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The modern view of caustics as the singularities of mappings performed by rays is set forth. The
substantial progress which has recently been achieved in research on caustic fields can be credited
to progress in the theory of the singularities of differentiable mappings (catastrophe theory). This
theory has generated an exhaustive classification of the structurally stable caustics and of the
corresponding standard diffraction integrals which describe the fields near caustics. The standard
integrals can be used to construct both local and uniform asymptotic field representations in the
presence of caustics. Asymptotic methods for describing the field have also been developed for
penumbral caustics associated with edge catastrophes and for several other types of caustics
which arise in wave problems in optics, acoustics, radio propagation, plasma physics, atomic
physics, etc.
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1. INTRODUCTION

Interest in caustics is a thread running throughout the
history of physics, back to antiquity, stimulated by the sig-
nificant concentration (or focusing) of a field which occurs
on caustics. In many cases this concentration of a wave
field—acoustic, optical, electromagnetic, seismic, etc.—can
be detected by physical instruments, and in the case of light it
can be detected visually. It is seen most clearly in the focal
plane of an ordinary lens, when the caustic surface degener-
ates (ideally) to a point. Pronounced concentration of a field
« can also be observed in several other situations, e.g., near a
simple (nonsingular) caustic, as shown by the sketch in Fig.
1.

The problem of describing the focusing of wave fields in
the presence of caustics is crucial to many branches of phys-
ics, but it is particularly acute in radio propagation and in
the acoustics of natural media. Focusing and caustic phe-
nomena must constantly be dealt with in the propagation of
radio waves in the troposphere and ionosphere, in the propa-

gation of radio waves through the interplanetary plasma and
the plasma environment of the sun, in the propagation of
light in a turbulent atmosphere, in the propagation of sound
in the ocean, etc.

We will cite only three examples. Figure 2 shows a fam-
ily of radio rays in the ionosphere excited by a source on the

FIG. 1. Distribution of the field intensity near a nonsingular caustic.
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FIG. 2. Ray pattern when a ground-level point source of radio waves irradiates the ionosphere (from Ref. 1).

earth. In this figure, taken from Ref. 1, we can clearly see
both the shadow region and the regions in which the electro-
magnetic field is focused. A focusing pattern no less compli-
cated is observed in the propagation of sound in the deep
ocean as shown in Fig. 3 (which is taken from Ref. 3; see also
the ray patterns in Ref. 2). Figure 4 is a photograph taken by
B. S. Agranovskii and A. S. Gurvich of the intensity distribu-
tion of a light wave transmitted through a turbulent liquid.
We can clearly see the caustic spots resulting from random
focusings.4

Finding the fields near caustics is also important for
problems involving the scattering of light and particles (the
rainbows in optics and atomic physics, for example), for op-
tical instrumentation, for the engineering of mirror radio
antennas, for the theory of gravitational lenses, for nonlinear
optics (self-focusing), and for many other applications.

Our purpose in this review is to report the present state
of the problem of finding caustic fields. The problem has two
aspects—geometric and field aspects—and substantial pro-
gress has been achieved recently in each. In the brief sum-
mary of the results which follows we will specify the particu-
lar sections of this review in which the corresponding topics
are covered.

In speaking of the geometric aspect of the question we
must first mention the development of a fundamentally new
view of caustics—as singularities of certain mappings per-
formed by a family of rays. The theory of the singularities of
differentiable mappings is a new branch of mathematics
which has yielded the general properties of the mappings of
various types of manifolds onto spaces of various dimension-
alities. Important contributions to this theory have been

made by V. I. Arnol'd, H. Whitney, and R. Thorn, among
others.

The theory of the singularities of mappings has also be-
come known as "catastrophe theory," in the terminology of
Thorn. This term was adopted because when the locus of
singularities corresponding to a given system is crossed the
state of the system undergoes an abrupt and qualitative
change: a "catastrophe." In geometrical optics, this abrupt
change in state at a caustic surface is seen as a change in the
number of rays which arrive at a given point in space. De-
spite the well-known disadvantages of the term "catastrophe
theory," which have stemmed primarily from its unjustifia-
bly broad interpretation (cf. Refs. 5, 6 in this connection) we
will certainly not tend to avoid it in the present review, in
which we will use "catastrophe theory" as simply a synonym
for the "theory of the singularities of differentiable map-
pings." The most important role which has been played by
the theory of singularities in the questions which we will be
discussing here has been to furnish a basis for a complete
classification of the structurally stable caustics. Section 2 of
this review discusses structurally stable caustics, i.e., the
"zoology" of caustics. Certain examples of caustics which
have been studied up to now are also discussed there. This
part of the review was written primarily on the basis of Refs.
5-9, but it also draws from Refs. 10-12 and 134.

With regard to the field aspect of the caustic problem,
which is our major concern here, there are several points to
be made.

First, in addition to classifying caustics, catastrophe
theory has also solved the problem of classifying the stan-
dard integrals which describe the diffraction of fields near

FIG. 3. An example of a ray pattern in an oceanic sound channel.3
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FIG. 4. Negative image of the intensity distribution in the cross section of a light beam emerging from a cell holding a turbulent liquid.4 The bright spots
with evidence of an interference pattern correspond to random caustics and foci formed in the light beam. (This photograph was graciously furnished by
B. S. Agranovskii and A. S. Gurvich.)

structurally stable caustics. This solution sets the stage for
the fundamental solution of the problem of constructing lo-
cal and uniform asymptotic representations of fields in the
presence of caustics. These questions are discussed in Sec-
tion 3.

Second, the list of standard functions and integrals in-
tended for describing various types of caustic fields has re-
cently been extended considerably. In particular, some stan-
dard integrals have been proposed for the penumbral
caustics which are formed near light-shadow boundaries
(Section 4) for certain types of structurally unstable caustics,
e.g., for the case of axial symmetry, and also for several other
caustics, which are listed in Section 5.

Third, simple methods have been proposed for evaluat-
ing the width of the caustic zone and the strength of the field
directly on the caustics by working simply from the laws of
geometrical optics.12'5' The qualitative theory has also made
it possible to resolve the question of the reality (observabil-
ity) of caustics. The qualitative theory is outlined in Subsec-
tion 3b.

Fourth and finally, recent years have seen a substantial
growth of the "geography" of caustics, by which we mean a
lengthening of the list of problems in which caustics are en-
countered: space-time caustics, caustics in nonlinear and an-
isotropic media, caustics in media with a spatial dispersion,
complex caustics, etc. There has also been an increase in the
number of applications in which one must deal with the pres-
ence of caustics11 (Section 6).

In accordance with this outline, we turn now to the clas-
sification of caustics on the basis of catastrophe theory.

2. CAUSTICS AS SINGULARITIES OF DIFFERENTIABLE
MAPPINGS (CATASTROPHES)

a) The ray surface and the Lagrange manifold

We first take up the question of how the theory of caus-
tics is related to the theory of mappings. For this purpose we

write the equation of a family of rays which emerge from
starting surface 5 °:

x = x (I, r\, T), y = y (|, T], T), z=z (|, r,, T),(2.1')

or, in more compact form,
r =r(|), g = (|, T|, T); (2.1")

here r = (x, y,z) are the Cartesian coordinates, £ and rj are
parameters on S °, and r is a parameter along the ray (Fig. 5).
The parameters £ = (£, TJ,T) are called the "ray coordi-
nates." In the case T = 0, Eqs. (2.1) describe the starting sur-
face S °. If all the functions characterizing the problem (the
equation of the starting surface S ° and the equation describ-
ing the behavior of the parameters of the medium over space)
are continuous, along with all their derivatives, then we are
dealing in Eqs. (2.1) with infinitely differentiable functions
which describe a smooth three-dimensional hypersurface F
in the expanded six-dimensional space (r,£}
= {x, y, z-£, 17,7-}. We call F the "ray surface."

When ray surface F is projected (mapped) from the ex-
panded space {r,|j onto the physical three-dimensional
(configuration) space r= {x, y^}, singularities may arise.
These singularities are naturally identified with caustics,
since the Jacobian of the transformation from the Cartesian
coordinates to the ray coordinates vanishes, 3) = d(x, y^)/
d(g, TJ,T) = 0, and this equation corresponds to the caustic
equation.12 The transition through the caustic, i.e., through
the locus of points at which the mapping of F on to the space
{x, y^} has singularities, corresponds to the increase or de-
crease by some even number in the number of rays which

!)We might also note that the "noncatastrophic" singularities of wave
fields—in particular, dislocations—have recently attracted increased in-
terest.118-122 FIG. 5. Ray trajectory and ray coordinates.
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FIG. 6. Ray trajectory in the [x, y\ plane in a homogeneous medium.

reach the observation point r = (x, yj}. The abrupt appear-
ance (or disappearance) of pairs of rays is interpreted in map-
ping theory as a catastrophe, in this case as a qualitative
change in the ray pattern as we go from point to point. When
we cross a simple caustic from the shadow region into the
light region, for example, we find that two rays are created.

We cannot draw a picture of the six-dimensional space
{ r,| ) , so we will consider a simple model of a ray surface in
the three-dimensional space of the parameters [x, y,g } . We
denote by J" the exit point, while 0 (g ) is the angle at which the
ray emerges from the surface y = 0 (Fig. 6). The equation of
the family of rays in the {x, y] plane is then written

x = I + y tg 9 (£). (2.2)

In the extended three-dimensional space {x, y,g } , this equa-
tion corresponds to a two-dimensional ray surface F:
g = g(x, y), described by Eq. (2.2). Figure 7a shows a repre-
sentative form of this surface for the case in which the tan-
gent of the angle at which the rays are inclined varies in
accordance with tg Q (g ) = 0g /(£ 2 + a2).

When the ray surface F is projected onto the physical
plane [ x , y ] we find caustics corresponding to singularities
of the mapping. In the present case (Fig. 7b), the caustic has
the shape of a "beak," and the corresponding singularity of
the surface .F is called a "cusp." When we go across the caus-
tic into the beak, we find that the number of rays increases
from one to three.

A similar interpretation of caustics arises when we con-
sider the rays in the six-dimensional phase space
{ r,p ) = {x, yj; px,py,pz], where p = V^ is the gradient of
the eikonal, which serves as a momentum. Instead of a ray
surface, we would speak in this case of a Lagrange mani-
fold. l i lo>n The parametric equation of the Lagrange mani-

FIG. 7. a—The ray surface Fin the expanded space {x, y,g }; b—singulari-
ties of its mapping of a "beak" onto the (x, y\ physical plane.

fold, r = r(£, 77,7-), p = p(£, 77,7-), can be derived from the ray
equations written in Hamiltonian form.

A more general view of caustics can be achieved by spe-
cifying the ray surface in the space j r,a j , whose dimension-
ality is increased by taking into account all the parameters
a.j,j= \,...,N, which are important to the given problem.
The parameters ay might characterize, for example, the po-
sition of the source, the point at which the ray emerges from
S°, arbitrary refractive indices along certain directions or
others, the shape of the starting surface S °, and so forth. The
total number of varied parameters, N, along with the three
Cartesian coordinates, forms the expanded space w = {r,a}
of dimensionality N + 3. The caustics in this case are singu-
larities of the mapping of ray surface F onto some subspace
of lower dimensionality. We would usually be interested in
the mapping of F onto the physical space \x,y, z\ or onto
some plane in this space, but in several cases we need to map
onto planes of other parameters of importance to the given
problem, especially if we suspect that slight changes in one of
the parameters a, might give rise to new singularities in the
\ x, y, z} configuration space.

b) Classification principle for structurally stable caustics

As we have already mentioned, catastrophe theory
makes it possible to classify the structurally stable caustics.
The basis for the classification is that a local transformation
of variables w—>w' ("local" here means near some singularity
of the mapping, w0) can be used to put the equation of the
surface F into one of the typical (normal) polynomial forms
by means of smooth transformations of variables, including
the operations of rotations of axes, translations, and changes
of scale.

The essential features can be illustrated by the simple
example of a one-dimensional projection of a smooth curve
f(x, y} = 0 onto the horizontal axis (x). We assume for simpli-
city that this curve passes through the origin, i.e.,/(0,0) = 0.
If the function y = y(x) is monotonic near the origin (the
upper part of Fig. 8a), then the smooth transformation
y\=P(y}*x\ = Y(X)< which changes only the scales along the
x and y axes, can be used to "straighten" the curve
f(x,y) = 0, i.e., to reduce it to a straight line
/i(*i> y\] =y\ — *\ = 0 (the lower part of Fig. 8a). In this
case the mapping of the curve/(AC, y) = 0 onto the x axis is
mutually one-to-one, and there are no singularities.

If y is a double-valued function of x (the upper part of
Fig. 8b) then the function/)*, y) can be locally transformed
to the form/2(jc,, yi)=x1 +y] (the lower part of Fig. 8b). In
this case we have only one singularity (x' = 0) in the mapping
of the curve/(x, y) = 0 onto the x axis. At this point we have
|d.v/dx| = oo; i.e., the curve f(x, y} = 0 has a vertical tan-
gent. Ifj> is a triple-valued function ofx (at the top in Fig. 8c),
then the mapping has two singularities, x' and x", at which
Idj'/dxl = oo. When we cross these points we find catastro-
phies: abrupt changes in the number of branches which are
projected in a one-to-one fashion onto the AC axis. If there are
two singularities, the function/)*, y) can be reduced locally
by a smooth transformation to two second-degree polynomi-
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FIG. 8. The simplest typical situations which arise in the mapping of a
smooth curvef(x, y) = 0 onto the horizontal axis, a—Mutually one-to-one
mapping; b—mapping with a single singularity; c—mapping with two
singularities; d—structurally unstable (atypical) situation (solid curves),
which reduces as a result of a small disturbance (the dashed curves) to
either case a or c.

als, which are "tied" to the singularities (the lower part of
Fig. 8c).

The linear (/J and quadratic (/2) polynomials discussed
above are examples of the so-called normal (typical) forms to
which essentially all curves in the [x,y] plane can be re-
duced locally; alternatively, as one would say in catastrophe
theory, all the curves have a "common position," or are
"generic." The only exceptional cases are certain degenerate
cases corresponding to structurally unstable mappings.

One example of a structurally unstable mapping is
shown at the top in Fig. 8d. The point with the vertical tan-
gent on this curve is simultaneously an inflection point. This
curve reduces locally to the form/3 = xl —y\ =0 (the low-
est part of Fig. 8d). If, upon small variations in the param-
eters of the problem, the curve/(x, y) = 0 becomes one of the
two dashed curves shown at the top of Fig. 8d, then this
curve leads to either a linear function (Fig. 8a) or two qua-
dratic polynomials which are locally fitted to the singulari-
ties, as shown at the bottom of Fig. 8c.

In mathematics one deals with entities of various na-
tures: curves, functions, families of functions, mappings,
caustics, etc. Back before the turn of the century, Poincare
suggested that instead of analyzing each separate entity, e.g.,
each curve or function, one could base the analysis on an
equivalence concept introduced in an appropriate way for
each class of entities. For example, two functions might be
regarded as equivalent if one could be obtained from the
other by a smooth change of variables. If we can classify
entities with respect to this equivalence, we can obtain a con-
siderable amount of information about all entities of a given
nature by thoroughly studying simply one member of each
equivalence class. These considerations underlie the theory
of the singularities of differential mappings which has been
worked out over the past 10-15 years.

In both physics and mathematics we are primarily in-
terested in stable entities, which change only slightly in the
face of perturbations of some sort or other. In catastrophe
theory the entity is regarded as stable if all neighboring enti-

ties of the same nature are equivalent to it. The neighboring
entities differ from the original one by small perturbations,
which are called "small disturbances" in catastrophe theory.
If the entities of interest have an analytic nature — if they are
functions, mappings, etc. — then the concept of "small dis-
turbances" means that not only the functions themselves but
also their derivatives are neighbors.

The concept of structural stability, one of the funda-
mental concepts in catastrophe theory, is related to the con-
cept of coarseness which was introduced in the theory of
dynamical systems by Andronov.13 Transitions from one
normal form to another through a structurally unstable state
correspond to bifurcations in the theory of dynamical sys-
tems. For example, the transition from the one-ray case to
the three-ray case which is seen on the x axis as>> is increased
in Fig. 4 occurs at the bifurcation value y =y0.

While all singularities of a mapping of the curve
f ( x , y) = 0 onto the x axis are classified within the framework
of ordinary mathematical analysis, in the multidimensional
case we find that the solution of the classification problem is
significantly more complicated, because the typical polyno-
mials are also multidimensional. Constructing a systematic
classification of structurally stable singularities required
borrowing ideas from topology and differential geometry.
As was shown by Arnol'd, this classification is intimately
related to the theory of Lie groups (see the articles of Refs. 5-
9 and also the books of Refs. 14-16 and 134 for the history of
the question and for references to the original papers).

All typical forms of the hypersurfaces Fin multidimen-
sional spaces of dimensionality up to m = 10 have now been
identified. Analytic expressions have been found for struc-
turally stable singularities of mappings of F onto spaces of
other dimensionalities. In addition — a very important
point — it has been shown that there are no singularities oth-
er than those which have been identified. We will restrict the
treatment in this review to the "formula" aspects of the ques-
tion, avoiding the mathematical subtleties, and we will ad-
here to the universal classification developed by Arnol'd.5

The only point which we feel has to be made here is the
content of the term "small disturbances." The "small distur-
bances" which are used in catastrophe theory are related to
the "small perturbations" used in physics but are not identi-
cal with them. The difference is that the term "small distur-
bance" implies that not only the perturbation/itself but also
its derivatives are small.

To illustrate this aspect of small disturbances, we note
that if the sinusoidal perturbation/= a sin x yt is to qualify
as a small disturbance then not only a but also x must be
small, so that the derivative |/' —ax, will be small. If the
parameter xa is too large, xa^-l, then the perturbation can
no longer be regarded as a small disturbance. In this case the
perturbed curve

can acquire many additional singularities (Fig. 9), whose
number can be estimated as xa. This example shows that
small disturbances and the related ideas regarding structural
stability in mathematics are treated in a fashion different
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FIG. 9. The appearance of a set of singularities during the mapping onto
the x, axis of the smooth curve/2 = x, + y\ =0 perturbed by a small
sinusoidal term/= a sin p y,.

from that in which small perturbations are treated in phys-
ics.

c) Caustic surfaces of low codimensionality (Thorn's seven
catastrophies)

The most economical method for classifying caustics is
based on the introduction of generating functions of the type

<P(£ , *) = < p-\
(2.3)

where f = [gi,...,gm \ are the so-called external parameters
of the problem, obtained as a result of the local transforma-
tion (rotations, translations, and changes in scale) of the
original parameters w = j r , a j and T= {^,...,7-,] are the
auxiliary internal parameters. The number of external pa-
rameters of importance to the given problem, m, is the "codi-
mensionality" of the caustics, while the number of internal
parameters, /, is the "corank" of the caustic.

The generating functions (2.3) are chosen in such a man-
ner that they can serve as phase functions in diffraction inte-
grals of the type j" exp(i<p )d'r, which we will discuss in Sec-
tion 3. The corank / corresponds to the multiplicity of the

diffraction integrals describing the field near the caustics;
the internal variables rk serve as integration variables. The
number of stationary points in such integrals determines the
number of rays for the caustic of the given type. The sequen-
tial classification of caustics—purely geometric entities—
thus embodies at the outset the prerequisites for the con-
struction of a wave field.

The generating function (2.3) is linear in the external
parameters gp, and the functions <pp are "monomials," i.e.,
products of powers of the auxiliary parameters rk:

(2.4)

Each type of caustic has its own values of/ and m and its own
universal functions <pp (r).

The typical (normal) forms of the ray surface F can be
found by differentiating the generating function qp with re-
spect to the auxiliary parameters:

0(P f) 1, 1 9
a_ —ui if— l> 61 /, (2.5)

The equation for the locus of singularities is found by con-
structing the determinant of second derivatives of <p and set-
ting it equal to zero:

det = 0. (2.6)

The projection (or mapping) is carried out from the space
{f!,... ,f m; r,,... ,T, } of all parameters of the problem onto the
space {fi.—ifm j of the external parameters.

Table I shows some typical generating functions <p and
equations of the ray surface F for the simplest types of singu-
larities ("Thorn's seven elementary catastrophes"14), along
with their Arnol'd classification, which is based on the rela-
tionship between the mappings and certain Lie groups. The
appearance of singularities as a result of mappings can be

TABLE I. The simplest caustics ("Thorn's seven catastrophes").

Designation
and name

A2, fold

A,, cusp

At, swallow-
tail

D .T > wave •»
crest I

AS, butterfly

A5, mush-
room
(parabolic
umbilic)

Generating function

|,!+^

Ti 1 f ~ 1 ?2T2 i £sTl

5 ' ClTl ' 2 ' 3

i TI i r T i *2Tl

1 Es'1? ,_ £4^1
1 3 ' 4

Equation of ray
surface F

«+t=o

±^+£H-^ = 0

•TI ,T,

±4r| + 1? + £2 + 2£sT2 +
+ 3^1 = 0

Indices of
caustic
zones

2/3

3/4; 1/2

4/5; 3/5; 2/5

2/3; 2/3; 1/3

5/6; 2/3; 1/2;
1/3

5/8; 3/4
1/2; 1/4

Focus-
ing in-
dex <5

1/6

1/4

3/10

1/3

1/3

3/8
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FIG. 10. The simplest singularity, A2 (a fold;/?! = 1,1= 1), corresponding
to a nonsingular caustic.

understood clearly by considering just two examples: folds
(m = \,l=\; singularity A 2) and cusps (m — 2, / = 1; singu-
larity A3). The fold singularities correspond to a simple (non-
singular) caustic (Fig. 10), while a cusp corresponds to a
caustic beak having a single cuspidal point (Fig. 11).

Continuing up the complexity scale we next find the
swallowtail (type A4; m = 3, / = 1), which is now a three-
dimensional surface (Fig. 12). Three-dimensional surfaces
also map caustics of the umbilical type: D %, a wave crest or
purse (the hyperbolic umbilic; Fig. 13) and D 4~, the hair or
pyramid (the elliptic umbilic; Fig. 14). These caustics have a
codimensionality m = 3 and a corank 1 = 2. The caustics of
higher codimensionality, m > 3, can be represented only by
showing their intersections with certain planes. Figure 15a,
for example, shows a three-dimensional section through a
caustic of type A5(m = 4,1= 1; the butterfly), while Fig. 15b
shows two-dimensional sections of this caustic. For all these
caustics the maximum number of rays is determined by the
codimensionality; specifically, this maximum number is
m + 1.

d) Caustics of high codimensionality

The caustics of codimensionality /n<4 listed above,
which correspond to m + 1<5 rays, include a large fraction

FIG. 12. The caustic surface of iypeA4, the swallowtail (m = 3, /= 1).

of all cases of practical interest. We will nevertheless take a
brief look at the "zoology" of caustics of higher codimen-
sionality.

1) Simple (zero-modal} caustics of higher codimension-
ality. The caustics described in Subsection 2c are character-
istic in that the corresponding generating functions £>(£,r) do
not contain arbitrary constants (moduli). They are accord-
ingly called "zero-modal" or "simple" caustics. The com-
plete list of zero-modal caustics includes the two infinite se-
ries Am + i (TM>! , /= 1) andZ)m + 1 (m>3, / = 2) and three
others: E6, E-,, and E& (m = 5, 6, 7, respectively; / = 2). The
parameters of these caustics are given in Table II.

2J Unimodal caustics. Unimodal caustics are distin-
guished by the circumstance that the corresponding generat-
ing functions contain only a single nonremovable arbitrary
constant. According to Ref. 5, the class of unimodal caustics
is exhausted by one infinite three-index series (according to
the complex classification), TM_r (4</j<^<r, m=p-\-q
+ r — 3>9), and 14 exceptional types (not conforming to a

series): A 12?1314,.ZII12|13, ™12,13 > Q 10,12,12> S 11 ,12> an£J ^12-
According to the real classification, we would distinguish
the parabolic singularities X9 = 7"2,4,4 > JIQ= T->

= 7 3,3' and the series of hyperbolic singularities J
2,3,6 >

m + 2

>9), xm + 2 (7M>8), YM

+ 2 (m>7), RM (4<p<q, =p + q>$). The parameters
of the unimodal caustics of codimensionality w<l and cor-
ank / = 2 are listed in Table III.

The number of rays for unimodal caustics is m + 2; this
number serves as an index for most of the caustics. The caus-
tic Jn, for example, corresponds to 1 1 rays. In the general
case of caustics of modality fj, (i.e., for a generating function
with [i nonremovable constants), the number of rays is
m + fi + l=M+ 1.

FIG. 11. The appearance of a caustic beak upon the projection of the ray
surface F, which has a cusp singularity, of type A3 (m = 2,1 = I).

FIG. 13. The caustic surface of the umbilic type D 4 " , the purse (m = 3,
1 = 2).
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FIG. 14. The caustic surface of the umbilic type D 4 , the pyramid (m = 3,
1 = 2).

3. Caustics of higher modality. Beginning with codimen-
sionality m = 10, the list of singularities has the pentamodal
caustic <916, and at m = 11 we also see the bimodal caustics
g14, S,4, t/]4 and the trimodal caustic F15.

Table IV summarizes the caustics of codimensionality
m < 11 and also shows the corank and modality of the caus-
tics. According to this table, the lowest codimensionality at
which caustics of corank 1=3 arise is m = 6. Unimodal
caustics also appear beginning at m = 6, and caustics of
higher modality begin at m = 10 (the numbers of rays,
M+l=m+fj,+ l, are 8 and 16, respectively). Ray pat-
terns with these numbers of rays are rather uncommon in
specific studies and thus difficult to analyze. It is thus not
surprising that practical studies have so far failed to identify
caustics of corank / = 3, unimodal caustics, and, especially,
caustics of higher modality. Table IV, which summarizes the
situation, raises the hope for a more purposeful search for
the caustics structures predicted by catastrophe theory. For
a given codimensionality m, the number of types of caustics
does not increase very rapidly, at least up to m = 7-8, as can
be seen from Table V, which was constructed from Table IV.
At m = 7 there are only five types of substantially different

FIG. 15. Three-dimensional (a) and certain two-dimensional (b) sections
through the caustic surface of type A5 (butterfly, m = 4, / = 1).

caustic structures, and at m = 8 there are only seven types of
structures.

To conclude this subsection we note that there are defi-
nite relationships between the simpler and more complicat-
ed caustics, and these relationships can be expressed as
graphs of the "subordination" or "adjacency" of caustics.
These graphs can be used to predict how a caustic of a given
type may degenerate upon a change in one or another of its
parameters. The most important adjacencies are listed in
Refs. 5, 9, 15, and 16.

e) Caustics in certain physical problems

Although caustics arise in many problems of wave the-
ory, there have been surprisingly few thorough calculations
demonstrating the changes in the shape of the caustic surface
upon a variation in some parameter or other under realistic
conditions. At this point we would like to illustrate the evo-
lution of the shape of caustics upon changes in the param-

TABLE II. Classification of simple (zero-mode) caustics.

Type of
caustic

•"m+i

£>m+l

E

E-,

E
8

Codimen-
sionality

m> 1

m > 3

5

6

7

,«.„

m

. 1 m+2 i V r TP

-1- m+2 ' ^ tlJ p
5=1

m

±Tr+-c?T2+£1T1+ S^r1

p=2

3 4 t J_t 2

^ ±T!! + ^TiT, +2£5
2TiT2 2

5

*! +*i*i+ £1*1+ "2i^i~l

P=2

+ £«*1*2

4

T S , T& . . T 1 XI J TP-1
1 2 * ^J»P 2

P=2

+ C6*lt2 + T,*1Tl + £7TiTi

Indices of
caustic zones
al,a2,...,am

m + 1 m
m+2' m+2' '"

2
• • • ' m + 2

1 1
2 ' 2m '

m — 1 1
m ' ' " ' m

2 3 1 5 1
3 ' 4 ' 2 ' 12' 6

2 7 5 1
3 ' 9 ' 9 ' 3 '

1 4
9 ' 9

2 4 3 2
3 ' 5 ' 5 ' 5 '

7 4 1
15 ' 15 ' 15

Focusing
index <5

1 1
2 m + 2

1 1
2 2m

5
12

4
9

7
15
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TABLE III. Unimodal caustics of codimensionality m< 11 and corank 2.

Type
of
caustic

Xm+2

•* m+2

P» (j

Zu

Z13

H/12

W13

K12

K13

Codimen-
sionality

m>8

m > 9

+ «M>9
9

10
11
10
11
10
10

*«
Tf + TfTi + axr3

T3 + T?T2 + aT™-2

Tf + T?T| + flT«

:;;;̂ ;̂ li
TjTa + Tl + flT^I

Tf + T| + aT?T|

ti + titt + at'
T?+T2+aTlTl

Tl + TlT2+aTl

•"•
Tl, T?, T?, TL T,T2, ..., T™-4

T T T , T^2, T .., T?"3

T! Tf-1, TIT,, T,, -...Tj-1

Tl.tJ.T^jj, ...,T!Ti, T2 T|

tl, T?, TjT.,, ..., Titf, TfT2, TfT|, T2,..., T|

Tl.Tf.TjTj, ....T^S.T,, ...,T|

T, T?, T^z, ..., TjTf, TfT2, T?T2, T2, ..., T|

T T2 T T T T2 T2T T2T2 T T5

T^TtTj, ...,TjTj, T2, ...,t|

Tl'TlT2"-"TlTi'T2"-"Tl

Focus-
ing in-
dex 5

1/2

1/2

1/2

8/15
6/11
5/9

11/20
9/16
11/21
8/15

eters of the problem with the results of some detailed calcu-
lations17"21 carried out for the most part before the advent of
catastrophe theory (to some extent, these calculations are
reflected in Ref. 12).

The first example describes the reflection of rays from
an inhomogeneous half-space z>0 in which the dielectric
permittivity varies linearly, e(z) = 1 — £,z(Fig. 16). The fam-
ily of caustics corresponding to various positions of the
sourcez0 has been found17'18 to have a striking feature: In the
interval ( — 2/3, 1/9) of the parameter g = e^, a loop ap-

pears on the caustic; four rays pass through each point in this
loop (Fig. 17). Figure 18 shows the evolution of a caustic
upon a change in the parameter f. This series of figures sug-
gests that a caustic loop consisting of two closely spaced
beaks may be the projection of a swallowtail in a space of
higher dimensionality. If we expand this series of cross sec-
tions in the parameter g, we find the characteristic swallow-
tail in the expanded space [xj,g } (see Fig. 19, which for
clarity shows only that part of the resulting figure which
corresponds to g > 0).

TABLE IV. Classification of caustics of codimensionality m < 11 (/ is the corank of the caustic).

1

2

3

4

5

6

7

8

9

10

11

°f

08

0»

E-,

IV T

w,, Pit

Pit

*«.

^4,4, Su

Si 2

Qu

Simple Unimodal Bimodal 3'modcs 5 mode;

1 = 3
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TABLE V. Number of types of caustics for a given codimensionality.

Codimensionality m

Number of types of caustics

Number with corank /<2

1

1

1

2

1

1

3

2

2

4

2

2

5

3

3

6

4

3

7

5

4

8

7

4

9

11

6

10

16

8

11

18

9

The second example describes the five-ray situation in a
parabolic plasma slab with dielectric permittivity

22— Z

in the interval 0 < z < zm and e = 1 at z < 0 and z > zm.
Figure 20 shows various caustic configurations in the

plane j |z0/zm |, o)/coci}, where z0 is the height of the source,
and «cr = ^4ire2N/m is the plasma frequency.19'20 On the
basis of the typical shape and the observed evolution of the
branches, we should classify this caustic as a singularity of
the^5 type (the butterfly; Fig. 15).

The next example,2' shown in Fig. 21, is the evolution of
the caustic formed in a linear slab with dielectric permittivi-
ty e = 1 — £,z by the radiation from a focused antenna
whose phase varies quadratically along the x axis:
tp°(x) = — Px2. The convex part of the caustic at z > 0 and
the upward-oriented beak show the behavior as a function of
the parameter/?/£! which we would expect in the case of a
Df singularity (the purse; Fig. 13).

The literature has some other caustics which arise in
studies of actual wave problems. For example, the analogy
between optical caustics and the singularities in the distribu-
tion of matter during the evolution of the universe has re-
cently been illustrated.117

These examples demonstrate the usefulness of the uni-
versal classification of caustics; i.e., they demonstrate that
what had once appeared to be a set of unrelated exotic phe-
nomena has now acquired an internal logic. After an appro-
priate procedure has been developed, we can work from frag-
mentary pieces of information to fill in the missing details
and predict the evolution of the caustic pattern as a whole.
This capability is particularly important for finding wave
fields, which are the subjects of the following sections.

ecz;

3. ASYMPTOTIC REPRESENTATIONS OF WAVE FIELDS FOR
STRUCTURALLY STABLE CAUSTICS

a) Standard integrals; local asymptotic field representations

As we stated above, catastrophe theory has not only
brought order to the geometric forms of caustics but has also
led to an extremely comprehensive answer to the question of
the typical diffraction integrals which describe the field near
caustics. By analogy with the integral field representations
in the case of simple caustics (which had been known pre-
viously), catastrophe theory has made it possible to classify
the standard diffraction integrals of the type

cw

=(-^)'/2 J d 'Texp[ifcq>«, t)]. (3.1)

Here the phase functions ip(£,f) are the same polynomial
generating functions which were used in classifying the caus-
tics; the order of the intergral, /, is determined by the corank
of the caustic.5'9'22-24'131-133 Here k is understood as the wave
number, k = co/c0 = 2-rr/A0, while £ is the set of external pa-
rameters [£i,£2>—>£m }> where m is the codimensionality of
the caustic.

This is a natural field representation, since the station-
ary points of integral (3. 1), which correspond to the geomet-
rical-optics approximation, lie on ray surface (2.5),

and the regions where two or more stationary points merge
do in fact lie on caustics, on which the determinant (2.6)
vanishes.

Essentially all the diffraction integrals with infinite lim-
its with which we must deal in wave theory — the Kirchhoff

FIG. 16. a—Profile of the dielectric permittivity in the plasma slab; b—
trajectories of rays describing the reflection of electromagnetic waves
from this slab.

FIG. 17. Formation of a caustic loop (a projection of a swallowtail) upon
the reflection of a spherical electromagnetic wave from a plasma slab with
a linear profile of the dielectric permittivity.
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FIG. 18. Evolution of the shape of a caustic in a linear plasma slab.

integrals representing the fields as superpositions of spheri-
cal waves, integrals of the Rayleigh type, which perform a
plane-wave expansion of fields, and the Maslov canonical
integral representations,10'11 among others — can be locally
reduced to integrals of the type in (3. 1 ). In all these cases, the
order of the integration, /, is either one or two.

As an example we consider the local asymptotic behav-
ior of the field near the caustic beak which arises in the case
of cylindrical aberration (an analog of spherical aberration
in the two-dimensional problem).

Near the focus (z = F, x = 0) the diffraction field u(xj)
is expressed in terms of the initial field u°(x)^u(x,0), speci-
fied in the z = 0 plane, by a Kirchhoif integral:

_^_
u (x,z) = ] / - a" (x') exp

(3.2)

If the initial field u°(x'} is

then a caustic beak, i.e., a caustic of type Av is formed near
the focus z = F. Introducing the variables^ = -Jc(2/F)1/4,
£2 = (z- F)(2/F)in, T = x'(2F3)~ 1/4 locally (near the tip of
the beak), we can express the field in terms of the standard
integral

IP «, y

FIG. 19. Shape of the caustic surface (swallowtail) in the expanded space
(x,z,f ) in the case of a point source which is irradiating a linear plasma
slab.

which corresponds to a caustic of type A3 (m = 2, 1 = I). In
the physics literature this integral is called the Pearcey inte-
gral.25

We can thus write, locally,

u(x, 2) =(^ exp

Other examples of the use of the Pearcey standard integral to
describe the local asymptotic behavior of fields are discussed
in Refs. 26-29.

The integral which arises most frequently in applica-
tions is the Airy integral

(3.4)

[v(x] is the Airy function in Fok's notation30], which de-
scribes the field near a simple caustic (see Refs. 3 1-34 and
128, for example). In addition, local field asymptotic behav-
ior has been studied for caustics of the Am + , series and for

0.6 0,8

FIG. 20. Changes in the caustic pattern (two-dimensional sections of a
butterfly) in the plane of the parameters ia/<uCT and z,/zm | for a parabolic
slab with the dielectric permittivity profile from Subsection 2e.
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f 0,418 >-j->0.250

FIG. 21. Evolution of the shape of a caustic which arises in a linear plasma
slab irradiated by a wave with a quadratic phase change in the z = 0 plane.

certain of the umbilical caustics.
The most important integrals — for the A4, Z>4

±, etc.,
caustics — are now being tabulated (see Refs. 48 and 123-
127, for example; the Airy and Pearcey integrals were tabu-
lated a long time ago).

Another example will demonstrate the usefulness of the
general classification of standard integrals. Grikurov49 has
analyzed the asymptotic field representation for the case in
which a simple caustic branch passes near a caustic beak.
For this purpose, the new function

'G(a, P, v)= -L

was introduced. Kryukovskii et al.50 pointed out that the
caustic studied in Ref. 49 is classified as a hyperbolic umbilic
D 4

+ ; if this is the case, then the field must be described by a
corresponding standard integral with the phase function
from Table I (we omit a factor of k /2ir):

00

&+$*, £2, £3)= J j dT1

We could hardly assume that a given field is described by two
distinct functions G and 0+. Indeed, a single- valued corre-
spondence between these functions was established in Ref.
50:

b) Width of the caustic zone and degree of field focusing on
caustics

Tables I-III specify two indices a and 8, which are cal-
culated by certain rules which are too complicated for us to
take the time to describe them here. The real meaning of
these indices can be seen by examining the fields near caus-
tics. The caustic-zone index a is a measure of the width of the

caustic zones around various branches of a caustic of a given
type.

Let us assume A0 = 2ird:0 is the wavelength, while
fi = (koL } l = £0/L is a small dimensionless parameter,
equal to the ratio of the wavelength /t0 to the characteristic
dimension of the problem, L. In order of magnitude, we can
then estimate the width of the caustic zone, Alk, to be

In the case of the simplest caustic, A2, for which we have
a = 2/3 (Table I), we can thus write

(T)
1/3

This characteristic dimension is an order-of-magnitude
measure of the distance from the caustic to the first zero of
the Airy function (Fig. 1).

The width of the caustic zone can be found more accur-
ately by working directly from an analysis of the diffraction
integrals, but there is also another approach: the geometric
approach proposed in Ref. 51 (see also Ref. 12). According to
Ref. 51, the width of the caustic zone should be taken to be
the distance over which the phase difference between any
two rays is no less than IT:

min k \tyj — if>m | > n. (3.6)

Estimates from this expression agree well with the charac-
teristic dimensions for the changes in the standard integrals,
and they are consistent with cruder estimates from Eq. (3.5).

The ability to estimate the width of the caustic zone,
Alk, is useful for solving several problems. First, if we treat
the caustic as a physical entity, i.e., as a region in which the
field is focused, then knowledge ofAlk makes it possible to
resolve the question of the "reality" of caustics,12'51 i.e., the
possibility of separately observing branches of caustics.
Caustic branches can in practice be assumed distinguishable
if they are separated by a distance greater than Alk.

Closely related to the question of the reality of caustics
is the question of choosing a suitable standard integral. For
the caustic A3, for example (the caustic beak; Fig. 7), the
wave field in the region where the caustic branches separate
should be described by Airy functions; only where the
branches converge do we have to resort to a complete de-
scription employing the Pearcey integral.

Finally, information on the width of the caustic zone
can be used to estimate the field directly on the caustic from
nothing more than the results of geometric calculations.12'51

There are three approaches which can be taken here. The
simplest approach is to get as close as possible to the caustic,
i.e., to approach it to within a distance of order Alk, and
make use of the value of the ray field at the boundary of the
caustic zone. A second approach is based on conservation of
the energy flux in a ray tube of finite cross section: If 45caust

is the cross section of the ray tube around the caustic zone,
and AS ° is the corresponding initial cross section, then the
field amplitude can be estimated from

•A"

where n° and nk are the refractive indices.

(3.7)
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TABLE VI. Values of the focusing index S for the complicated caustics listed in Table IV.

Tan KaycTKKR

§

P
m+2

1
2

RP, q

1

2

TP,q,T

1
2

Qio

13
24

Qu

5
9

0.12

17
30

0.14

7
12

»11

9
16

Si2

15
26

Sl4

3
5

Uiz

7
12

(7,4

11
18

1̂5

5
8

On

2
3

The third method is based on the concept of the Fresnel
volume of a ray5' and also uses energy considerations. We
denote by AS Fr the initial cross section of the ray tube, which
is equal to the Fresnel cross section of the ray, and we denote
by ASAn the final cross section of the tube near the caustic.
We then have

lt» AS fr

fin
(3.8)

All three approaches lead to comparable values of the
field, and these values have been shown by corresponding
calculations51 to differ from the exact values by no more
than 30-50%.

Rougher estimates of the field can be found by using the
focusing index130 S, whose values are given in Tables I-III.
Specifically, this index can be used to compare the energy
flux density on the caustic, Sk, with that of unfocused radi-
ation, S°:

26 (3.9)

For a simple caustic we would have S = 1/6 according to
Table I; for a caustic beak we would have S = 1/4; and for
the tip of a swallowtail we would have 5 = 3/10. Using these
values with Eq. (3.9), we can estimate the change in the de-
gree of focusing when the caustic loop in Fig. 18 is com-
pressed to a point. Let us assume, for example, kL = 6-104,
which corresponds to the reflection of an electromagnetic
wave of length A 0 = 10 m from the ionosphere with a charac-
teristic dimension L = 100 km. For the caustic loop (Fig.
18c) we then have Sk/S°zz 250; for the loop compressed to a
point (Fig. 18b) we have Sk /S ° zz 740; and for a simple caus-
tic (Fig. 18a) we have Sk/S°^40.

It can be seen from this example that, on the whole, the
degree of focusing increases with increasing codimensional-
ity. The limiting value of the focusing index is 1 (correspond-
ing to a focused spherical wave); for ideal cylindrical focus-
ing we would have S = 1/2. To supplement Tables I-III, we
show in Table VI values of the focusing index for the other
types of caustics in Table IV. Working from these results we
can easily specify the caustic of a given codimensionality
which has the maximum value of S.

The increase in the focusing index for the more compli-
cated types of caustics results from both the increase in the
number of rays which converge at the caustics and the in-
crease in the density of focused rays.

Now that we have described the results of the qualita-
tive theory, we turn to the construction of uniform asympto-
tic expansions of the field in the presence of caustics.

c) Uniform asymptotic field representations through the use
of standard integrals

A uniform asymptotic representation of a field can be
constructed by using the ideas of the method of standard
functions. For fields having a ray structure there is the hope
that similar fields will correspond to qualitatively similar ray
and caustic configurations. Since the diffraction integrals
(3.1) describe completely definite caustics, these are the inte-
grals which should be used as standard functions.

The method of standard functions was originally devel-
oped for one-dimensional problems.52'53 A local field asymp-
totic behavior for the case of the simple caustic A2 in a medi-
um inhomogeneous in three dimensions was derived in Refs.
31-34. A uniform asymptotic behavior (for scalar and elec-
tromagnetic fields) using the Airy function (3.4) and its deri-
vative was proposed in Refs. 54 and 55. The procedure is also
described in Refs. 56 and 57. A uniform asymptotic repre-
sentation for the "vacuum-like" caustics, which are now
identified with the Am+t series, was proposed by Ludwig58

for homogeneous media and extended to inhomogeneous
media by Kravtsov.59

The effectiveness of the method of standard functions
formulated in Refs. 54, 55, 58, and 59 (the construction of a
field through the use of not only the standard functions
themselves but also their derivatives) was later demonstrated
in many problems (some of which will be discussed below),
but no general theory was derived because of a division of
opinion regarding just which functions should be regarded
as the set of standard functions. The matter has now been
resolved [these functions are the integrals of the type in
(3.1)]. We turn now to a brief description of the procedure for
constructing a uniform asymptotic representation for caus-
tics of arbitrary type in the general case of a smoothly inho-
mogeneous medium.

Let us assume that from the geometrical-optics equa-
tions

= n2 (r), = 0 (3.10)

we have found M + 1 values of the eikonal ̂  and M + 1
values of the zeroth-order-approximation amplitude £/,. We
assume that we have determined the type of caustic, by
which we mean that we have determined its codimensional-
ity m and its modality n, whose sum gives us M: m + fj. = M.
The geometric solution

M+l

u(r)= (r) exp [iky, (r)] (3.11)

becomes valid only far from the caustics, while the ampli-
tudes Uj become infinite on the caustics themselves.

A uniform asymptotic representation of the field which
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yields finite field values everywhere, including on the caus-
tics, can be expressed in terms of the standard integral (3.1)
corresponding to the given type of caustic and in terms of its
derivatives with respect to the arguments £p. Among these
arguments we include, for brevity (m + l,...,m +/n=M),the
nonremovable moduli Oj,j = 1,2,..., /i:

s=0

where

(3.13)

P=i
/ ( r , T) = , t).

The M + 1 unknown quantities 0,gp,p= \,2,...,M, and the
M + 1 unknown amplitudes As,B(

p
l,p = \,2,...,M [the coef-

ficients of (ik} ~s ] are assumed to be functions of the coordi-
nates and are to be determined.

Substituting (3.12) into the Helmholtz equation

AM + k*n2 (r) u = 0, (3.14)

we equate the coefficients of identical powers of k to quanti-
ties proportional to df/dr (this quantity will be set equal to
zero below). A subsequent integration by parts leads to a
system of equations for 6, £p, A

(s), and B(
p
}, which we will

write only in part, for the lowest orders in k:

(3.15)

(3.16)

The /-component quantities T(r] and R °(r) here are found
from the condition that Eqs. (3.15) and (3.16) are satisfied
identically with respect to T (see Refs. 58-61 for a description
of some particular cases of this procedure).

Equations (3.15) and (3.16) are to be solved under the
condition df/drp = 0 or the equivalent condition

= 0,

which determines M + 1 values of the parameters r, (which
are generally complex), since the function <p(t,,f} has
M+l=m+/>i + l stationary points for a caustic of codi-
mensionality m and modality p.

No matter how complicated Eqs. (3.15) and (3.16) might
appear, their solutions can be expressed in an unexpected
and even surprising manner in terms of the solutions fy and
Uj of the geometrical-optics equations. It turns out that if 6,
£„, A m, and B <,0) satisfy Eqs. (3.15) and (3.16), then the com-
binations of unknown functions

= 6 (r) + <p (5, t,),
U} = r, \ det ft (T i n f 4

(3.17)

(3.18)

satisfy the geometrical-optics equations (3.10). (Here
h = \hpq ] is a matrix with the elements hpq = d2cp /dtp dtq,
and fy = sgn h (T, ) is the signature of matrix h in the case

T = T,.) In principle, by transforming (3.17) and (3.18) we
could express all 2(m + 1 ) unknown functions 0,£P,A (0), and
B j,0) in terms of the eikonals fy and the amplitudes Uj corre-
sponding to both real and complex rays. As a result, solu-
tions can be found for Eqs. (3.15) and (3. 16) essentially with-
out solving these equations. It is very important to note that
the amplitude factors A <0) and B jf1 have finite values on the
caustics, although the amplitudes Uj are singular there. Re-
lations (3.17) and (3.18) could have been derived by joining
asymptotic representation (3.12) with the ray asymptotic re-
presentation of field (3. 1 1) far from the caustics, but this fact
alone could hardly have served as a basis for assuming that
relationships (3.17) and (3.18) would continue to hold direct-
ly on the caustics, where geometrical optics clearly breaks
down.

In the particular case of a simple caustic with
<p(£,T) = f T + r3/3 and r1>2 = ±>/£r, we find from (3.17)
and (3.18) the results of Ref. 54 (see also Refs. 55-58 and
129):

(3.19)

where the field is expressed in terms of the Airy integral (3.4),

u s* e*e [AV»IM (Q + (i*)-' fl^/Ai (Q/dQ

= Vlk l'6eike lAWv (A2/3?) + ik'^B^v' (W3Q]. (3.20)

A uniform asymptotic representation of the field for a
caustic beak can be expressed in terms of the Pearcey inte-
gral (3.3):

IK
(3.21)

The relationship among 6, £ l<2
 and ^1,2,3 in this case is not as

simple as it is for the Airy asymptotic representation:

where r, are the roots of the cubic equation

The general algorithm (3. 12)-(3. 1 8) makes it possible to car-
ry out an analytis for essentially any caustic, switching the
thrust of the calculations to the solution of algebraic equa-
tions for d,£p,A, and Bp .

d) General comments regarding the local and uniform
asymptotic representations of wave fields

In this subsection we take up certain aspects of the prac-
tical use of the results of catastrophe theory in calculating
wave fields. For clarity we adopt a question-and-answer for-
mat.

Just how far can we pursue the approach of constructing
caustic asymptotic representations of fields! Although the
standard integrals generated by catastrophe theory provide
a comprehensive solution ot the problem of constructing lo-
cal and uniform asymptotic representations of wave fields
for caustics of arbitrary complexity, the actual procedure of
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finding the fields is afflicted by serious difficulties. In the
first place, even the geometrical-optics part of the problem—
identifying all the rays associated with the given caustic and
determining the type of caustic—is quite complicated. Sec-
ond, even if the classification problem can be solved we must
still deal with the difficulties in tabulating the corresponding
standard integrals.

At present, this approach has not gone beyond caustics
of codimensionality 4 and 5. It will take a major effort to deal
with higher codimensionalities. In contrast, the problem be-
comes somewhat simpler when there is a very large number
of rays, so that the resultant field can be assumed random
and analyzed by methods from statistical radiophysics,62'63

in particular, the methods for describing so-called speckle
fields.64 We should apparently put the nominal boundary
between determinate and statistical descriptions of the com-
plicated caustic fields where the fraction of the area occupied
by the caustic zones is 10-20%.

Do swallowtails exist in two dimensions and butterflies
in three! Up to this point we have cautiously avoided formu-
lating the exact mathematical results regarding the types of
caustics permitted in a space of a given dimensionality. One
of such theorems, offered by Whitney, asserts that the pro-
jection of an arbitrary smooth surface onto a plane gives rise
to singularities of only the fold type, A2, and the cusp type,
A3, i.e., only lines and beaks (turning points in lines). Accord-
ing to another theorem, only the singularities A2, A3, A4, and
D 4* listed in Table I exist in three-dimensional space.

While acknowledging the importance of theorems of
this type for classifying caustics, we would like to draw at-
tention to some difficulties which arise when these theorems
are used to calculate wave fields. Let us consider two closely
spaced beaks (Fig. 22), whose branches are separated by a
distance less than the width of the caustic zone (the dotted
region in Fig. 22). If, in accordance with the Whitney
theorem, we treat the caustic loop as a set of two A3 beaks,
then we must use Pearcey integrals (3.3) to describe the fields
in their vicinity. The merging of the caustic zones of beaks
makes this approach impossible, forcing us to appeal to the
more complicated integral A4, which corresponds to a swal-
lowtail. According to the Whitney theorem, however, a tail
cannot exist in two dimensions!

The contradiction is of course one of terminology: Un-
der the conditions which we have just described, the caustic
loop should be regarded as the projection of a swallowtail in
an expanded parameter space: The two geometric coordi-

FIG. 22. Coalescence of the caustic zones of distinct branches of a caustic
loop AA with increasing wavelength.

nates in the plane must be supplemented with yet another
parameter, which "unrolls" the loop into a swallowtail. An
example of this unrolling procedure is shown in Fig. 19. The
unrolling parameter in this case is the source coordinate
£ = e\z0. In precisely the same manner, the butterflies in Fig.
20 and the purses in Fig. 21 should be interpreted as the
projections of these singularities resulting from unrolling in
the corresponding parameter.

The addition of an unrolling parameter is particularly
important when it is suspected that the system is near a bifur-
cation point. If, for example, there is some reason to expect
the creation of a caustic loop (as in Fig. 18), it is expedient to
carry out the unrolling in terms of an auxiliary parameter,
having the foresight to work with the singularity A4 (the
swallowtail) and the corresponding standard integral, and
not with the Airy function corresponding to the fold A2. If
we take these precautions we do not have to worry about
making errors in determining the fields because of an inflexi-
ble adherence to the theorems of catastrophe theory.

Why are caustics ofcorank 3 and higher possible in phys-
ical (three-dimensional) space? As we mentioned above, in
two and three physical dimensions we can speak of the exis-
tence of caustics of higher co-dimensionality (w>3) only if
we are dealing with auxiliary "unrolling" parameters.
Slightly different factors explain why caustics of corank /
equal to or greater than 3, />3, can exist in physical space
(three dimensions). The integral field representations which
are most commonly used have two-dimensional integrals:
integrals over a surface (the Kirchhoff integral), integrals
over two components of a wave vector (a Rayleigh plane-
wave expansion), or integrals over two components of the
momentum (the canonical Maslov operator). Where can the
additional integrations come from?

One possible reason for the appearance of additional
integrals is the complicated structure of the Green's func-
tions which are used in the Kirchhoff integral. In an inhomo-
geneous medium, the Green's function itself can be repre-
sented by a diffraction integral, and this circumstance
explains the existence of caustics with />3. If we work from
the Freiman picture of field formation, we ultimately come
to path integrals. For ray patterns of average complexity,
there are of course integrals of some compromise multiplic-
ity 2</ < oo. If we use the method of standard functions de-
scribed in Subsection 3c, we should first make use of inte-
grals of the appropriate multiplicity.

4. PENUMBRAL CAUSTICS AND PENUMBRAL FIELDS

a) Penumbral caustics and edge catastrophes

Penumbral caustics arise much more frequently in ap-
plications than might be expected by the uninitiated. Figures
23 and 24 show some examples of the appearance of penum-
bral caustics. In the case in Fig. 23, the caustic formed by
ordinary rays is interrupted by an opaque screen.

The penumbral caustics of diffraction rays are slightly
more complicated. Figure 24 shows some edge diffraction
rays which leave an illuminated edge and form a penumbral
caustic (1) in an inhomogeneous reflecting medium. Bound-
ary ray PQ, which separates the illuminated region from the
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FIG. 23. Interrupted penumbral caustic which arises upon the screening
of the primary wave in free space.

shadow, also at the same time touches the caustic of the edge
diffraction rays and the interrupted caustic of the ordinary
rays (2).

It turns out that the penumbral caustics are intimately
related with the theory of so-called edge singularities.5-65

The list of these singularities differs from the list of catastro-
phes given in Section 2. Table VII shows some simple (zero-
modal) caustics. This table contains two infinite series,
Bm + , and Cm + , , and an additional singularity F4 (as be-
fore, the indices on the caustics correspond to the associated
Lie groups). Table VII also gives the canonical form of the
generating function tp(g,T), which then arises in a natural
way in the integral field representations.

At codimensionalities m = 1 and m = 3, only the sim-
ple penumbral caustics form. In particular, at m — 3 these
are the caustics of the five types S3, C3, B4, C4, and F4 (the
sixth type, B2, which is equivalent to C2, corresponds to a
shadow without caustics). In terms of the phase structure of
the field, the series Bm +, and Cm +, are similar to the series
Am + , and Dm + l, respectively.

At m>4 we find unimodal, bimodal, etc., penumbral
caustics in addition to the simple ones. These new caustics
are classified up to codimensionality m = 8 in Refs. 5 and 65.

b) Uniform asymptotic field representations for penumbral
caustics

Uniform asymptotic expressions for interrupted pen-
umbral caustics were constructed in Refs. 61, 66, and 67,
even before the advent of the theory of edge catastrophes.

FIG. 24. Penumbral caustic 1 formed by diffraction waves (dashed curves)
in a linear plasma slab. Boundary ray PQ touches both caustic 1 and the
interrupted caustic 2, formed by ordinary rays.

The incomplete Airy function69'70

/AI«, ^^ (4.1)

was used as a standard integral in Refs. 61 and 67, and the
unknown field (the leading term of the asymptotic series) was
written in the form (the notation here is slightly different
from that of Refs. 69 and 70):

-+4- 91 M (£.

(4.2)

The integral 7Ai (£, -rj) in a sense combines the properties of
two simpler standard functions: the Fresnel integral near the
penumbra (but far from the caustic) and the Airy function
near the caustic (but far from the penumbra).

As for the asymptotic representation of the field found
in Refs. 60 and 70 for the penumbral caustic of diffraction
rays (Fig. 24), we note that the standard integral used here is
yet another generalized Airy function: the "Airy-Fresnel
function"

_ co+ia*

=/it J
(4.3)

which becomes the Fresnel integral near the penumbra. The
asymptotic field representation, on the other hand, is com-
pletely analogous to (4.2).

The development of a classification of edge catastro-
phes65-5 made it clear that the results of Refs. 60, 61, 66, 67,
and 70 can be generalized to penumbral caustics of more
general form. The general calculation method remains the

TABLE VII. Classification of the simple (zero-modal! penumbral caustics.

Caus-
tic
type

'•

Codi-
mension-
ality

m. > 2

3

P (5, »)

771

j_ 1 Tm+i , Tz ] y * j TP
~J~ 771 -j~l * 2 ^ P

p=l

_i_ j ^*

P=i p
l 3

Indices of caustic
zones, a

m 1
m + i ' "' m + l

m i
m + i ' '"' m + i

± L 1

Focusing
indices
<S

1 1
2 m + i

Q

1

6
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same as in Section 3, but the standard integral for the caus-
tics of series Bm + , and Cm + t and for the caustic F4 should
be

oo oo

T,, T2)], (4.4)

where <P(£,T\,T^ are the normal forms of the generating func-
tions of the edge catastrophes. These functions are given in
Table VII for the singularities of the Bm + j , Cm + , , and F4

types.
In the case of the Bm + , series, the standard integral

(4.4) reduces to the incomplete multidimensional Airy func-
tion

p=i
(4.5)

which describes the field near interrupted caustics.61 For the
Cm + , series, integral (4.4) becomes the multidimensional
Airy-Fresnel function

m- 1

J)=l

which was introduced previously in Refs. 60, 61, and 70.
Integrals of the type in (4.6) describe a rather slight focusing.
Not accidentally, they correspond to a zero value of the in-
dex 8 in Table VII.

The classification theorems for edge singularities have
thus made it possible to "invent" standard integrals, and the
conventional techniques of the method of standard functions
have made it possible to construct the corresponding uni-
form asymptotic field representations.

5. OTHER TYPES OF CAUSTICS AND STANDARD INTEGRALS

In addition to the standard integrals which are associat-
ed with mapping theory and which are discussed in the two
preceding sections, there are some other integrals and spe-
cial functions which are used to describe wave fields. We will
briefly outline the possibilities here.

a) Standard integrals with an arbitrary phase function

The reason for polynomials in the argument of the ex-
ponential function in standard integral (3.1) is more one of
convenience for classification than necessity. Let us assume
that the argument of the exponential function contains the
smooth function <P (£,T), which has the required number of
stationary points but is otherwise arbitrary. It is clear that
the integral

, T)]dt (5.1)

can asymptotically be reduced through a smooth change of
variables to the integral (3.1), where #>(£,T) is one of the suit-
able normal forms of the generating function. For this rea-
son, integrals of the type in (5.1) are equally as useful as the
standard integrals (3.1) for constructing the asymptotic re-
presentations of fields.

Some particular standard caustic integrals with a non-
polynomial phase function <P (£,T) have been used repeatedly

in wave theory. The best-known example is the use of the
Hankel function H(Q}(X) in place of the Airy function to de-
scribe the field near a nonsingular caustic (see, in particular,
Ref. 71). The idea of using as a standard integral a one-di-
mensional integral with a phase function having the appro-
priate number of stationary points, equal to the number of
rays, was raised back in 1972 by Permitin.72 This idea can
also be generalized to multidimensional integrals. Our cal-
culations show that the use of nonpolynomial phase func-
tions causes no essential change in the method of standard
functions (Subsection 3b). All that changes is the particular
form of the equations for determining the quantities gp. At
the same time, the use of nonpolynomial phase functions
may be of definite practical interest if the corresponding in-
tegrals (5.1) are more amenable to study than the standard
integrals of the type in (3.1) or if these integrals permit a
higher-quality approximation.

b) Standard integrals for structurally unstable caustics

The perturbations with which we must deal in analyz-
ing physical problems by no mean's always conform to the
"small disturbance" category (Subsection 2b). We are thus
forced to draw a distinction between the mathematical con-
cept of "structural stability" and the concept of "physical
stability," by which we mean the stability of the physical
characteristics with respect to small perturbations of some
type or other.

A question which naturally arises in this connection is
that of a possible place for structurally stable singularities in
physical theories. The same question should be raised re-
garding structurally unstable entities. In essence, the role
played by entities of either type in physical theories is deter-
mined by how well they model the important aspects of the
real entities, where the criterion "how well" must be deter-
mined by the physical formulation of the problem.

In the case of caustics we should regard a model as ac-
ceptable if the characteristic perturbations of the initial con-
ditions and the parameters of the medium for the given prob-
lem lead to only small perturbations of the wave field, and
not of the caustics themselves, since experimentally it is the
values of the wave fields which are determined. We can be
sure that the field perturbations are small if the perturba-
tions of the caustic surface are small in comparison with the
width of the caustic zone (Subsection 3b). If some perturbing
factor or other causes the caustic to go beyond the original
caustic zone, then the model (whether it has the property of
structural stability or not is unimportant) should be refined
by incorporating the perturbing factor in the number of in-
dependent parameters (inherent in the problem).

Although structurally unstable caustics are not typical
from the standpoint of catastrophe theory, they can thus
serve as acceptable models for various real entities. Structur-
ally unstable formations are extremely common in physical
problems; for example, plane, spherical, and cylindrical
waves are all structurally unstable formations.

Structurally unstable caustics—point foci and singular
caustics—generally require some special standard integrals,
which cannot be reduced to (3.1). The theory has been pur-
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sued furthest for axial (sagittal) caustics. In the absence of an
azimuthal dependence, the Bessel function of zero index,
J0(x), serves as the standard function,73"81 and when there is
an azimuthal dependence one uses Bessel functions of higher
order,82 Jm (x). The procedure for constructing the uniform
asymptotic representation is basically the same as usual.

c) Contour standard integrals

An analysis shows that the method for constructing
uniform asymptotic representations does not change if the
standard integral is a contour integral:

T if\ / k S, T)]dT. (5.2)

The phase function in (5.2) must have the required number of
stationary points, and at the ends of the contour C, i.e., at
T = rinit and r = rfln, the periodicity condition must hold.
The asymptotic representation of the field is then given by
the expressions from Section 3c, as in the general method of
standard functions. The phase function \(i does not necessar-
ily have to be a polynomial in r.

In the particular case f (£,r) = g sin r — ar, a > 0, £ > 0,
— TT < r < TT, the standard integral (5.2) can be expressed in

terms of a Bessel function:

„(*£). (5.3)

In this case, Eqs. (3.12) and (3.13) describe the asymptotic
representation of an axisymmetric field, as mentioned in
Subsection 4b.

d) Standard integrals with an amplitude correction; blurred
caustics

All the standard integrals discussed above have only a
rapidly oscillating function exp[ik<p (£,T)] in the integrand.
The introduction of an amplitude factor B (£,T) in the inte-
grand in (3.1) or (5.2) would make it possible to perform an
amplitude correction of the rays. This becomes necessary,
for example, in a description of the near field of a nonuni-
formly excited aperture. If the field near the edge of the aper-
ture (r = 0) has a rv behavior (r > 0, v > 0), then integrals of
the type83'85

QO

= j (T-T])veXp [ik (4- +T?) ] dt (5.4)(t,

naturally arise in the presence of caustics. These integrals
combine the properties of the parabolic cylinder function of
fractional index, D _ v _ , (g) (for integer values of v, these
functions are simply the Fresnel integral and its derivatives)
and the Airy function.

The penumbral caustics which form near a blurred
light-shadow boundary were analyzed in Refs. 83-85, where
they were called "blurred" caustics. The field focusing on
such caustics is less noticeable than at a sharp light-shadow
boundary. The functions (5.4) are used not only for describ-
ing the field near blurred caustics but also for describing
lateral waves (in the latter case, v = 1/2).

FIG. 25. Tunneling caustic. The lower branch (solid curve) corresponds to
reflected rays, and the upper branch (dashed curve) corresponds to rays
which tunnel under the barrier.

e) Tunneling caustics; waveguide caustics

Tunneling caustics arise when the energy of a wave tun-
nels under a potential barrier. Caustics of this sort have a
"front" branch and a branch beyond the barrier (Fig. 25);
this second branch may be complex, as mentioned in Ref. 87.

It was suggested in Ref. 86 that the fields can be de-
scribed in the case of tunneling caustics through the use of
the Weber function (a parabolic cylinder function), which
satisfies the equation

w" (t) + (t* - 62) w (t) = 0, (5.5)

which is a step up the complexity scale from the simple-
harmonic-oscillator equation w" + w = 0 and the Airy
equation w" — tw = 0. While the simple-harmonic-oscilla-
tor equation generates the sinusoidal function e" which
serves as a standard for geometrical optics, and the Airy
equation generates the standard function for a nonsingular
caustic, the Weber equation, (5.5), generates functions which
correspond to partial reflection from the caustic and partial
tunneling under the barrier. With a suitable change in pa-
rameters (b—+ib), the Weber functions can also describe
above-barrier reflection,86 in which case the front branch of
the caustic also becomes complex.

Also closely related to tunneling caustics are the wave-
guide caustics which bound wave beams in waveguiding sys-
tems (for example, a deep-water sound channel or an ionos-
pheric duct). In this case, t2 and b2 trade places in Eq. (5.5),
and the Weber functions become the wave functions of a
simple harmonic oscillator (Hermite polynomials with
Gaussian coefficients). Since the appearance of Ref. 86, these
functions have frequently been used as standard functions in
solving problems of wave propagation in inhomogeneous
waveguides (see Refs. 88-90, for example). The same func-
tions arise in a description of the "bouncing-ball" natural
oscillations of open and closed resonators.91"93

f) Standard functions generated by ordinary differential
equations

If there are several regions separated by barriers, even
more complications should be included in the standard
equation (5.5). Gazazyan and Ivanyan94 have derived a gen-
eral theory for standard functions generated by the second-
order equation

»' (*) + A W »'(*) + /• W » (t) = 0 (5.6)
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with arbitrary functions/^?) and/2(?). Equation (5.6) is sat-
isfied by many well-known special functions: Legendre poly-
nomials, spherical Bessel functions, and Lame functions,
among others. The theory of Ref. 94 thus allows these well-
studied functions to be used for describing caustic fields. A
specific application of this theory is reported in Ref. 95,
where the natural electromagnetic fields in a triaxial ellip-
soid are analyzed.

In another particular case, with /, = 0 and f2(t) = f,
where v> 1, Eq. (5.6) allows a solution in terms of Hardy-
Airy functions Hv(t), which describe the reflection of waves
from a turning point of arbitrary multiplicity, and not only
integer (v = 1,2,3,...) but also fractional multiplicity.

Standard functions for caustics of fractional multiplic-
ity and the corresponding uniform asymptotic representa-
tions are analyzed in Ref. 96.

6. ADDITIONAL QUESTIONS

In this section we will briefly discuss some caustics
which arise in various problems in electrodynamics and
acoustics.

a) Space-time caustics

Space-time caustics form in dispersive media because
the parts of the wave packet corresponding to different fre-
quencies move at different group velocities, and some may
overtake others. In the simplest case, the wave field is de-
scribed with Airy functions,97 but it is a straightforward
matter to construct asymptotic field representations for
more complicated caustics by using the standard integrals in
Section 3 (Ref. 98).

In the propagation of pulses of finite duration in disper-
sive media, penumbral caustics may also arise; these caustics
(and other questions) are studied in Refs. 99 and 100.

b) Caustics of vector fields

The vector nature of the field does not affect the struc-
ture of caustics, but it does affect the form of the transport
equations which the vector field amplitudes obey. In parti-
cular, in an anisotropic medium the field amplitudes satisfy
not only energy-flux conservation but also the Rytov law
regarding field-vector rotation.12 In general, the approach
for constructing a uniform asymptotic representation for an
electromagnetic field or for a vector field of some other phys-
ical nature is the same as for a scalar field. This approach was
first used in Ref. 55 for a simple caustic. More complicated
caustics, including penumbral caustics, which are formed in
electrodynamic problems were studied in Refs. 67, 70, and
101.

c) Caustics in anisotropic media and in media with a spatial
dispersion

A distinctive feature of caustics in an anisotropic medi-
um is that the rays are no longer orthogonal to the wave-
fronts, as they are in an isotropic medium. Furthermore, the
caustics may be formed by rays corresponding to an arbi-
trary normal wave in the given medium. Otherwise, the

caustic fields in anisotropic media are described by the math-
ematical approaches described above.

The same is true of media with spatial dispersion: De-
spite the nonlocal term in the wave equation, the caustic
fields have the same structure as in a medium with a local
response.102

d) Complex caustics

Complex caustics, in contrast with ordinary caustics,
are formed by complex rays, i.e., rays which arrive at the real
observation point from complex points on the starting sur-
face.103 We have already mentioned one example of a com-
plex caustic (Subsection 5e).

Complex caustics serve as the place where complex rays
converge, and therefore the field concentration on these
caustics is usually not very noticeable.

e) Caustics with an anomalous phase shift

As the observation point is withdrawn from the caustic,
the reflected field acquires an additional ("caustic") phase
shift, which has the value — tr/2 for a simple caustic. And
yet, it has been found104 that a different phase shift, of + ir/
2, arises. This change in the phase shift has turned out to be
associated with the group velocity of wave propagation; the
anomalous phase shift corresponds to the case in which a
longer path is traversed in a shorter time.

f) Random caustics

If light, sound, or radio waves propagate through a ran-
domly inhomogeneous medium with inhomogeneities which
are smooth on the scale of the wavelength, random caustics
similar to those in Fig. 4 form in the medium. These caustics
arise where strong field fluctuations are observed.105 Ran-
dom caustics are also formed upon the reflection and refrac-
tion of waves by an irregular surface,29'106"108 in scattering
by liquid droplets,109 and in other physical situations.

g) Caustics in quantum mechanics

In quantum-mechanical problems, caustics arise in two
cases. First, a variety of caustics form in the scattering of
particles by atoms and molecules. The intensified scattering
in the caustic directions has been called "rainbow scatter-
ing" by analogy with the corresponding optical pheno-
menon. Scattering calculations have been carried out in a
variety of approximations27'28-32-36'38-44'71-73'78-80-110 (in the
last of these papers, the range of applicability of the semiclas-
sical approximation in three-dimensional problems was es-
tablished).

The other type of problem involving caustics is that in
which we wish to find eigenfunctions which are concentrat-
ed within a caustic surface. The state of the research on this
question is reported in Ref. 111.

The caustic problems which we have mentioned here of
course do not constitute an exhaustive list. We might also
mention the caustics in the general theory of relativity,112-114

in the theory of nonlinear hydrodynamic waves,115'r 16 in the
theory of gravitational lenses, etc. Even without taking up
these other areas, however, we can see the substantial pro-

1056 Sov. Phys. Usp. 26 (12), December 1983 Yu. A. Kravtsov and Yu. I. Orlov 1056



gress which has been achieved on the problem of caustics in
recent years.

Author's note: A grave and rapidly progressing illness
prevented Yurii IPich Orlov from completing work on this
review, which he had initiated and which covered results in
which he took pride (the generalized method of standard
functions, penumbral caustic fields, etc.). Having suffered an
irreplaceable loss I would like to thank N. S. Orlova and S.
K. Tropkin for assistance in the last stage of the preparation
of this manuscript. I would also like to thank V. I. Arnol'd,
A. B. Givental', and B. Ya. Zel'dovich for benevolent criti-
cism.
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