfying the
conditions for real experiments with stationary beam
injection into a plasma.

a) Computational method

Assuming that the beam entering the plasma is some-
how modulated at frequency w, we introduce the vari-
able ta, the time that an electron layer of the beam en-
ters the plasma, and we shall use the equation of con-
servation of charge in the beam in the form

(0, t0) dt0 = ;„ (z, t) dt. (5.1)

In the established periodic (in time), the time t at
which the chosen layer passes through the coordinate z
is related to the time ta that this layer enters the plas-
ma by the obvious relation

«„). (5.2)
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The function g(z, ta) represents the phase delay of the
electron layer compared to the case of its unperturbed
motion with velocity v0. This function exhaustively de-
scribes the spatial evolution of the beam. In particular,
the quantity u'^dg/dt,,, as is evident from Eq. (5.1),
characterizes the degree of deformation of the beam
that occurs in the spatial interval [ 0 , z ] under consider-
ation. Phase focusing corresponds to oscillations of the
function u~ldg/dt0 with amplitude equal to unity. If the
current density in the beam is represented as a Fourier
series of traveling waves of the form

Jb- /o=2 {^n(*)sin [na>(t—^-)] + Bn (z) COS[BU (t—^-)]|,
n=l ° °

(5.3)
then the coefficients in this series

„ . . U f . , ,. r / MI (5.4)?n(z) = — | /,. (z, t)cos, nta It — ̂ -] I At \"-^>
b °
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are also expressed by means of relations (5.1) and (5.2)
in terms of the function £• (z,ta).

To find g(z, ta), it is necessary to integrate the equa-
tions of motion of the electron layers in the electric
field E(z,t0), taken along their trajectories, including
the initial modulation of the beam v\,M = vl sinotf0. In
the simplest case of small perturbations of the velocity
v(z, ta)« va the relation between g and E has the form

dz (5.5)

The system of equations is closed if the electric field
is expressed in terms of the harmonics of the beam
current (5.4). For a cold plasma this can be done by
means of Eq. (3,1). In the steady state regime, we ob-
tain

. (5.6)

b) Role of plasma dispersion and higher-order
harmonics

It is expression (5.6) that reveals the fundamental dif-
ference in the structure of electric fields, accompany-
ing the modulated beam in plasma and in vacuum.

In vacuum (this case is also described by Eqs. (5.1)-
(5.6), if in (5.6) we set u>9 = 0), the phase difference be-
tween the harmonics of the electric field and the charge
density is such that the field always strives to stretch a
bunch and to eliminate deformation of the beam (see
Fig. 6). In plasma, on the other hand, the beam, whose
density is harmonically modulated at a frequency w< o>p,
excites a field which is phase shifted by TT compared to
the vacuum case (the dielectric permittivity is nega-
tive). This occurs because the plasma electron density
oscillates with opposite phase relative to charge oscil-
lations in the beam so that inside the electron bunch
there is an excess charge of positive ions. Thus the
electric field in the plasma at frequencies o>< o>p com-
presses the condensations appearing in the beam,
moreover, all the more strongly the higher the ampli-
tude of the first harmonic of the beam density. Asa
result, the bunching process has an exponential charac-
ter not only at the initial stage, described by the linear
theory, but it is nearly exponential at later times as
well. Phase focusing, in contrast to the vacuum case,
occurs with the smallest amplitudes of initial velocity
modulation. The coordinate of the phase focus, taking
into account the exponential increase in velocity modu-
lation, was approximately calculated in Refs. 23 and 91.
In particular, for w close to wp, it is determined by the
equation:

(5.7)

where y is the spatial increment for growth of oscilla-
tions in the linear theory, and St is the kinematic coor-
dinate of the phase focus (see Sec. 4). It is now clear
that due to the logarithmic dependence of Sv on vlt the
exact value of the latter in all estimates does not play
that prominent role, which caused the initial concept of

phase focusing to be criticized. Moreover, phase focus-
ing can also occur in plasma in the absence of initial
modulation of the beam velocity. It is enough to modu-
late the beam density a little. The expression for the
coordinate of the phase focus in this case has the form97

(5.8)

where j± is the amplitude of the harmonic modulation at
z = 0.

Meanwhile, it follows from expression (5.6) that due
to the distortions resulting from phase focusing of the
initially harmonic profile of the beam density, higher-
order harmonics should appear in the total electric
field. Under the condition that wp/2< ox o>p, these har-
monics are phased relative to the harmonics of the
beam density just as in a vacuum and, therefore, they
will inhibit compression of bunches. As a result, the
electric field wave must acquire a specific profile,91

presented in Fig. 7, while the structure of electron
bunches becomes more complicated even before the
trajectories intersect. As expected, the repulsive ac-
tion of the higher-order harmonics increases with in-
creasing WB/W.

A decrease of the frequency of the initial harmonic
modulation to values UK up/2 must lead to a new effect,
arising due to the fact that the second harmonic,
created with the distortion of the wave profile, falls in-
to the region of amplification of oscillations. Since in
this case the spatial increment of the wave with fre-
quency 2o> is much larger than the increment of the in-
itial wave, beginning with some distance the second
harmonic dominates.90'91'98 Actually, the beam turns
out to be modulated at frequency 2u> and two bunches
form within a period of the initial modulation. As co/wp

decreases further, a higher order harmonic can ap-
pear.

tot

FIG. 7. Computed wave structure at the coordinate of the
phase focus Sv. The time origin is arbitrary, but identical
for the curves of jb and E. a) o>=0. 91u>p; b) co = 0.6a>p.
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c) Beam behavior beyond the phase focus

The dynamics of bunches in a cold plasma at distances
exceeding Sv has been studied by numerically calculat-
ing the trajectories of electron layers." It follows
from this calculation, first, that in spite of the coun-
teraction of the higher order harmonics of the field to
compression of bunches, in phase focusing some elec-
tron layers overtake others. Observation of bunches in
a system of coordinates moving with velocity v0 reveals
that they consist of electrons oscillating at the bottom
of potential wells of the first harmonic of the wave.
These electrons are called "trapped," in contrast to
"free flight" electrons in the beam, which overcome the
potential barriers between the wells. The first phase
focusing in the coordinate SB indicates that trapped elec-
trons, initially uniformly distributed in some interval
of phases of the wave, having completed 1/4 of the com-
plete oscillation in a well whose depth increases expo-
nentially with time, collect at the bottom of the well. In
the next quarter period, the extent of the bunches in-
creases. For this reason, the amplitude of the wave in
the corresponding spatial interval decreases. Subse-
quently, alternating bunching and debunching of trapped
electrons lead to spatial oscillations of the wave ampli-
tude.

As is evident from Fig. 8, if w is sufficiently far
from ii3t then with the first phase focusing a significant
part of the electrons is distributed between two distinct
groups. These groups of electrons ("macroparticles")
are preserved for some further time as well, oscillat-
ing with opposite phase in the wells of the wave. Spatial
changes in the amplitude in this case are nearly period-
ic.

If, on the other hand, w is close to wp, then the am-
plitude of the wave after the first distinct maximum
changes with distance irregularly. The nonperiodicity
of oscillations in both cases is related to the fact that

due to the nonparabolicity of the potential wells the os-
cillation frequencies of different trapped electrons do
not coincide, and neither do their amplitudes. More-
over, these parameters do not remain constant even
for any one electron. For this reason, the trajectories
in the phase plane represent complicated, generally
speaking, open curves and, in addition, the particles
can go from a trapped state to a free transit state. The
complexity of the trajectories is a result of both the ef-
fect of higher-order harmonics and the fact that the
depth of the wells, in which the electrons oscillate,
changes with a characteristic time close to the period
of oscillations of the electrons themselves.

We should note the form of the velocity distribution
function for the electrons in the beam averaged over a
period of the high-frequency oscillations. A calculation
shows that it characteristically has several pronounced
maxima. Under the conditions, corresponding to Fig. 8,
the electric field of the wave is so high that already at
the beginning of the nonlinear stage of the interaction
the velocity of the monoenergetic beam oscillates with
an amplitude of the order of the unperturbed velocity of
the beam. Naturally, the averaged distribution function
also has the same width, although the true distribution
function is not smeared out.

Using a description in terms of the separation of the
beam into bunches, it is possible to determine the max-
imum amplitude of the growing wave. For this, it is
necessary to substitute into expression (5.6) the value
of the amplitude of the fundamental harmonic of the
current density, attained with the first phase focusing,
namely, a quantity of the order of the unperturbed den-
sity of the beam.1'

d) Resonance conditions

The above analysis of the formation and evolution of
bunches, as noted already, concerns nonresonant inter-
action conditions. The steady state regime of oscilla-
tions in the resonant case, when o>= o)p, can be analyzed
only if dissipative mechanisms, limiting the amplitude,
are included. This is done in Refs. 95 and 96 by intro-
ducing some effective collision frequency for plasma
electrons v, which is justified, at least, for Coulomb
interactions of particles, when collisions between fast
electrons in the beam and plasma particles can be ne-
glected, and only the collisions between slow plasma
electrons and ions need be included.86

Introducing v into the dielectric permittivity of the
plasma eliminates the divergence of the amplitude and
changes the phase relations between the bunches and the
wave that they excite. The latter results in a monotonic
decrease in the energy of the beam with distance (Fig.
9) in disagreement with the fact that under nonresonant
dissipationless conditions the beam in the steady-state
regime passes through the plasma without energy los-
ses, in spite of the spatial amplification of the wave.

FIG. 8. Amplitudes of harmonics of the beam current density
ji and j2, distribtuion of electron layers in the phase plane
(they are presented for the coordinates noted) and the averaged
velocity distribution function of electrons (b, bottom) as a

co|function of distance fi /n0= 0.1, a^/o)2 = 0. 01, a) co|/w2 = 1. 6;

"For a beam with an average, over the period, current density
jff, the maximum possible value of the amplitude of the first
harmonic equals 2j0. Such an amplitude would occur if all
electrons in each period were collected in infinitely thin
bunches.
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FIG. 9. Spatial dependences of the square of the amplitude of
the critical field £, (1) and deceleration of the beam Av0 (2),
calculated Including dissipation with o>= u>f(i> = 625 •

We note that higher-order harmonics of the field are
neglected in this numerical calculation and for this rea-
son the details of the true behavior of the wave beyond
the first maximum can differ from that presented in
Fig. 9. This conjecture is based in part on a compari-
son of the temporal evolution of the beam in the plasma
when higher-order harmonics are and are not included,
as was done in Ref. 100.

e) Oscillations of bunches in a plasma with 7", ̂ 0

Another factor, limiting the amplitude of the wave at
u) = coB is the thermal motion of electrons in the plasma,
leading to spatial dispersion. In this case, the weak
beam amplifies waves propagating somewhat slower
than itself. The nonlinear dynamics of a beam in such
a wave were studied in Ref s. 92 and 93 neglecting high-
er-order harmonics of the field. As follows from the
universal solution obtained, the process is to a certain
extent similar to the behavior of a beam in a traveling
wave tube. Dense bunches form in the decelerating
phase of the wave and then, with only small deforma-
tions, they oscillate as a whole in potential wells, per-
iodically going from accelerating phases into deceler-
ating phases. As a result of the periodic exchange of
energy between bunches and the wave, its amplitude al-
so changes periodically with distance and, in addition,
these spatial oscillations are more regular (Fig. 10)
than in the case of a cold plasma, when they are caused
by the sequential bunching and debunching of the beam.

Further numerical investigations94'101 showed that
regular oscillations of bunches in the presence of weak
dissipation in the plasma must break down. Bunches
already breakup at y/ws=2-10"3 in the second period.101

This is related to the considerable decrease in ampli-
tude of the wave in the first minimum compared to the

dissipationless case. Due to the smallness of the am-
plitude, a large part of the trapped electrons spills out
of the potential well here, and later the bunching of the
beam no longer attains a high degree. Breakup of
bunches is especially clearly demonstrated in the com-
puter experiment in Ref. 102 (Fig. 11).

As noted in Ref. 92, the analysis of the wave dynam-
ics taking into account Te concerns only systems with a
very weak beam, whose density satisfies the inequality

/ nt, \ 1/3 '>$
(—f)

 <3lf (5.9)
If the density of the beam is such that this inequality is
not satisfied, then for a kinetic description of the plas-
ma it is necessary to take into account its nonlinearity.
However, it is evident that for plasma oscillations with
large amplitudes, when vT/v<l, but nl/nt«l the lin-
earized hydrodynamic description of the plasma and the
corresponding results obtained by neglecting the therm-
al velocities of electrons are still applicable.

f) Trapping of plasma electrons

Neither an analytic theory nor a universal numerical
calculation of electron waves in a beam-plasma system
taking into account the nonlinearity of the plasma com-
ponent exists as yet. Information on the dynamics of
the beam and plasma in this case is obtained from com-
puter experiments concerning spatial-temporal21 and
temporal problems.103 As also in a linear plasma,
bunches forming in the beam are not conserved, and
this leads to spatial localization of oscillations.21 In the
region of maximum amplitude, the plasma electron
density wave is no longer harmonic, but has a sharply
pointed crest (so-called cnoidal wave5). The ratio nt/nt

reaches values much greater than unity. In this case,
the order of electron layers can change even in an in-
itially cold plasma. Part of the electrons on a crest
breaks away from the main mass of particles and moves
in the direction of the beam: trapping of plasma elec-
trons occurs. The role of this process increases with
decreasing beam energy and increasing plasma temper-
ature.103 The nonlinearity of the plasma together with
dissipation and spatial dispersion is an additional factor
limiting the amplitude of the electric field.

In concluding this section, we present Table II, which
shows the interrelation of different theoretical investi-

FIG. 10. Amplitude of the electric field wave as a function of
distance for T.*0. 0.0 as o.a t.o

v'-- <(^n-£rr
nb is the unperturbed beam density, DT is the average thermal
velocity of electrons in the plasma.

FIG. 11. Distribution of electrons in the plasma and in the
beam in the phase plane [v; 0. 0114u>p«/f 0I at some time during
the steady-state regime in a numerical experiment. n,,/np

= 1<T3, t)0A>T = 9.9.
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TABLE II. Theoretically studied cases of spatial evolution of
electron waves in a beam—plasma system.

Numerical universal solution.
Dissipation and harmonics
are neglected"'93

Low-density beam:

<nb/V1/3"-3l>!-
Resonance conditions; T, *° 0

n.

1

ComComputer experiment101

Numerical calculation for specific magni-
tude of damping. Harmonics are ne-
glected**"01 ;

1. Higher density beam
2. Plasma temperature neglected

Nonresonant conditions;

Approximate analytic sol-
ution, including harmonics
up to 2 < S. Dissipation is
neglected" '*''

Resonant conditions with dissipation.
Numerical calculation up to z > S. Dis
sipation is neglected ;

Numerical calculation including
higher-order harmonics up to
z > 5. Dissipation is neglected."

S 12 16 U,,V

FIG. 12. Experimental dependences of the distances to the
regions of intense oscillations on the amplitude of the modula-
ting uhf voltage U{ under different conditions (different marks).
Continuous lines: corresponding computed curves of S^ 1—
v=0.82 cm"1, 2—1> = 1.15 cm"1, 3—u = 1.5 cm"1

beam and subsequent toppling of the wave (Fig. 13). The
first such data for a beam in a plasma were obtained by
means of a specially developed electron-beam analyzer,
measuring the particle distribution function "instantan-
eously" over a time much shorter than the period of the
oscillations.104 With somewhat worse resolution, ana-
logous results were also obtained with an energy ana-
lyzer with a decelerating field, which is switched on on-
ly at certain phases of the wave.47'48

The absence of broadening of the instantaneous dis-
tribution function under conditions when the average en-
ergy spread of electrons in the beam is very large led
to the conclusion that the previous interpretation of the
experimental results based on the quasilinear theory is

gations of the spatial evolution of bunches in a plasma
and, in particular, the criteria for applicability of par-
ticular calculations are indicated.

6. EXPERIMENTAL OBSERVATIONS OF ELECTRON
BUNCHES IN PLASMA

a) Data on phase focusing

The reader has probably already thought of the fact
that the theoretical conclusions to a certain extent
agree with the facts presented in Sec. 2. This agree-
ment is also manifested in the presence of harmonics,
in the axial dependence of their amplitudes up to the
first minimum, and in the spatial evolution of the
smoothed distribution function. But, direct evidence
also exists for bunching of the beam in a plasma. The
first such evidence23 was obtained even before the rig-
orous theoretical investigations, described in the pre-
ceeding section, and was based on a comparison of the
location of the glowing region of intense nonlinear os-
cillations (see Fig. 5) with the coordinate of the phase
focus, calculated from the approximate equation (5.7).
It turned out that the first coincides with the second for
all possible variations in the parameters. The curves
shown in Fig. 12 are examples. The results of Ref. 23
simultaneously confirm the validity of relation (5.7).
Equation (5.8) also satisfactorily agrees with experi-
ment.97

b) Wave "toppling"

Experimental information on the distribution of parti-
cles in the phase plane should apparently be viewed as
the most convincing illustration of phase focusing of the

U,eV

ISO

HO

0 rt/2 n Mjz f in
a)

.©A «< ® ">' ® «« ®-

-2rt 0 -2n 0 -2a 0-4n -2rt 0

FIG. 13. Measured electron distributions in the beam in the
phase plane [ev, coil; elf is the kinetic energy of the electrons,
a) Data from Ref. 104: 1) profile of beam velocity wave for
z< S,, (see (5. 7)). 2, 3) formation of three-velocity stream
for z>Sv, 3) toppling of wave twice within a period; b) instan-
taneous distribution functions f(U) at different a)t and corre-
sponding wave profiles of the beam velocity48 in front of the
phase focus (1), near the phase focus (2), beyond the phase
focus (3), and in the region of strong damping (see Fig. 2, f)
(4), «•{/„ = 390 eV, ^U=U-U0.
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not justified and it is necessary to use the concept of
bunches of particles.71

c) Similarity of the dynamics of modulated and
unmodulated beams in plasma

If we do not appeal to direct, but complex "instantan-
eous" measurements, then information on the nature of
the beam-plasma interaction can be obtained by mea-
suring the electron velocity distribution function, av-
eraged over a time greater than the period of the uhf
oscillations, but shorter than the characteristic time of
low-frequency oscillations in the system. According to
calculations, such a distribution function for the single-
mode regime must be not monotonic, but must have a
multihump structure (Fig. 8). It turned out that this is
in fact observed in experiments with both modulated and
unmodulated beams (Fig. 14).105 The nonmonotonic
form of the distribution function again confirms the uni-
versality of the description in terms of bunches in a
monoenergetic beam-plasma system.

We note that the fact that prior modulation of the beam
is not necessary to excite a longitudinal, nearly mono-
chromatic wave appears to be natural, if we keep in
mind the following unavoidable factors, which narrow
the wave spectrum in the system:

1) Strong frequency nonuniformity of the gain, in-
creasing with distance25-106;

2) Feedback between the region of intense oscillations
and the point of beam entry into the plasma107.

d) Profile of electric field wave

As follows from a calculation of the functions £(t)
(Fig. 7), waves excited by a strongly bunched beam,
must be nonharmonic waves. The presence of higher-
order harmonics in the spectrum of the oscillations
(Fig. 2) can be viewed as an experimental confirmation
of this fact. However, because it is not clear which
particular physical quantity is associated with the os-
cillations detected by the probe and there is no informa-

I.S f.8 Ug

if, m/s

FIG. 15. Diagram of electron beam probe of beam-plasma
system. 1) Cathode, 2) modulating resonator, 3) uhf power
input, 4) auxiliary electron gun, 5) low intensity electron beam,
6) collector.

tion on the phase relations between the harmonics, it is
impossible to reconstruct the profile of the electric
field wave from the spectrum.

The wave profile E(t) in a beam-plasma system was
determined directly by electron-beam probing.108 A
weak-current electron beam 5 (Fig. 15) was passed
perpendicularly to the main beam through its axis,
without exciting the system under study. Deflecting in
the field of the plasma oscillations along the z axis, and
then in the synchronous harmonic field between the
plates 7 along the x axis, the beam traced a figure on a
luminescent screen 8, from which the amplitude of the
electric field wave and its profile were found.

Data on the spatial evolution of the wave were ob-
tained by probing the system at different distances z
from the point of entry of the beam into the plasma.109

The characteristic series of figures on the luminescent
screen and the corresponding curves of E(t) are shown
in Fig. 16 by the continuous lines. It is evident that the

FIG. 14. Averaged velocity distribution functions of beam
electrons, measured over a short time, at different stages
of beam—plasma interaction in a beam—plasma discharge.
p (mm Hg) 5'ICT6 (a), 1.3-l<T3(b), 2-10'3 (c) and 2. 7 -lO'3 (d).

FIG. 16. Spatial evolution of temporal profiles of electric
field wave E (continuous curves) and convective current densi-
ties In the plasma joonT (dashed curves). The corresponding
figures appearing on a luminescent screen are presented on
the left.
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wave profile with strong beam bunching (Fig. 16e) is
close to that predicted theoretically. The difference
lies only in the fact that the sharp deviation from har-
monicity, arising with the passage of the bunch, is ob-
served not at the zero phase of the fundamental har-
monic, as in Fig. 7, but somewhat displaced into the
decelerating half-period. This phase displacement of
the bunch can be explained by the presence of dissipa-
tion and nonzero electron temperature, factors which
are not taken into account in the theoretical calculation
of the profile.

e) Dynamics of bunches

Using the dependences E(t), it is possible to establish
the fine structure of electron bunches.109 To do so, it
is necessary to keep in mind the fact that the derivative
dE/dt (dashed lines in Fig. 16) determines the convec-
tive current jcon in the plasma, while the latter repre-
sents the superposition of an almost sinusoidal current
of the fundamental harmonic (this current is created by
plasma electrons) and the current in the bunch, which
forms the well in the positive half-period of the func-
tion jem(t). Therefore, the relief of the well is deter-
mined by the profile of the bunches, while the spatial
evolution of the well is a good illustration of their dy-
namics, in which we can identify the following most im-
portant points.

1) The electron bunches formed are not conserved in
further motion: their size increases and they are ob-
served to break up into two parts (z = 4.64 cm). The
bunches later again coalesce. At the next stage, the
debunching becomes so strong that the wave again be-
comes practically sinusoidal (2 = 6.82 cm).

2) The electron bunches break up more rapidly than
their phase changes. From Fig. 16 it is evident that the
center of the bunches is always displaced into the decel-
erating half-period of the field. Only when the bunches
break up into two parts can one of the parts go over into
the accelerating phase of the wave (z = 4.76 cm).

These facts, concerning a comparatively dense beam,
agree with the theory of its evolution in a cold plasma
(Sec. 5c). The same conclusion can be arrived at con-
cerning the results obtained by probing the system at
different w/wp. As this ratio decreases, the contribu-
tion of higher order harmonics increases and, in par-
ticular, almost 100% conversion of the initial wave into
the wave with frequency 2u> or 3co was observed.

The dynamics of a less dense, initially unmodulated
beam in a plasma situated in a magnetic field was al-
ready investigated by the decelerating field method,
mentioned above, with the analyzer switched on at cer-
tain phases of the wave.46-47 As is evident from Fig. 17,
in this case a transition is observed from deceleration
of a bunch to its acceleration, which agrees with the
theoretical description of the oscillations of bunches
(Sec. 5e).

Thus direct experimental data on the evolution of
bunches in the vicinity of a phase focus exist (in the in-
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FIG. 17. Electron density distribution in the beam in the phase
plane as a function of distance from the origin of the system.
6 = (v — Vo)/Vg(nb/2HJ)' /3. Lines of maximum density and half-
width of the instantaneous distribution function are indicated
in the coordinates 2. 0 and 3. 0. The width is close to the in-
strumental width. For large z the inner contour corresponds
to maximum density, normalized to 1. For the other contours:
0.8, 0.5, and 0.2.

terval 0<zS 3SJ. Beyond the phase focus, depending
on the conditions, both of the theoretically predicted
wave damping factors—debunching and removal of en-
ergy from the field by bunches—are observed. How-
ever, compared to the first theoretical results, this
spatial damping is deeper and, apparently, irreversi-
ble, which indicates the complete breakup of bunches.
We can identify the following reasons for their rapid
breakup:

1. Angular divergence of the beam under the action of
the high frequency field in experiments without a mag-
netic field.23-109 This divergence can, in particular, ex-
plain the fact that the amplitude of the wave does not in-
crease significantly with repeated merging of bunches
(Fig. 16).

2. Dissipation in the plasma together with the large
velocity spread in a bunch. It is known that the attain-
able degree of beam bunching with a discrete collection
of velocities is much smaller than for a single-velocity
beam.110 For this reason, if electrons leave the trap-
ping region on the section with decreasing amplitude,
then their further strong bunching is no longer possible
(Fig. 11). The critical effect of damping on the preser-
vation of bunches was also observed in an experiment
with a traveling wave tube.111

3. Parametric instability of a monochromatic wave,
leading to the growth of side-band waves. This will be
discussed in greater detail in Sec. 7d. Here we refer
only to the above-mentioned experiment with traveling
wave tubes, in which break-up of bunches was observed
accompanying excitation of a growing wave with fre-
quency close to the fundamental frequency.

4. Dependence of plasma parameters in a beam-plas-
ma discharge on the amplitude of the oscillations. The
decrease in plasma density due to partial debunching of
the beam and the corresponding decrease in the wave
amplitude in the region beyond the phase focus can fac-
ilitate total break-up of bunches.
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7. STATIONARY PERIODIC BERNSTEIN-GREEN-
KRUSKAL WAVES

a) Possibility of equilibrium distributions of trapped
electrons

Bunches, forming in the usual beam-plasma experi-
ments when an unmodulated or weakly modulated beam
is injected into the plasma and moving synchronously
with the wave are thus nonequilibrium formations. The
exponential process of electron bunching is replaced by
a quite rapid stage in which bunches break up. Asa re-
sult, the amplitude of the waves excited by such beams
changes strongly (by several orders of magnitude) along
the direction of motion of the beam, so that the oscilla-
tions are practically localized in a small region at
some distance from the point of beam entry: the waves
are not stationary.

Meanwhile, it was already predicted in Refs. 13 and
27 that stationary nonlinear waves with nondeforming
bunches of trapped particles can exist in a plasma. The
theory of such stationary waves (usually called BGK
waves) is based on the assumption that a stationary
plane wave already exists in the plasma. Then, in a
moving system of coordinates in which the wave is sta-
tionary, all quantities are independent of time and it is
possible to use the general solution of the stationary
nonlinear Vlasov equation for the electron distribution
function

/ = /(^|L_e(p), (7.1)

where <p is the electric potential of the wave and v is
the velocity of the electrons. To simplify the problem,
we shall neglect the perturbation of the background ion
density nt of the wave. We shall separate the electrons
into two groups: electrons that are trapped by the wave
and electrons that are not trapped. In this case, sub-
stituting (7.1) into the Poisson equation

32<p / / r / j \ /7 ?^

we obtain an integral equation for the normalized ener-
gy distribution function of trapped electrons /tras(g?):

.4aen "y "•*•»<»> * «•» . lTT.n *.,„ f aUrtW'*
tr"P ^J Y2m(f + etf) #'* ' transit^ \ |/2m(g + eq>)'

(7.3)
where «trap and nlraMit are the average densities of
trapped and transit electrons, respectively, g = (mv*/2)
~e<p. It follows from Eq. (7.3) that specifying arbitrar-
ily the profile of the wave <p(z) and the energy distribu-
tion of untrapped electrons/tramslt, it is always possible
to select a matching equilibrium distribution function of
electrons trapped in the potential wells of the wave. It
is because the distribution of trapped particles in the
BGK wave is an equilibrium distribution that these
waves differ from Van Kampen waves, where the re-
verse effect of the field on the resonant particles is ne-
glected (as a result of which, Van Kampen waves are
not realizable in practice).

Specific examples of BGK waves, corresponding to
different distribution functions of trapped electrons,
were examined in Refs. 13 and 112. Since electron

bunches in neighboring wells are separated by a poten-
tial minimum, their distributions can be independent of
one another and aperiodic solutions are also possible in
addition to periodic solutions, for example, in the form
of separate pulses of the potential.13

b) Excitation of stationary waves by electron
bunches and role of plasma dispersion

In the usual analysis of stationary waves in a system
of coordinates moving with the wave, the conditions for
their excitation27-113 and the physical reason for the
equilibrium of bunches remain unclear. There exist on-
ly qualitative considerations,3-85 confirmed by numeri-
cal modeling,114 of the fact that a type of stationary
wave can be established as a result of the temporal de-
velopment of the beam-plasma instability.

Another possibility, predicted in formulating the
problem of the behavior of preformed electron bunches
periodically injected into the plasma, is much more
realistic.115 Stationary waves with such bunches are al-
so described by solutions of Eq. (7.3). But, together
with this, the analysis of these waves within the frame-
work of the dynamic equations (5.1)-(5.6) also reveals
the conditions for their excitation. If the current pulses
of the beam are given a rectilinear form in the injection
plane (Fig. 18), then for a definite pulse duration a
quasistationary wave is established at finite z. The
electric field of the wave vanishes at values of the phase
at which the electrons in the beam are concentrated.
For this reason, in the absence of initial velocity mod-
ulation, cold bunches propagating synchronously with
the excited wave are not deformed. Such an equilibri-
um is a result of dispersion leading to competition be-
tween the harmonics of the electric field of the wave.
Part of them strive to compress the bunches, while the
remaining harmonics strive to prevent compression
(Sec. 5b).

The physical meaning of the stationary state is es-
pecially easily revealed in the case of very thin bunches
(i-/2ir«l), injected into the plasma at a frequency w
somewhat less than the plasma frequency. Substituting
into expression (5.6) the amplitude of the first harmon-
ic of the current density A1~0,B1~ 2j0, we find the field
created by the plasma charge inside a bunch and com-
pressing it:

n n

FIG. 18. Computed (a—c) and experimentally measured (d)
structure of a stationary wave excited by cold electron bunches
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The intrinsic field of a bunch, on the other hand,
which pushes it apart, can be determined from Gauss's
theorem:

£ , . 4.JI I , Z \
b=.-4n;0.— (i-_)

Equating to zero the resulting field £ =
the equilibrium duration of the bunches:

(7.5)

^£b, we find

(7.6)

A more rigorous analysis28'116 shows that cold bunches
are in equilibrium for any
dition

wp and u>p if the con-

(7.7)

where s is an arbitrary integer, is satisfied.

If the temperature of the bunches Tb differs from
zero, then compression of bunches is likewise pre-
vented by the gas kinetic pressure of the electrons. As
w approaches wp and Tb increases, the influence of
higher-order harmonics of the field on the shape of the
bunches can be neglected compared to the thermal mo-
tion. Assuming that the beam electrons have a Boltz-
mann distribution in the harmonic stationary wave, it is
possible to determine the dependence of the wave am-
plitude on Tb (Fig. 19) and the equilibrium profile of the
bunches.117 For rb>£, bunches cannot be in equilibri-
um.

We emphasize again that, in any case, the equilibri-
um arises only for w< u>p, when the dielectric permit-
tivity of the plasma is negative and the bunches are lo-
cated in potential wells. In this case, the approxima-
tion of linearity of plasma oscillations used for simplic-
ity is not of fundamental significance. In particular,
the parameters of the stationary wave in a nonlinear
plasma with trapped cold bunches are determined in
Ref. 118.

c) Quasistationary waves in a dissipative plasma

Since the idea of equilibrium of bunches concerns a
steady -state oscillatory regime, while the existence of
such a regime presumes the presence of some dissipa-
tion mechanism in the plasma, it is necessary to clari-
fy the effect of the plasma on the waves under study. In
Ref. 119, damping was included, as usual, by introduc-
ing some collision frequency v into the equation of mo-
tion of plasma electrons, as a result of which the term

appears on the left side of Eq. (3.1).

Zfi
1.0

w

FIG. 19. Amplitude of the potential <% of the stationary wave
as a function of the temperature of the bunches Tb.

3.0
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FIG. 20. Equilibrium duration of cold bunches as a function
of a =(a)p/u>) for different magnitudes of dissipation v/u. Equi-
librium is impossible to the left of the dashed lines.

It turned out that waves with constant profile and am-
plitude can also propagate in such a plasma. Damping
leads to a definite shift in the phase of the electric field
with respect to the dissipationless case, so that cold
bunches are displaced from the bottom of moving poten-
tial wells onto their decelerating slopes. As a result,
the equilibrium shape and duration of bunches do not
change significantly. More significant is the fact that
bunches, moving into the bulk of the plasma, decelerate
monotonically and, correspondingly, the quasistation-
ary wave slows down: its length decreases. In addition,
the range of frequencies of these waves (Fig. 20) is
shortened: the stronger the dissipation, the farther the
boundary of existence of equilibrium moves away from
"V

d) Instability of bunches in quasistationary waves

Of course, any real bunch former cannot provide the
exact parameters of bunches injected into the plasma
required for equilibrium. On the other hand, plasma
fluctuations have a perturbing action on the system.
For this reason, there arises the question of the stabil-
ity of the equilibrium of bunches.

The behavior of perturbations in stationary waves was
examined in a number of papers.120"125'116'117 Different
mechanisms for their instability were predicted and
analyzed. Since this is a very broad problem, which
has not been completely solved and is closely related to
the more general problem of wave interaction in a plas-
ma, a complete discussion of the problem would take us
far outside the scope of this review. Here, we shall
consider only two aspects directly related to excitation
of quasistationary waves by cold bunches.

First, we note that for stationary injection of bunches
into a plasma the possibility of realizing BGK waves
depends both on the spatial increment of perturbations
and on the initial magnitude of these perturbations.
Taking into account the possibility of stabilizing the
frequency of the bunch former, we can expect that the
strongest initial perturbations will be identical, for
each bunch, deviations from the equilibrium profile.
As the bunches move into the bulk of the plasma, these
perturbations, not leading to the appearance of new fre-
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quencies in the spectrum, but changing the relation of
the amplitudes of the harmonics of the nonlinear wave,
evolve as exp(ixz),116 and, in addition, x must satisfy
the dispersion relation

= 0, (7.8)

where h2 = ±itejjmv\ and jc is the current density in a
bunch.

It follows from Eq. (7.8) that the perturbations of the
equilibrium shape of a bunch do not grow in space for
w/o)p>T/27r or, which is the same thing, for S>(wp

- d})/d). In particular, perturbations are not amplified
in waves for which wp/2< o>< wp. On the other hand, for
lower frequencies, narrow bunches are conserved,
while the wide bunches must breakup. It is interesting
that the instability being examined includes the insta-
bility of an unmodulated cold beam in a plasma as a
special case, corresponding to T/27r = l.

We shall now consider perturbations of a different
type: perturbations that change the mutual positioning
of bunches in a wave and, correspondingly, giving rise
to new frequencies in the spectrum. In Refs. 117 and
120, the behavior of such perturbations was analyzed
for stationary waves with a frequency close to the plas-
ma frequency, which permitted neglecting the higher-
order harmonics. In addition, trapped bunches were
treated as undeformed bunches. The following method
was used to analyze the stability of the system.

Let us suppose that perturbation waves arise in the
plasma together with a high-amplitude stationary wave;
these are pilot waves, displacing bunches out of the
equilibrium position in the potential wells. Using the
equation of motion, the displacement of each bunch can
be expressed in terms of the electric field of both the
fundamental and pilot waves, the perturbed density of
the beam can then be determined, and taking into ac-
count the dielectric permittivity of the plasma, the
electric field created by this density perturbation can be
found from Poisson's equation. A closed system of
equations is obtained if the field found is identified with
the field of the perturbation waves. In this case, a dis-
persion relation was obtained for the frequencies ft and
wave numbers x of the pilot waves, which for a cold
plasma assumes the form:

~7n .... \-> :7s~ a fOl ' p /O — 9(.il ' ' * '

where c^ is the plasma frequency of the beam, corre-
sponding to its average density, o>0 is the frequency of

FIG. 21. Spatial increment of side-band instability Imx,
= y\ (WJ/UD)V uB/S as a function of the frequency of the pertur-
bation wave (6 = ij>s— a), P = cOj — f l ) .

FIG. 22. Computed axial dependences of the amplitudes of the
fundamental (resonant) wave with frequency u0 (see Fig. 10)
and pilot waves with frequencies o)0 ± 6, 5 = 0. 5 (co - oi0)/
uo(Bb3fT/«pf0)4/3. The amplitudes of the pilot waves at 2=0
are fixed an order of magnitude smaller than the amplitude
of the fundamental wave.

oscillations of a bunch in the potential well of the wave,
and e is the dielectric permittivity of the plasma.

If we are interested in the spatial amplification of the
perturbations, then assuming that in (7.9) fl is a real
quantity, it is easy to determine the frequency depen-
dence of the spatial increment.29 This dependence is
shown in Fig. 21. It is evident that the side-band per-
turbations, whose frequencies are shifted approximate-
ly by an amount ±( uf - o>) from the frequency of the fun-
damental wave, must be maximally amplified. The
tendency of the increment to become infinite is related
to the fact that the thermal motion of the plasma and
dissipation of oscillations were not included in the cal-
culation. These effects must limit the increment at
resonant points just as in the problem of amplification
of waves in the case of the usual beam-plasma interac-
tion.

Of course, the linear theory of instability does not
predict the future fate of the bunches. For this reason,
the results of the numerical calculation of the effect of
the side-band instability on the fundamental wave are
very important,126 even though they were obtained not
for stationary waves. In Fig. 22, it is evident how, as
a result of the breakup of bunches under the action of
the side-band waves, the fundamental wave damps out
with time.

8. EXPERIMENTAL INVESTIGATION OF EXCITATION
OF QUASISTATIONARY WAVES BY ELECTRON
BUNCHES

The behavior of electron bunches, created indepen-
dently of the beam-plasma interaction and later injected
into the plasma, was studied in Refs. 28, 29, and 127,
which differ fundamentally in the formulation of the
problems and experimental conditions.

In the experiment described in Ref. 127, a wave,
which also propagates in the absence of an electron
beam, was excited from an external oscillator in a
magnetized plasma. Electron bunches, with duration
T « 2ir and velocity equal to the velocity of the wave,
were injected synchronously with the wave into the
plasma along the same direction. The density of the
bunches was so low that they did not affect the disper-
sion of the wave. At the same time, their oscillations
in the potential wells led to periodic exchange of energy
between the bunches and the wave and corresponding
spatial oscillations of the latter. The amplitude and
phase of these spatial oscillations were regulated by the

132 Sov. Phys. Usp. 26(2), Feb. 1983 V. P. Kovalenko 132



change in the initial phase of the bunches in the wave in
complete correspondence with the theoretical predic-
tions (Sec. 5e).

In contrast to these experiments, in Ref. 28, pre-
formed bunches excited in an unmagnetized plasma a
wave that did not exist without the beam. The charac-
teristics of the wave were determined by the param-
eters of the injected bunches and, with a careful choice
of these parameters, approached the properties of sta-
tionary waves. In Fig. 23, the axial dependences of the
amplitudes of such waves are compared with the corre-
sponding dependence for the usual exponentially grow-
ing waves, which are excited when a weakly modulated
beam is injected into the plasma. It is evident that the
amplitude of the quasistationary wave from the very be-
ginning is close to the maximum possible amplitude for
the given beam, and what is especially important, is
conserved at distances at which initially the growing
wave is already almost completely damped. The mea-
sured equilibrium profile of the potential wave corre-
sponds to the theoretical profile (Fig. 18) and also does
not change over the entire path of the quasistationary
wave.29 If the parameters of the bunches formed are
fixed, then they are in equilibrium only for a definite
value of the ratio o>/wp, which corresponds qualitatively
to expression (7.6). We note that in the experiment ra-
dially restricted bunches are formed and the existence
of a quasistationary wave indicates not only their longi-
tudinal, but also their transverse equilibrium. The ap-
pearance of forces, which prevent radial expansion of
the bunches in the absence of a magnetic field, is re-
lated to the negative value of the dielectric permittivity
of the plasma for o>< o>p.

128

The properties of quasistationary waves are clearly
manifested in the configuration of the beam-plasma dis-
charge, maintained by the wave in a much larger vol-
ume than in the case of the unmodulated or weakly mod-
ulated beam (Fig. 24). Thus the experimental facts
confirm that preformed bunches can be in equilibrium
in the field of the wave excited by them. Nevertheless,
at some distance the amplitude of the wave is observed
to decrease. In the region with damping, the synchron-
ization between the plasma oscillations and the modu-
lating voltage breaks down. With the help of spectral
analyzers, it has been established129 that in this case
the probe detects together with the oscillations at the
fundamental frequency (/= 0.4 GHz) satellite waves with
frequencies 400 ±30 MHz and 30 MHz that are spontan-
eously excited and that grow along the beam (Fig. 25).

U 4 a 12 IS z, cm

FIG. 23. .Axial dependences of amplitudes of waves excited in
one case (curve 1) by a small modulation of the beam, and in
other cases (2-4) by injection of bunches with different param-
eters into the plasma.

FIG. 24. Beam-plasma discharge with weak modulation of
beam (a) and in the case of a quasistationary wave (b).

Comparing the observed experimental evolution of the
spectra with the computed behavior (see Fig. 21), their
qualitative agreement is evident, although the experi-
mental values of the side-band frequencies do not cor-
respond to the computed values. One of the likely rea-
sons for this disagreement could be the fact that the
theory constructed for small o>p - w becomes too inac-
curate for the values of o>p - co realized in the experi-
ment.

The fact that the theory does not predict amplification
of oscillations in the low-frequency region of the spec-
trum at frequencies near 30 MHz is also apparently re-
lated to the use of simplifying assumptions. Meanwhile,
these oscillations play an important role in the dynam-
ics of the system, as demonstrated by the following ex-
periment. A small voltage with frequency 30 MHz was
applied to the grid modulating the beam together with a
uhf voltage exciting the quasistationary wave. In so do-
ing, the spectra of all side-band waves appreciably
narrowed, while the region of damping of the fundamen-
tal wave approached the point of entry of the beam.
Figure 26 presents the spatial dependences of the am-
plitudes of the fundamental and low-frequency waves.
The amplitudes of waves with the combination frequen-
cies (400 ±30 MHz) vary along the beam analogously to
the curve illustrated by the dashed line. The data pre-
sented indicate that the reason for the damping of the

A relative units

z = 19 cm

0 370 400 4Jft f, MHz

FIG. 25. Spatial evolution of the frequency spectrum of a
quasistationary wave.
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FIG. 26. Spatial distribution of the amplitudes of the funda-
mental (continuous curve) and low-frequency (dashed curve)
waves. The scales of the curves along the vertical axis are
different.

fundamental wave is the growth of the satellite waves.
These waves remove bunches from the equilibrium
state and the bunches then break up.

It should be noted that in the experiment, together
with the breakdown of equilibrium of bunches, two other
effects arise, which give rise to additional damping of
the fundamental wave. This involves, first of all, ang-
ular scattering of electrons in the beam, observed vis-
ually. Second, it involves a strong change in the beam-
plasma discharge regime and, therefore, in the plasma
parameters in the region with decreasing amplitude.
The measured axial variations of the radial fluxes of
electrons and ions have a decreasing character in this
region. For this reason, the direct influence of side-
band waves on the fundamental wave is manifested dis-
tinctly only at the initial stage of damping of the latter,
and later it is masked by the effects indicated above.

Breakup of electron bunches naturally leads to damp-
ing of the side-band waves as well.

9. CONCLUSIONS

Thus, for stationary injection of an electron beam in-
to a plasma, regular nonlinear waves, which represent
a periodic sequence of electron bunches accompanied by
a polarization cloud of charges in the plasma, are ex-
cited under a wide range of conditions. The spatial evo-
lution of these waves is a result of the corresponding
change in the parameters of the bunches due to the in-
itial modulation of the beam velocity and the action of
the electric field corresponding to them. This conclu-
sion is based both on the results of a theoretical analy-
sis of the interaction of a monoenergetic beam and the
plasma under different conditions and the available con-
vincing experimental proofs of the existence of bunches,
including direct observation of their dynamics.

The entire complex of phenomena described in Sec. 2
is easily explained based on the concept of electron
bunches. In so doing, we can conventionally single out,
in the wide range of experimental systems studied, the
following stages of the beam-plasma system that suc-
ceed one another in the axial direction.

1. Linear stage. Here the quasimonochromatic wave
and its exponential growth in space become separated
from the noise. The degree of bunching of the beam and
the amplitude of other variable quantities is very small.

2. Region of bunching. In this region, modulation of
the beam velocity continues. Simultaneously, due to

this modulation, the variable density of the plasma, in-
creasing in magnitude, strongly deviates from a har-
monic variation. The wave is enriched with harmonics.
This stage terminates with the formation of bunches.
The characteristic length of the bunch forming process
is given by Eqs. (5.7) and (5.8).

3. Region of interaction of the bunches formed and
the plasma. Here most of the electrons in the beam are
concentrated in bunches, and this, depending on the
conditions, leads to more or less appreciable deviation
of the profile of the electric field wave from the har-
monic profile. The bunches are not rigid formation,
but have a fine internal structure, which changes in a
complicated manner in the course of their translational
motion. Although the degree of these changes depends
on the specific conditions, generally speaking, they in-
volve debunching and repeated bunching of electrons,
which must lead to corresponding spatial changes in the
amplitudes of the oscillations. In cases when bunches
interact with a wave, which also propagates in the plas-
ma without the presence of bunches, the spatial oscilla-
tions in the amplitude are caused primarily by energy
exchange between the wave and the bunches.

The electrons forming the bunches have a relatively
high velocity relative to one another. This predeter-
mines the tendency of bunches to break up, since a de-
crease in the amplitude of the wave for any reason in-
volves spilling of electrons in the bunches out of the po-
tential wells in which they are confined. Breakup of
bunches leads to damping of the wave.

According to data obtained from numerous measure-
ments, the extent of the region in which strong bunch-
ing of the beam remains is of the order of (1-2) S,
while the total length of the system studied experimen-
tally, including the initial stage, equals approximately
3S. At this distance the beam consists of a small num-
ber of mutually interpenetrating velocity-modulated
streams, i.e., the beam is far from having relaxed.
There is no experimental information on the subse-
quent dynamics of the beam and the fundamental prob-
lem of its relaxation channels remains open.

The mechanisms affecting the flow of energy out of
the Langmuir oscillations,129 in particular, the modula-
tion instability and wave collapse in a collisionless
plasma, play a very important role in the theoretical
analysis of this process. However, considerations of
the asymptotic behavior of the beam,25'130 based on an
analysis of the electron oscillations only, the subject of
the present review, are of definite interest as well.

According to these models, in the case of a low-den-
sity beam, in spite of the continuous increase in the
number of combined streams as a function of distance,
the magnitude of their variable velocity remains insig-
nificant. As a result, the distribution function of the
electrons in the beam spreads out, and this under the
conditions of a wide spectrum of small-amplitude os-
cillations can lead the system into a quasilinear relax-
ation regime.

Apparently, another situation, characteristic for high
beam densities, when in the bunching process the vari-
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able velocity of the beam is of the same order of mag-
nitude as va, can also arise. In this case, in the multi-
velocity stream formed, the amplitudes of the variable
quantities are such that the linear description of the
beam is inapplicable, and the beam is in a strongly
turbulent regime, relaxing through mixing and scale
division.

Be that as it may, collective fields strongly decrease
in the region of multistream motion arising with the
breakup of bunches. The maximum level of oscillations
can be maintained over a large interval if preformed
bunches, exciting a quasistationary wave, are injected
into the plasma.

1 am grateful to M. V. Nezlin for useful critical re-
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