Yu. M. Kagan. Quantum diffusion in nonideal crystals. ~ Andreev and Lifshitz,' who introduced the notion of quasi-
1. In an ideal crystal, at 7= 0, any defect can in principle be  particle band motion of defects in a quantum crystal.
delocalized. This concept was systematically developed by The extremely weak tunneling coupling between equi-
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valent positions in the crystal leads to the fact that already at
a very low temperature T and low density of defects x, the
diffusing particle interacts strongly with dynamic and statis-
tical fluctuations, resulting in a distinct tendency toward lo-
calization of particles.

2. For any elementary tunneling act (transition into the
interstitial lattice, exchange transition between neighboring
atoms, involving also an entire group of atoms of the matrix,
exchange of atoms between neighboring molecules, etc.), the
usual two-well model turns out to be adequate. As is well
known, tunneling in this model leads to a splitting 4, of
initially degenerate levels and the band arising in the regular
crystal has a width 4 ~z4,. For the class of phenomena ex-
amined, the condition 4 € wp, is always satisfied (@, is the
characteristic energy of phonons) and, as a rule, 4 < T. It is
precisely the presence of a small energy parameter that per-
mits constructing a theory of quantum diffusion in the pres-
ence of a strong interaction with fluctuations of the medi-
um2—5

3. For T #0, due to oscillations of atoms of the matrix,
the energy levels in neighboring wells fluctuate relative to
one another. If the amplitude of these fluctuations is small
compared to 4, then band motion of particles with weak
scattering by phonons occurs. However, even for very low T,
the relative displacement of the levels begins to exceed 4 and
dynamic breakdown of the band occurs.>* The particle mo-
tion completely loses its band character, although true local-
ization does not occur: at the moment that the fluctuating
levels coincide, a particle can coherently (without excitation
of phonons accompanying tunneling) go over into the neigh-
boring well. It is interesting that the effective mean-free path
I turns out to be small, in this case, compared to the interato-
mic distance a. The general solution of the problem, found in
Refs. 2 and 3, for an arbitrary ratio of / and a leads to a
diffusion coefficient of the form

Za® A}
R TGR (1)

Phonon fluctuations here are characterized by the
quantity £2 (T ): the damping rate of correlations of the posi-
tions of particles in neighboring wells. Atlow T, two-phonon

processes are the determining ones and

Q (T) ~ 10%n, (TTD')Q (2)

For 2 < 4, when the motion has a band character (I » a),
expression (1) coincides with the expression found in Ref. 1.

4. The small width of the band causes the coherent
quantum diffusion to be anomalously sensitive to break-
down of the ideality of the crystal. Indeed, an individual

point defect gives rise to a static displacement of the levels,

exceeding 4 in a large region of radius 7, > @, determined by
the relation &, (r,) = 4. Slowly decreasing perturbations
present the greatest danger. In dielectric crystals, this is the
field of deformations around a defect and in a metal, a weak-
ly decreasing perturbation of the electron density (Friedel
oscillations) are added to it. In both cases, in order of magni-
tude, we have

e~y ()’ 3)

r
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Already with a low density of defects x, spheres of radi-
us 7, begin to overlap and, beginning with some value x_, as
T — 0, localization characteristic of the classical theory of
percolation appears. From (3), it is easy to conclude that

A
zcz-—ﬂv« 1, (4)

where v is a numerical coefficient, which contains the char-
acteristic percolation factor.

For x € x. and T = 0, band diffusion accompanied by
scattering by regions of “‘excluded volume” with radius 7,
occurs. In this case, Dy~4 3*/x.

Near the critical concentration we have

D@)~DQ (), Q@ ~ (Z=Z), ()

Zc

Keeping in mind the fact that the local mean free path length
l~ry > a, it can be shown that the main drop in D near x_
will be determined by the critical percolation index ¢~ 1.8.
The transition into the quantum localization regime with a
corresponding change in the critical index occurs only in a
very narrow region near x,., whose scale is determined by the
small parameter a/7,,.
5.For T #0, the interaction with phonons leads to delo-
calization of particles. If the relative splitting of the levels at
neighboring nodes satisfies the inequality 4 {¢,, . <7,
then we have the following expression for the probability of a
coherent hop from the node r to the node r + g*°
- 2A3Q (T)
r,r+g (Br, r+g)2+92 7)) -
In the region of strong localization x > x’,** where x_ is
found from the condition that spheres with radius 7; over-
lap, determined by the relation

“I ( de )
ar r=r}

the diffusion problem actually reduces to the problem of the
conductivity of a three-dimensional network with random
distribution of conductivities of separate links, determined
by (6). The value of D depends on the form of the defects and
on their distribution. However, the temperature dependence
in the most interesting cases can be established directly. In-
deed, for low 7, when £2(T') € &, , it follows directly
from (6) that

W (6)

=A,

_ Z2a* A}
D="g— o 2T,

8 = allgzt/3, (7)

and only the numerical coefficient & depends on averaging.
From here, substituting (2), we have

D~ T (7')

As a result, instead of the dependence D~ T ~%, follow-
ing from (1) for x € x_, the inverse temperature dependence
appears.

At higher temperatures, when £2 (T') » £, , ,,a univer-
sal dependence on T coinciding with (1)is again satisfied. For
some intermediate value of T,,, the diffusion coefficient
passes through a sharp maximum and only the behavior in
the narrow interval near 7, actually depends on the averag-
ing. The general form of D (T} is shown in Fig. 1. The ascend-
ing branch on the right corresponds to activation processes
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(classical above barrier or noncoherent subbarrier diffusion,
vacancy diffusion). The dependence D (T')forx < x, (curve2)
is shown for comparison.

For sufficiently low T or large splitting &€, single-
phonon processes, for which £2 (T') ~ T (5¢)*, become impor-
tant. As a result, on the initial section of curve 1, D~T.

6. There exists an entire class of phenomena, for which
particles diffusing in a crystal approach each other to within
interatomic distances. However, such close approach, due to
the interaction of the particles, is unavoidably accompanied
by passage through a region in which levels in neighboring
wells are strongly displaced. For this reason, subbarrier dif-
fusion through such a region will be the limiting effect for the
kinetics of such phenomena at low T. It is interesting that at
large distances, the displacements of the levels are small and
diffusion slows down as convergence occurs according to (7),
but at close distances, a transition occurs to the single
phonon regime and diffusion begins to accelerate. Thus a
“bottleneck’ appears, which is what determines the kinetics.
The corresponding theory was developed in Ref. 6. Experi-
mentally, quantum subbarrier diffusion under such condi-
tions was observed in investigations of the recombination of
hydrogen atoms in a molecular hydrogen matrix at low 7.7%
It was found that instead of the exponential dependence on
T, the dependence D~ T occurs in agreement with the the-
ory.

7. In studying the diffusion of £+ mesons in Bi,® an
anomalous temperature dependence was observed, which
gave rise to the generally used term “strange diffusion.” As
analysis showed, the picture found is a direct reflection of
the anomalous behavior of D (T') described by curve 1 in Fig.
1 (see Ref. 4).

8. Quantum diffusion of interacting atomic particles in
an ideal crystal is of special interest. As in the case of exter-
nal defects, in the case of neutral particles, the interaction
has the form (3) and leads to an excluded volume with a large
radius 7,. In such a system, at some critical value of the parti-
cledensity x;, < 1, localization must occur.* This new type of
localization is entirely due to the discreteness of the space (lat-
tice of the matrix) and is absent, for example, in a liquid. The
discreteness leads to a number of fundamental properties:

a) tunneling occurs only over a finite distance a; the
number of locations z in the nearest coordination sphere is
finite;

b) presence of strongly pronounced/transfer processes
for T~ 4;

c) suppression of collective motions. A cluster of N par-

b

—_

ticles has a transition amplitude ~ 4 (4 /6£)¥ !, Asaresult,
an ensemble of particles decays into a subsystem of station-
ary clusters and mobile separate particles. When the volume
occupied by the stationary clusters exceeds some critical val-
ue, localization will occur for the remaining mobile particles
and the picture will be analogous to the one described above
for the case of external defects. In particular, an analogous
temperature dependence and the transition with increasing
x, from curve 2 to a curve of the form 1 in Fig. 1 will remain.
An approximate expression for D, valid in the entire x,, T
plane and encompassing both band motion and localization
and phonon-assisted delocalization of particles was obtained
in Ref. 5.

The phenomenon of localization examined above was
first observed experimentally in investigations of diffusion of
He?® atoms in a He* matrix.'® It was found that delocaliza-
tion, due to the interaction with phonons, leads to the tem-
perature dependence (7) and (7’).
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