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The status of the microscopic theories is reviewed for the following types of order-disorder struc-
tural phase transitions in crystals: a) phase transitions in crystals with hydrogen bonds; b) orienta-
tional phase transitions in ionic-covalent crystals; c) orientational phase transitions in molecular
crystals; d) order-disorder phase transitions in ordered interstitial and substitutional alloys. At-
tention is focused primarily on the static properties, i.e., the nature of the ordering, the phase-
transition thermodynamics, and the distinctive features of these phase transitions in comparison
with other phase transitions, particularly magnetic ones. The methods employed in the theoreti-
cal description of order-disorder structural phase transitions are examined—the Hamiltonians
used, approximate methods for calculating the statistical properties (with allowance for correla-
tion effects), exactly solvable models, etc. The existing theories of the phase transitions in various
real cry stals, including problems and results, are critically discussed for phase transitions of types
a) and b).
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1. INTRODUCTION nature of the information may be one of the reasons that
Structural phase transitions receive a great deal of at- some investigators6 regard the state of the microscopic the-

tention in solid-state physics. There is an enormous litera- ory of structural phase transitions as "unsatisfactory."
ture on the subject, including many review articles (e.g., At the same time, the past decade has witnessed a very
Refs. 1-11). However, the theoretical exposition in these re- broad research activity, both experimental and theoretical,
views, as a rule, deals mainly with the phenomenological on the microscopic nature of order-disorder structural phase
description, in the spirit of either the classical Landau theory transitions in very different types of crystals—ferroelectrics
andits variations1^*'10'11 or the modern fluctuational theory and antiferroelectrics, molecular cyrstals, metallic alloys,
(see, e.g., Ref. 6). The microscopic theory of structural phase and other systems. This research has yielded a large store of
transitions is presented in these reviews only very briefly6 or factual information on the features and properties of the var-
else in an extremely specialized way, in application to parti- ious types of order-disorder structural phase transitions,
cular systems.7'9 These remarks pertain particularly to pointing to the presence of a variety of general features and
structural phase transitions of the order-disorder type, since theoretical problems common to these phase transitions. In
for structural phase transitions of the displacive type the the present review article we attempt to generalize and corn-
theories based on the concepts of a critical "soft mode" in the pare the available material, discuss how the features of the
phonon spectrum and a small anharmonicity have been ordering and the thermodynamics depend on the microscop-
worked out and described in the literature in greater de- ic nature of the interactions, and examine the problems and
tail.8-6 At the same time there have been no broad surveys of methods which pertain to the theoretical description of or-
the microscopic theories of order-disorder structural phase der-disorder structural phase transitons.
transitions, and information on this subject can be found We shall discuss only "properly" structural order-dis-
only in the original papers. The inaccessibility and scattered order phase transitions—those due to the ordering of atoms
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FIG. 1. The shape of the symmetric (a) and asymmetric (b) double-mini-
mum potentials U(x] for groups undergoing ordering in crystals with or-
der-disorder structural phase transitions.

or groups of atoms in crystalline potentials with several
minima, of the type shown in Fig. 1. Structural phase transi-
tions due to the ordering in the spin or electronic subsys-
tems—magnetostructural, Jahn-Teller, etc.—will not be
considered. Thus, we shall discuss order-disorder phase
transitions of the following basic types:

A) Phase transitions in crystals with double-well hydro-
gen bonds, due to the ordering of the H ions in the bonds.

B) Orientational phase transitions due to the ordering of
atom groups in ionic-covalent crystals.

C) Orientational phase transitions in molecular crys-
tals.

D) Order-disorder phase transitions in ordered alloys
and interstitial systems.

The theoretical descriptions of all these phase transi-
tions have a number of general features and common prob-
lems, which are discussed in this and the next section. How-
ever, in considering specific phase transitions in Sees. 3 and 4
we shall, for reasons of space, discuss only phase transitions
of types A and B, i.e., phase transitions in nonmolecular and
nonmetallic crystals. Orientational phase transitions in mo-
lecular crystals have a number of features which stem pri-
marily from the "nearly free' Orientational motion in the
disordered phase, and the properties and problems of these
phase transitions must be reviewed separately. Further, it
would hardly be worthwhile to discuss order-disorder struc-
tural phase transitions in specific metallic alloys in this short
review, as there is an extensive special literature on the sub-
ject (see, e.g., Refs. 7 and 156 and the literature cited there-
in).

We shall consider mainly the static (i.e., structural and
thermodynamic) aspects of the order-disorder structural
phase transitions. For most transitions of this kind dynami-
cal anomalies are manifested only in a critical slowing down
of the relaxation phenomena near the phase transition and
are usually described adequately by phenomenological mod-
els of the Debye type.6-8 However, the microscopic theories
of these anomalies have received little development (except
for the case of certain molecular crystals, where dynamical
anomalies due to the phase transition are discussed in terms
of a growing influence of the anharmonicity near the phase
transition). We shall also barely touch upon critical fluctu-
ation effects (which are treated in many theoretical papers
but, as a rule, are only weakly expressed in real order-disor-
der structural phase transitions; see Ref. 6 and below), and
questions of the general theory of phase transitions, exactly
solvable models, etc. will be mentioned only in connection
with applications to specific systems.

Before turning to the detailed discussion, let us mention
certain general characterisitc features of order-disorder
structural phase transitions which distinguish them from
magnetic transitions, for example. These features stem
mainly from the fact that the atomic displacements at an
order-disorder structural phase transition are usually not
small. Therefore, in these phase transitions an important
role is often played by the large short-range repulsive forces
and/or the considerably long-range forces of electrostatic or
deformations (i.e., due to straining of the lattice) origin, with
interaction constants significantly larger than the transition
temperature Tc. For this reason there are sharp differences
between these interactions and the short-range exchange in-
teractions in magnets with exchange integrals J~TC. These
differences show up in different ways for phase transitions of
the various types A-D listed above.

1. In order-disorder structural phase transitions in crys-
tals with hydrogen bonds (type A phase transitions) there are
usually strong correlations in the arrangement of protons on
adjacent bonds; these correlations correspond to a forbid-
ding of the so-called "charged" configurations (the "ice
rule" of Pauling12-13), leading to abrupt anomalies in the
thermodynamics of these phase transitions (see Sec. 3).

2. Ordering transitions in interstitial alloys (phase tran-
sitions of type D) also manifest marked short-range correla-
tions which amount to the blocking of positions adjacent to
each of the interstitial atoms (preventing other interstitial
atoms from locating there) and, in addition, diplay effects of
strong long-range forces due to the very large values of the
deformational interactions in close-packed crystals.7

3. For Orientational phase transitions of types B and C,
the large anisotropy of the high-multiple (quadrupole, octu-
pole, etc.) electrostatic interactions and the consequent pres-
ence of competing interactions of opposite signs, in combina-
tion with the "long-range" effects (the sizable interactions of
non-nearest neighbors), lead to an abundance of complex
orderings with a substantial increase in the lattice periods
and sometimes to the appearance of incommensurate
phases.

4. In highly symmetric (e.g., cubic) lattices there is
usually a large number (12,8,6, etc.) of equivalent minima of
the crystalline potential for different orientations or posi-
tions of the interstitial atom for phase transitions of types B,
C, or D. As is shown in Sec. 4, this often leads to a succession
of "step-like" phase transitions with different orderings as
the temperature is lowered.

5. In complex crystals the aforementioned long-range
effects often cause the minima of the crystalline potential to
be asymmetric, as in Fig. Ib. The phase-transition thermo-
dynamics and the phase diagrams in these cases also tend to
be extremely peculiar (see Sees. 3 and 4).

As we shall see, the factors mentioned above also cause
the large majority of order-disorder structural phase transi-
tions to be of first order, with order-parameter discontinui-
ties approaching the saturation values. For this reason (and
also because of the importance of the long-range electrostat-
ic or elastic interactions, the strong short-range correlations
mentioned above, and other effects) critical fluctuation ef-
fects, which are quite apparent at phase transitions in mag-
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nets, are usually of little consequence in order-disorder
structural phase transitions.6

On account of all these features and others as well, the
methods used in the theoretical description of many order-
disorder structural phase transitions are also different from
those in the magnetic case. One of the goals of this review is
to systematize the results which have been obtained in this
area.

In this short review we cannot discuss in detail the his-
torical questions pertaining to research on order-disorder
structural phase transitions. Therefore, we have primarily
included in the list of references only those papers which
seem the most up-to-date and useful for familiarizing the
reader with the topics discussed. In giving experimental data
on these phase transitions we also cite mainly just the more
recent papers; citations of earlier literature can be found in
these papers.

2. METHODS OF MICROSCOPIC DESCRIPTION OF ORDER-
DISORDER TYPE STRUCTURAL PHASE TRANSITIONS

In the theoretical description of particular structural
phase transitions, one can distinguish the following basic
steps:

a) formulation of a suitable microscopic model;
b) calculation of the statistical properties and phase-

transition thermodynamics in this model;
c) calculations or estimates of the interaction constants

and other model parameters.
For phase transitions of the various types A-D listed

above, the interactions responsible for the transitions and
the extent of their previous study differ widely. Formulation
of an adequate model also requires specific information on
the crystal structure and how it changes at the phase transi-
tion. But in spite of the differences in the physical mecha-
nisms and structures, the general form of the mathematical
models and Hamiltonians used to describe the order-disor-
der structural phase transitions are often similar. The differ-
ences lie chiefly in the physical nature of the interactions and
the relative values of the interaction constants. Let us dis-
cuss the form of these models and Hamiltonians and exa-
mine the methods of calculating the thermodynamic proper-
ties in these models.

a) Hamiltonians used for describing systems with order-
disorder structural phase transitions.

The simplest models of an order-disorder structural
phase transition correspond to the case in which the vibra-
tional amplitudes of all the atoms (or of oriented atomic
groups, which for the sake of brevity will not be mentioned
further) about each of the minima of the crystalline potential
U (x) are small. Then one can in a first approximation neglect
the vibrations and assign a position of the atom near the /-th
minimum r, = r + 8, in the cell centered at r with the aid of
a projection operator ci (r), which is equal to unity if the atom
is located in the given minimum and to zero otherwise. If
there are only two minima for each of the ordering atoms (as
in Figs. 1 and 2), then instead of the operators c, one usually
introduces a pseudospin operator a2 = + 1 related to the
projection operators by c, 2 = (1 + a* )/2. Then the configu-

rational part of the Hamiltonian, i.e., the part dependent on
c, or of, can be written in the form (see, e.g., Refs. 7 and 8)

H = -T S vn
rr'ij

or

')',(r')-S
r?

If ^ Kl T/ /1>\ rt-2 / \ ~2 /«'\ 1̂ A Z I \.n = —n~ /, K u {**) Of (rj (T^ [r ) — /\ ^i®i (?)»
rr'ii

here R = r — r', the interaction of the atoms is assumed bi-
nary, and At characterize the asymmetry of the potential
minima (which can also be caused by an external electric
field). In the absence of asymmetry one has At = 0. The in-
dices i and/' in formula (2) allow for the possible presence of
several sublattices undergoing orders (as in Fig. Ib, which
corresponds to the model for the phase transition in Ro-
chelle salt,4'8 discussed in Sec. 4b).

Transitions A r^ = 8, — 8, of the atom undergoing or-
dering between minima of the potential U induce displace-
ments u of the remaining atoms of the lattice. When these
induced displacements and the oscillations x of the atom
undergoing ordering about each of the minima are taken into
account in the harmonic approxiation (i.e., the approxima-
tion linear in 8, and u or x), additional terms—the so-called
"pseudospin-phonon coupling" terms, which are bilinear in
u or x and c(r) or o* (r)—appear in (1) and (2). In the calcula-
tion of the thermodynamic properties these terms lead only
to a renormalization V^-^V^ of the constants in (1) and (2),
so that in addition to the "direct" interaction of the atoms
undergoing ordering, Vtj also describes the indirect or "de-
formational" interaction through the exchange of
phonon.4'7'8

When anharmonic effects, i.e., terms of higher order in
8 and u or x (and also direct many-body forces), are taken
into account, the effective Hamiltonians (1) and (2) acquire
additional terms involving products of three and four of the
operators c, (r) or a2 (r) (see Ref. 14). These terms have usually
been ignored in concrete calculations. They can, however, be
important, as in the case when one is attempting a quantita-
tive description of the short-range interaction of the intersti-
tial atoms in interstitial alloys, since the anharmonicity of
the displacements u can be appreciable here. If one is using a
binary interaction model, this can lead to an effective "con-
centration dependence" of the constants Vit.

In certain hydrogen-bonded crystals, e.g., ferroelectrics
of the KDB type (KDP is potassium dihydrogen phosphate,
KH3PO4), the quantum mechanical penetrability of the bar-
rier in Fig. 1 is apparently high enough that the tunneling of
the proton between the minima of U(x) must be taken into
account.4'15 Here, however, in describing the phase transi-
tion it is sufficient to take into account only the two lowest
quantum states of the proton in the bond—the symmetric
tf>s (x) and antisymmetric i/>a (x) states—since the energies of
the higher states are estimated16'17 to be more than an order
of magnitude higher than the temperature Tc. If one de-
scribes the states of the proton in the /-th bond using the
representation i/>'± = (i/t'a + ̂ )2~1/2 and makes allowance
for the fact that the displacements x of the protons from the
center of the bond r are small compared to the distance R
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between the centers of different bonds, then in place of (2) the
Hamiltonian becomes14'8

ff=-T 2 ^w(R)^(')"i('')-S[A«°«(')-»Qiof(')];
rt'ij 1

(3a)

here

a, 0=1
?a df lp ' (3b)

u;,y (R) is the interaction potential of the protons of the bonds
(r,/) and (r',j), fit = (e( — si )/1fi has the meaning of the tun-
neling frequency, and <f and a* are the Pauli matrices. Ha-
miltonian (3) has also been applied to the description of cer-
tain orientational phase transitions, in particular, the
transition in Rochelle salt,4 where the ordering entities are
apparently O-H groups.2

The small-anharmonicity approximation used in the
derivation of (1) and (2), which is equivalent to the assump-
tion of a small probability of hopping between the minima of
the potential C/(x), is valid for interstitial and substitutional
alloys (where different values of c, (r) or <f (r) correspond to
finding atoms of different kinds7'18 at site r), for the majority
of phase transitions that have been studied in hydrogen-
bonded crystals, and also for orientational phase transitions
in ionic-covalent crystals. In a number of molecular and ion-
ic-molecular crystals, however, the orientational interaction
is small compared to Tc . Therefore, the amplitude and an-
harmonicity of the orientational oscillations (librations) are
not small, and so the expansions of H about the minima of
C/(x) in (1) and (2) can converge extremely slowly. For de-
scribing phase transitions of this kind one uses "continuous"
orientational Hamiltonians of the form19"21

(4)
Here the centers of mass of the molecules are assumed to be
fixed at the lattice sites r, car is a set of angles describing the
orientation of the molecules (e.g., Euler angles), T(a>) is the
rotational kinetic energy operator for a rigid molecule (rota-
tor), and the potential energy °k consists of the sum of the
crystalline field potential U and the interaction potential
FR. In actual calculations U(a>) and VR (&>,<«') are usually
series-expanded in a set of basis functions ulv (a>) correspond-
ing to the symmetry of the moleucles (spherical harmonics
Ylm (a>) for linear molecules,19 the so-called tetrahedral-rota-
tor functions20 for tetrahedral molecules such as CH4, and so
forth):

11 = — 2 AivW(v (Wr)
riv

— T 2 (5)

and only the lowest or several lowest values of the angular
momenta / and / ' retained in the sums, in accordance with
the symmetry of the crystal structure and of the interactions
(see, e.g., Ref. 21).

The coupling of the librations with the displacements u
of the centers of mass of the molecules has generally not been

taken into account in calculations for phase transitions of
this sort. If quantum effects are not important in the descrip-
tion of the phase transition (as is the case for the majority of
orientational phase transitions), then allowance for this cou-
pling in the linear (in u) approximation again [as in (1) and
(2)] leads only to a renormalization of the constants FR in (4)
(see, e.g., Refs. 22-24).

b. Methods of calculating the thermodynamic properties

The Hamiltonians H in (l)-(5) are analogous in form to
those used to describe phase transitions in magnets. There-
fore, for calculations with these Hamiltonians basically the
same approximation mthods are used as in the magnetic case
(these are discussed, for example, in several reviews25"27). As
we have mentioned, however, structural order-disorder
phase transitions have peculiar ordering patterns and corre-
lation properties which often necessitate certain modifica-
tions in the calculational methods as well. Let us discuss the
approximation methods used in calculating the thermody-
namics of order-disorder structural phase transitions.

// Mean field approximation (MFA }. The simplest and
most widely used description of the phase transitions in very
different systems is the mean (or molecular) field approxima-
tion (see, e.g., Refs. 8,18, and 26). In this method the interac-
tion of each particle (spin) with the rest is described with the
aid of a mean field determined from self-consistency condi-
tions. As we know, this approximation does not take into
account any correlation in the position (orientation) of the
particles due to either long-range critical fluctuations near
the phase transition point (which, as we mentioned, are
usually not very pronounced in real order-disorder struc-
tural phase transitions) or to short-range effects such as the
forbidding of charged configurations in hydrogen-bonded
systems or the blocking effect in interstitial alloys. If the
short-range correlations are not too strong, as, for example,
in the simple "ferromagnetic" models of (1) and (2) with
Vtj > 0, A, = const, then the MFA gives a reasonably good
qualitative description of the phase transition. For example,
for a nearest-neighbor interaction one can calculate Tc and
other characteristics of the phase transition with an accura-
cy of 15-20%, and as the interactions become longer-ranged
this accuracy improves.8 At the same time, the interactions
Vtj (R) in the MFA are described by only a small number of
constants. For example, if all the atoms in (2) are equivalent,
so that the indices / and/ can be dropped, and A, = Epc,
where E is the external field and />e is the effective dipole
moment, then the MFA expressions for the ferroelectric or-
der parameter a = (az) and free energy per atom F contain
only the average interaction V:

?=.i-VaZ — Tln2cha, o-=tha, a = /

V= y F(R);

), (M

(6b)

where" p = 1/r. Therefore, the MFA is conveniently ap-

"Throughout this review the temperature Tis given in energy units, i.e.,
the Boltzmann constant kB is dropped; accordingly, the entropy
S = — dF/dTis dimensionless here. For example, the dimensionless en-
tropy per molecule is obtained by dividing the dimensional entropy Sd by
the constant R: S = Srt /R.
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plied to systems with poorly understood interactions in or-
der to verify qualitative ideas about the nature of the phase
transition. In particular, this method has been used to study
the features (discussed in Sec. 4) of phase transitions which
involve ordering in asymmetric28'8 and many-well poten-
tials. The use of this simple approximation is also a necessary
first step in considering the complex orderings characteristic
of order-disorder structural phase transitions. For example,
it has enabled investigators to predict the structures of the
ordered phases of solid hydrogen,19 methane,20 certain al-
loys,7 etc. Finally, let us mention a method that has proved
effective for describing superstructural order-disorder phase
transitions in alloys and many other systems: the so-called
method of concentration waves, a modified MFA developed
by Khachaturyan.7 This method is based on an expansion of
the occupation probability n,(r) = (c,(r)) [with c,(r) from
(1)] of each of the sublattices in a Fourier series in the wave
vectors ks corresponding to the stars of the superstructures
formed, with detailed allowance for the symmetry of the lat-
tice. The application of this method to the description of
phase transitions in systems with many-well potentials (po-
lyorientational systems) is discussed in Sec. 4.

2) Methods of taking correlations into account. Cluster
approximations. The methods used to make approximate
allowance for correlations in order-disorder structural
phase transitions can be divided into the following main
groups.

a) Formal expansions of the thermodynamic potentials
in powers of the correlational interactions-the Kirk wood
method and its variations (see, e.g., Sec. 19 of Ref. 7), expan-
sions in the reciprocal of the range of the interaction,29 etc.

b) Methods of decoupling the equations for the correla-
tion (Green's) functions27'30'31

c) Various sorts of cluster approximations—quasiche-
mical, "constant coupling," and cluster variational meth-
ods— Bethe, Kikuchi, etc.26'3233

The methods of group a) are the most systematic from a
formal standpoint. For realistic interactions, however, they
involve extremely awkward manipulations, and, in addition,
the convergence of the expansions used in these methods
deteriorates near Tc. These approximations are seldom used
to describe real order-disorder structural phase transitions.
For example, the only applications of the Kirkwood method
that we know of are for models of alloys with nearest-neigh-
bor interactions18 and for phase transitions in solid hydro-
gen.34

The methods of group b) have been applied for general
qualitative discussion of the dynamical features near struc-
tural phase transitions35'8 and for description of the "soft
mode" in KDP-type crystals, which is treated as a coupled
oscillation of the heavy atoms of the lattice (K, P, and O) and
the protons tunneling between the two potential wells.36'37

However, as far as the thermodynamics is concerned, the
decoupling method36 correponds to the MFA, which, as we
shall see, cannot be used for any quantitative description of
KDP. These methods have been applied in more detail to
molecular crystals, where they have been used to study the
relationship between the dynamical and thermodynamic

anomalies at orientational phase transitions (see, e.g., Refs.
30 and 31).

The general idea of the cluster approximations c) is to
consider a certain group of particles (a cluster) in such a way
that the interactions of the particles within the cluster are
described exactly, i.e., as in the initial Hamiltonian, while
their interaction with the environment is treated approxi-
mately, with the aid of an effective field determined from
self-consistency conditions or by minimization of the free
energy. In the case of magnets, cluster approximations are
seldom used, since their application to quantum systems
(whose Hamiltonians contain noncommuting operators) en-
counters certain difficulties, such as the prediction of ficti-
tious "anti-Curie points"33'38 at which the ordering vanishes
at some T<T^. In order-disorder structural phase transi-
tions, however, quantum effects are usually small, while on
the other hand the short-range correlations discussed ear-
lier, which are due to competing interactions or to the for-
bidding of certain configurations of adjacent particles, are
often important. In these cases the MFA becomes complete-
ly inapplicable, while the cluster approximation, on the con-
trary, becomes most adequate. The cluster approximation
has been used successfully to study a number of phase transi-
tions in crystals with hydrogen bonds,33'15'39^1 orientational
phase transitions in the case of competing interactions,42'43

and order-disorder phase transitions in alloys44'18 and inter-
stitial systems,45 and we shall discuss this approximation in
more detail. We note in this regard that although the various
versions of the cluster approximation give mutually consis-
tent results for the simplest models, the calculational meth-
ods which they use are very different25'26 and are sometimes
unnecessarily complicated. Here we shall discuss the version
of the cluster approximation described in Ref. 8, as this is the
most convenient form for applications and generalizations.
It is this version that was used in Refs. 15 and 38-42 and,
unless otherwise stipulated, is what we mean in this paper by
the term cluster approximation.

Let us first illustrate the method on the example of a
ferroelectric phase transition in a simple Ising lattice (2) with
a nearest-neighbor interaction V{j =/>Oand.d, =Epf (see
Ref. 8 for details). Singling out a group (cluster) of s adjacent
spins, we write the density matrix ps in the form

P^«) ii\
aa ; • > \n

here/f, is the effective Hamiltonian of the cluster, consisting
of the interactions Hin between the spins within the cluster,
the interaction Hn between the spins of the cluster and the
surrounding spins, and the interaction^ with the external
field. It is assumed in the cluster approximation that the
interactions Hin remain the same as in the initial Hamilton-
ian (2), [i.e., do not incorporate their renormalization by in-
direct interactions through the outside spins], while the ef-
fect of the environment on the cluster spins is described by an
effective field £>ex. If all the spins of the cluster are equivalent
(as, for example, in a 2-spin cluster, square 4-spin cluster, or
cubic 8-spin cluster in a simple cubic Ising lattice), then the
expression for Hs in the cluster approximation is of the form
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i 4- H s = - /O fa) - 2 o? (q>ex
»»'-=! i=l

(8)
The single-particle density matrix/?, for each of the spins can
be written in the form

, (9)

where the field q>, like <jpex in (8), describes the influence ex-
erted on the spin by its environment. To establish the con-
nection between the fields q> and <p ex , we use the obvious idea
that the contributions to these fields from each of the bonds
combine additively. Then, if each of the spins of a cluster
having a total of n bonds has m bonds within the cluster, one
has q>eK = ( 1 — m/rity. An equation for finding <p can be ob-
tained from the self-consistancy conditions
Pi =S/>2,3 ..... ,Ps>OT

<rjz> = Sp oz
Pj (a*) = Sp ofo (oj, oj, . . . , a*s). ( 10)

The average energy per spin, 9 ', is obtained by averaging the
initial expression (2), taking (7)-(9) and the relation between
<pex and q> into account:

= — OO - f-— 1)mi * \ m I (11)

where (Hk} = SpHkpk. Finally, the free energy f is related
to & as & - -d ij3F)/d/3. A solution of this equation is the
function

—ms
(12)

where Zk = Sp exp( — fiHk}. In fact, the partial derivative
of (12) with respect to /3 gives (11), while the derivative with
respect to <p vanishes by virtue of (10). It is thus seen that the
self-consistency condition (10) is equivalent to the condition
that the free energy be minimum as a function of <p: dF/
dq> = 0. The integration constant in (12) is chosen such that
for T—* oo the entropy S = — <JF/<37"goes to its "free" value
In2. Explicit expressions for Zs and Z, in (12) are easily
found by direct summation over all spin states.8

For the case under discussion, a simple Ising lattice
with nearest-neighbor interaction, the results of the simplest
cluster approximations—the binary-cluster, Bethe,25"26

and quasichemical25'18 approximations—agree with one an-
other and differ from the exact values [of Tc or 5C = S (Tc),
for example] by 10-15%. The accuracy of the cluster ap-
proximation improves rather slowly8 with increasing cluster
size s. In addition, the choice of the cluster should corre-
spond naturally with the geometry of the problem.8 For ex-
ample, for describing orderings of the Cu3Au type in a face-
centered cubic lattice, the choice of a binary cluster (s = 2)
even leads to the erroneous result that there is no phase tran-
sition, while the choice of a tetrahedral cluster (s = 4) al-
ready gives a noticeable improvement over the MFA re-
sults.44'18

More-complicated versions of the cluster approxima-
tion (the Kikuchi approximation, etc.) which systematically
take into account clusters of different sizes and the couplings
between them give results for TK to an accuracy of 3-7%, but
they are extremely awkward26 and have evidently not been

©-0
• -H

FIG. 2. Schematic diagram of the displacements of the H, K, and P ions at
the phase transition in a KDP crystal (KH2PO4).

applied to describe a real structural phase transition. The
critical exponents6 near Te in all versions of the cluster ap-
proximation remain the same as in the MFA. Thus, for sim-
ple Ising models the cluster approximation gives only a cer-
tain quantitative refinement of the mean field results. The
situation is different when strong short-range correlations
are present in the system, as we illustrate below for the case
of KDP.

3) Application of the cluster approximation to the phase
transition in KDP. The structure of the KDP crystal is de-
scribed, for example, in Refs. 1-5 and 8. The tetrahedral PO4

groups are coupled in a three-dimensional network of hydro-
gen bonds which lie almost perpendicular to the tetragonal
axis c; the displacements of the ions at the phase transition
are shown schematically in Fig. 2. For simplicity, let us neg-
lect the effects of the displacements of the heavy ions K, P,
and O and the tunneling of the proton between the two po-
tential wells in the hydrogen bond (discussed in Sec. 3). At
first we shall take into account the interactions of the pro-
tons on nearest-neighbor bonds only. If, as in Sec. 2a, the two
equilibrium positions of the proton on the bond are related to
the operator <f in such a way that values <f = + 1 corre-
spond to the ground state shown in Fig. 2, then the phase
transition problem again reduces to a model of the form (2).
Here, however, there are strong correlations among the ori-
entations of the four spins adjacent to each PO4 group. In
fact, of the 16 possible confirmations of these spins shown in
Fig. 3a, six are neutral, eight are singly charged, and 2 are
doubly charged, i.e., correspond to finding two, three or one,

n n

n n n n
• 4

* • • * • tn n n n

n n D D-T

n n
FIG. 3. a) Diagram showing the different proton configurations around
the PO4 groups in KDP and their energies; b) projections of the system of
lines representing the interaction of nearest protons in KDP onto a plane
perpendicular to the c axis.
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and four or zero protons near the PO4 group. Of the 6 neutral
configurations, two (the configuration indicated in Fig. 2
and the configuration obtained from the one shown by re-
versing the directions of the arrows) have minimum energy
and the remaining four (which are degenerate on account of
the crystal symmetry) have an excitation energy e. As we
shall show, the phase transition temperature 7*c is ~E. The
energies w of the charged configurations are much larger
than £ (by a factor of 8-10),15 so the population of these con-
figurations [~exp( — £!w)] near Tc is extremely low.

As usual, let us associate with each spin erf of model (2) a
site in an auxiliary lattice, and with each interaction V(j a
line joining the sites. Then the projection of the system of
these bonds onto a plane perpendicular to the c axis has the
form shown in Fig. 3b. Numbering the spins as indicated in
the figure, expressing the constants Vtj in terms of the pa-
rameters E and w introduced above, and making allowance
for the symmetry of the lattice, we find8'32:

(13)

It is seen that the suppression of the charged configurations,
i.e., the inequality w>e~Tc corresponds in the language of
model (2) to the presence of strong competing interactions of
different signs. In particular, for w—* oo the charged configu-
rations are strictly forbidden (i.e., the system obeys the ice
rule,12 which corresponds to the Slater13 model for KDP and
is discussed in Sec. 3). Clearly, the MFA is entirely unsuita-
ble for describing such a situation. For example, according
to (13), at w-+ao the "average interaction" Fin (6b) and the
MFA value of Tc which is proportional to this quantity go to
infinity instead of to the correct value Tc ~E. The character
of the temperature curves near Tc is also incorrectly de-
scribed in the MFA at large values of w/e (see Ref. 8 and
below).

In accordance with what we have said about the cluster
approximation, we choose as the cluster the set of 4 spins
adjacent to a PO4 group. Reasoning as we did in the deriva-
tion of (7)-(12), we obtain for the free energy F per KDP
molecule [i.e., per two "spins" in (2)] the expression8'32-33

$F = — lnZt + 21uZj, (14)

where
Z4 = 2ePw (ch 201|> 4- K + 4£ en (5t|>), Zt = 2 ch$u,

al) = (p + 2£pe, ii=q> + #Pe, (15)
K = 2e-Ve + e-W*, lL = e-»u,

and w2 = 4w — 2e is the excitation energy of the doubly
charged configurations. The effective field cp is determined
from the condition dF/dtp = 0. In the absence of an external
field E, this equation can be solved analytically, yielding the
following expression32'8 for the order parameters a = (<f)

0 =_ /(I — K — 2L) (1 — K + 2L)
l—K (16)

while the phase transition point Tc is determined from the
equation

K(T,) +2L(TJ = 1. (17)

Non-nearest-neighbor interactions can be taken into ac-
count in the cluster approximation by the mean field method
(which is apparently rather accurate in view of the relative
weakness of these interactions and the large number of parti-
cles participating in them).8'29 We separate out these interac-
tions in the initial Hamiltonian (2) and, after writing in the
usual way8'29 a2 (r) = a + Ac? (r), where a is the average val-
ue of the spin, we neglect in these terms the interaction of the
fluctuations A a2. Then, in place of (14), F assumes the
form8'46

F = ~T In Z4 + 2T In Zx + ycr2, (18)

where Z4 and Z, differ from (15) only in that Epe is replaced
by Epe + ya, while 7 is given by (6b) with the summation
over R carried out only over non-nearest-neighbors. The val-
ues off and a are found from the self-consistency conditions
or by minimizing F with respect to <p and a.

The thermodynamic consequences of relations (14)-( 18)
(and the influence of eifects which have been left out) are
discussed in Sec. 3. Here we note only that, according to (17),
Tc —>e/ln2 as ID—* oo. In addition, it is seen from (16) that
with increasing w, i.e., with decreasing L, the order param-
eter a below Tc grows progressively more steeply, and in the
limit«;—»oo (i.e., in the Slater model), a changes abruptly at
Tc from zero to its saturation value as = 1. As will be seen
from the following discussion, these (and other) results of the
cluster approximation turn out to be exact for the Slater
model, and they illustrate the possibility of sharp differences
from the case of simple Ising models and the possibility of
"nonuniversality" of the thermodynamic behavior at phase
transitions in systems with competing interactions, as well as
pointing out the adequacy of the cluster approximation and
the inapplicability of the MFA for investigating phase tran-
sitions of this kind.

c) Exactly solvable models

For realistic models of order-disorder structural phase
transitions it is, as a rule, impossible to calculate exactly the
statistical properties with Hamiltonians (l)-(5), and one uses
the approximation methods described above. For estimating
the accuracy of these methods it is of great interest to exa-
mine exactly solvable models, especially those which reflect
the essential features of real systems. These models also give
useful qualitative information on the relationship of the
character of the phase transition to the features of both the
structures and interactions, particularly for the previously
discussed cases with competing interactions, by illustrating
the uniqueness and diversity of the orderings and thermody-
namic behaviors in these cases. Finally, some of the exactly
solvable models are rather close to real (quasi-two-dimen-
sional) systems and can be of aid in understanding the fea-
tures of phase transitions in crystals of this kind. We shall
consider the exactly solvable models for order-disorder
structural phase transitions only in connection with the
questions discussed above. As a rule, these models are two-
dimensional and belong to one of two main types: Ising lat-
tices and vertex models with the ice rule.

1) Using models with competing interactions. As we
know, any two-dimensional Ising model which does not con-
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FIG. 4. a) Schematic of the interactions ("bonds") in the model of Ref. 48;
b) the T(Jt,J2) phase diagrams in this model.

tain crossing bonds is solvable,47 and many such models
have been described in the literature (see, e.g., Refs.48-51
and the literature cited therein). In the absence of special
relationships among the constants (e.g., when all the interac-
tions are ferromagnetic), the phase-transition thrmodyna-
mics do not differ qualitatively from the case of the simple
square Ising lattice47 and are described satisfactorily by any
of the approximation methods in Sec. 2b. It is not clear, how-
ever, whether these simple models correspond to any real
order-disorder structural phase transitions, since the char-
acter of the interactions and orderings in the crystals studied
to date has generally been much more complex.'~13 As we
have noted, however, systems with competing, almost com-
pensating, interactions of different signs (sometimes called
"frustrated" systems51) are more typical for order-disorder
structural phase transitions. Therefore, we shall mention
some of the results38"50 obtained for models of this type.

In a study of an Ising lattice with the bond scheme
shown in Fig. 4a, it was found48 that the phase diagram
showing the dependence of Tc on the interaction constants
/! and /2 has the unusual shape shown in Fig. 4b. For values
in the range2' — |/, | <J2 < — 0.90681/! | the system under-
goes three phase transitions, passing successively through an
upper and lower Neel point and a Curie point as the tempera-
ture Tis lowered. This illustrates the thermodynamic liabil-
ity of systems with competing interactions and the possible
existence of intermediate phases (observed for a number of
order-disorder structural phase transitions) in these systems.

Another system having peculiar thermodynamics is the
triangular antiferromagnetic Ising lattice (Fig. 5) with nearly
compensating interactions, i.e., with S=Jl— /2</1=7.
Here one also has Tc ~<5</, and with accuracy to exponen-
tially small terms ~exp( — /3J) the character of the phase
transition is the same as in the aforementioned two-dimen-
sional Slater model: At the phase transition point the order
parameter a\Tc) = as jumps abruptly to its saturation value
<7S = 1 and the specific heat C(T) above Tc grows as
(T — Tc)~

l/2, whereas the usual Ising behavior is
tr~(Tc - T)l'*nndC(T)~ln\T- Tc |.Thisagainillustrates
the fact that nonuniversal features can appear in the thermo-
dynamics and that large values of ac ~us (observed in many
order-disorder structural phase transitions) are possible in

2The upper bound of this inequality for /2 was given inaccurately in Ref.
48.

FIG. 5. Schematic diagram of the bonds in the asymmetric triangular
Ising model considered in Ref. 49.

systems with competing interactions. In such systems, pecu-
liarities also appear in the correlations of the particles near
Tc. At certain values of T these systems display"disorder"
points—nonanalyticities of the correlation functions along
certain directions of the crystal, although no anomalies ap-
pear in the thermodynamics at these temperatures.49'50 An
approximate description of all these systems cannot be ob-
tained in the MFA, while the cluster approximation gives a
reasonably good description of the thermodynamics with an
accuracy of the order of 10-20%.50

Finally, let us mention one more model with competing
interactions—the axial Ising model with non-nearest-neigh-
bor interactions (ANNNI).52 Although it cannot be solved
exactly, this model has been carefully studied in recent years
in connection with phase transitions in modulated commen-
surate or incommensurate phases (which are also observed in
order-disorder structural phase transitions; see Sec. 4). This
model, which was proposed for antiferromagnets, consists of
a three-dimensional Ising lattice with a ferromagnetic inter-
action of the nearest neighbors in the plane perpendicular to
the c axis, while along the c axis it has a ferromagnetic inter-
action/, with the nearest neighbor and an antiferromagnetic
interaction ( — xJt) with the next-nearest neighbor, It has
been found that in a certain region of the parameter x the
phase diagram Tc (x) becomes extremely complex, describ-
ing a phase transition to modulated phases. Here the wave
vectors k0 of the arising superstructures can change with
decreasing !Tas a result of a finite (or even infinite) number of
phase transitions.52 Some of these properties of the ANNNI
have been illustrated qualitatively for exactly solvable two-
dimensional analogs of this model.53 Although the simple
ANNNI model can hardly correspond to any of the crystals
with order-disorder structural phase transitions, it does
show that the phase diagrams can assume a complicated
shape and that modulated phases with k0 = lt0(T) can form
in the presence of competing interactions.

2) Six-vertex models. Vertex models have been ad-
vanced for the description of crystals with double-well hy-
drogen bonds. These bonds are represented by arrows indi-
cating the positions of the hydrogen ion in the bond, and for
crystals with tetrahedral coordination (such as ice, KDP,
etc.) there are 4 arrows connected with each site (vertex). If
one considers only neutral configurations (the ice rule12),
there are only 6 admissible configurations, which are shown
in Fig. 6. As we have explained for the illustrative case of
KDP, these configurations can have different energies e( de-
pending on the interactions within the lattice and on the
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FIG. 6. Admissible configurations in the 6-vertex model under the ice
rule.

external fields, and the ei are customarily written in the
form9

. = B2 =F (/i + v), <?3,4 = =F (h — v), e5>6 =

(19)
Here h and v are called the horizontal and vertical fields, and
it is taken into account that the reference level for et can be
chosen arbitrarily. If one neglects the interaction of the non-
nearest bonds, the energy of the lattice is equal to the sum of
the energies W of all the vertices, and the calculation of the
partition function reduces to the summation of exp( — 0%?)
over all possible configurations. For the two-dimensional 6-
vertex models this problem has been solved exactly54'9 for
arbitrary £„ E2, h, and v, and the phase transitions in these
systems have turned out to be extremely peculiar. Let us
summarize their features.

There are two types of phase transitions in the two-di-
mensional 6-vertex models: ferroelectric transitions, for
which the arrows are directed identically at all the vertices in
the ordered phase, and antiferroelectric transitions, for
which two types of vertices alternate in a checkerboard ar-
rangement in the ordered phase. In the absence of fields
h = v = 0 the ferroelectric phase transitions occur at
e = max(0,5j) — £2>0, while the antiferroelectric phase
transitions occur at £ < 0. The simplest ferroelectric model,
known as the KDP model, corresponds to the values £2 = 0,
£,>0, and the ground-state configurations are (1) and (2)
(with the ferroelectric axis directed at 45° to the axes in Fig.
6); for the simplest antiferroelectric model, the so-called F
model, £, = 0, £2 > 0, and the ground-state configurations (5)
and (6) alternate in the ordered phase. If £ = 0 (e.g., if £2 = 0
and £l <0, corresponding to the ADP crystal, which is dis-
cussed in Sec. 3), then in the absence of fields no phase transi-
tion occurs, and the system remains disordered all the way
down to T = 0.

The ferroelectric and antiferroelectric phase transitions
in all these models turn out to have the same character as in
the KDP model and the F model, respectively, but there is a
marked difference between these two types of phase transi-
tions. The KDP model obviously reflects certain features of
KDP-type crystals, but no real analogs are known for the F
model. Therefore, as models for real order-disorder struc-
tural phase transitions the ferroelectric 6-vertex models evi-
dently hold more interest than the antiferroelectric models.

At the ferroelectric phase transitions in these models
the polarization a in the absence of external fields h = v = 0
changes abruptly from zero to saturation, and below Tc the
system remains "frozen"; the phase transition is of first or-
der. The specific heat C(T), however, grows as (T — T,. )~ ' /2

as T-^-Tc + 0, while the zero-field susceptibility obeys the
Curie- Weiss law^ (T)~C/(T— Tc ), even though the pres-
ence of singularities in C(T) and x(T) as T—>-Tc is usually

characteristic only of second-order phase transitions. When
fields h and v are applied, the ferroelectric phase transition to
the saturated state does not vanish but becomes second-or-
der, with a transition point Tc (h,v) determined by the rela-
tion (for h + v > 0, h,v > — £,/2)

(eWt — e-fa) (c20D_e-|tei) — gZKRz-eJ. (20)

The specific heat above Tc(h,v) grows, as before, in propor-
tion to (T— Tc)~

1/2, while the susceptibility at the phase
transition in the field [e.g., for v-+vc, where vc (h,T) is deter-
mined from (20)] goes as* (v,T) = da/dv~(vc - y)~1 / 2 .

The antiferroelectric phase transition in zero field, on
the other hand, turns out to be of infinite order31: All the
temperature derivatives of the energy and specific heat are
discontinuous, while the order parameter for T—*TC — 0
falls off as55 exp[-a(rc - T}-1'*}. In spite of the extremely
"soft" character of the phase transition, however, the anti-
ferroelectrically ordered structure below Tc is extremely
"rigid": upon application of an external field (say, v^O) the
polarization a(v] remains equal to zero for all v up to some
critical value vc(T}. At v = vc the antiferroelectric ordering
vanishes, and a(v) begins to grow as (v — vc)

1/2. Thus, in
fields h,v^0 the antiferroelectric phase transition occurs, as
before, to an unpolari/ed state (7 = 0, but it becomes second
order. Here the specific heat above Tc grows as
(T— rc)~1/2, while below Tc it remains regular. At rather
high fields all these models (except for the F model with
h = 0 or v = 0) undergo the aforementioned second-order
ferroelectric phase transition to the saturated polarized
state.

For the three-dimensional 6-vertex models we do not
have exact solutions, but several results are known for the
Slater model of KDP.13 It has been shown56 that the position
and character of the ferroelectric phase transition in this
three-dimensional model remains the same as in the two-
dimensional model, i.e., at Tc = e^lnl the polarization a
changes abruptly to saturation (as = 1).

Let us now compare the exact and approximate results
for the 6-vertex models. As we have mentioned, the MFA is
inapplicable here, but the cluster approximation gives a
good qualitative and, in a number of cases, also quantitative
description. It can be shown that for the ferroelectric phase
transition the cluster approximation accurately describes
the character of the phase transition to the saturated state
(first order in the absence of fields and second order for
h,v7^0), the phase diagram Tc (h,v) [Eq. (20)], and the Curie-
Weiss law for^ (T) at u->0, with the exact value of the Curie-
Weiss constant. True, for the specific heat C ( T ) and suscepti-
bility x(v,T) near the phase transition one obtains finite
values in the cluster approximation instead of singularities
of the form ( T — T C ) -1/2 — v 1-1/2, but outside the im-
mediate vicinity of Tc the divergences are small. For describ-
ing an antiferoelectric phase transition the accuracy of the
cluster approximation turns out to be lower than for a ferroe-
lectric transition, but it is still quite high. The curves of

"We use the terminology of Ehrenfest, according to which an n-th order
phase transition point is one at which the «-th derivatives of the thermo-
dynamic potentials F, 0, or f i are discontinuous.
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T = Tc(h,v) in the cluster approximation coincide with the
curves for the exact solution only at the end points h = v = 0
and Tc—*0, but the curves remain close together at interme-
diate Tas well. Instead of a phase transition of infinite order
for h = v = 0 and of second order for h,vj^0, the cluster ap-
proximation gives an antiferroelectric phase transition
which remains first order for all h and u, with saturation of
the antiferroelectric order parameter at T=TC (i.e., it is
analogous to the ferroelectric phase transition in the absence
of fields). In the cluster approximation, the antiferroelectric
phases retain the basic property of being "locked in," i.e.,
there is no polarization a\h,v) in these phases in fields less
than the critical hc ,vc. The cluster approximation also gives
a fair description of the effect of a staggered field (i.e., one
which induces an antiferroelectric ordering) of the form
s( — I)"'+ "2, where n, and n2 are the row and column indices
of the given bond, vertical or horizontal. In this case the
exact solution57 is known only for the F model at T = 2e2/
In2 = 2Tc(h = 0,u = 0) but for any h and v. Comparison
with Ref. 57 shows that the function &(h,vj) in the cluster
approximation is rather close to being exact, with the posi-
tion of the ferroelectric phase transition in the field de-
scribed exactly and that of the antiferroelectric phase transi-
tion given to good accuracy.

3) Models for SCD and CFT. The phase transition in the
model58 for SCD (tin chloride dihydrate, SnCl2-2H2O) is ex-
tremely unusual, and the model apparently gives an accurate
reflection of the character of the phase transition in this crys-
tal.59 The SCD structure is described in Refs. 58 and 59; the
water molecules form a two-dimension network of O-H-O
bonds. Figure 7 shows an element of this network. Each On

ion is also connected by an interlayer bond O-H . . . Cl lying
outside the plane of the figure, with the H ion of this bond
always located near On. In the model of Ref. 58 it is assumed
that the ice rule is obeyed at each of the vertices Or and On •
Then, of the three ions H' in the bonds i = 1,2, 2 in Fig. 7,
two should always be located near Oj and one near On. In
the approximation of only nearest-bond interactions the en-
ergies Ei of these vertex configurations in the lattice add to-
gether, and the statistical problem reduces to evaluation of
the partition function for the vertex model shown in Fig. 7.

The exact solution of this problem58 shows that at a
temperature Tc determined by the equation

e-2pe1_|_e-2Bes = e-2pe.j (21)

the specific heat C(T) has a singularity of the form
\n\T-Tc\, i.e., there is a second-order phase transition.

Here it is seen from (21) that the phase transition exists only
if e3<min(e1,£2). This second-order phase transition, how-
ever, has the extremely peculiar feature that one cannot de-
fine the order parameter 77 in the usual way as a quantity
which is nonzero only in one of the phases, T<TC orT>Tc.
Of course, Ehrenfest's general thermodynamic definition of
a phase transition (see footnote 3) does not in general imply
that the symmetry must change at the phase transition, and
for isostructural first-order phase transitions (e.g., liquid-
vapor or first-order ferroelectric phase transitions in an elec-
tric field) it does not change. For a second-order phase tran-
sition (moreover, in a simple disordered system) this is
extremely unusual, and the model under discussion gives an
apparently unique isostructural second-order phase transi-
tion.

As is discussed in Ref. 59, the microscopic quantity
most intimately related to the phase transition in SCD is
apparently the asymmetry parameter 17 for the proton on
bond 3:

= Ps (Oil) — Ps (22)

FIG. 7. Diagram of O-H . . . O bonds and the low-temperature ordering
in the quasi-two-dimensional crystal SCD (SnCl2-2H2O),

where p3(Oj) is the probability of finding proton H3 near ion
Oj. At high temperatures one has 77 < 0, since as a conse-
quence of the ice rule ion On on the average repels the H ion,
while Oj attracts it. At T = Tc one has -rj(T) = 0 (both in the
model58 and in real SCD59), and when T—>Q one has 17—>•!,
since for the values considered, £3<min(£1>£2), the ground
state is the one indicated in Fig. 7. It has been proposed59 to
regard rj as a kind of order parameter for SCD which, how-
ever, is nonzero on both sides of Tc and is an odd function of
(T— Tc) near Tc. However, the fact that the passage of 77
through zero is accompanied by a thermodynamic anomaly
is a very unexpected consequence of the statistics of the sys-
tem.

Another exactly solvable model60 was proposed in con-
nection with the ferroelectric order-disorder phase transi-
tion in the CFT crystal [copper formate tetrahydrate,
Cu(HCOO)2-4H2O]. As in SCD, there is a two-dimensional
network of O-H . . . O bonds in this crystal containing two
types of oxygen ions, O, and On, each of which is connected
to three hydogen bonds, and, in addition, there is always a
hydrogen ion near On belonging to the interplanar bond.

The ordering of the protons at the phase transition in
CFT within each plane is ferroelectric, while the ordering
between adjacent planes is antiferroelectric; in Ref. 60 this
weak interplanar coupling was neglected and a purely two-
dimensional model was considered. When the ice rule is tak-
en into account and only nearest-bond (belonging to the
same vertex) interactions are considered, the resulting model
(the "interacting-dimer" model)60 is exactly solvable but
does not give a phase transition: as 7* is lowered the system
effectively decomposes into a set of uncorrelated one-dimen-
sional chains. To obtain a phase transition it is necessary to
take the interaction of non-nearest bonds into account, as
was done in Ref. 60 for two different versions of exactly
solvable models. Neither version, generally speaking, corre-
sponds to the symmetry of the initial CFT lattice, but these
two models are apparently adequate for taking these effects
into account in a qualitative way. The phase transition in the
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two models is the same as in the two-dimensional KDP mod-
el and corresponds qualitatively with the character of the
phase transition observed in CFT (see Sec, 3).

The application of the cluster approximation to the
SCD and CFT models as in the case of the 6-vertex models,
gives a good description of the basic properties of the critical
behavior, but not the details. For example, in the SCD model
the cluster approximation gives a qualitatively correct de-
scription of the change in the "order parameter" (22) from
the value rj ^ =r](T—*ao) = — 1 (in the exact solution56

77^ = — 0.88) to zero at a temperature T= Tc determined
by (21). True, the phase transition at this temperature (a loga-
rithmic singularity in the specific heat) does not appear in the
cluster approximation, and as Tis reduced further the value
77 = 1 is reached not at T = 0, as in the exact solution, but at
a finite T~ Tc/2, at which the cluster approximation gives a
second-order transition to a "saturated" state; this transi-
tion is analogous to the ferroelectric phase transition in the
KDP model in the presence of a field. However, the exact
and approximate functions rj(T) are actually rather similar.
In the CFT models the phase transitions are isomorphic to
the ferroelectric phase transition in the KDP model and are
therefore described by the cluster approximation to the same
high accuracy as for KDP.

In summary, our examination of the exactly solvable
vertex models has illustrated the peculiarity and diversity of
the phase transitions in systems with the ice rule, the essen-
tial differences between these phase transitions and those in
magnetic systems, and the inapplicability of the MFA and
the good accuracy of the cluster approximation in the de-
scription of these phase transitions.

4) Other exactly solvable models and exact reults. Bax-
ter61 has solved the two-dimensional symmetric 8-vertex
model, which corresponds to h = v = 0 and the addition of
two "doubly-charged" configurations, for which all four ar-
rows enter or leave the vertex, to configurations (l)-(6) in
Fig. 6. This model is equivalent to two simple Ising lattices
coupled by a 4-spin interaction.62 The critical exponents
turn out to depend on the interaction constants—an unusual
circumstance in the theory of phase transitions, but one
which is due to the special structure of the model of Ref. 62.
Solutions have been obtained for certain other versions of
the vertex models (see, e.g., Ref. 63) and for several systems
with purely many-spin interactions: a three-spin interaction
in a two-dimensional triangular lattice64 and a four-spin in-
fraction in several three-dimensional lattices.65 It is not yet
clear, however, what relationship all these models might
have to any real order-disorder structural phase transitions.

For describing systems of type (1) in which the number q
of states (orientations) at each site is greater than 2, the Potts
model has been discussed in the literature (in particular, as
the subject of a recent review of Ref. 66). The "standard"
model which is usually considered takes into account only
the interaction of nearest neighbors in the same state: F,y(R)
= <5,y F(R) (this is hardly applicable to real order-disorder
structural phase transitions in alloys, many-well potentials,
etc.). It has been shown for the two-dimensional Potts model
that for g<4 the phase transition is continuous, while for
q > 4 there is a first-order phase transition. Values of 7"c have

been found for a number of lattices, but no exact solutions
have been obtained. Studies of the Potts model have dealt
mainly with the critical behavior near the phase transition,
with attempts to apply the results to several layered and sur-
face systems.66

3. PHASE TRANSITIONS IN CRYSTALS WITH DOUBLE-WELL
HYDROGEN BONDS

Let us begin our discussion of specific order-disorder
structural phase transitions with phase transitions in crys-
tals with double-well hydrogen bonds. For these systems the
basic mechanism of the phase transitions and the adequacy
of their description by models (2) and (3) usually seem clearer
than for other types of phase transitions, and rather detailed
microscopic theories have been developed for a number of
these phase transitions. At the same time, these phase transi-
tions clearly display many of the features mentioned earlier
that distinguish order-disorder structural phase transitions
from magnetic phase transitions.

1) Status of the theory of hydrogen bonds in solids. The
hydrogen bond is a very common structural entity in the
crystal chemistry of hydrogenous compounds. General in-
formation on the chemical, geometric, and spectroscopic
characteristics of hydrogen bonds can be found in several
reviews. 16>67~69 The most common and best-studied type of
hydrogen bond is O-H . . . O, with an energy of formation
Ef~0.2 eV. At lengths R^ S: 2.5 A these bonds usually have
a double-minimum structure,16'67 and, depending on the
crystalline environment, can be either symmetric (Fig. la) or
asymmetric (Fig. Ib). The shape of the potential t/(x) for the
proton in the hydrogen bond [which determines, in particu-
lar, the values of the parameters Vit,A, and ft in (2) and (3)]
has been discussed in many papers (see, e.g., Refs. 16,68, and
70). However, there are as yet no reliable quantum-chemical
calculations for hydrogen bonds in solids, and U (x) is usually
estimated from spectroscopic data on the proton levels in the
bond,68-70 although these estimates are complicated by the
pronounced anharmonicity and frequently also by the "col-
lectivization" of these levels in the crystal. Therefore, in cur-
rent practice the parameters V^, A, and f l in Hamiltonians
(2) and (3) are not calculated but are instead estimated by
comparing the calculated phase-transition thermodynamics
with experiment, although attempts at a microscopic ap-
proach to the calculation of these parameters have also been
discussed.70

2) The residual entropy of ice and the ice rule. The idea
that the hydrogen bonds have a double-well character and
the so-called ice rule, which is important in the statistics of
these bonds, were first proposed by Pauling12 in connection
with the problem of the residual entropy of ice. Measure-
ments71 of the specific heat of water over a wide temperature
range, from high temperatures (where water vapor can be
considered an ideal gas of H2O molecules, and the entropy
S1 (T) can be calculated using ideal-gas statistics and the spec-
troscopic data on the vibrational and rotational levels) to
extremely low temperatures T~ 10 K (where ice has a hexag-
onal structure Ih with tetrahedral coordination of the hydro-
gen bonds around each oxygen atom and a large distance
between non-nearest bonds), have shown that S1 (T) does not
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go to zero at T—>0, but to a finite value S0 = 0.41 ± 0.02 per
molecule.71 Previously,72 finite values S0~0-6 had been ob-
served in the molecular crystals CO and NO2. The value
S0^Q for ice Ih was attributed by Pauling12 to a disorder of
the protons in double-well hydrogen bonds. Assuming that
the ice rule is obeyed, i.e., that the population of "charged"
configurations (with other than two protons near an oxygen
atom) is negligibly small, and also that the energies of all the
neutral configurations are equal, Pauling estimated S0 in the
following way. Two hydrogen atoms belong to each of the N
oxygen vertex atoms in the crystal, and in a completely dis-
ordered situation there are 22 = 4 states of these hydrogens
in the bonds. But of the 24 = 16 configurations at each ver-
tex, only the 6 neutral configurations are allowed (and these
have equal probability). Neglecting correlations of the con-
figurations at different vertices, we obtain for the entropy
per molecule

(23)

in excellent agreement with the experimental value of S0 giv-
en above. We note that Pauling's estimate (23) corresponds
to applying the cluster approximation (14), (15) to the ice
problem (if one sets e = ^ = u = 0, w—»oo). Exact calcula-
tions of the Pauling model yield S0 = (3/2)ln(4/3) = 0.423
for two-dimensional ice9 and S0 = ln(1.507) = 0.410 for
three-dimensional ice.73 These results again illustrate the
high accuracy of the cluster approximation for describing
systems obeying the ice rule and confirm the applicability of
the simple Pauling model for estimating S0.

The basic assumptions of this model are also confirmed
by structural studies74 of ice Ih, although these studies do
indicate that it is desirable that the model be improved. Ap-
plications of the Pauling model and the cluster approxima-
tion to the description of the dielectric properties75 of ice Ih

and the possible low-temperature ferroelectric phase transi-
tion (which has not yet been observed on account of the slug-
gishness of the kinetics at these temperatures) are discussed
in Ref. 76 and the literature cited therein.

3) Ice-Vll-VIll phase transition. Under application of
pressure p ice undergoes a series of structural phase transi-
tions, and its (p,T) phase diagram is rather complex. More
than ten phases of ice are known, differing in the type of
crystal lattice and in the character of the orderings of the
hydrogens in the bonds.77 At the present time, the only mi-
croscopic studies have dealt with the order-disorder phase
transitions between the two densest and most symmetric
modifications, ice VII and ice VIII (Fig. 8), which are stable
aip £ 15-20 kbar. This phase transition has been described78

in the MFA, which, as we have noted, has a low accuracy in
systems which obey the ice rule (either strictly or approxi-
mately). The cluster approximation was applied to this phase
transition in Ref. 41. The ordering in each of the sublattices
in Fig. 8 is analogous to that which occurs in KDP (Fig. 3), so
it is natural to use the methods32"8 developed for that crystal.
Several of the model parameters cannot be determined with-
out more detailed data on the thermodynamics of the phase
transition (which are as yet lacking), but for all realistic val-
ues of these parameters the phase transition turns out, in

FIG. 8. Structure of ice VIII. In ice VII the protons in the H bonds are not
ordered. 1, 2) Oxygen and hydrogen ions in one of the two diamond-type
sublattices not connected by H bonds; 3), 4) the ions of the other sublattice.
The solid lines denote H bonds, the dashed lines are the crystallographic

agreement with experiment, to be of first order, with a jump
in the order parameters os nearly equal to the saturation
value.

4) Phase transition in KDP-type crystals. The order-dis-
order structural phase transitions in crystals of the KDP
type are among the best studied from both the experimental
and theoretical standpoints. In addition to KDP, this family
includes RbH2PO4, KH2AsO4, RbH2AsO4, CsH2AsO4

(RDP, KDA, RDA, CDA), and their deuterated analogs.
Information on the phase-transition thermodynamics and
the structure of these crystals can be found in Refs. 1-5, 15,
79, and 80. The relatively short lengths ̂ oo of the H bonds
and distances 28 between maxima of the proton density in
these crystals [at T~ Tc one has/^ = 2.48 A and 28 = 0.32
A in KDP and R^ = 2.52 A and 28 = 0.44 A in DKDP
(KD2PO4)

79 compared, for example, to RQQ = 2.76 A and
28 = 0.76 A (Ref. 72) in ice Ih ] has provoked a discussion of
whether the H bond in KDP is of a double-well character.
Evidence in favor of a double-well bond is provided both by
structural studies79'80 and by the good experimental agree-
ment of the phase-transition thermodynamcis calculat-
ed15-81 on the basis of such an assumption. For protons (in
contrast to deuterons) in the bonds there is evidently an ap-
preciable probability of tunneling between the potential
minima, as is indicated by the characteristic changes upon
deuteration (H—>-D) in the dynamical properties and dielec-
tric relaxation82'70'8 and in the phase-transition thermody-
namics,15 including the pressure dependence80 (in particu-
lar, drc/dp decreased by a factor of more than 1.5). The
displacements of the protons are strongly coupled with the
displacements of the heavy ions36'79; in fact, the ferroelectric
polarization in KDP is due mainly to the displacement of the
ions K, P, and O, while the displacements of the H ions are
almost perpendicular to the ferroelectric axis.1-3 In the de-
scription of the phase-transition thermodynamics, however,
the basic effect of this coupling evidently reduces to only a
renormalization of the constants in Hamiltonians (2) and (3)
(although in the presence of tunneling this assertion is not
rigorous even in the approximation of small anharmoni-
city8'70).

A qualitative feature of the thermodynamics in these
crystals is the narrowness of the phase transitions region:
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FIG. 9. Curves of the order parameter a(T) for crystals of the KDP type.
The solid curves are the theoretical results of Ref. 15, the dashed curve is
the MFA result (6). The experimental points are: 1) KDP, 2) DKDP, 3)
RDP, 4) DROP.

almost the entire change in the order parameter a(r) occurs
in the region T = \T - Tc \/Tc 5 10~2 (Fig. 9). This can be
considered an indication of the proximity of this system to
the Slater model13 discussed in Sec. 2 and, hence, of the inap-
plicability of the MFA and the suitability of the cluster ap-
proximation for describing the phase transition. One can
then use formula (18) for crystals of the type MeD2XO4, but
for MeH2XO4 one must take the tunneling into account. In
the latter case, in addition to "longitudinal field" terms, e.g.,
o*(<p + Epe } in (9), one must include in the Hamiltonian
"transverse field" terms of the type a* (ftfl — 17), where f l is
the same as in (3) and rj is an effective field parameter analo-
gous to <p (Refs. 33, 17,8).

In Ref. 15, detailed calculations of the phase-transition
thermodynamics were done by this method, and the param-
eters e, y, w, and f l were estimated for all the crystals in the
KDP family.4' For MeD2XO4 it was assumed that /2~0,
.while the parameters £D , YD > and WD were estimated from
£H , yH , and WH using relation (3b). Taking into account that
the lattice parameters [and apparently also w(R) in (3b)]
change very little upon deuteration, while xsa ~8 changes
significantly,80'70 one expects on the basis of (3a), (3b), and
(13)that46'33-17

ED
7H

YD
(24)

here/»"'D is the effective dipole moment of the bond,8 which
is proportional to the saturation polarization Ps. Therefore,
if Ps is known for every pair of crystals MeH2XO4 and
MeD2XO4, there are only three unknown dimensionless pa-
rameters y/E, W/E, and fifi /e governing the thermodynam-
ics of the phase transition, including the specific heat C (T),
the entropy S (T), the polarization P (T), the discontinuities in
these functions at the first-order phase transition, the Curie-
Weiss constants, etc. The successful description of these
quantities in Ref. 15 for all ten crystals of the KDP family
(see Fig. 9, in particular) evidently confirms the correctness

of the underlying ideas about these phase transitions and the
methods used to describe them. These methods have also
been applied40 to the description of phase transitions in
K(HX D, _ x )2PO4 solid solutions.

The methods of Refs. 33 and 15 were also used51 to de-
scribe the effect of pressure p on the phase transitions in
KDP and DKDP.81 The values off, Y, w, and n were esti-
mated by comparing the expansion of the free energy F(cr, T}
in powers of the order parameters a (or the polarization P )
with the phenomenological Landau expansions which are
used for KDP.6'7' In estimating the pressure dependence of
the parameters E, y, and w it was assumed, by analogy with
(24), that they all changed upon compression in proportion
to the change in x2

sa ~62. The conclusion was reached81 that
although the basic characteristics of the phase transition can
be described by parameters close to those obtained in Refs.
33 and 17, the data on the Tandp dependence of the coeffi-
cient of P 4 are described better by values y < 0 rather than
y >0 as in Refs. 17and33.8)

We note in this regard that negativity of the term ya2 in
(18) would upset the basic property that Fis minimum with
respect to all the introduced parameters a, q>, and 17: the
absolute minimum of F would correspond to cr—»oo. This is
not too important at small a, when the "dangerous" region
of large a is not attained, but in DKP and, especially, in
DKDP the values of O->CTC are not small.9' Therefore, the
accuracy of expanding F in powers of a2 and retaining only
three terms is also in doubt,7' particularly since in the
"Slater" limit w—>-<x> all the terms of this expansion change
sign at T = Tc, and the minimum of F is reached at
a = crmax = 1. It also seems unsafe to assume that all the
constants, £, y, and w are proportional to the single param-
eters 82, since experimentally the change in structure [and
also, probably, of the quantities d 2w/dRa dRp in (3b)] under
applied pressure by no means reduces to a uniform compres-
sion.80 It would seem desirable to have further studies of the
effect of pressure on these phase transitions with allowance
(in particular) for the data of Refs. 69 and 80 and the discus-
sion of these data in Ref. 70.

Let us make one further remark on the application to
KDP of the MFA and related approximations of the "decou-
pling" type35'36 in dynamics. As we have mentioned, these
approximations cannot give a quantitative description of the

41Fig. 10 of Ref. 15 (a methodological figure) was drawn inaccurately;
refined calculations have shown that with decreasing y all the curves
<rc (Y) go continuously to zero at a certain y = Y,, corresponding to a
tricritical point.

^ Translators's note: The method of Ref. 15, i.e., the analytical expansion
of the free energy from Ref. 33 in "small" parameters, was in fact not
used in Ref. 81.

'''Translator's note: The values of e, y, w, and fl for KDP were in fact
estimated from the P (T) curve for DKDP [using expression (24) and the
value of T0 in KDP], and not from a comparison with the Landau expan-
sion.

^Translator's note: The coefficients of the Landau expansion were calcu-
lated in Ref. 81 solely to facilitate comparison with experimental values
obtained at small P in the paraelectric phase under applied field E. The
first three terms of the Landau expansion are of course manifestly insuf-
ficient for describing the ferroelectric phase.

^Translator's note: Taking y < 0 also eliminates a significant discrepancy
with the experimental values of the Curie-Weiss constants for KDP and
DKDP.

^Translator's note: Realistic values y<0 in fact cause no difficulty any-
where in the physical region <r< 1. The free-energy minimum for a—>co
can, of course, be avoided by the addition of an arbitrarily small positive
<r4 term.
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phase transitions in question, and the microscopic meaning
of the "averaged" interactions (6b) introduced in them is not
clear. However, they are often used4'36'70 for KDP on ac-
count of their simplicity and also because of the lack of de-
velopment of methods analogous to the cluster approxima-
tion for taking correlations into account in dynamics. For
qualitative discussion (e.g., the presence of a "soft
mode",35"37 though a strongly damped one, in KDP-type
crystals82) these methods may be adequate, but for the rea-
sons indicated they can hardly be used to make quantitative
estimates of the microsopic parameters, as is sometimes
done.69'70'37 It seems much more reliable to estimate these
parameters from the phase-transition thermodynamics;
such estimates are obtained and discussed in Ref. 15, for
example.

5) Crystals of the ADP type, which include NH4H2PO4

(ADP), ND4D2PO4 (DADP), NH4D2AsO4 (ADA), and
ND4D2AsO4 (DAD A), correspond to the replacement of the
Me atom in the analogous KDP-type crystals by ammoni-
um. They have not been studied nearly as much as KDP,
and, unlike KDP, are antiferroelectric. Information on their
structure and thermodynamics can be found in Refs. 1,5,37,
83, and 84. The ordering of the protons below T^ corre-
sponds to an alternation (at adjacent vertices) of the first two
or last two configurations in the fourth row of Fig. 3a. The
phase-transition thermodynamics has been examined83'84 in
the cluster approximation without allowance for tunneling
or the contributions of charged configurations. The antifer-
roelectric phase is energetically favored over the ferroelec-
tric phase for parameter values e < A — y, where £ and y are
the same as in (15) and (18), and A is a constant analogous to y
which characterizes the antiferroelectric interaction of non-
nearest neighbors in the mean field approximation. The
equation for Tc is83-84 exp(#l) = 1 + ^exp^Se), and so for
A > e the antiferroelectric phase transition occurs at £ > 0.
This first-order phase transition is analogous to the ferroe-
lectric transition in the KDP model with (I — 0, w = oo,
y>0, i.e., it takes place to a "frozen" state with antiferroelec-
tric order parameter a = <rmax = 1, in qualitative agreement
with the character of the phase transition observed in ADP.'
The model parameters E, A, y, /?", p° for ADP, DADP, and
ADA were estimated84 by fitting the curves of the dielectric
permittivities£c(r)andfa(r)forr> Tc to the experimental
curves. These curves are quite smooth, however, and no
allowance was made in Ref. 84 for a relationship of the type
in (24) between the constants for ADP and DADP, so the
agreement with experiment that was found in this study can-
not be regarded as proof of a high accuracy of the model or of
the parameters found. These remarks are even more perti-
nent to the results of Ref. 37, since the "decoupling" of the
equations for the Green's functions in that paper is thermo-
dynamically equivalent to the MFA, and therefore can
scarcely be applicable to the quantitative description of
ADP-type crystals.

6) Phase transition in squaric acid (H2C4O4). In recent
years the phase transition in the quasi-two-dimensional anti-
ferroelectric H2C4O4 (H2SQ) has attracted a great deal of
interest. Information on the structure and phase-transition
thermodynamics can be found in Refs. 85-88 and in the

o

o~c( V-o—H

FIG. 10. a) Diagram of the valence bonds in the H2SQ molecule (H2C4O4);
b) diagram of the H bonds of the H2SQ crystal in the planes perpendicular
to the tetragonal axis c of the high-temperature phase; the lines corre-
spond to the H bonds, the squares to C4O4 groups.

theoretical papers of Refs. 89-94. Figure 10 shows a diagram
of the molecule and the arrangement of the H bonds in the
plane layers perpendicular to the tetragonal axis of the crys-
tal for T>TC; the layers are coupled by relatively weak van
der Waals forces. At the phase transition the protons in each
layer order ferroelectrically in one of the four positions of the
type shown in Fig. lOa; the polarizations of adjacent layers
are oppositely directed. The entropy of transitions
Sc = S(TC + 0) = 0.114 is very small,86 amounting to less
than 1/12 that of the "free" value 2 In 2. In spite of a large
isotope effect in Tc(Tc0/TM ~ 1.4) the pressure derivatives
drc /dp in H2SQ and D2SQ practically coincide.87 This indi-
cates that the tunneling is small,87 in agreement with the
rather large values #00 = 2.55 Aand2<5 = 0.49 AinH2SQ.91

There are indications85 that the positions of the hydrogens in
the bonds are strongly correlated within the layers at T> Tc,
with correlation lengths lc % 25a (a is the lattice constant),
and that these correlations have an anisotropic, possibly
one-dimensional, character.88-94

The theoretical description of H2SQ must take into ac-
count that configurations (5) and (6) in Fig. 6 (which will be
called "antivalent") are forbidden by the conditions of satu-
ration of the valence bonds (see Fig. lOa), i.e., the energy
difference £ in Fig. 3a is negative and large:
— £ ̂  w' = w — £. . The ground-state configurations, ac-

cording to Fig. lOa, are those numbered (l)-(4) in Fig. 6 or
shown in the fourth row of Fig. 3a, which are degenerate on
account of the tetragonal symmetry (for this reason the
asymmetry parameter, which was also denoted E in Refs. 89-
91, evidently should be assumed equal to zero92'93). If only
these 4 configurations are taken into account in the descrip-
tion of the crystal and all the contributions ~ exp( — /3w') are
neglected, then, as is seen from Fig. 6, the directions of the
arrows remain unchanged at every vertex, and in a two-di-
mensional lattice (Fig. lOb) these directions are conserved
along each of the Nv vertical and 7Vh horizontal rows. In the
thermodynamic limit 7VV ,./Vh —»• oo this corresponds to a van-
ishing entropy S = (JVV + N}l)ln2/NvNh^-0 (even though
the orientations of different chains remain uncorrelated).
Allowance for the charged configurations makes the corre-
lation lengths /c finite, but for T<w' they are exponentially
large: /c ~aexp(£u;') (which is easily shown in the same way
as for a one-dimensional Ising chain at low temperatures29).
At the same time Tc is determined by the weak interaction of
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non-nearest bonds90'93 and Tc~w'/\n(w'/y')4w' (as in an
anisotropic Ising lattice49 with/,, ~/</v ~w'). These con-
siderations explain in a natural way both the smallness of Sc

and the strong one-dimensional correlations.
For quantitative calculations it is natural to use the

cluster approximation, which is highly accurate both for sys-
tems obeying the ice rule and for one-dimensional systems.8

In accordance with the foregoing remarks, one should set
£ = 0 and /2 = 0 in the general cluster-approximation for-
mulas for H2SQ from Ref. 89 [where/should be corrected to
( — /) in formulas (5) and to ( — 2J) in (4)] and assume that
f = y — J<w. One then obtains

T /**/ _M^ C r+s 9 V1 c ~ ~r' oc ~ ^ ~rr

(25)

Using the experimental values of Tc and Sc, one finds y'/
w-O.Qll, w^llOO K (this is close to the value of w for
DKDP,15 which has similar H-bond parameters) and
/c xaexp(pw')ziaw/y'L ~30a, in agreement with the experi-
mental estimate.85 The calculated temperature dependence
of the order parameter is quite close to the experimental one,
although a second-order phase transition is obtained instead
of the experimentally observed first-order transition. This
circumstance may be due both to the influence of the nonlin-
ear coupling with the lattice (elastic forces95'96 in particular)
and to the use of an insufficiently accurate description of the
non-nearest-neighbor interactions.91 Further verification
and detailing of the theories of the phase transition in H2SQ
and D2SQ would seem extremely interesting.

7) The phase transitions in SCD and CFT. Tin chloride
dihydrate (SCD) and copper formate tetrahydrate (CFT) are
the only known crystals having a two-dimensional H-bond
network consisting solely of H2O molecules. These crystals
can be regarded97 as a realization of "two-dimensional ice,"
and the peculiarity of the phase transitions in them appar-
ently is intimately connected with the ice rule. Information
on the phase transition and structure can be found in Refs.
97-101, 58, and 59 for SCD and in Refs. 97 and 102-105 for
CFT, and a comparative study is made in Ref. 97.

As we mentioned in Sec. 2c, the SCD model of Ref. 58
gives a good description of the qualitative features of the
phase transition in this crystal,59 including the unusual sym-
metric change of the modulus of the "order parameter" 77
(22) and specific heat C (T) at small r = (Tc— T)/TC on both
sides of Tc. However, instead of the behavior C(r);saln|r|
and the second-order phase transition implied by the theory,
the experiment of Ref. 98 indicates a dependence of the form
C(T}~ \T\ ~1/2 and a first-order phase transition (though one
with an extremely small entropy jump 4S~0.03S0), and in-
stead of the theoretical linear dependence of j](r] one actual-
ly finds a nearly square-root dependence59: ijzzbr\r\ ~1'2. In
Ref. 96 an attempt was made to attribute these discrepancies
to a coupling with elastic forces—to a volume dependence of
the model58 parameters. Granted, the method of allowing
for this coupling in Ref. 96 is not completely systematic (a

more rigorous discussion of these questions is found in Ref.
95 or in §23 of Ref. 8), but the observed behavior of C (T) was
successfully described at rather reasonable values of the
compressibility and thermal expansion (which have not yet
beem measured in SCD); the influence of these effects on IJ(T)
was not considered. A microscopic interpretation of the
sharp anomalies in the dielectric properties99 is also lacking;
these anomalies have so far been discussed only in the lan-
guage of the quasi-two-dimensional Ising model100 or else
phenomenologically,101 with no direct relationship to the
model of Ref. 58 for the phase transition in SCD.

At the phase transition in CFT the protons order ferroe-
lectrically in the b direction in the plane of the bonds [a, b ]
and antiferroelectrically between adjacent planes; the anti-
ferroelectric coupling between planes is apparently very
weak.104-105 The phase transition is of first order, with the
order parameter jumping discontinuously almost to satura-
tion. This picture is consistent with the "Slater-like" charac-
ter of the phase transition in the CFT model60 discussed in
Sec 2c, which also gives a value for Sc which is close to the
observed value. Thus CFT can apparently be considered97

one of the best realizations of the two-dimensional ferroelec-
tric models with the ice rule.9 Granted, the predicted growth
in the specific heat C(T)~(T— Tc)~

1'2 as T->TC is not ob-
served in experiment,97 but his may be due to the appreciable
difference between Tc and the Curie-Weiss temperature T0

(which is estimated from the dielectric measurements102 to
be Tc - T0x 16 K, with Tc = 236 K).

The features of the short-range order and of the correla-
tions in CFT (and in other quasi-two-dimensional ferroelec-
trics and antiferroelectrics obeying the ice rule) were dis-
cussed in Ref. 102. Anomalies of the dielectric properties103

have been discussed in the MFA for non-nearest neighbor
interaction,104'105 but this approximation is apparently un-
able to give a quantitative description of these properties and
of the phase-transition thermodynamics.'05 Furthermore,
since the exactly solvable models60 for CFT display a break-
ing of certain symmetry properties of the CFT crystal, it
would seem desirable to pursue further theoretical studies of
this phase transition using (for example) the cluster approxi-
mation with clusters of a large enough size to include the
non-nearest neighbor interaction responsible for the phase
transition.60

8) Phase transitions in sodium and potassium trihydro-
gen selenites. Crystals of the type MeH3(SeO3)2, where
Me = Li, Na, K, Rb, or Cs (the corresponding crystals will
be denoted LTS, STS, KTS, RTS, and CTS, respectively)
have attracted considerable interest in regard to the diversity
of their physical porperties. Although analogous in chemical
composition, the different crystals of this family have
marked differences in the structures of their high-tempera-
ture phases and in the types of phase transitions which they
exhibit, and STS and RTS also display intermediate phases,
i.e., have several phase transitions upon changes in tempera-
ture or pressure. Information on these crystals can be found
in Refs. 69 and 106-112 and the literature cited in these
papers. Microscopic theories of the phase transitions have so
far been discussed only for STS (see Ref. 39 and the literature
cited therein) and KTS.109
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The STS crystal has a two-dimensional network of O-
H ... O bonds coupling the pyramidal SeO3 groups.39 As T
is lowered, two ferroelectric phase transitions occur: first to
the ft phase, in which the polarization has two components
(Px andPy) and the lattice period is doubled along the* andy
axes, and then to the y phase, which displays a polarization
and a unit-cell doubling along the x axis only. Upon deutera-
tion the existence region of the /? phase shrinks, vanishing for
concentrations CD > 35%. Both phase transitions are appar-
ently due to ordering of the hydrogens in the bonds; the form
of this ordering has been determined experimentally for the
Y phase but has not yet been established for the f) phase.

It was shown in Ref. 39 that these and other features of
the phase transition can be explained by assuming that the
nearest-neighbor interaction constants in STS [as in KDP
(13)] are much greater than Tc, while the interactions in the
second coordination spheres (interactions stemming from
the strong coupling of the displacements of the protons and
SeO3 groups) are also extremely large. The high symmetry of
the system of H bonds in STS results in a variety of phases
with nearly equal energies, the degeneracy of which is lifted
only by relatively weak interactions in the third and higher
coordination spheres. A detailed analysis (using the cluster
approximation for calculating the temperature depen-
dences) has shown39 that despite the presence of a number of
unknown constants, these assumptions yield a natural expla-
nation of the observed structure of the y phase, the value of
the entropy of transition 5C, and the peculiar dependence of
Px and Py on the temperature Tand on the fields Ex and Ey,
and also enables one to predict the structures of the /? phase
and of several other phases which are close in energy to the y
and P phases [indications of whose appearance have been
obtained in experiments under pressure39 and near Tc (Ref.
108)]. Verification of these predictions would seem to be an
interesting avenue for further development of the micro-
scopic theories of the phase transitions in trihydrogen selen-
ites.

The system of H bonds in KTS is of a one-dimensional
character,109 but the distances between different chains is
small, so that it is not obvious that one can use "quasi-one-
dimensional" approximations. The subject of Ref. 109 was a
discussion of the symmetry relationship between the "anti-
ferroelectric" ordering of the protons in the H bonds (which
is realized here within a single unit cell, without period dou-
bling) and the "ferroelastic" phonon modes which, accord-
ing to Ref. 109, are the cause of an observed ferroelastic
phase transition in which the order parameter is one of the
components of the strain tensor and the corresponding elas-
tic compliance displays a critical growth as ̂ approaches Tc.
The phase-transition thermodynamics was treated in Ref.
109 in the MFA, and the results were not subjected to a
quantitative comparison with experiment.

9) Phase transitions in the quasi-one-dimensional ferro-
electric* PHP and CDP. The crystals PHP (lead hydrogen
phosphate, PbHPO4)

113-115 and CDP (cesium dihydrogen
phosphate, CsH2PO4)

n6-118 contain one-dimensional chains
of H bonds linking the PO4 groups. These chains are rather
far apart, so that the interaction between them can be consid-
ered weak. The large isotope effects in Tc (Tc is equal to 310

K and 452 K for PHP and POP, respectively, and to 153 K
and 267 K for the deuterated crystals CDP and DCDP) indi-
cate the importance of these chains in the ferroelectric phase
transition. In this connection quasi-one-dimensional theor-
ies of the phase transition in the PHP113'114 and CDP117'118

were proposed which used the exact solutions of the one-
dimensional Ising model in a field E^, where /?eff included
both the external field E and the non-nearest neighbor inter-
actions (both within and between the chains) in the mean
field approximation. The effect of tunneling (which is evi-
dently extremely important in the undeuterated crys-
tals114-116) was taken into account in Ref. 114 in the cluster
approximation, which would seem entirely adequate inas-
much as the "zeroth order approximation"—the one-di-
mensional Ising chain without tunneling—is described ex-
actly in this approximation.8 The small entropy of transition
Sc sr 0.11 in PHP115 [which apparently indiates a large intra-
chain correlation length lc(Tc}> lOa; see the analogous esti-
mates (25)], the shape of the temperature curves P(T) and
e(T) in CDP and DCDP117'118 and the conversion of the
phase transition in CDP from ferroelectric to antiferroelec-
tric at a rather low pressure116>118/> £ 3.3 kbar evidently con-
firm the weakness of the interchain interactions. For a more
quantitative check of these quasi-one-dimensional models
for PHP an CDP, one would like to see measurements of the
specific heat C(T)in CDP and DCDP and a detailed com-
parison of all the thermal and dielectric data [C(T),Sc,e(T],
P(T), etc.] with the theoretical formulas, with allowance for
tunneling in the undeuterated crystals.114

10) Quasi-one-dimensional model of the phase transition
in AHSe and RHSe (NH4HSeO4 and RbHSeO4). The recent-
ly discovered ferroelectric phase transitions in AHSe and
RHSe are evidently also due to ordering of the protons in the
chains of hydrogen bonds which join the SeO4 groups in
these crystals.119 There are three such chains and, in accor-
dance with the symmetry of the crystal, the proton potential
U (x) in one of them should be symmetric, as in Fig. la, while
in the other two the minima of U (x) are apparently asymme-
tric and of opposite orientation, as in Fig. Ib. Calculations of

1,0
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0,6 0.4 0.2

FIG. ll.TemperaturedependenceoftheorderparametersCTfr) = P(T)/
P(0) in triglycine sulfate. The solid curve is the MFA result (6); the dashed
curve gives the results of numerical calculations of a\T) in a simple cubic
Ising lattice with nearest-neighbor interactions; the points and triangles
are the experimental data of Ref. 127.
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the phase-transition thermodynamics of this model with the
aid of the exact solutions of the one-dimensional Ising model
and with the interchain interactions taken into account in
the MFA119 indicate the possibility of a number of features
characteristic of phase transitions in asymmetric potentials
(these are discussed in Sec. 4b). This circumstance can qual-
itatively explain certain anomalies in the phase-transition
data—in particular, the presence of a lower Curie point in
AHSe (the ferroelectric phase exists only in the range 100
K 5 250 K) and the nonmonotonic change in e(T) below Tc

in RHSe, although this simple model cannot, for example,
explain the second structural phase transition observed in
RHSe.119

4. ORIENTATIONAL PHASE TRANSITIONS IN IONIC-
COVALENT CRYSTALS

Orientational phase transitions are associated with an
ordering of the molecules or molecular groups (H2O, NO2,
NH4, OH, SO4, etc.) in the minima of the crystalline poten-
tials U(x). In ionic-covalent crystals (unlike molecular crys-
tals) these potentials are, as a rule, rather strong, and transi-
tions of the orienting groups between minima of U (x) are
strongly hindered. For example, in the ammonium halides
NH4X (where X = Cl, Br, or I), which will be discussed lat-
er, the barriers A U for the reorientation of the NH4 groups
are estimated16 to be AU~ 1500-2000 ,̂ while Tc = 200-
250 K. Therefore, for TS Tc the librational oscillations
about each of the minima are usually small in amplitude and
can be taken into account in the harmonic approxima-
tion,8'14 so that the phase-transition thermodynamics can be
described by the discrete models (l)-(3). The number q of
equivalent minima of U (x) is governed by the symmetry of
the disordered phase and can be rather large for crystals of
high symmetry (e.g., q = 12, 8, or 6 in cubic lattices). In crys-
tals of rhombic or lower symmetry in the disordered phase
there are usually no more than two equivalent minima of
U(\), but cases are quite frequently encountered in which
there are sublattices with inequivalent, oppositely oriented
minima (see Fig. Ib).

In many cases these crystals characteristically display
several (between 2 and 5 or 6) orientational phase transitions.
The transition parameters also have a peculiar dependence
on temperature, e.g., a ferroelectric phase exists only in a
bounded interval Tc2 <T<Tcl and may sometimes reappear
at T< rc3 < Tc2 (see Fig. 15 below). In a number of these
crystals there are phase transitions to intermediate modulat-
ed (incommensurate or having large-period cells) phases
which exist in temperature intervals with widths from a few
degrees, as in NaNO2,

120~122 to hundreds of degrees, as, for
example, in crystals of the (NH4)2ZnCl4 type.123

The structures and interactions in these crystals are
usually too complex to permit a quantitative microscopic
treatment of the phase transition. Therefore, the main thrust
of the microscopic approach has been to consider the quali-
tative features of these phase transitions, including those
mentioned above, with the aim of relating these features to
the nature of the structure and interactions. The thermody-
namics is usually treated in the MFA, and estimates of the

parameters of the Hamiltonians (1 )-(3) have focused only on
the electrostatic interactions (dipolar, quadrupolar, etc.),
while the influence of the short-range forces has been de-
scribed by phenomenological parameters. For sufficiently
simple structures (NH4X in particular), calculations of a
more detailed nature have also been done using the cluster
approximation,42 and studies of the phase transitions in sys-
tems with asymmetric potentials have also made use of the
exact solutions of the one-dimensional models124'125 and the
results of Monte Carlo calculations.126

a) Orientational phase transitions in potentials with two
equivalent minima

1) Crystals with a single type of groups undergoing order-
ing. The best-studied of the orientational phase transitions in
symmetric double-well potentials are apparently those in
crystals of the types represented by TGS [triglycine sulfate,
(CH2NH2COOH)3H2SO4], KFCT [potassium ferrocyanide
trihydrate, K4Fe(Cn)6-3H2O], sodium nitrate (NaNO2), and
the ammonium halides; the phase transitions in these cases
are associated with the ordering of the glycine, H2O, NO2,
and NH4 groups, respectively.

1.1) Phase transitions in TGS and KFCT. The structure
and interactions in crystals of the TGS type are extremely
complex,2'5 and there are as yet no calculations of the phase-
transition mechanisms in these crystals. However, in spite of
the structural complexity, these crystals are among the few
for which the thermodynamics of the order-disorder struc-
tural phase transition turns out to be "simple" and fairly
well described by the MFA (6), both in regard to the sponta-
neous polarizations P (TR } (Fig. 11) and in regard to the ther-
mal properties (in particular, the entropy of transition is only
20% less than the MFA value Sc = In2). This may be be-
cause the ferroelectric phase transitions are governed mainly
by long-range dipolar interactions, which suppress the criti-
cal fluctuations in such uniaxial ferroelectrics8'128 and at the
same time do not give rise to strong short-range correlations.
Granted, for quantitative description of the details of the
function P (T,E) near Tc the values of Fandpe in (6) must be
chosen differently127-5 from those for the wide temperature
range in Fig. 11. Furthermore, the value of the specific-heat
discontinuity at the phase transition point as calculated from
the experimental values of the coefficients of the Landau
expansion for F(P,T) turns out to be only about two thirds of
the observed value.157 To describe details of this sort and the
possible renormalization of the interactions near Tc, one ap-
parently must go beyond the simplest mean field approxima-
tion (6).

To a large extent, what we have said about the structure
and character of the ferroelectric phase transitions applies to
crystals of the KFCT type as well.97 True, the growth of P ( T }
below Tc is noticeably steeper here129 than in the MFA (6),
possibly indicating that short-range correlation effects are
stronger in KFCT than in TGS.

An electrostatic calculation of the orientational poten-
tial f (x) for the H2O molecules in KFCT was made in Ref.
130. The charge distribution in the Fe(CN)6 and H2O groups
was described (as usual in such calculations) by a set of equi-
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valent point charges. The calculated function t/(x) turned
out to have two symmetric minima for orientations of the
H2O molecules which are close to the observed positions.
The value of the transition temperature Tc which was then
calculated by the mean field method turned out to be very
close to the experimental value (possibly as a result of some
compensation of the inaccuracies of the model and of the
MFA calculations). Various neglected effects and other ap-
proaches to the theory of the phase transitions in KFCT
were also discussed. 13°

1.2) The phase transition in NaNO2 turns out to be
more complex than in TGS or KFCT, even though the crys-
tal structure5 is much simpler. For T>T^, = 438 K, NaNO2

has an orthorhombic structure with two equivalent equilib-
rium positions for the NO2 group, corresponding to orienta-
tions of its dipole moment + p0 along or against the b axis.
The ferroelectric phase transition at Tc = 436 K is preceded
in the interval Tc < T< rN by the formation of an incom-
mensurate phase with a sinusoidal distribution of the dipole
moments p(r):

p (r) = Po (a* (r)> = Pocr (T) sin (k0r + a)

where the superstructure vector k0(7") varies from a*/8.4 at
J= TN toa*/10.3atr = Tc, with a* being the parameter of
the reciprocal lattice along the a axis.

The mechanism giving rise to the incommensurate
phase in NaNO2 was discussed in Refs. 120 and 121. In Ref.
120 the NO2 groups were treated as rigid Ising dipoles and
the constants V(R) in Hamiltonian (2) were evaluated as the
sums of the electrostatic dipole-dipole interaction VA (R) and
the short-range interaction Vs (R); the latter was described
by three constants estimated from the neutron-scattering
data. It was found that the Fourier component VA (k) has a
maximum at k = k) ~ a*/5, corresponding to the formation
of an incommensurate phase with this k0 at T = TN. Quanti-
tative agreement with the observed value k0=;a*/8 can be
obtained by suitable choice of the parameters of Fs. It was
later noted131 that such a "dipole-dipole" mechanism for the
formation of incommensurate phases is possible in a wide
class of orthorhombic lattices with not too similar values of
the lattice parameters a, b, and c. Here the energy differences
between the incommensurate and the ferroelectric or anti-
ferroelectric phases are extremely small; this could corre-
spond qualitatively with the narrowness of the stability in-
tervals of the incommensurate phases.

When the coupling of the NO2 reorientations to the dis-
placements of the Na atoms is taken into account in the mod-
el of Ref. 120 (as usual, this leads to an additional interaction
of the groups undergoing ordering through the exchange of
phonons), the stability region of the incommensurate phase
vanishes.121 The view was expressed121 that this is an indica-
tion that refinements are needed in the model; in particular,
that the polarizability of the NO2 groups must be taken into
account. It should also be noted that all the discussion in
these papers120'121 is based on the random phase approxima-
tion, which, being equivalent to the MFA, is completely un-
suitable for studying such small and approximation-sensi-
tive quantities as the difference in the thermodynamic

FIG. 12. Possible positions of the NH4 tetrahedron in the lattices of NH4X
crystals.

potentials of the incommensurate and commensurate
phases.

We should also mention the paper of Ehrhardt and Mi-
chel,24 who constructed the crysalline potential C/(x) for
reorientations of the NO2 group in NaNO2 on the basis of a
rather realistic model of the repulsive forces (but without
allowance for the long-range forces).

1.3) Orientational phase transitions in ammonium ha-
lides attract a great deal of interest by virtue of the combina-
tion of the structural simplicity of these crystals and the
complexity and diversity of phase-transition phenomena in
them (see Refs. 42 and 132-134 and the literature cited
therein). In the disordered 0 phase NH4X crystals have a
structure of the CsCl type, and the NH4 tetrahedra have the
two equilibrium positions shown in Fig. 12. As the tempera-
ture is lowered the NH4 groups become ordered in one of
these positions: In the 5 phase, which exists at low tempera-
tures in NH4CL and NH4Br, the tetrahedra are oriented par-
allel ("ferromagnetically"), while in the y phase, which is
observed at low temperatures in NH4I and at intermediate
temperatures in NH4Br, they are oriented "antiferromagne-
tically" in a checkerboard arrangement of alternating chains
of a single orientation. The (p, T) phase diagram for NH4Br is
shown in Fig. 13a. The phase diagrams for NH4I and NH4C1
have a similar form, only the pressure scale is shifted upward
by 4-5 kbar in NH4I and downward by 5-6 kbar in NH4C1;
this indicates that the effect of pressure on the phase transi-
tion is analogous to the isomorphic substitutions I—>-Br—*C1.
Depending onp and X, the phase transitions in NH4X are of
first or second order, but in all cases the order parameters
ag(r) and 0y(r) grow extremely rapidly with r, so that the
MFA gives a poor description of these functions (Fig. 13b).

The theories of the phase transitions in NH4X were dis-
cussed in Refs. 132-134 and, in more detail, in Ref. 42. The
features of these phase transitions are explained by the pres-
ence of competing orientational interactions: a direct octu-
pole-octupole interaction of the NH4 ions, favoring the for-
mation of the 8 phase, and an indirect interaction through
the coupling with the lattice (in particular, with the halogen
ions), which favors the y phase. The parameters of the indi-
rect interaction were estimated phenomenologically in Ref.
132, while in Ref. 42 they were calculated in an "electrostat-
ic" model consisting of the octupole-dipole interaction of the
NH4 and X ions, with the polarizability of the halogen X
(both the electronic component and the "ionic" component,
which is due to the displacement of the ion as a whole) being
charactrized by a single parameter £. The change in £ withp
and r was described by a "quasiharmonic" model in which £
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FIG. 13. a) The (p,T) phase diagram of the NH4Br
crystal (the curves are theoretical,42 the points experi-
mental); b) the temperature dependence of the order
parameter (rr(r) in NH4Br atp = 0 (the solid curve was
obtained in the cluster-approximation,42 the dashed
curve in the MFA, and the triangles in experiment).

for a given |" depends only on the volume V:
£(V)=£o + a(V — V0}/ V0. The parameters |"0 and a were es-
timated from the experimental values of/?, 7, and (drc/
dp)0r at the triple point. The resulting values of the effective
polarizability were smaller by a factor of 1.5-2 than that of
the free ions X~. As was discussed in the analogous esti-
mates135 of the quadrupole moments of the (CN)~ ions in the
KCN crystal (which turn out to be smaller by a factor of 2-3
than those of the free ions), a decrease of this kind is natural
and should be taken into account in any estimates of the
electrostatic interactions in crystals, since the electron den-
sity distributions in a crystal are generally "compressed" in
comparison with the case of the free ions, and the addition of
an "ionic" polarizability in NH4X evidently does not com-
pletely compensate this decrease in £0. Since |" in the model
of Ref. 42 is determined by all the orientational interactions,
the aforementioned similarity of the (p, T) phase diagrams for
NH4X and the changes in these diagrams upon deuteration
are naturally explained by a shift in |"0 upon the substitutions
Cl-^Br-^I, H^D.

The phase-transition thermodynamics was treated in
the cluster approximation (with an 8-particle cubic cluster)
in Ref. 42, since the strongly competing interactions men-
tioned earlier make the MFA unsuitable for quantitative es-
timates. The calculated (p,T) phase diagrams101 and the cal-
culated curve of (7y(r) for NH4Br are shown in Fig. 13. The
agreement with experiment is surprisingly good for such a
simple model, so that this model can apparently serve as a
basis for more detailed calculations.

The method introduced in Ref. 42 for calculating the
orientational interactions of the NH4 ions was applied in
Ref. 136 to the description of the recently discovered orien-
tational phase transition in NH4HgCl3. It was noted that
complex phase diagrams (such as those observed in NH4X)
are possible in crystals of this type, but the scarcity of experi-
mental data makes quantitative estimates difficult.

2) Crystals with nonequivalentgroups undergoing order-
ing. For many ferroelectric structural order-disorder phase

10>The curve of (Tc)rS in Fig. 3 of Ref. 42 was drawn inaccurately. We
remark in passing that the assertion made in Ref. 134 that the calcula-
tion of (Tc )fs in Ref. 42 contains an error is incorrect and is based on a
misunderstanding.

transitions there are indications of a "ferroelectric," many-
sublattice character of the orderings. In this regard, phase-
transition models with several order parameters (in particu-
lar, theories of improper ferroelectrics,10'11 two-sublattice
models,137 etc.) are widely discussed. However, these discus-
sions have generally been purely phenomenological and, in
particular, do not differentiate between phase transitions of
the order-disorder and displacive types. ,

Microscopic models for many-sublattice order-disor-
der phase transitions have so far been considered mainly for
the case of mirror-image sublattices, which we shall discuss
in Sec. 4b. On the other hand.the general case of nonequiva-
lent sublattices undergoing ordering has been little studied
for structural order-disorder phase transitions (in contrast to
the case of magnetic phase transitions, where the thermody-
namics of ferrimagnets has been studied in great detail). For
example, in Ref. 138 the possible features of the phase-tran-
sition thermodynamics as they depend on the model param-
eters were discussed in the MFA for the case of two coupled
Ising lattices, but the treatment was of a general, qualitative
character, with no attempt to apply the model to a concrete
order-disorder phase transition.

Model of the phase transition in AS [ammonium sul-
fate, (NH4)2So4]. A detailed model calculation of the ther-
modynamics of the ferroelectric phase transition in AS was
recently carried out.139 The temperature dependence P (T) in
this crystal has an unusual shape (Fig. 14); in particular, it
displays a "compensation point"—a point at which P ( T )
changes sign—an extremely rare occurrence in ferroelec-
trics (in contrast to ferrimagnets). Proceeding from the
structural data, Hasebe139 assumed that the phase transition

P, (iC/cm2

0,6\-

0.4

0.2

0
o.e 0.8 ],OT/TC

FIG. 14. Spontaneous polarization P (T) in ammonium sulfate. The points
are experimental, the line theoretical.'39
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is due to the ordering, in symmetric double-well potentials,
of ammonium ions of two structurally inequivalent types
[NH4 (1) and NH4 (2), described by the "spin" variables a\
and a\ ], and that the rotation angles d of the SO4 groups are
coupled linearly with a\ only. The thermodynamics of the
corresponding two-sublattice "spin-phonon" model was
calculated in the MFA, and the parameters of the model
were estimated by fitting a number of calculated average
quantities to experiment: (cr[) = a\(T], <72(T), 6 ( T ) , the
spontaneous strains, etc. However, for describing these
functions the free energy F had to be supplemented by three
terms of fourth order in <r, whose "microscopic origins are
not clear."139 Because of the large number of adjustable pa-
rameters the agreement with experiment (e.g., in Fig. 14) can
hardly be regarded as confirmation of the accuracy of the
model and the calculations, particularly since the calculated
entropy of transition turns out to be too small by a factor of
1.5 compared to experiment and the Curie-Weiss constant in
e( T} an order of magntiude too large. Nevertheless, Hasebe's
paper'39 is unquestionably of interest as one of the first at-
tempts to make a detailed estimate of the microscopic pa-
rameters for the complex phase transition in AS, while at the
same time it illustrates the inadequacy of the simple model
used in this paper and/or of the MFA (without the pheno-
menological addition of terms ~o2

icrj to F) for quantitative
description of this phase transition.

b) Order-disorder phase transitions in asymmetric double-
well potentials

As we have mentioned, the ordering in a number of
order-disorder structural phase transitions occurs in none-
quivalent mirror-image sublattices, so the crystalline poten-
tials have the form shown in Fig. Ib. Phase transitions of this
type (both orientational transitions and transitions in hydro-
gen-bonded crystals) have been discussed mainly for ferro-
electrics, and we shall use ferroelectric terminology. The
preferred occupation of the deeper minima gives rise to a
polarization of each of the sublattices, but in the disordered
antiferroelectric phase these polarizations compensate each
other. The ferroelectric phase transitions are due to a disrup-
tion of this compensation by interactions of the groups un-
dergoing ordering. As will be shown below, the presence of
competing antiferroelectric and ferroelectric interactions
can give rise to peculiar features in the phase diagrams and in
theP (T) curves, of the type shown in Fig. 15. A phase transi-
tion of this type apparently has no analogs among the mag-
netic phase transitions.

1) Thermodynamics of the phase transition in the Mitsui
model for Rochelle salt (NaKC4H4O64H2O). Information
on the phase transition in Rochelle salts (Rs) and on the

structure of this crystal can be found in Refs. 2, 5, 8, 140-142
and the literature cited therein. Proceeding from this struc-
ture, Mitsui28 proposed a "two-sublattice" model for de-
scribing the phase transition in Rs. The model Hamiltonian
is of the form (2):

H = - y 2 J W ff fi W °l <r') + °l M ff>1 (r')J

rr'

-A

'26)

here/>e is the effective dipole moment of the group undergo-
ing ordering (apparently the proton of one of the OH
groups), / (R) and A" (R) describe the intrasublattice and inter-
sublattice interactions, and A is the asymmetry of the mini-
ma of C/(x).

The thermodynamics of model (26) has been investigat-
ed28' 140>8 in the MFA for the case of homogeneous orderings
(a2, (r)> = a-t, (a\(r)) = a2. Here the free energy per pair of
spins <7j and <72 is

F=J 2 _ T In (4 ch $H l c (21 a)

where //, = Jat + Kcr2 + A,ff2 = Ja2 + ATa, — A, /and K
are related to /(R) and A"(R) in (27) by the MFA equations
(6b), and the a, are determined by the conditions dF /
<3o-, = 0.

If the constants/ (R) and /in (26) and (27a) are negative,
then the orderings <o^(r)) and (o*2(r}) can be inhomogen-
eous. For example, in a discusssion of the phase transition in
NH4HSO4 (see below), a model was considered143 in which
the constants/ (R) < 0 and AT (R) correspond to nearest-neigh-
bor interactions. Under the assumption of a four-sublattice
ordering with spin values <rla , alb and a2a , a2b , the follow-
ing expression for F, a generalization of (27a), was ob-
tained'43 in the MFA:

F = -^J (a,aalb + ozaa2b) + -jK (olaa2a + alba26)

- ± T In (16 ch pffla ch p# 16 ch 0 HZa ch p#26) , (27b)

where Hla = Ja,b + Ka2a + A, H lb = Jala + Ka2b + A,
H2a = J°~2b + Kv\a -A,andH2b =Ja2a + Kalb -A.

A study of expressions (27a) and (27b) shows that the
character of the phase transition and the shape of at \T] and
P ( T ) = (cr, + cr2)/vc are determined by two basic parameters
b=J/A and&' = K/A. The results of the analysis28'140'8-143

are conveniently presented on the (b,b ') phase diagram (Fig.
16). The equations of the boundary curves on this diagram
are

P(T) Ptt

Tf, T

P(T)>

rc,T i,
b c

FIG. 15. Shape of the temperature dependence of the
spontaneous polarization P (T) in crystals with several
ferroelectric phase transitions, a) Rochelle salt; b)
NH4H(SO)4; (NH4)3H(SO4)2 under pressure/? > 5 kbar;
d) (ND4)3D(SO4)2 a.tp > 0.2 kbar.
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AF: &' = !, DF: 6 = 0; FG: b'=b + i,

• t h - 2(6 + 6') '

DE: b' = b+b'0, 6^ = th (!/&„')« 0.833.

(28)

Let us first consider the case of homogeneous orderings
(27a).28'140'8 Minimizing expression (27a.) with respect to a,
and cr2, we find that for 7"—»0 the ferroelectric phase
a, = a2 = 1 is energetically favored in regions I, II, and III
in Fig. 16, while the antiferroelectric phase a, = — cr2 = 1 is
favored in regions IV, V, and VI. In region VII expression
(27a.) as T-+0 describes incompletely ordered phases140 with
\<7,: | < 1. These results for region VII, however, are apparent-
ly fictitious, due solely to the assumption of a homogeneous
(of(r)}, whereas in actuality inhomogeneous orderings
arises in this region. Thus, in model (27b) the antiferroelec-
tric phase considered in Ref. 143, with
crla = a2a = — alb = — au = 77 (which for the sake of
brevity we shall call the 77 phase), exhibits the behavior 77^!
as T-+Q, and throughout region VII the energy of the rj
phase is lower than the energies of the homogeneous
phases140 with ata =a,b and cr2a = cr2b.

Let us now discuss the ferroelectric phase transitions in
model (27a,b). These phase transitions apparently exist only
for /> 0, while for /< 0, according to the estimates of Ref.
143, the 77 phase in (27b) is thermodynamically favored over
the ferroelectric phase at all T. By studying the expression
obtained from (27a.} for the dielectric permittivity e(T) at
E = P = 0, we find8 that in region I there is only one Curie
point T0 [a pole ofe(T)], while in regions II and IV there are
two such points, Tol and T02, and in regions III and V there is
no T0. Therefore, upon a change in T the ferroelectric phase
also arises in region IV, but here it exists only between upper
and lower Curie points in an interval Tc2 <T<Tcl. For the
case under consideration, />0, both these ferroelectric
phase transitions turn out in the MFA (27a) to be of second
order: Tcl = Tol, Tc2 = T02, as in Fig. 15a. At the same
time, in Region III (and in a certain adjacent part of region
II) the ferroelectric phase transition is of first order, since, as
we have noted, in region III e(T] remains finite at all T. In
addition, it was recently shown158 that in a very narrow part
of region II adjacent to region IV near point F in Fig. 16,
model (27a) can exhibit two or three ferroelectric phase tran-
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FIG. 16. Existence regions of ferroelectric and antiferroelectric phases in
the Mitsui model (26), (27) in the plane of the variables b = J /A, b' = K /A
(see text).

sitions, and P ( T ) has a temperature dependence of the type
shown in Fig. 15c or 15d.

The transitions to the 77 phase in model (27b) were stud-
ied in Ref. 143. In region VII there is one such phase transi-
tion, while in region VI (analogous to region IV for the fer-
roelectric phase transition) the 77 phase exists beween two
temperatures T^ and T^. On the whole, however, the
phase transitions in approximation (27b) have been little
studied, and the case of negative / (R) in model (26) has not
been studied at all. The presence of several competing inter-
actions here can give rise to a large variety of phase transi-
tions upon changes in T or in the model parameters; exam-
ples of such transitions include the phase transitions to
modulated phases which are observed experimentally in a
number of crystals of this type upon changes in the tempera-
ture, pressure, or concentration in solid solutions.

As is discussed in Ref. 8, the Mitsui model (26), (27a)
gives a fair description of all the thermodynamic data on the
ferroelectric transition in Rs if it is assumed that the param-
eters b and b' for this crystal lie in region IV of Fig. 16, near
the point C. The values of /, K, A and />e estimated in this
way are given in Ref. 8. In addition, this model can explain
the unusual concentration dependence of the ferroelectric
properties in solid solutions between Rs and ammonium Ro-
chelle salt ARs (obtained by substituting ammonium, NH4,
for the K ion in Rs). As the concentration x in Rs^ ARs,_x is
increased from x = 0, the interval Tcl — Tc2 and the maxi-
mum polarization Pmax in Fig. 15a decrease, and for x > 0.03
the ferroelectric phase transitions vanish, although for T
close to the temperatures Tci for pure Rs, e(T) displays a
peak which becomes smeared out as x is increased further.
For x > 0.18, however, the crystal again becomes ferroelec-
tric. Here there is only one Curie point Tc, the polarization
persists to T = 0, the phase transition is first order, and the
growth of e(T) near Tc(x) becomes progressively less pro-
nounced as x increases.2 According to what we have said,
this extremely unusual change in properties can be under-
stood in a natural way in terms of the model described if it is
assumed that the change in x leads to an effective change in
the constants, /, K, and A such that with increasing x the
representative point is shifted along the dashed line in Fig.
16, passing successively through regions IV, V, and III.28'2

The effect of pressure/? on the ferroelectric phase transi-
tion in Rsx ARs,,-,. was studied in Ref. 141. It was found that
at small x<0.03 the existence region of the ferroelectric
phase expands with increasing p, while at large x > 0.18 it
contracts. It was believed141 that this difference casts doubt
upon the applicability of the simple model (26) for a unified
description of the various ferroelectric phase transitions in
Rsx AR$! _x. However, since the character of the p depen-
dence of the parameters of model (26) can be different for
large and small x, and since no estimates have yet been made
for this dependence, the indicated difference in the p depen-
dence of the existence region can hardly be considered a sub-
stantial discrepancy with the qualitative predictions of the
simple model (26).

Upon deuteration the existence region Tcl — Tc2 of the
ferroelectric phase of Rs expands2 from 42 K to 57 K (al-
though the Tci themselves do not change much:
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(T'ci )Rs = 297 K, (Tcl )DRs = 308 K). In this connection the
possibility of appreciable tunneling effects in Rs, described
by a Hamiltonian of type (3a), i.e., the addition of terms
~fifl(cr{ + o%) to (26), has been discussed in several
places.4'142 However, no experimental indications of dyna-
mical anomalies of the soft-mode type have been found in Rs
(unlike the case of KDP).8'142 Furthermore, the change in the
pressure derivatives dTQi/dp upon deuteration are insignifi-
cant in Rs (of the order of 10%, compared to 80% in KDP),
and this is also an indication that the tunneling is small.69

Therefore, the isotope effects in the values of Tci and P (T} for
Rs can be mainly attributed not to tunneling but to changes
in the interaction constants and effective dipole moments8

upon deuteration, in accordance with relations of the type in
(24), for example.

2) Phase transitions in AHS and RHS (ammonium and
rubidium hydrogen sulfates, NH4HSO4 and RbHSO4). The
structures of AHS and RHS and the ferroelectric phase tran-
sitions in these crystals are described in Refs. 2,69, and 143.
In RHS the temperature dependence P(T) has a "normal"
shape of the type shown in Fig. 11, but in AHS, as in Rs,
there is a lower Curie point Tc2 (see Fig. 15b). The marked
difference in the ferroelectric properties in the face of similar
structures and values of Tcl in AHS and RHS might be an
indication of the presence of competing, almost compensat-
ing, orientational interactions. As is discussed in Ref. 143,
the phase transitions are apparently due to an ordering of the
SO4 groups in asymmetric double-well potentials, forming
mirror-image sublattices.

These phase transitions were described143 with the aid
of model (26). The presence of the point Tc2 in AHS leads one
to think that the values ofb and b' for this crystal, as for Rs,
should lie in region IV of Fig. 16. However, in the MFA (27)
(or in the two-particle cluster approximation143) the ferroe-
lectric phase transition at T= Tc2 turns out to be always of
second order rather than first order as in Fig. 15b. In order to
obtain the observed functional dependence P(T), it was as-
sumed143 that for AHS the quantity / in (27) depends on T
and goes to zero near Tc2, but this assumption seems artifi-
cial. In addition, the calculated143 value of the entropy of
transition for RHS turns out to be 4-5 times larger than the
observed values 5C x 0.11. One would clearly like to see
further studies of these phase transitions.

3) Phase transition in SSN [sodium-silver nitrate, Ag-
Na(NO2)2]- The SSN crystal has a relatively simple ortho-
rhombic structure144 analogous to that of NaNO2, only here
the Na ions alternate with Ag. Accordingly, in one of the two
observed positions of the NO2 group undergoing ordering its
dipole moment (the vertex N) is directed toward the Na,
while in the other it is directed toward the Ag. There are thus
two inequivalent mirror-image sublattices of the NO2 ions,
and the ferroelectric phase transition in (SSN has also been
described144 in terms of model (26), (27).

The phase transition is of first order, close to second
order, but the growth of P (T} below Tc is extremely sharp—
much sharper than in TGS (Fig. 11), for example. From the
optical data one can also estimate the occupation parameters
for each of the sublattices cr\(T) and cr2(T) above and below
rc. It has been shown144 that all these data can be fairly well

described in terms of model (27) if one takes the values
b = b '=; 1.12, i.e., values close to the boundary curve BC
between regions III and II in Fig. 16. The model also gives a
satisfactory description of the temperature dependence of
the dielectric permittivity and specific heat in the phase-
transition region.144

4) Ferroelectric phase transitions in THDS and TDDS
[triammonium hydrogen disulfate and its deuterated analog,
(NH4)3H(SO4)2 and (ND4)3D(SO4)2]. The THDS crystal has
a large number of structural phase transitions upon changes
in rand/?.14S~147 At/? = 0 there are five known nonferroelec-
tric phases I-V of different symmetries (one of these phases,
III, is incommensurate), and at pressures/? £ 5 kbar there are
two more phases, ferroelectric phases VI and VII, having
P(T] curves of the type shown in Fig. 15c. In TDDS the
ferroelectric phases are observed already at/? = 0; for/? > 0.2
kbar the P (T} curve has a shape of the type shown in Fig. 15c,
and for/»<0.2 kbar the curve is of the type shown in Fig.
15d.

The phase structures and the phase-transition mecha-
nisms in THDS and TDDS remain little studied. However,
the similarity of the (p,T) phase diagram in THDS to the
(x,T) diagram in Rs* Ars,_x and the aforementioned features
of the ferroelectric phase transition permit the conjecture143

that these phase transitions may also be due to ordering of
certain groups—SO4, NH4, or H—in asymmetric potentials.
So far only a qualitative theory of the two ferroelectric phase
transitions in THDS under pressure (see Fig. 15c) has been
discussed,14S and for the sake of simplicity the presence of
the nonferroelectric ordering in the high-temperature phase
(which, depending on/?, is phase II or III in THDS) has not
been taken into account.

Gesi145 conjectured that the ferroelectric phases VI and
VII have the same symmetry and that the phase transition at
T= Tc2 is a first-order isostructural transition due to the
breaking of a fraction of the antiferroelectric bonds by a dis-
continuous reorientation of the dipoles in one of the sublat-
tices of Fig. Ib. A phase transition of this type, generally
speaking, could also occur in the framework of the model
(26) and, as was later shown in Ref. 158, can be obtained even
from expression (27a), though only for an extremely narrow
region of parameters /, K, and A. In Ref. 145, on the other
hand, a P (T) curve of the shape shown in Fig. 15c was ob-
tained by adding to (27a) terms with four-particle interac-
tions of the form Jc(<74 + a\) + \dd\ cr2. and studying the
thermodynamics of the ferroelectric phase transition.

Assuming for the sake of definiteness that the coeffi-
cient b' = K /A varies linearly with /?, while the quantities
b = J /A, a3 = c/A, and a4 = d /A are independent of/?, Gesi
obtained a (p,T) phase diagram for the ferroelectric phase
transition and a P (T) curve which are qualitatively similar to
those observed in THDS.

To be sure, the nature of the added four-particle inter-
actions was not discussed in Ref. 145, and the values
a3, — 0.5 and a4= — 0.2 used in the calculations were not
small (compared to b = 0.045 and b' ~ 1), so that these inter-
actions can hardly be considered a small correction which
might stem, for example, from an anharmonic coupling with
the lattice.14'95 Also omitted from discussion in Ref. 145 was
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the behavior ofP(T,p) for TDDS, i.e., the "splitting" of the
phase transition at the point Tc2 (see Fig. 15c) into two fer-
roelectric phase transitions at the points Tc2 and Tc3 (see
Fig. 15d); as we have mentioned, such a splitting is ob-
served'47 in TDDS at p S0.2 kbar. However, the model of
Ref. 145, like the result of Ref. 158 mentioned earlier, and
serve to illustrate the diversity and uniqueness of the order-
disorder phase transitions in systems with asymmetric po-
tentials and to point up the sensitivity of the thermodynam-
ics of these phase transitions to details of the models and
approximations used.

5) Quasi-one-dimensional models and Monte Carlo cal-
culations for order-disorder phase transitions in asymmetric
potentials. It is seen from what we have said that in the pres-
ence of competing, almost compensating, interactions (con-
ditions typical of the phase transitions under study), the ac-
curacy of the calculations for a chosen model becomes an
important question. This is particularly relevant to results
showing the presence of intermediate phases and results on
the character (first or second order) of the phase transitions
to the given phases, since the accuracy of the MFA can be
insufficient for elucidating these questions. For examle, P ( T )
curves such as those shown in Fig. 15b-15d usually do not
arise in the MFA (27), but this can be attributed not to the
inadequacy of model (26) for describing the given phase tran-
sitions but only to the insufficient accuracy of the MFA.

Attempts at refining the MFA results for model (26)
were discussed in Refs. 124-126. In Ref. 124 a study was
made of the exact solution of a one-dimensional version of
model (26) in an external field E. It was shown that in spite of
the familiar result29 that formally no phase transition occurs
in one-dimensional systems, at sufficiently small values of
the effective fields acting on the spins (i.e., under conditions
of compensating interactions) the cr^T] curves can have
sharp anomalies of the sort which occur at smeared phase
transitions. Here the smearing can be made extremely small
by varying the field E, for example. It was found that in
"lability" regions of the phase diagrams (in particular, near
line AFin Fig. 16) unusual P (T) curves can arise, not only of
the type shown in Fig. 15a, but also of the type shown in Fig.
15b, which are absent in the MFA.

In Ref. 125 a study was made of a quasi-one-dimension-
al version of model (26): The interactions of nearest neigh-
bors within the two nonequivalent chains and between the
nearest of these chains were taken into account exactly,
while the interactions with other chains and with more re-
mote neighbors were taken into account in the MFA. It was
shown that such a "partial" refinement of the calculations
leads to a certain upward shift of the curve BCD in Fig. 16
and to a certain broadening of the region of parameter values
(in comparison with the region obtained158 in the MFA) in
which P (T) is of the form shown in Fig. 15d. Also, in regions
IV and VI the phase transition from the intermediate ferroe-
lectric phase to a nonferroelectric phase at T = Tc2 is not
necessarily a second-order transition, as in Fig. 15a, d, but
can also be a first-order transition, as in Fig. 15b. These re-
sults again illustrate the thermodynamic lability and diversi-
ty of the phase transitions in models of type (26) and the
possible inaccuracies of the MFA in describing them.

For several types of two-dimensional and three-dimen-
sional lattices the phase transition in model (26) has been
studied by the Monte Carlo method.126 The number of parti-
cles ("spins") in the calculations was Ar52-103. The finite
value of N leads to a smearing of all the phase transitions,
complicating the study of intermediate ferroelectric phases
characterized by small values of Tcl — Tc2 and Pmax. How-
ever, the results of Ref. 126 again indicate the high sensitiv-
ity of the thermodynamics of model (26) to the details of the
structure and interactions. It was found, in particular, that
in contrast to the MFA results the possibility of intermediate
phases depends substantially on the type of lattice and that
the transitions to these phases are always of second order.
We note, however, that only nearest-neighbor interactions
were considered in Ref. 126. In real systems there are also
both long-range Coulomb interactions and other non-near-
est-neighbor interactions, so that the MFA can have higher
accuracy here than for the short-range-interaction model
discussed in Ref. 126.

Further studies of the Mitsui model (26) and its general-
ization and specification for real crystals would appear to be
extremely interesting, particuarly since the presence of mir-
ror image sublattices with asymmetric potentials seems to be
characteristic of very many crystals with order-disorder
structural phase transitions.

c) Polyorientational order-disorder phase transitions

Studies in recent years have revealed the widespread
occurrence of sequential structural phase transitions in
which a series of intermediate phases, commensurate or in-
commensurate, is observed between the high- and low-tem-
perature phases. For example, the THDS crystal discussed
earlier undergoes four structural phase transitions atp = 0,
many crystals of the type Me'MeIIBX4, e.g., LiRbSO4 or
[(N(CH3)4]2ZnCl4, have up to 4 or 5 phase transitions,148'149

and so on; additional phases are often observed under pres-
sure. The mechanisms of most of these phase transitions
have been little studied. In particular, it is not always clear
whether the transitions are of the order-disorder or displa-
cive type (although the rather large values of the entropy of
transition Sc S: 1 observed in a number of cases permit the
hypothesis of order-disorder mechanisms2-8). These phase
transitions have therefore been described mainly with the
aid of phenomenological expansions of the thermodynamic
potentials (of the usual Landau type) in powers of several
order parameters 77,; these expansions contain a large num-
ber of unknown coefficients which in general depend on both
temperature and pressure (see, e.g., Refs. 11 and 148).

The existing attempts at a microscopic approach to se-
quential order-disorder phase transitions have been made in
connection with the study of polyorientational phase transi-
tions, in which the orienting group in the (real or virtual)
disordered phase has q > 2 equivalent potential minima. As
we shall see, the presence of a series of phase transitions with
decreasing T is both typical and characteristic of polyorien-
tational systems. This situation is due either to the formation
of intermediate, partially ordered phases in which only cer-
tain of the q > 2 admissible orientations are preferentially
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occupied, or to a first-order phase transition between almost
ordered phases of different symmetry. So far only the rela-
tively simple polyorientational phase transitions to com-
mensurate phases have been discussed, although it is natural
to expect that the presence of additional degrees of freedom
due to the polyorientational character may also be conduc-
ive to the formation of complex orderings and incommensu-
rate phases.

1) General MFA formulas for polyorientational phase
transitions. It has been noted150 that the problem of polyor-
ientational phase transitions with Hamiltonian (1) is formal-
ly analogous to the problem of order-disorder phase transi-
tions in many-component substitutional alloys. Therefore,
in describing the thermodynamics of polyorientational
phase transitions in the MFA (which has been used in all the
existing studies on the theory of polyorientational phase
transitions149"154) it is convenient to use a version of the
MFA developed specifically for alloys — the method of "con-
centration waves."7 This method makes for simpler and
more standarized calculations than the other possible for-
mulations (e.g., that of Ref. 153) on account of its maximal
use of the symmetry relations of the crystal.

Let us for simplicity limit our discussion of ( 1 ) to the
symmetric case At = 0. Then the MFA expressions for the
free energy F and for the average occupation n, (r) = (c, (r)>
of the /-th orientation can be written150"152

F = T S v> - T S ln S <29a)

) = 2 1-. S Y* (29c)

Here the vectors kfe of the start ks define the periods of the
superstructures, ijas are the order parameters, and u'a (kls) is
the eigenvector of the equation

,.i /i, \ 1 t\, \ ,,< n, \ (30a)

(30b)
r

corresponding to the eigenvalue Aa(ks). The normalization
factors ya (kls) in (29c) are determined from the condition
that in the ordered phase, when 77as = 1, the variable n,(r)
takes on only two values, 0 or 1. The consistency equations
(29b), as usual, are equivalent to the conditions that F be
minimum with respect to the ijas: dF/d?}as = 0, which also
find use in real calculations. The expressions for F (29a) in
terms of r)as and the interaction parameters Aa (ks) turn out
to be rather simple even in cases when there are several sub-
lattices undergoing ordering.149'151 Details of this method
and its application to the description of a number of phase
transitions in alloys are discussed in Ref. 7, and applications
to polyorientational phase transitions are discussed in Refs.
149-152.

2) Model for phase transitions in Me1 Me11 BX4 crystals.
In crystals of the family Me1 Me11 BX4, where Me is a univa-
lent ion (alkali metal, NH4> N(CH3)4, etc.) and BX4 = SO4,
SeO4, ZnCl4, CuBr4) etc., a variety of structural phase transi-

tions (including sequential transitions) are observed; these
transitions are apparently due mainly to orientational order-
ing of the BX4 groups. The structure of these crystals is de-
scribed in Ref. 149. In the high-temperature /? phase they
usually have symmetry D ̂  and contain 4 molecules in the
unit cell, with the BX4 groups distributed in a disordered
fashion between two orientations. There are, however, ex-
perimental indications that the fi phase is a distorted form of
the high-temperature hexagonal a phase (the paraphase),
which has symmetry D\h with two molecules in the unit
cell.11'149 In Ref. 149 it was assumed that the BX4 group in
the a phase has 4 equivalent orientations, the Hamiltonian
(1) for this model was written out with allowance for the
symmetry of the lattice, and various polyorientational phase
transitions were studied in the MFA (29), (30). For the sake
of simplicity this study was limited to the four different com-
pletely ordered phases yi which are most frequently encoun-
tered in crystals of this family.

The results of Ref. 149 illustrate well the general prop-
erties of polyorientational phase transitions mentioned
above. In all the cases considered the transitions from the a
phase to the ordered phases 7, occur through one or several
partially ordered phases. In addition, for certain relations
among the model parameters, first-order phase transitions
between almost completely ordered phases are possible. As
an illustration calculations were done149 for the phase transi-
tions in (NH4)2SO4 (AS), (NH4)2BeF4, and LiRbSO4. It was
shown that the sequences of phases observed in these crystals
and the character of the transitions (first or second order)
between these phases can be described by the simple model
used in that paper, although for discussion of the phase-tran-
sition thermodynamics the model needs to be extended and
refined. For example, to describe the ferroelectric phase
transition in AS one must also apparently take into account
the two-sublattice ordering of the NH4 ions, as was discussed
in Sec. 4a, and for quantitative estimates of the specific heat,
entropy of transition, etc., the MFA (29) is apparently insuf-
ficient.

3) The phase transitions in (CH3NH3)2MeCl4 crystals,
where Me = Cd or Mn, are at present the only polyorienta-
tional phase transitions for which sufficiently detailed model
theories have been proposed and quantitative estimates at-
tempted.151'153 These phase transitions are due to ordering of
the methyl ammonium (MA) groups CH3NH3, which have 4
equiprobable orientations in the high-temperature tetra-
gonal phase. As TK decreased there is a sequence of 3 phase
transitions: to a rhombic phase, to a low-temperature tetra-
gonal phase, and to a monoclinic phase. As was shown in
Refs. 153 and 151, when model (1) is used in the MFA (29),
(30), only a single phase transition, from the high-tempera-
ture tetragonal phase to the rhombic phase, is possible in
these crystals. In order to describe the transition from the
rhombic to the low-temperature tetragonal phase, terms
with three- and four-particle interactions of the MA groups
were added151'153 to Hamiltonian (1); the presence of these
additional terms was attributed to covalent effects of the N-
H . . . Cl bonds. These efforts succeeded in yielding an inter-
mediate low-temperature tetragonal phase, but the low-tem-
perature phase in this case was again the rhombic phase and
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FIG. 17. Temperature dependence of the order parameters (a) and of the
difference between the free energies (b) of the rhombic and low-tempera-
ture tetragonal phases (RP and LTTP) for the crystal (CH3NH3)2CdCl4 in
the model of Ref. 151 with three- and four-particle interactions (see text).

not the monoclinic phase observed in experiment (Fig. 17).
As is discussed in Ref. 153, the observed monoclinic

phase evidently cannot be described at all in a "rigid lattice"
approximation [model (1)], and to obtain this phase a nonlin-
ear coupling between the lattice strains and the orientational
variables was introduced phenomenologically in that paper.
The origin of the nonlinearity of this coupling was attributed
to the influence of the aforementioned N-H .. . Cl bonds on
the structural stability of the crystal. It should also be noted
that to obtain the intermediate low-temperature tetragonal
phase in the models of Refs. 151 and 153, extremely large
many-particle interaction constants were used, exceeding by
factors of 20 153 or 1.5-2 '51 the binary interaction con-
stants, in rather poor agreement with the model expressions
for these constants in those papers.153'151 This again illus-
trates the need for refinements of the simple model (1) and/
or the MFA for attempts at quantitative description of real
polyorientational phase transitions.

4) Models for the phase transitions in alkali metal cyan-
ides and in RbNO3-0>pe crystals. Model (1) in the MFA (29),
(30) has also been applied to the description of the phase
transitions due to ordering of the CN groups152 in crystals of
the MeCN type (Me = Na, K, Rb, Cs). The crystals NaCN,
KCN, and RbCN, which have the NaCl structure, were de-
scribed by a 12-orientation model, and CsCN,which has the
CsCl structure, by an 8-orientation model. Just as in the case
of Me1 Me11 BX4 crystals, these models and this method are
sufficient, with a certain choice of constants, to give the ob-
served sequences and characters (first or second order) of the
phase transitions in NaCN, KCN, and CsCN and to describe
qualitatively the thermodynamics of these phase transitions.
For RbCN, however, the description of the observed phase
transition, which is accompanied by a quadrupling of the
unit cell, is complicated. In addition, the more complex or-
derings that have been observed,154 for example in KCN at

p S 2-5 kbar were not considered in Ref. 152. Finally, we
note that the MeCN crystals belong more to the ionic-molec-
ular type than to the ionic-covalent type, and the amplitudes
of the librational oscillations of the CN groups in these crys-
tals are not small.135 Therefore, for quantitative description
the "continuous" models (4) and (5) are apparently more
suitable than the "discrete" model (1).

The RN and AN crystals (RbNO3 and NH4NO3) have 3
and 4 structural phase transitions, respectively,55 which are
due to both the orientational ordering of the NO3 groups and
the rearrangement of the lattice (e.g., from the NaCl to the
CsCl lattice in RN). In Ref. 155 a 12-orientation model was
discussed for the phase transitions between phases III and
IV in RN and between phases I and II in AN; these phase
transitions are due to the ordering of the NO3 groups in a
structure of the CsCl type. The discussion centered on the
correlations in the NO3 orientations and did not go into de-
tails on the phase-transition thermodynamics. It was not-
ed,155 however, that the entropy of transition for RN as cal-
culated in the MFA comes out twice as high as in
experiment. This may be an indication of substantial correla-
tion effects and of the inapplicability of the MFA for quanti-
tative calculations of the thermodynamics of these phase
transitions.

In summing up what we have said in this section, we
might note that model (1) and the MFA (29), (30) can evident-
ly be used for qualitative discussions of the possible se-
quences of the polyorientational phase transitions and for
estimation of the interaction parameters, a necessary first
step in an investigtion of these transitions. More-detailed
discussions require extension and refinement of the model
and of the calculational methods.

5. CONCLUDING REMARKS

On the basis of the foregoing discussion, we can draw
the following conclusions regarding the status of the micro-
scopic theories of order-disorder structural phase transi-
tions.

1. The large majority of real order-disorder structural
phase transitions are characterized by the presence of rather
strong short-range correlations, which must be taken into
account in attempts at quantitative description of these
phase transitions. In many systems (e.g., hydrogen-bonded
crystals which either strictly or approximately obey the ice
rule) these correlations give rise to qualitative differences in
the thermodynamics of these phase transitions in compari-
son to phase transitions of other types.

2. With due allowance for these correlations (for which
purpose the cluster approximation is sufficient in a number
of cases) the use of simple Hamiltonians of the type (l)-(3)
yields a quantitative description of the phase-transition ther-
modynamics (see, e.g., Figs. 9 and 13).

3. Attempts at microscopic calculations of the param-
eters in Hamiltonians (l)-(3) are still few in number and
mainly involve taking the electrostatic interactions into ac-
count and describing the short-range effects phenomeno-
logically. For ionic-molecular and molecular crystals these
calculations seem more reliable, but even here the values of
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the multipole moments of the molecules are usually treated
as adjustable parameters of the theory (see, e.g., Refs. 135
and 30). Nevertheless, in a number of cases calculations of
this kind have made it possible to understand the essential
features of certain order-disorder phase transitions, e.g., in
the models for KFCT,'30 NaNO2,

120'24 NH4X,42 KCN,135

etc. In cases where the parameters of Hamiltonians (l)-(3)
can be sufficiently reliably estimated from the phase-transi-
tion thermodynamics for a number of analogous crystals (as
for the KDP family15 or for crystals of the NH4X type42), it
seems to be extremely useful for refining ideas about the
phase transitions to compare these estimates with semi-mi-
croscopic calculations of the same parameters and with ex-
perimental data on the change in structure with composition
and pressure (e.g., with Refs. 70, 79, and 80 for KDP).

4. The presence of nonequivalent groups undergoing
ordering, asymmetry of the potential minima, and many-
well potentials an explain the unique features of the thermo-
dynamics and phase diagrams observed in a large number of
order-disorder structural phase transitions (see Figs. 14—17).
These features can also be adequately described by simple
models (l)-(3). However, in attempts at quantitative com-
parisons with experiment the use of the mean field approxi-
mation often leads to difficulties which have usually been
overcome by adding rather sizable many-particle interaction
terms to Hamiltonians (l)-(3), as was done by Hasebe139 for
(NH4)2SO4) Gesi145 for (NH4)3H(SO4)2, Blinc, Zeks, and
Kind153 for (CH3NH3))2CdCl4, etc. As was discussed above
(in Sec. 4b in particular), it is possible that when approxima-
tions of higher accuracy than the MFA are used it will not be
necessary to add terms of this sort.

5. Even the qualitative consequences of the simple mod-
els (1), (2) for order-disorder phase transitions have not been
adequately studied. For example, the thermodynamic be-
havior of the Mitsui model (26) is not completely understood
in cases where all or several of the constants J (R) are negative
(in particular, in regions VI and VII of Fig. 16). As we have
already noted, the possibility has not been ruled out that
incommensurate phases arise here. No investigations have
been made of the effects of correlations and the presence of
anisotropic interactions in models (1) for polyorientational
phase transitions, where there is also reason to expect the
appearance of incommensurate phases (which are often ob-
served in experiment), etc.

6. Finally, an obvious general problem in the micro-
scopic description of order-disorder structural phase transi-
tions is to refine the data on the structure and mechanisms of
real phase transitions for the purpose of specifying the de-
tails of the microscopic Hamiltonians. This might include,
for example, elucidating the nature of the groups undergoing
ordering and the structures of the intermediate phases in
complex crystals such as (NH4)3H(SO4)2, Me1 Me" BX4, etc.,
describing the possible nonlinear interactions with lattice
distortions in crystals such as (CH3NH3)2CdCl4,

153 etc. As
we have noted, however, for discussing the thermodynamic
consequences of such refinements the simple mean field ap-
proximation can be insufficient for answering quantitative
questions (e.g., questions regarding sequential phase transi-
tions). In considering such questions one should apparently

try to refine our calculations along with the models.
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