
lomb gap" in the density of states. It has been studied care-
fully by means of computer modeling both here and abroad.
The results of the modeling confirm the presence of the Cou-
lomb gap.5 The gap has been observed also by means of tun-
neling experiments.6 The density of states (3) leads to the
result that instead of the Mott law (2) we have the relation

l/2- 2,8e2

kx.a (4)

The experimental data show that in doped semiconductors
just this law is observed.7 It also occurs in some two-dimen-
sional systems and in granular metals.

As a rule, the law (4) is observed in the vicinity of a
metal-dielectric interface, where the radius of the state a and
the dielectric permittivity K are anomalously large since they
go to infinity on approach to the junction. In accordance
with Eq. (4), Tt vanishes in this case. By studying the critical
behavior of 71, and the electrical conductivity on the metallic

side of the junction it has been possible to investigate the
critical exponents of K and a.1
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Translated by Clark S. Robinson

A. S. Kaminskii, V. A. Karasyuk, and Ya. E. Pok-
rovskii. Multiparticle exciton-impurity complexes in semi-
conductors. In an ideal crystal lattice the electrons and holes
can be considered as almost free particles similar to electrons
and positrons in free space. The diiference is that electrons
and holes are characterized by an effective mass which can
differ considerably from the mass of the free electron and
which can have a strong anisotropy. In addition, the electro-
static interaction between the charged particles can be weak-
ened greatly as the result of the high dielectric permittivity of
the crystals. This leads to a change of the characteristic
scales of distances and of the energies of bound states of
electrons and holes. Proceeding from the analogy between
electrons and holes and elementary particles, and taking into
account the various possibilities in the ratios of their effec-
tive masses, Lampert1 in 1958 predicted the possibility of
existence in semiconductors of a number of mobile and im-
mobile electron-hole complexes, some of which have since
been observed experimentally. In particular, he predicted
the existence of a bound exciton arising in capture of a free
exciton by a neutral donor or acceptor. In 1960 Haynes2

experimentally observed bound excitons in silicon doped
with elements of groups III or V, on the basis of the appear-
ance of narrow luminescence peaks arising on annihilation
of an electron and a hole in a bound exciton. In 1970 Ka-
minskii and Pokrovskii3 in a study of the photoluminescence
of boron-doped silicon at 4.2 K observed a series of emission
peaks which were excited successive as the level of excitation
was increased. The origin of these peaks was explained by
capture of several (m) excitons in boron atoms, as a result of
which there arises a collective state which contains a singly
charged impurity ion, m carries (electrons or holes) of the
same sign of charge as in the impurity ion, and m + 1 carri-
ers with the opposite sign of charge. These states received the
name multiparticle exciton-impurity complexes.

According to the shell model proposed by G. Kirc-
zenow in 1977 the electrons and holes in complexes occupy
shells, the wave functions in which have the degeneracy or-
der and symmetry of the wave functions of the simple donor
and acceptor. For example, two electrons in complexes
bound to donors of group V and silicon occupy a shell close
to the impurity ion. Then there is a fourfold-degenerate hole
shell, beyond which are located electron shells containing up
to ten electrons. Thus, as a result of the high order of degen-
eracy it is possible in semiconductors to have complexes con-
taining a large number of electrons and holes. In the case of
electrons and positrons, the lowest state of which is degener-
ate only in spin, the existence of similar complexes is impos-
sible. On recombination of a hole with an electron from the
inner shell, lines of the a series are emitted, and on recom-
bination with an external electron the shorter- wavelength ft
series is emitted. These series are observed experimentally
(see for example Refs. 5 and 6). For uniaxial deformations
(compression) of silicon the fourfold-degenerate hole shell is
split into two doubly degenerate shells. This leads to a dou-
bling of the luminescence lines, and for large deformations it
leads to disappearance of complexes containing more than
two holes.7 Uniaxial deformation leads also to polarization
of the radiation of the complexes. The polarization has been
calculated on the basis of the wave-function symmetry pre-
dicted by the shell model and has turned out to be in good
agreement with experiment.8

In perfect silicon crystals it has been possible by the
method of interference spectroscopy to resolve the fine
structure of the emission lines of complexes, including those
with various uniaxial deformations. The main features of the
fine structure have been interpreted on the assumption that
it is determined by pairing of the angular momenta of the
holes and by the exchange interaction of holes with electrons
of the outer shells.9'10 In addition it has been shown that one
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of the electrons in complexes bound to donors is localized
near the impurity ion just as strongly as in the case of a
neutral donor.

Spectral analysis of the luminescence of multiparticle
exciton-impurity complexes permits easy determination of
the content of elements of groups HI and V even in the purest
silicon crystals.11
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V. A. Rubakov. Structure of the vacuum in gauge theor-
ies and monopole catalysis of proton decay. The problem of
the structure of the ground state is one of the key problems of
contemporary quantum field theory. The properties of the
vacuum determine to a significant degree both the spectrum
of particles and the characteristic features of their interac-
tions. Special interest in presented by study of the structure
of the ground theories, which form the basis for the con-
struction of models of the strong, weak, and electro-magnet-
ic interactions. Recently it has been shown1'2 that the re-
quirement of conservation of such quantum numbers as
fermion number or chirality is in conflict with the require-
ment of gauge invariance, which is fundamental in gauge
theories. The unitary operators U[a] which perform gauge
transformations with gauge parameters a(x) which do not
vanish at infinity, generally speaking, carry the fermion
number or chirality; as a result of this the vacuum of pertur-
bation theory |0) is not gauge-invariant, and the physical
ground state is a linear superposition of the form

|6>= S e-in» (U [a])" | 0).
n=-oo

The physical vacuum \6 ) does not have a definite fermion
number or chirality, and excitations above it cannot be char-
acterized by these quantum numbers; fermion number and
chirality, generally speaking, are not required to be con-
served. Arguments1 favoring the 8 structure of the vacuum
in four-dimensional theories have been based on investiga-
tion of the contribution of instantons3 to the functional inte-
gral. In the exactly solvable two-dimensional model (quan-
tum electrodynamics with massless fermions) the gauge
transformation operators were constructed explicitly2 and
the ground state of the model actually does have undeter-
mined fermion number and chirality.

In quantum chromodynamics the vacuum structure in-
volves nonconservation of chirality1 (but not of fermion
number), which may form the basis for solution of the well
known £/(!) problem (the absence of the ninth light pseudo-
scalar boson). In addition a number of new problems arise
such as the problem of CP conservation in strong interac-
tions.1'4 In models of weak and electromagnetic interactions

there is nonconservation of fermion and baryon number due
to the complex structure of the ground state, but the corre-
sponding amplitudes are suppressed by a factor exp
( — const/a) and by inverse powers of the mass of the W
boson. l

It has recently been discovered5"9 that similar suppres-
sion factors do not arise if one considers processes involving
magnetic monopoles. Monopoles10 appear in unified models
of strong, weak, and electromagnetic interactions as static
solutions of the classical field equations; in quantization they
correspond to particles whose mass is estimated to be of the
order 1016-1017 GeV. Like the vacuum state, the monopole
state does not have a definite fermion number, but in con-
trast to the vacuum sector, transitions between monopole
states with different fermion numbers are described by gauge
field configurations having an action which differs arbitrar-
ily little from the action of the monopole itself. This leads to
disappearance of the exponential suppression of the ampli-
tudes of processes with fermion number nonconservation.
The absence of suppression by inverse powers of the heavy
vector boson mass is due to the fact that the corresponding
configurations can have a purely electromagnetic nature. In
spite of the fact that investigation of processes with noncon-
servation of fermion number in the presence of monopoles
cannot be carried out either in the framework of perturba-
tion theory or by means of the standard saddle-point meth-
od, it has been possible to calculate some matrix elements.6

We shall give as an example the expression for the density of
fermion condensate which violates the baryon number in the
presence of a monopole in the SU(5) model of grand unifica-
tion:

where r is the distance to the monopole. This expression is
valid with accuracy to quantum corrections of order as and
a in the region rS 10~ 13 cm. Matrix elements of this type
describe processes of proton decay in the presence of a mono-
pole, i.e., the processes

p + monopole— >e+ + monopole + pions.

An estimate of the cross sections for these processes has the
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