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Various types of echo oscillations in plasmas are discussed. Both unbounded plasmas (gaskinetic plasmas
and plasmas in external fields) and bounded plasma systems are considered. Several practical applications
of echo effects in radio wave propagation and plasma diagnostics are discussed. The second- and third-
order echo oscillations in equilibrium isotropic and magnetized plasmas and in semiconductor plasmas are
discussed. A charged-particle beam in a non-equilibrium plasma can lead to an amplification (over time) or
a growth (over space) of echo oscillations. A ballistic theory is offered for echos in plasmas. This theory can
describe echos in the case of large-amplitude external perturbations, under conditions such that the method
of successive approximations cannot be used. The ballistic theory can also describe echo saturation. Echo
phenomena in inhomogeneous plasmas are discussed. Section 2 reports a study of echos in bounded plas-
mas. In this case, additional echo phenomena result from the reflection of charged particles from the
plasma boundaries and from the existence of surface waves. Research on echos in plasma slabs and metal
films is reviewed. Echo effects can lead to an anomalous transmission of electromagnetic waves through a
plasma slab which is opaque (in the linear approximation) to the fields of these waves. Section 3 reviews the
basic experimental data on echos in the cyclotron, ion, and plasma zones and research on collisions and
microscopic turbulence in plasmas by means of echos. The experimental data available are compared with
the theoretical results.
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INTRODUCTION

Evenin a collisionless plasma, oscillations in the macro-
scopic properties decay over time (or space); the effect is
called “Landau damping”' (and has been confirmed experi-
mentally®?), Landau damping is one of the most important
phenomena in plasma physics. It plays a fundamental role in
collective processes in collisionless plasmas. The reversible
nature of Landau damping can be seen very clearly in the
echo effect, predicted theoretically in 1967 by Gould,
O’Neill, and Malmberg* and subsequently found experimen-
tally.>®

At the time, it was already known' that the damped
oscillations of the macroscopic field in a collisionless plasma
are accompanied by some undamped oscillations (microos-
cillations) of the distribution function at a frequency @ = kv.
These oscillations thus “remember” an external perturba-
tion after the macroscopic field has disappeared (the mi-
crooscillations of the distribution function may be thought
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of as a set of modulated particle beams: Van Kampen
waves'®). Gould ef al.* were the first to point out that the
interference of the microoscillations of the distribution func-
tion modulated by the fields of two or several sources sepa-
rated by a certain time interval (or a certain spatial distance)
could lead to a phase focusing of the particles over time (or
space) and that this focusing could be accompanied by the
appearance of a macroscopic signal: a temporal (or spatial)
echo. The immediate cause of the phase focusing of particles
in a homogeneous plasma is a nonlinearity, so that in this
setting the echo is an essentially nonlinear kinetic effect (in
an inhomogeneous plasma, an echo effect may be linear in
the field of the external perturbations).

Since the plasma echo is a coherent phenomenon asso-
ciated with phase focusing of particles, it is similar in nature
to the spin echo,'' the cyclotron echo,'>'* and the photon
echo.' Kadomtsev published a penetrating physical analy-
sis of the mechanism for the plasma echo (and also the spin
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and cyclotron echos) in a review!® in 1968, at a time at which
research on the plasma echo consisted exclusively of its pre-
diction and discovery.

Subsequent years saw active research on echo phenom-
ena in not only gaseous plasmas but also solid-state plasmas
in semiconductors and metals.?*->*% Echo effects in solid-
state plasmas may be useful for studying the band structure
of semiconductors and the reflection of plasma particles
from boundaries. Echo effects may also occur in plasmas in
space; a cyclotron echo has been observed in the ionospheric
plasma,’® and numerical estimates suggest that a plasma
echo can also occur there.*®

In a bounded plasma there are some new possibilities
for echo phenomena because of the reflection of particles
from the plasma boundaries and the existence of surface
waves,71-74.76-79

The spatial echo is nonlocal in nature, by which we
mean that an echo signal can arise in a plasma region which
cannot be reached by the original macroscopic waves. Infor-
mation on external perturbations is carried by modulated
particle beams through opaque regions, where these beams
can regenerate a macroscopic signal under certain condi-
tions. This possibility of plasma “brightening” through an
echo effect was demonstrated in Refs. 18 and 19. This idea
stimulated several theoretical and experimental studies of
the brightening of inhomogeneous plasmas®®** and of the
nonlinear transmission of electromagnetic waves through
trans-critical plasma slabs?*2” and metal films.?*-3° It can
now be asserted confidently that the plasma echo is more
than an elegant nonlinear phenomenon: It is also extremely
useful for plasma diagnostics and for several practical appli-
cations in radio wave propagation. These applications are
the motivation for this review.

We will adopt some simple examples to discuss the var-
ious types of echo oscillations in both unbounded plasmas
(gaskinetic plasmas and plasmas in external fields) and
bounded plasmas (semi-infinite plasmas, plasma slabs, and
metal films). Two approaches are taken for a quantitative
description of echos. One is based on a kinetic equation with
a self-consistent field (this is the self-consistent approach),
while the other uses the approximation of free-streaming
electrons (the ballistic approach). We analyze the conditions
for the applicability of these two approaches by working
from theoretical and experimental data. We report some ex-
perimental data on echos, and we compare them with the
theoretical results. We discuss the possibility of using echos
to study collisions and microscopic turbulence in plasmas.
Certain aspects of the plasma-echo phenomenon have been
covered in some previous reviews.>'?

The review by Bachman, Sauer, and Wallis*' focuses on
research on the spin, cyclotron, and photon echos. They also
set forth the ballistic theory for the temporal plasma echo
and report experiments® revealing the temporal echo in a
plasma.

Erokhin and Moiseev®? reviewd the various types of
wave conversions in inhomogeneous plasmas. One section of
their review deals with research on echo effects (or related
effects) in inhomogeneous plasmas.

Porkolab and Chang?® have reviewed research on var-
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ious nonlinear effects in plasmas (nonlinear Landau damp-
ing, decay instabilities, solitons, large-amplitude waves in
plasmas, etc.). Their general approach was to compare theo-
retical and experimental results. Their review also contains,
in particular, a brief review of results on echo phenomena in
plasmas. They discuss primarily experimental data on echos
of plasma oscillations,’ ion acoustic oscillations,%’ and cy-
clotron oscillations®**’ in homogeneous plasmas and on the
use of echos to study collisions.?”

1. ECHO PHENOMENA IN UNBOUNDED PLASMAS
a) Mechanism for the appearance of echos

Kadomtsev analyzed in detail the mechanism for the
plasma echo and its relationship to Landau damping.'* Ka-
domtsev was the first to suggest using the concept of Van
Kampen waves to explain the echo effect. Let us review the
basic thrust of this analysis. Ignoring collisions between par-
ticles, and restricting the discussion to longitudinal waves,
we work from a nonlinear kinetic equation for the distribu-
tion function and an equation for the self-consistent electric
field:

Ofa 0fa 9
at +v?+%EW (f0a+fa)=O,

(1.1)

divE=4neSfa dv, (1.2)

where f,, is the deviation of the distribution function from
the unperturbed function f,,, and the index a specifies the
particle species (“¢”” or “i”’). Assuming that the external per-
turbations are small, we can use the method of successive
approximations to solve the system (1.1), (1.2). In other
words, we seek the deviations of the distribution function f
and of the field E in the form of the series

f=fO4 @4

E=E®OLE® | (1.3)

where £V and f@ (and, respectively, E"Y and E) are terms
which are linear and quadratic in the external perturbations.
We will take a more-detailed look at the linear solution in an
electron plasma, ignoring the ion motion and setting « = e
(in the subsequent discussion the subscript “e” will be omit-
ted). Landau showed' that for a correct solution of the small-
oscillation problem the linearized version of Eq. (1.1) must
be supplemented by specifying the initial (or boundary) per-
turbation of the distribution function f at the time ¢ = 0.
We choose this perturbation in the form of a plane wave
SOv,r,t =0) = g(v)e™, whereg(v) is the velocity-dependent
amplitude of the initial perturbation. The solution of system
(1.1), (1.2) in the linear approximation is

W _ £ 1 k 0y po 1
feo= =15 4w & v Do —i ooy 8x(V), (L4)
W _ 4ni p'l](o)
Eio = kE e(w k)’ (1:3)
where
0 q (V) dv
Po =€ 5 To—kv
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and £(w, k) is the longitudinal dielectric permittivity of the
plasma,

(1.6)

2
e (0, k) =1+-229 S k(if"_/i‘v)dv .

For simplicity we restrict the discussion below to the one-
dimensional case, with the waves propagating along the z
axis; we adopt the notation v, = v and k, = k.

Using the inverse Fourier transforms we can easily find
the asymptotic behavior (in time) of E "’ and f"’. It follows
from (1.5) that the asymptotic behavior of the field may con-
tain, in addition to the natural oscillations whose complex
frequencies are found from the equation £(w,k) = 0, some
oscillations determined by the nature of the external pertur-
bations, i.e., by the particular nature of the function p},,. In
the evaluation of € in (1.6), the integration is carried out

along a Landau contour, with
1 1 P ;
T T T e [0 (0 —kv),

where P means the principal value. We can then write the
equation £(k,0) = O in the form

e(0, k)=t (0, ) —B g | =0, (17)
where
e (0, k) =14+ 22 { P 0fol0)_ g4y =0 (1.8)

is the Vlasov dispersion relation,'”> and fyv) = (m/
27T )exp( — mv?/2T ) is a Maxwellian distribution function.

The solution of (1.7) determines the frequency and
damping of the natural oscillations of an electron plasma,
which for small values of k€a~" (@ = [T, /4me’n,, is the De-
bye length} are

0, =@ {1+ a%2) (1.9)
w=V"5 e~ zm) (110

where 2 = \J4me’n,/m is the plasma (Langmuir) frequency,
and ¥, is the Landau damping rate.

If g(v) is a smooth function (has no singularities), the
asymptotic behavior of the field at large ¢ is

E, (t) ~ exp (—iopt — ypi), (L.11)
and the distribution function is
F (t) =1y (V) exp (— ik vE) + f, exp(—iw, 2 —vyt), (1.12)

since the function f{!) has the same singularities as the func-
tion E ), determined by the condition £(w,k) = 0, as well as
another pole at the point @ = kv + i0. Consequently, the
plasma oscillations excited by some smooth initial perturba-
tion g(v) should be damped over time, while the function
e ) will undergo undamped oscillations: The first term in
(1.12) is undamped and is called the “ballistic’” or *“transit”
term.

Van Kampen showed, '® however, that undamped natu-
ral oscillations could also occur in a plasma. We find Lan-
dau’s dispersion relation (1.7) by writing the distribution
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function /) in the form

P

@ __
fhm ——u)—kv

e df, E®D

o Bl — i (0 — k) o
(1.13)

mk v

If we introduce in the plasma, in addition to the initial
perturbation g{v), a modulated particle beam moving at a
velocity equal to the phase velocity of the wave, then we can
cancel the second term in (1.13) (if the density and phase of
the beam are chosen appropriately). Substituting £ into
the field equation (1.2), we then find Vlasov’s dispersion rela-
tion (1.8), which describes undamped plasma waves. Vla-
sov’s solution thus describes a wave accompanied by a group
of resonant particles.

Van Kampen showed'® that Egs. (1.1) and (1.2) describe
a broader class of natural oscillations. To show this we need
to supplement (1.13) with the solution of the homogeneous
equation {w — kv)f\!, =0 of the form A8{w — kv)X E,,
where A is some function of @ and & (it is obviously propor-
tional to the density of the resonant particles). For ! we
can then write
P__ e 1 0 gt A8 (0—kv) B,

wo—kv m k v

fro = (1.14)
and substituting this expression into field equation (1.2) we
find the dispersion relation

471e

&g (0, k)+Wx:0. (1.15)
The second term in (1.14) describes a modulated beam of
particles moving at the phase velocity of the wave: This is a
Van Kampen wave. The contribution of Van Kampen waves
to the dispersion is described by the second term in (1.15). It
follows from (1.15) that, in contrast with the situation in
(1.7), a given value of k can correspond to an arbitrary fre-
quency w; in other words, the spectrum of eigenvalues o is
continuous. It follows from (1.15) that for any frequency w
we can choose a value of A (i.e., the density of resonant parti-
cles) such that solution (1.15) corresponds to an undamped
wave: a Van Kampen wave with the given frequency . The
second term in (1.15) is inconsequential if the perturbation
frequency satisfies w ~42 [and thus £,(w,k )~0], but it be-
comes significant if the frequency o differs from the plasma
frequency (under the condition ¥ 12, for example), and we
haveeyw,k }5£0. Itisin this case that solutions of (1.15) differ
significantly from plasma waves, when the second term in
(1.14) is comparable to or greater than the first term. In this
case we can speak in terms of Van Kampen waves. This is
also true if we deal with perturbations with £»a ™!, which
are strongly damped, as Landau showed." Perturbations of
this sort may be considered a superposition of Van Kampen
waves. There is no contradiction with Landau’s solution,
since Van Kampen showed that any initial perturbation g(v)
can be expanded in functions (1.14), so that the natural oscil-
lations of an electron plasma are a superposition of Van
Kampen waves and plasma waves. The ballistic term in
expression (1.12) may be described as a set of Van Kampen
waves. We find the same result for f{(¢) from (1.14), where
the second term contributes to the undamped oscillations.
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We will now use the concept of Van Kampen waves to
explain the mechanism for the temporal echo. If perturba-
tions of the electric field of the form exp (ik,2) are specified in
the plasma at the time ¢ = 0, these oscillations will decay
over time with the decay constant ! determined by (1.10).
However, the field oscillations leave a ““wake” in the plasma
in the form of microoscillations of the distribution function,
i.e., Van Kampen waves. Their phase evolution is described
by the expression f{" ~ f,(v)expli(k ,z — k,vt )} (the duration of
this phase memory is evidently determined by the particular
processes which destroy it, e.g., collisions). There are no
macroscopic manifestations of these oscillations at 1>y, '
i.e., we have § exp( — ik,vt )dv = 0, since the integrand oscil-
lates at a progressively higher frequency. This phenomenon
is called “phase mixing” (or “randomization”). For the par-
ticles to transfer energy back to the wave (for the particles to
excite a macroscopic signal), we must reverse the evolution
of the phases of the microoscillations of the distribution
function; i.e., we must arrange phase focusing of the modu-
lated particle beams. This reversal of the phase evolution can
be arranged by applying a second perturbation. Specifically,
if, at the time 7 (7> ¥, '), we again excite oscillations of the
type exp ( — ik,2) of the electric field in the plasma, then
these oscillations will give rise to undamped oscillations of
the distribution function of the type fY'~f(v)
exp{i[ — koz + kyv(r — 7)]1}. If we ignore nonlinear effects,
then these oscillations would have to exist independently of
the oscillations excited previously, and at # — 7>y, ' they
would have no macroscopic manifestations. However, be-
cause of the nonlinear interaction of the beams the second
perturbation also gives rise to secondary Van Kampen waves
of the form  fPzut)~f)f2lv)expl — ilk, — k)
z —i(—ky + kvt + ikwr]. At the time t=17"=k,r/
(k, — k,)(k, < k), the phase in @ will obviously be indepen-
dent of the velocity, so that at the time ¢ = 7" macroscopic
oscillations of the field will reappear in the plasma: These
oscillations are the temporal echo, which is thus an essential-
ly nonlinear effect.

If the wave numbers &, and &, of the external perturba-
tions satisfy the strong-damping condition, i.e., if ak,, »1,
we may speak of these perturbations as being Van Kampen
waves proper at an arbitrary time, and in this case it is not
necessary to satisfy the conditions 1>y, 'andt— 71> Vi, !

To draw a qualitative picture of the spatial echo, we
placein the z = 0 plane in a plasma a grid to which we apply
a monochromatic signal of frequency , satisfying w,»{2.
Under these conditions, Van Kampen waves proper will
propagate away from the grid [in this case, solution (1.15)
differs greatly from plasma waves]. The longitudinal field of
the external perturbation of frequency @, modulates the par-
ticle beams, and this modulation constitutes Van Kampen
waves of first order, f{~f,(v) X exp( — iwt + i**/v). We
now assume that at a distance / from the first grid there is a
second grid, to which we apply an alternating potential at a
frequency w»{2. Van Kampen waves will then propagate
away from this grid also:

f& ~ fa (v) exp [ —iwt 4 z—m’(—zv_i] .
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In addition, however, this grid will modulate the f; density
wave, The beams begin to be deformed; i.e., particles are
transferred from some beams to others, and secondary
beams are produced. In particular, a Van Kampen wave is
excited at the difference frequency w, — w,:

10 ~ 1, 0) f @) exp | —ioy (£-2) + oy (1251 ].

Atz* = w,l /(w, — w,) the phase in the exponential function
becomes independent of the velocity (at this point, the secon-
dary particle beams become bunched in phase), and at this
point macroscopic oscillations appear at the frequency
® = w, — w,: an echo. Most experiments on plasma echos
have been concerned with the spatial echo, which is easier to
observe. We might note that under the condition w,, ~2
the picture becomes slightly more complicated, since both
plasma waves and Van Kampen waves are excited in this
case. The plasma waves, however, are then damped (they are
“bled” by Van Kampen waves because of the phase spread-
ing), and at distances |z|>I" ,!(I" ;' is the resonant-damp-
ing length for oscillations at the frequency @, ,) from the
sources of the original waves we are left with only Van Kam-
pen waves. The position and frequency of the echo are not
changed, but the amplitude and dispersion of the echo signal
are changed.

A novel demonstration of the echo phenomenon (with
optical screens) was proposed by A. A. Vedenov and A. M.
Dykhne (see Ref. 34).

The examples discussed above correspond to second-
order non-linearities. In a plasma, however, there can be
echo effects of higher order.>*** For example, spatial echo
oscillations of order (m + n) arise at the frequency
@, = mw, — nw, at a distance /,,, = mw,l /(mw, — nw,)
from the first source. The temporal echo of order (m + )
reaches a maximum intensity at the time ¢,, = mk,7/
(mk, — nk,).

The echo effect thus proves the reversible nature of
Landau damping: In the course of collisionless damping, the
energy of a wave is transferred to resonant particles, which
“remember” the external perturbation after it disappears.
When the velocities of the particles reverse, the entire pro-
cess would unfold in the opposite direction; i.e., the particles
would transfer energy back to the wave, and the effect would
be seen as an echo. However, is all the energy of the original
oscillations ““put back?”” Let us consider the picture of the
spatial echo. In moving away from the sources of the original
oscillations, all the energy of the oscillations is transferred to
modulated particle beams, as we have seen. As these beams
move along the z axis they become bunched in places and
create macroscopic signals; i.e., memory ‘“knots’—the
echos of second, third, etc., orders—are “tied’’ at the points
Z' =yl Nlw, — wy), 2" = 2w,l /(2w, — @), etc., at the fre-
quencies w, — @,, 2w, — @, etc. It is quite clear that these
signals excite only certain groups of particles, so that only a
fraction of the original energy is returned to the echos of
second, third, and other orders; just which fraction can be
determined by direct calculations (or experimentally). In an
experiment carried out by Ikezi and Takagashi,” for exam-
ple, the maximum power of an echo of ion acoustic waves
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(this power is proportional to the square of the amplitude of
the echo at the point of maximum intensity) was of the order
of 1% of the power of the ion waves which were excited.

b) Collective echo phenomena of second and third orders in
an isotropic equilibrium plasma

Two approaches are taken to a quantitative description
of echo phenomena. The first uses a nonlinear equation for
the distribution function with a self-consistent field, i.e., the
system of equations (1.1), (1.2). This approach must evident-
ly be taken when collective properties of the plasma are im-
portant and when it is necessary to consider perturbations of
not only resonant particles but also all other particles. Quan-
titatively, the amplitude and shape of the collective echo in
such cases depend strongly on both the form of the external
perturbations and the dielectric properties of the plasma [the
second-order response function f® contains £(w ,k ), £(w4,k ),
and £lw, — @, k), the dielectric permittivities of the plasma].
We call such echos ““collective.” It is perfectly clear that the
dielectric properties of the plasma are important when the
frequencies or wave numbers (in the cases of the spatial and
temporal echos, respectively) of the oscillations correspond
to the transparency region. Langmuir waves, for example,
are weakly damped if o ~£2 and k<a™'.

If the waves of interest are instead strongly damped, or
if their frequencies lie in the opaque region, then we may
ignore the dielectric properties of the plasma and approach
the problem in the free-streaming approximation. In an elec-
tron plasma, for example, we have seen that at frequencies
@3> (2 (or under the condition ak> 1) the modulated particle
beams play a governing role in the excitation of the echo.
This simplified approach has been termed the “ballistic the-
ory of echos.”

To study the collective echo we start from system (1.1),
(1.2), which we will solve by successive approximations, as-
suming that the amplitudes of the external perturbations are
small. We consider the temporal and spatial echos which
arise in a plasma under the influence of external charges,

p? (r, t) = p, exp (ikyr) O (0yt) + Py exp (ikyr) 6 (0 (2 —1)),

(1.16)
0% (2, t) =p; exp (iwyt) 8 (kez) + py exP (— i5t) & (Ko (z—1))

(1.17)
respectively. In other words, we assume that the external
perturbations are applied to the plasma at the times t =0
and ¢ = 7 or at the points z = 0 and z = / (w, and k,, are arbi-
trary quantities having the dimensions of a frequency and a
reciprocal length, respectively). The oscillations which are
produced in the plasma by the external charges are also de-
scribed by Eqs. (1.4) and (1.5), provided that we simply dis-
card the second term in (1.4). Perturbations (1.16) and (1.17)
give rise to only resonant oscillations.

From kinetic equation (1.1) we find the nonlinear cor-
rection to the distribution function, f®; substituting this cor-
rection into the equation for the field, (1.2), we find the sec-
ond-approximation correction E ? to the field:

1

Eil= — ey 2 “?(0—o' k—K; o, K)
o, K’ (1.18)
X Efcllk’. m—o)fEl(xl’)m’y
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b

where

Z L= do dk
m,’k' zn (2“)3 .y

and x?(w,, k,; ,, k,) is the nonlinear susceptibility of the
plasma, given by

® (01, ky; 0y, ky) = D (—i) 4me? e 1

2 mm kiky (K Ky)
1
x S dv 0+ 0, — (k; + kp)+i0
7 1 a
X [kl v ( 0, —k,v+i0 sz)

a
gy (ST ko) o).
We find explicit expressions for the fields in the linear
approximation, E ", from (1.5), where p, is given by (1.16) for
the case of the temporal echo. Using these linear solutions
and expression (1.19) for the nonlinear susceptibility x*?, we
then find the following expression for the second-order field:

(1.19)

3
oo e—lﬁ)t ¢ 12
X S dv S oG T @ B S do
kk, exp (i0'7) %%
X {(m'—kzv+i0)e(m—m'» ki) e (@, k) o
_ kk, exp [i (0 —o’) 7] ﬂ}
(@ =k vti)e(@—a, k) elw, k) 1 av )
(1.20)

The integration over @' and w can be carried out by the
Cauchy theorem, with the integration contour closed on the
corresponding complex plane by a semicircle of infinite radi-
us, in the upper or lower half-plane, depending on the sign of
the coefficient of @’ or @ in the exponential function. If the
quantity 7 and the time interval between the instant at which
the echo appears and the second perturbation are large in
comparison with ¥~ ! (y is the Landau damping rate), then
we need consider only the pole at the point @’ = k,v in the
integral over @'. The contributions from the poles at the
points where the dielectric permittivity vanishes can be ig-
nored by virtue of the condition 7> 1. Carrying out the inte-
gration over w in a similar way, and considering only the
second-order pole at @ = kv, we find

3,
e (kky) (¢—7) 8 (k—ky — ky)

exp [—i(kvi—k,v1)]
& (kv1 k) e (klvv kl) & (kzvv kz)

B ()= —8 2n)°k

8
x | av k<l (12
The exponential factor in the integrand here vanishes at the
time
. k,v

I=T=~7T (1.22)

which determines the time at which the echo appears. A
necessary condition for the appearance of an echo is that 7’
exceed 7. Direct calculation shows'® that an echo can appear
only when the vector k, is directed opposite to k, and, fur-
thermore, |k,|> |k,{. When there is an echo, the angle
between the vectors k, and k, may differ from # by only a
small quantity (rks)~'. The factors £~ '(kv,k), £~ " (k,v, k,)
and £~ '(k,V, k,) in (1.21) describe the influence of the dielec-
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tric properties of the plasma on the external perturbations
and on the echo field.

It is a simple matter to carry out the integration over the
velocity components perpendicular to the vector k in (1.21).
The remaining integration over the velocity v can be carried
out by going to the complex v plane and closing the integra-
tion contour with a semicircle of infinite radius in either the
upper half-plane (if # < 7’)or the lower half-plane (if ¢> 7).
(The singularity at v = i 0 in df/dv in the numerator is can-
celled by the same singularity in the imaginary part of ¢(kv,
k) in the denominator.) The time evolution of the echo is
determined by the zeros of the functions £(. . .) in (1.21). The
growth of the echo is exponential, exp[ — (k;/k,)y.(t — 7')],
while the damping is exp[ — (ky/k,)y,(t —7')] and
exp[ — (¢t — 7)), where ¥, ¥,, and y are the Landau damp-
ing rates for the waves with the wave vectors k,, k,, and k.
We see that the echo signal is asymmetric in time.

As an example, we give the explicit expression for the
field of the echo signal in the case in which all three oscilla-
tions correspond to plasma frequencies and the conditions
ak<1 and k, = 2k hold*'®:

E® (v, t) = — 32n2 % géig Qv sin gk exp [ikr — v (t —1')]
(1.22')

where tgp = [2k /(k — k,)]y/£2. In this particular case the
echo is symmetric.

To analyze the spatial echo, we choose the external per-
turbations in the form (1.17), and, assuming I',/»1[ " 'is
the resonant-damping length for waves of frequency w;
(i = 1,2)], we find the following expression for the echo field
from (1.18) (Ref. 19):

E® (z, t)=16a%2 5 Bibs 2]

2 e-iwt
0,0, a?k}

Xvos[Q(t—1') +q],

(1.23)

9 §° dEexp [—E?+1i (@/s) E (a—1')]
) TRTOME, 0l [~ AL —orlelOmE o

where /' = w,l /(0, — @,) is the point at which the echo
reaches its maximum intensity. The integration over £ in
{1.23) can be carried out by the method of steepest descent
[({w/s)|z — I'|» 1)]. It follows from (1.23) that the spatial evo-
lution of the echo oscillations is determined by the zeros of
the functions &(. . .); the growth of the echo signal is deter-
mined by the exponential function expl(w./w )z —!")],
while the damping is determined by exp[ — (/@ )z — 1')]
and exp[ — (w/@)"(z—1’)]. The echo oscillations are
therefore asymmetric in space. Let us consider the case in
which @; and @ = @, — @, correspond to plasma frequen-
cies, and the condition w, = 2@ holds. In this case the echo
oscillations are symmetric in space:

E® (z, t) =322 B2 (;_ ) kT exp (—iwt)

m  OWykE
X el (T ofioh + it (124)
where
b=k =212 C2F Tt
=tV 5 e (— ). (1.25)
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The temporal and spatial echo oscillations associated
with a wave conversion in a plasma were studied in Refs. 19
and 36. Sitenko et al.'® studied the low-frequency acoustic
echo oscillations which result from the superposition of
high-frequency plasma oscillations. These echos are asym-
metric in space: The growthis ~ exp[(w/2 )T,z — 1')], while
the damping ~expl(@/®,)[,(z—1")] and exp(l,(z — ')
where I', is the damping rate of the acoustic oscillations,

T= (1.26)

Faron (=),

w=kv,,v, =T /m; is the velocity of nonisothermal sound,
and the valuesof I', , = I'" (@, ,) are given by (1.25). Vodyan-
itskif and Repalov*' also studied the spatial echo in an iso-
tropic plasma.

External perturbations (1.16) and (1.17) have been cho-
sen to be §-shaped (point perturbations) for simplicity, but
they could also be chosen as wave packets over frequency (or
over wave vector). The effect of the shape of the exciting
fields on the nature of the echo oscillations was taken into
account in Refs. 42-44.

As an example of a higher-order echo effect we consider
the three-pulse echo in a plasma which results from the su-
perposition of three successive perturbations separated by
time intervals longer than the characteristic decay times of
the corresponding oscillations.*® We choose the perturba-
tions in the form of plane waves, and we assume that the
wave vectors of the perturbations do not satisfy the collin-
earity conditions. We can thus rule out the possibility of a
second-order echo, but if the wave vectors of all three pertur-
bations lie in a common plane there is the possibility of a
third-order echo. In this case the echo oscillations have not
only a longitudinal component but also a transverse compo-
nent; i.e., the three-pulse echo is accompanied by wave con-
version in the plasma. The time of appearance and the shape
of the signal are very dependent on the time intervals
between the successive perturbations.

We choose the external charge density to be

p (r, t) =p; exp (ik;r) & (0¢)

+pzexp (ikyr) § (@, (t — 1))

+ Pz exp (ikgr) 8 (05 [t — (1 4-1) 1]); (1.27)

i.e., we assume that the external perturbations are applied to
the plasma at the times¢t =0, ¢ = r,and ¢ = (1 + A )r, where
73y ! and A ® 1. Because of the longitudinal nature of the
perturbations, there are no transverse oscillations of the
electric field in the linear approximation.

The solution of Egs. (1.1) and (1.2) was used in Ref. 36 to
derive an expression for the field of the third-order echo os-
cillations; that expression contains both longitudinal and
transverse components: E® = (k/k )E' 4 nE‘, where nis a
unit vector perpendicular to k.

The oscillations of the longitudinal field reach a maxi-
mum amplitude at the time ¢ = 7, for which the coefficient
of v in the exponential function in the nonlinear response /'
vanishes. It was found in Ref. 36 that 7' is determined by

kv +ky (v —1)+ k3 (v — (1 +A) 1) =0. (1.28)
Equation (1.28) has a solution only if the vectors k;, k,, and
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k, liein a common plane, i.e., are coplanar. Projecting vector
equation (1.28) onto the direction perpendicular to k, we find

k2 +(14+2A) k3 =0 (1.29)
and, furthermore,
kig +koy +ks =0. (1.30)

Equations (1.29) and (1.30) determine the conditions under
which the three-pulse echo can arise. These conditions can
be satisfied by setting

ku_ =xk3_|_, k2.t. == —(1 +x) ka_L- (131)
Since the echo can arise only after the third perturbation,
i.e., since 7’ > (1 + A )7, yet another condition must be satis-
fied for an echo to occur:

Bop + (L + B kg >0+ N (1.32)

Assuming that conditions (1.31) and (1.32) hold, Sitenko et
al.*¢ derived an explicit expression for the amplitudes of the
longitudinal and transverse echos, E ‘and E".

As in the case of the two-pulse echo, it can be shown
that a violation of the coplanarity of the wave vectors k,, k,,
and k, results in the disappearance of the three-pulse echo.
Consequently, the angle 8 between one of the wave vectors
and the plane containing the two others must satisfy

0 < (Ths)t. (1.33)

In this manner it was shown in Refs. 18 and 36 that
there can be a nonlinear wave conversion in a plasma (a con-
version of high-frequency waves into low-frequency waves
and of longitudinal waves into transverse waves) because of
an echo effect.

We call the spatial echo which results from the interac-
tion of oscillations with frequencies @, and w, at the points
z=0and z =/ the “primary” echo. In addition to this pri-
mary echo, there is also a secondary echo in the plasma,
which results from an interaction of one of the primary oscil-
lations with the echo oscillation. The frequency @,,, and the
position of the secondary echo oscillations are the same as
for the primary echo of order (m + n), but the shape of the
secondary echo of order (m + n) differs from that of the pri-
mary echo of the same order, in agreement with experi-
ment.®

Since the echo is an essentially nonlinear effect (in a
homogeneous plasma), we wish to call attention to the fol-
lowing circumstance to show the position occupied by echo
phenomena among other nonlinear processes in plasmas.
Research on nonlinear processes in plasmas (the decay and
coalescence of waves, the induced scattering of waves by par-
ticles, nonlinear Landau damping, etc.) has made extensive
use of a nonlinear equation for the field in which the coeffi-
cients are the dielectric permittivity and the nonlinear sus-
ceptibilities of the plasma.*”*° The nonlinear susceptibilities
were introduced in Refs. 37-39. The nonlinear equations for
the field can be used to study echos. For example, expression
(1.18) for E® which we used to calculate the second-order
echo follows immediately from the nonlinear equation for

937 Sov. Phys. Usp. 26 (11), November 1983

b

the field if the frequency and wave-vector resonance condi-
tionsw, = @y, + oy, andk = k; + k,on the waves involved
in the interaction are not satisfied (or if they are not satisfied
simultaneously). In a similar way we can find the field cor-
rection E ® and use it to analyze the third-order echo, etc.
(The nonlinear susceptibilities x® and %, in terms of which
E®@ and E® are expressed, can be found in Refs. 37—40.)
There is thus no need to carry out special calculations to find
the response functions f@, ), . . . and to use them to calcu-
late the fields E®,E®), . . ., as has usually been the approach
in the theory for the collective echo in a homogeneous plas-
ma (see, for example, Refs. 4, 6, 18, and 19; see also the
monographs in Refs. 45 and 46, where a detailed theory of
the echo is set forth).

Echo effects are seen under conditions such that the
ordinary nonlinear interactions of waves (both resonant and
nonresonant interactions) are unimportant. Some special
conditions are imposed on the fields of the primary signals:
They must be separated in time (or space) by intervals of time
(or distance) significantly larger than the characteristic
times (or lengths) for their linear damping; i.e., 7>y, '
(I>I" ~Y{w,)). Consequently, the macroscopic fields of these
oscillations cannot interact directly through a nonlinear
coupling. Under these conditions there can be only a nonlin-
ear interaction of beams of particles which are modulated by
the fields of the primary oscillations, and it is this interaction
which is responsible for the appearance of the macroscopic
echo signal. The echo effect is thus one example, although an
extremely unusual one, of a nonresonant and nonlinear wave
interaction.

c) Echo oscillations whose dispersion is determined by the
nature of the perturbations of the distribution function

It follows directly from the system of equations {1.4),
(1.5) that if the initial perturbation g(v) is not a smooth func-
tion but instead has singularities then the asymptotic behav-
ior of the field E {(¢ ) is also influenced by certain other oscil-
lations, whose dispersion is determined by the nature of the
singularities of g(v). Can the interaction of these oscillations
give rise to a nonlinear echo signal? It was shown in Refs. 18
and 19 that in this case some additional echo oscillations do
in fact arise, with a dispersion determined by the nature of
the external perturbations (not by the plasma properties). In
particular, a study was made of the second-order temporal
echoin an electron plasma.'® For this purpose, system (1.1),
(1.2) should be supplemented by the specification of the ini-
tial perturbation of the distribution function (a discontinuity
of the distribution function) at the time # = 0 and the specifi-
cation of a repeated perturbation at the time ¢ = 7. The per-
turbations of the distribution function are chosen to be plane
waves:

F(r, v, t)]=0=g; (v)exp (ik,r),
F(r, ¥y Dlimero—F (¥, ¥, 8)]iz=r-o = £ (v) exp (ikyr), (1.34)

where g(v) and g,(v) are the velocity-dependent amplitudes of
the initial and repeated perturbations. As an example we
consider perturbations with the amplitudes

g W)=g i

—a
(v—vt o’

i=1,2. (1.35)
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It follows from (1.5) that their contribution to the asymptotic
behavior of the field in the limit #— oo is
EP (t) ~ g,exp ( — kvjt —ikv,t). (1.36)
The frequency and damping of the oscillations which
are excited in the plasma by perturbations (1.35) are thus kv,
and kv, respectively. Perturbations of this type can be ar-
ranged by injecting a modulated particle beam into the plas-
ma (v, is the beam velocity, and v; is the beam width). It was
shown in Ref. 18 that the nonlinear interaction of such oscil-
lations can give rise to second-order echo oscillations whose
dispersion is determined by the nature of the external pertur-
bations if the following inequalities hold:
T kvt kvt, ki <Y1y Vo, Y- (1.37)
Assuming for simplicity v, » v/, restricting the discussion to
the particular case v, + iv] = v, + iv; = v, + v}, and using
(1.5) and (1.35), we find from (1.18) the following expression
for the echo-oscillation field, which in this case is symmetric:
E® (r, t) X g8, (t — 7) kexp (ikr)
exp [ — thovy (£ —1')]
& (kvy, k)& (kyvgy ks)
The field amplitude determined by (1.38) is higher by a factor
of v;/v; than the amplitude of the same field in the case
v, + iv} #v, + ivj. A resonant increase in the amplitude
also occurs under the conditions ¢(kv,,k;)=0 and
£lk;v,,k;) = 0, i.e., when the velocities of the particles of the
modulated beam coincide with the phase velocities of the
corresponding waves in the plasma. In Ref. 19 it was shown
that there can also be spatial echo oscillations with a disper-
sion determined by the nature of the external perturbations.
We thus see that if perturbations of microscopic quanti-
ties, e.g., the electron distribution function, are specified
then echo oscillations appear in a plasma under certain con-
ditions with a dispersion determined by the nature of the
external perturbations (not by the plasma properties). We
thus have an opportunity to control the nature of the nonlin-
ear oscillations by means of external perturbations.

exp[—F&v, (E—1'). (1.38)

d) Echo oscillations in a nonequilibrium plasma

The simplest example of a nonequilibrium plasma is a
beam-plasma system, i.e., an equilibrium plasma through
which passes a neutralized beam of charged particles. At
certain beam velocities u > u., where u_ is some critical ve-
locity, an instability of natural oscillations of the plasma oc-
curs (the values of u_ differ for different wave types). To
determine the nature of the nonlinear echo oscillations in a
nonequilibrium beam-plasma system and to determine
whether an instability of oscillations of this type can occur,
we adopt the unperturbed electron distribution function

fo ) =no ()" exp (=57 )

, 3/2 —u)2
+n (2:T' ) exp (_ m(;T"u_) ), (1.39)
2« (1.40)
g
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We consider the temporal echo in a plasma of this type.'® We
assume that the perturbations are caused by external charges
{1.16) and that the wave vectors k, and k, are directed along
the beam velocity u. We choose the wave numbers &, and &,
to satisfy the conditions ak,, ak,» 1, while their difference,
k = k, — k,, in contrast, satisfies the condition ak €1. In the
linear approximation, as we have seen, the nature of the field
oscillations is determined by the poles corresponding to the
equations ¢(w,k ) = 0, glw,k,) = 0, and ¢(w,k,) = 0. At short
wavelengths (ak,, ak,» 1) the solutions of these equations are
known to describe strongly damped aperiodic oscillations
(| Imew|» |Rew|). The effect of the beam on the damping, on
the other hand, is important only for long-wave oscillations
(ak<1), since these waves are weakly damped. The solution
of the equation ¢(w,k) = Ois thus of the form o = + 2 — iy,
where ¥ is determined by

v=V 5 s [exp (— o)
—i—"T'0 Q—Qku (_;T)a/zexp(_g%lzm_)’)].

(1.41)

The field of the echo oscillations can be determined from
(1.20), where f,(v) is taken from (1.39). In the integration over
o and ®’ in (1.20) we need to take into account the pole in the
function £~ '(w, K), since the condition 7> 1 does not hold,
because the damping rate ¥ can become arbitrarily small or
even negative. In the instability region (y S 0) the echo field is
given by

E® (r, t)=32n2 —P1fa

matkky T

X exp (tkr + |y[ (t — 1) —Q (¢ — 7))
{ Tl__t_, T<t<T,,
Iey
X
T
&

It can be seen from (1.42) that under the condition ¥ <O the
echo oscillations can grow with time. We thus see that, in the
first approximation, the field oscillations which arise in a
nonequilibrium plasma are rapidly damped as a result of the
superposition of short-wave perturbations. Nevertheless,
the echo oscillations may grow in the second approximation.

The echo signal in (1.42) is affected by resonant elec-
trons of both the plasma and the beam, since
E®~yexpX(y'|t — 7'|). The role played by the beam is to
disrupt the stability of the echo oscillations in the plasma
when the beam velocity u exceeds a certain critical velocity,
which for plasma oscillations is of the order of the thermal
velocity of the plasma electrons (the beam “pumps’’ the echo
oscillations, since they are weakly damped, while the exter-
nal perturbations are strongly damped and are stable under
the same conditions). Hinton and Kawabe*® have studied a
second-order spatial echo which arises simply from a modu-
lation of the beam electrons.

It was shown in Ref. 19 that spatial echo oscillations
could be amplified by plasma oscillations, and it was shown
in Ref. 48 that they can be amplified by ion acoustic waves in
a beam-plasma system. It also follows from Refs. 19 and 48
that, although the primary oscillations with frequencies

(1.42)
t>1.
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@, 5 (@, »82) are strongly damped, a nonlinear echo signal
appears at a distance /' = w,/ /(w, — @), from the source of
the oscillations with the frequency @,. This nonlinear echo
signal has a frequency w = w, — @,, which corresponds to
the transparency region, w 2 {2 (i.e., thereis a “brightening”
of the nonequilibrium plasma).

e) Nonlinear echo oscillations in the relativistic case. Plasma
echos in semiconductors

In this subsection we examine the echo in an electron
plasma when relativistic effects are significant, and we also
consider the echo in a plasma in an A"'BY semiconduc-
tor.%? In a relativistic plasma the electron velocity is
bounded from above; it cannot exceed the speed of light c. In
type A"™BY semiconductors, the relationship between the
momentum p of the conduction electrons and their energy &
is (according to Kane®')

p?=2mé (1+—;i—), (1.43)

where m is the mass at the bottom of the band, and & , is the
width of the energy gap. For a band of this shape the electron
velocity,
dg 28 ¢ -1 28 \ -1
v=gr=[m (1) ] {1+ an) :

is again bounded from above as the electron energy in-
creases; it cannot exceed a certain limiting velocity
v, =&,/2m.

The upper bound on the electron velocity should have
some important consequences for processes in which the tail
of the Maxwellian distribution function plays an important
role. One such process is the Landau damping of plasma
waves. The appearance of a limiting velocity for the conduc-
tion electrons is reflected directly in the Landau damping
rate and thus in the shape of the echo oscillations.

For a quantitative description of the collective temporal
echo in a relativistic plasma we can work from expression
(1.20), where f;, must be understood to be the momentum
distribution function of the particles of a relativistic ideal
gas. We take the external perturbations in the form in (1.16)
and (1.17).

We choose the wave numbers to satisfy {2 /k |, £2 /k,<c,
while their difference & = k, = k| satisfies £2 /k S ¢. In this
case the poles corresponding to the solutions e(w, — k,) =0
and e{w,k,) = 0 describe strongly damped oscillations, while
the pole corresponding to the solution £(w,k ) = O describes
weakly damped oscillations and contributes to the echo
field.

Using the method of steepest descent ({2 |t — 7'|>1) we
find the following expression for the field of the echo oscilla-
tions*® (for £> 7'):

B (r, t)= —i3202 S0 0t —)7 (1 — )"
X k exp (ikr) exp (—;(t—‘t')) cos (Q (t—1')),
where (1.44)
1=V S (1)
xexp { =2 ((1—555) " —1)}. (1.45)
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In the limit £2 /k—0 we have ¥—0, and the echo oscillations
decay slowly over time.

The temporal echo in the plasma of an A"'BY semicon-
ductor was studied in Ref. 52. It was shown that as the wave
phase velocity tends toward a limit (set by the band width)
the echo oscillations decay with time. The shape of the echo
oscillations is thus sensitive to the band shape.

Echo oscillations can arise only if the resonant damping
exceeds the collisional damping, i.e., only if ¥ > v. This is a
restrictive condition for a semiconductor plasma. For the
semiconductor n-InSb with a carrier density n = 4.10"
cm™> at T= 10 K we find v = 3.10° s~ ! (electron-phonon
scattering). Taking ak = 0.25, we find /2 = 1077 and
y~10'"s~!. We thus see that conditions for the appearance
of echo oscillations can be arranged in n-InSb with these
parameters. We might note that Landau damping has been
observed experimentally in an A™BY semiconductor—by
Tell and Martin® in #-GaAs.

f) Echos in magnetized plasmas

In a magnetized plasma we would expect to find some
nonlinear effects not seen in an isotropic plasma, because the
external magnetic field determines the way in which the
charged particles move in the plasma and thus alters the
dielectric properties of the plasma (the spectrum of natural
oscillations becomes significantly broader, and another
damping mechanism, cyclotron damping, comes into play
along with Landau damping). The external magnetic field
thus has an important effect on the nature of the Van Kam-
pen waves. The solution of the kinetic equation for the func-
tion £V is (for the simplest case, in which the waves are prop-
agating along the external magnetic field B,}||0z).

; fa (i E{} foaldv , et
2 0—kv,FOpg+i0

f&’£m= - Mo

+i E(21k)m 6f0a/6vleie Egkzo 0foaldv, ) (1 46)
2 0—kv,—wgg-+i0 o— kv, +i0 ’ :
where 6 is the azimuthal angle in velocity space, E,,
=E, FiE, and wy, =¢,By/m,c. It can be seen from
(1.46) that in a magnetized plasma we have, in addition to the
undamped oscillations of the distribution function at the fre-
quency w = kv,, some oscillations of the distribution func-
tion at the frequencies w = kv, + wp,. Accordingly, in addi-
tion to the longitudinal echo oscillations at the point
z=1"=w,! /(w, — w,)caused by theinteraction of the longi-
tudinal primary oscillations there is also an echo at the
points z =/ (w, + wp, )/(@, + @,) due to the interaction of
the transverse oscillations, and there is a transverse echo at
the points
0y + Wpa 1
0 + wpg

2=lg1 9= £ l0; = F o = o)

in the interaction of a transverse oscillation with a longitudi-
nal oscillation (at the points z=0 and z =/, there are
sources of perturbations with the frequencies w, and w,, re-
spectively). In a magnetized plasma, therefore, there can also
be some nonlinear echo oscillations associated with wave
conversion.

The temporal and spatial echos in a magnetized plasma
were studied in Refs. 54-59. In particular, the longitudinal
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and transverse temporal echos of second order were studied
in Refs. 56 and 57, respectively. Echo oscillations of ion-
acoustic and cyclotron waves were studied in Ref. 58, and it
was shown that in a nonequilibrium magnetized plasma with
alow-density charged-particle beam there can be a growth of
a nonlocal, nonlinear echo signal at the sum and difference
frequencies @ = w, + @,. A self-consistent approach was
taken to study the echo in Ref. 58. The dispersion relation for
the natural oscillations for propagation along the magnetic
field breaks up into three independent equations*’: equa-
tions for the longitudinal wave {which is of the same form as
in an isotropic plasma) and for the left-hand and right-hand
polarized transverse waves,

- 02
tr2(0, W=kt —wi—iY7 S T w (L2 ) o,
2

(1.47)

Revenchuk and the present author’® studied the sec-
ond-order longitudinal echo at the ion acoustic frequency
which results from the interaction of transverse electron cy-
clotron waves for the following selection of frequencies of
the external perturbations:

Wy, p— (@ sQ \2/3
1, 2—(0Be) , < ( ) ,

@y, 5 cWBe

and

03 = 0y — Oy = O
(for this selection of frequencies, the oscillations with @, and
@, experience a strong cyclotron absorption, while the echo
oscillations at w, are only weakly damped). The expression
derived there for the second-order longitudinal echo is
8n8/3iw,a® (2—1) k8

@3ks?

EQ(z, t)= J1726XDp (— iw,t)

% 2 el (0, + wpa)

Mgsq
[\

exp [ — (wg/kysa)?] exp [i (ks iTs) (z—=I)1
ey (&_{__&)BE. kg, (,)2) gy (_m’_ ks’ _(01) ’

g Wg

(1.48)
where k, and I’ are the wave number and damping rate of
the ion acoustic waves, andj, and, are the amplitudes of the
external current. It thus follows from (1.48) that although
the primary waves at the frequencies @, and , are strongly
damped there is a reradiation of a wave at the frequency
3 = @, — @, in the transparency region by virtue of echo
effects (i.c., there is the possibility of “brightening” opaque
regions of a magnetized plasma).

Porkolab and Sinnis>* studied the second-order spatial
echo oscillations which result from an interaction of electro-
static oscillations at frequencies which are multiples of the
cyclotron frequency when they propagate at an angle with
respect to the external magnetic field (k, #0); Bernstein
modes). Their analysis was carried out by the method of Ref.
59: they found that the echo at the frequency wy, reached a
maximum intensity at the point

Wy —nWBe

— %
Z2=2" = —
g — @y — pOBe

(n and p are integers). The experimental results of Ref. 54 are
discussed in Section 3 of the present review.
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It can be concluded from the echo studies in Refs. 54-59
that the echo in a magnetized plasma has the following dis-
tinguishing features: 1) Cyclotron damping, rather than
Landau damping, plays a governing role in the formation of
the echo; 2) the echo arises at not only the difference frequen-
cy but also the sum frequency, » = », + ®,; 3) the ampli-
tude of the echo signal depends strongly on the magnetic
field.

Numerical estimates show that conditions for the oc-
currence of echos can occur in the ionospheric plasma (ac-
cording to data reported in Ref. 60, the resonant-damping
lengths for electron cyclotron waves, ion cyclotron waves,
and plasma waves for the ionospheric F layer are
ry'~107°m, 'y '~1m, and Iy '~10"2 m, respec-
tively, and the mean free path of the particles is A 2 10° m;
i.e., A" 7'). A cyclotron echo has been observed in the
ionospheric plasma during topside sounding of the ionos-
phere.” The echo in the plasma of the solar corona was stud-
ied in Ref. 61.

g) Ballistic theory of echos

We have been discussing the echos in plasmas by work-
ing from a kinetic equation with a self-consistent field. We
turn now to a simpler theory, the ballistic theory of echos,
which was derived in Refs. 63-65. This theory is based on the
free-streaming approximation, in which only the field of the
external perturbations is incorporated in the kinetic equa-
tion (the field of the external perturbations induces modulat-
ed particle beams or Van Kampen waves in the plasma, but
we are ignoring the effect of the field of the external pertur-
bations on the dielectric properties of the plasma).

We work from the Boltzmann kinetic equation

U avLtaz, L=, (1.49)
where f(z,v,¢ ) is the distribution function, and a(z,t) are the
external perturbations. Equation (1.49) is solved by the
method of characteristics:

.

z=v, v=ea, [=0,

(1.50)

and ¢ is the parameter of these equations. The solution of
Egs. (1.50) is
z2 =2z (z01 Vo t)!

f=f(z01 Uoy t)'

Returning to the old variables, we write

UV =0 (2, Voy I)s

(1.51)
Zg = 29 (ZY v, t)! Vg = Uy (Z, v, t):
f = f (zo (Z, v, t), Uy (Z, v, t), O) (152)

Knowing f, we can find macroscopic properties: the density,
the electric field, and so forth. For example, the spatial Four-
ier component of the charge density can be found from the
following expression:

pa (t) = e | dzo dvy exp (—ik (vu, 20, 1) F @) (153)

To examine the temporal echo we choose the external
perturbations to be

az, t)=a (38 (t) +a,(2)8(t — 1), (1.54)
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E.
where a;, = C,; exp (ik;z), and C;, = —e—{')-. We then find the
m

following expression® for the charge density of order (p + n):
P (5, )= 3} ppn () exp (ihpn),

Ppn (8) = (—1)"*"eJ p {B (t) Cikipn (t—7p5)}

x Jn {e (t - T) C‘zkpn (t — Tpn)}

x S dv exp (—ikp, (t — Tp,)) f (v), (1.55)
where k,, = nk, — pk,, and 7,, = nk,7/k,,. At the time
t = 7,, the phase factor in the exponential function in (1.55)
becomes independent of the velocity, and the macroscopic
charge density becomes nonzero: This is a temporal echo.
The spatial echo was studied by the ballistic theory in Refs.
64 and 65, and its amplitude of order (p + n) was found to be
Eom ~J, (n5 S E1) I, (p5 = Ey)

m  of m o
xexp| — 2 (£ 12— 11)"], (1.56)

where /,, = p,w,/(pw, — ne,) is the point at which the echo
reaches its maximum intensity, and J,(x) is the Bessel func-
tion of index p. We might note that expressions (1.55) and
{1.56} for the macroscopic echo signal were derived without
assuming that the external perturbations are small, in con-
trast with the cases discussed earlier, where a method of
successive approximations in the fields of the external per-
turbations, E; was used.

h) Comparison of the results on collective and ballistic echos

This discussion has shown that both the self-consistent
approach and the ballistic approach are required for a quan-
titative description of the effects, depending on the formula-
tion of the problem. Specifically, (1) if the frequencies and
the wave vectors of the oscillations under consideration cor-
respond to the plasma transparency region (e.g., at a fre-
quency @ ~{2 and wave numbers k<a ~ ' for an electron plas-
ma), the self-consistent approach must be taken to study the
echo, while (2) in the case of strongly damped waves {w> {2
and k>a~ ! for an electron plasma) the ballistic approach is
sufficient.

The collective echo has some characteristic features.

1. The shape of the echo signal is asymmetric in time or
in space. For example, the spatial evolution of the echo sig-
nal in the case of the interaction of plasma waves can be
described as follows: a growth of an echo signal ~ exp[(w,/
@, (z—1')] and a decay exp[ — (w/w,) 5z —!")] and
expl — (@/w ) (z —1")].

2. The amplitudes of the echo signal of order (m + n)are

(1.57)
(1.58)

Emm ~ ETERT",
Ewmimy o ERERID

for the temporal and spatial echos, respectively, since the
method of successive approximations was used for the echo
calculations. From the conditions for the applicability of this
method (E P<E Y, E®<E ?, etc.) we find some restrictions
on the fields E; (i =1,2) of the primary perturbations
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(E; ~p;/k), working from expressions (1.22) and (1.24) for

the fields of the second-order echo oscillations, E *:
eEkt

Ty <1, (1.59)
ek k3]
W<<1. (1.60}

[Under conditions (1.59} and (1.60) we can use the linear
theory of Landau damping for the primary waves.] The am-
plitudes of the temporal and spatial echos of second order
are determined by (1.55) and (1.56) withp =1and n = 1.

3. If the echo is a collective response to the bunching
and debunching of electrons, then its wavelength is deter-
mined by the frequency of the echo, that of one of the exter-
nal perturbations, and the plasma dispersion relation.

Two aspects of the ballistic echo are worthy of note.

1. The ballistic echo is symmetric in time and space. For
the second-order spatial echo, for example, the amplitude
can be described by ~exp{ — (3/2)[(w/s)|z — I'|]*"?}, i.e.,is
symmetric for an arbitrary relationship between the fre-
quencies of the external perturbations. The amplitude is fur-
thermore proportional to

2 (Ti‘f)_f g,0) (%Z—Z Ey),

2. If the echo is due exclusively to the bunching and
debunching of free-streaming electrons, then its wavelength
is a function of only the echo frequency and the characteris-
tic electron velocity.

For small amplitudes of the primary fields, for which
conditions (1.59) and (1.60) hold, we can expand the Bessel
functions in series in their small argument in (1.55) and
(1.56), and the amplitudes of the temporal and spatial echos
are again given by (1.57) and (1.58) withm =l and n = 1.

Setting the dielectric permittivities equal to unity,
£ =1, in expressions {1.22) and {1.24) for the amplitudes of
the collective echo, we find the same expressions for the echo
field as are predicted by the ballistic theory in (1.55) and
(1.56) for small field amplitudes E, satisfying conditions
(1.59) and (1.60). As the amplitudes of the external perturba-
tions increase, and conditions {1.59) and (1.60) no longer
hold, we must abandon the method of successive approxima-
tions, using (1.55)and (1.56) to describe the echo amplitudes.
The ballistic theory thus predicts a saturation of the echo
amplitude with increasing amplitude of the external pertur-
bations. Experimental data confirm this interpretation of the
collective and ballistic echos.

Ikezi and Takagashi’ and Wong and Baker®® have used
the theory of a collective echo to study ion-wave echos. Their
experimental results showed that the echo is asymmetric in
that the echo signal rises and falls in different ways; this
asymmetry is in agreement with the theory. Goforth and
Gentle** carried out experiments on the structure of the
third-order plasma-wave echo, determining the growth rate
and decay rate of the echo signal with respect to the point of
maximum intensity and also determining the echo wave-
length. Those experimental results agree well with the the-
ory of the collective echo. Malmberg et al.’ showed experi-
mentally that the echo is determined primarily by collective
effects (the frequencies of the external perturbations and of
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the echo were w, , and w;~12).

Ripin and Pechacek®® experimentally demonstrated the
ballistic nature of the second-order spatial echo at @»£2: The
wavelength and the frequency are related by w/k=v,,
where v, is approximately equal to the velocity at which the
electron distribution function has its maximum slope. This
distribution is symmetric. Moeller®” studied the echo satura-
tion at large amplitudes of the external perturbations and
showed that the echo amplitude can be described well by the
Bessel function J,, in accordance with the ballistic theory.

If the amplitudes of the external perturbations are large
enough to satisfy eE;/mws> 1, trapped particles must be tak-
en into account.®*-’° Echo phenomena involving trapped
particles were studied theoretically and experimentally in
Refs. 68-70, and the possibility of exploiting them to study
the turbulence in fusion-research devices was discussed.

i) Echos in Inhomogeneous plasmas

We have been discussing the echo in a homogeneous
plasma, which is a nonlinear echo. In an inhomogeneous
plasma in which a wave interacts resonantly with only a cer-
tain group of particles in each region of the plasma, the echo
effects may be linear. Studies have been carried out?®>?? on
nonlocal echo effects, which can occur only in an inhomo-

geneous plasma, in particular, the linear echo which arises
during the propagation of a wave along a nonuniform exter-
nal magnetic field, the longitudinal echo from two trans-
verse sources in an opaque region of an inhomogeneous plas-
ma, and the second-order echo at the sum frequency from
two longitudinal sources in an inhomogeneous,. isotropic
plasma. The role played by echo effects in the brightening of
the opaque regions of an inhomogeneous plasma was exam-
ined in those studies. The transmission of electromagnetic
waves through an opaque region in an inhomogeneous mag-
netized plasma was studied experimentally in Ref. 23.

Let us examine, for example, the propagation of an ex-
traordinary wave of frequency » along a nonuniform mag-
netic field. The current induced in the plasma is

o= — 2 T2 [ [ ey @yes
0 z

— 5 dZE, (2)ev |, (L6])

where the phase factor is

2
o= 5L o).
A solution for the electric field is sought in the WKB
approximation:
Eo@=do@exp (i | KE)dr). (1.62)
The phase factor in the exponential function in (1.62) be-
comes

0= § a, (2")dz",

z

(1.63)

where @, (z”) = k — (wg(2”)/V).
In the integration over the velocity v in a homogeneous
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plasma, the phase factor 8 causes a thermal dissipation of the
perturbation in accordance with ~ exp[ — (3/4)(6z/5)*'%]. In
an inhomogeneous plasma the z dependence may cause the
phase 8 to have an extremum along the v scale, so that a
macroscopic signal—an echo—arises as a result of the inte-
gration over velocity.

2. ECHO PHENOMENA IN BOUNDED PLASMAS

A spatially bounded plasma can exhibit some qualita-
tively new echo phenomena, which are not seen in an un-
bounded plasma. These new effects stem from the reflection
of charged particles from the plasma boundaries and from
the existence of surface waves. Surface echo waves arise in
addition to volume echo waves. Furthermore, echo phenom-
ena can give rise to an anomalous transmission of electro-
magnetic waves through dense plasma slabs®**?” and metal
films.28-3¢

Since the kinetic approach is required for describing
echo phenomena, an important point here is to select the
reflection conditions for the plasma particles at the bound-
ary. In the case of a sharp boundary, we specify

f* (.Z, ¥y, z2=0 Uxy Uy, vz) = Pf' (z, Y 2

= O; Uxy Uyy _Uz)v

(2.1)

where £~ and f* are the deviations from the equilibrium
distribution function for particles moving toward and away
from the boundary, respectively (the plasma occupies the
20 half-space). Condition (2.1) means that a fraction p of
the total number of particles incident on the boundary are
reflected without a loss of directed velocity, i.e., in a specular
fashion, while a fraction 1 — p are reflected in a diffuse fash-
ion.

One of the earliest experimental studies’ carried out to
detect echos in plasmas dealt with not only echo phenomena
in an unbounded plasma but also the echo which results
from the specular reflection of electrons from a metal plate
bounding a plasma.

As in the case of an unbounded plasma, it is convenient
to use the nonlinear equation for the field derived in Ref. 71
for a quantitative description of echo phenomena in a semi-
infinite plasma with the model of specular reflection (p = 1).
For mixed specular-diffuse reflection, 0 <p <1 (in both
semi-infinite plasmas, on the one hand, and plasma slabs and
metal films, on the other), the echo is described by the
simpler ballistic approach.

a) Echo phenomena in a semi-infinite plasma with a sharp
boundary for the model of specular refiection

Let us examine the echos in a semi-infinite plasma with
a sharp boundary under the assumption of specular reflec-
tion of the electrons at the boundary (this situation can arise,
for example, if a plasma is confined by an insulator). The
boundary causes (first) additional Van Kampen waves (be-
cause of the specular reflection of particles) and (second) a
substantially different dispersion of the waves propagating
through the plasma. These two circumstances give rise to
some qualitatively new echo effects, as we will now see.

The second-order collective echo in a semi-infinite elec-
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tron plasma was studied in Refs. 72-74 under the assump-
tion of specular reflection of electrons from the boundary (a
spatially homogeneous, steady-state plasma fills the z>0
half-space, while the z < 0 half-space is filled with an insula-
tor with a dielectric permittivity £,). The external perturba-
tions are assumed to be external charge densities in the
planes z= +ax+ v1 + a1, tilted at an angle 6 with re-
spect to the plasma surface {tan 8 = a):

p°(z, 2, t)
= 3 3 p,exp(in;t)b (k, (sin Bz 4= cos B (z— 1)),
=T, 2%

(2.2)
In other words, we are actually dealing with a two-dimen-
sional case in which all quantities are functions of x and z.
The field of the echo oscillations at the frequency
@ = w, — w, consists of a volume field and a surface field:

EL — B+ B (2.3)

The field of the volume-oscillation echo at the frequency
O=w,—,is

(2)o _ 32 & e pipy(atar—1/1+4al])
EZ7 (2, 2, 1) =16a% 1+a2 m ©,0,a2ky?

exp [(iw/sE) (sin Bz 4-cos 8z — ') —E~2]
E2e (— w0y, ©1/5E) & (@y, @,/sE) & (0, ©/sE)

(2.4)

where /' = (w, + o)l /(w, — »,). It can be seen from (2.4)
that the maximum of the echo signal at the frequency
® =w,—w, lies in the plane z= —ax + 1+ a?l If
6 = 0° we have @ = 0 (meaning that the planes containing
the charge grids with , and w, coincide and run parallel to
the plasma boundary, lying at a distance / from it). The den-
sity waves (Van Kampen waves) propagating from the grid
with the frequency w, toward the plasma boundary are re-
flected from it and are then modulated again by the field at
the frequency @, from the same grid. The result is the excita-
tion of secondary Van Kampen waves at the frequency
@, — @, which produce a macroscopic echo signal at a dis-
tance z = /' from the plasma boundary.

If the frequencies w, , of the external perturbations and
the frequency @ = w, — @, of the nonlinear signal satisfy the
conditions @, , > 92, 2 /Y1 + €, <w < 12, then the echo field
is determined primarily by the surface termin (2.3),i.e., E %",
In this case the nature of the echo signal is determined by the
dispersion of the surface waves, and it reaches a maximum
intensity at the pointx = (v, + @)/ /(w, — @,)on the plasma
boundary. The z dependence of the amplitude of this signal is
described by

E®s { N [_%(%)m], Z_‘w—<< (7:':?)3’

>

X exp(— ioot)SdE

1
Egz)v(x, z, t).__?Eg)v(x’ z, t),

(2.5)

20 @

exp (—k,z2), _>>(k—1s_)3’

s

where k, is the wave number of the surface wave at the fre-
quency o, given by’®

k1=(1+BT")—(:—Beﬁ'1 (%) (2.6)
with
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2

e=1— , E> —¢ s<%<—c——

Ve’

2

(0]

B(4)~25—i0.3

and w = 02 /V2.

It follows from (2.5) that the echo signal is concentrated
near the surface bounding the plasma and is exponentially
small only a very short distance from this surface, at a few
times the Debye length. In-other words, the echo signal is of
the nature of a nonlinear surface wave.

The dispersion of the collective echo in a semi-infinite
electron plasma is thus determined by the dispersion of both
volume and surface waves.

The temporal echo in a semi-infinite plasma was studied
in Ref. 76, and the spatial echo in a semi-infinite magnetized
plasma was studied in Ref. 77 (in each case, the model of a
sharp boundary with specular reflection of particles from the
boundary was used).

b) Echos in a semi-infinite plasma with a sharp boundary for
the model of specular-diffuse reflection

If the plasma is bounded by an insulator then the reflec-
tion of particles from this boundary may be mixed: Some
particles may settle on the insulator and lose their directed
velocity, while others may be reflected in a specular manner
as a result of Coulomb repulsion [in this case we would have
0 <p < 1in(2.1)]. The echo signal should depend strongly on
the nature of the particle reflection at the boundary, since
only the specularly reflected particles contribute to the echo.
Studies’®” of the spatial ballistic echo in a semi-infinite elec-
tron plasma with 0 <p < 1 show that this is indeed the case.

To study the echos we work from kinetic equation (1.1)
for the distribution function, specifying the electric field E
to be (we ignore the self-consistent field)

D = i=122. 3’E01 [exp (iw,t) -+ exp (—iw;t)]

X exp(—x; |2—1}), (2.7)
where x;” ! is the skin depth,
s=ut=—)/ 24, (2.8)

[Since the frequencies of the external perturbations satisfy
@; < {2, expression (2.7) means that the field penetrates a dis-
tance equal to the skin thickness §; on each side of the source
atz = /.] The effect of the field (2.7) reduces to one of modu-
lating the particle fluxes, which we assume to be directed
normal to the boundary. The distance/ from the boundary is
chosen to satisfy x,/» 1. Assuming that the external pertur-
bations are small (eE,;,/mw;s<1), we can solve the kinetic
equation by the method of successive approximations. A
longitudinal echo can occur in the second approximation. It
arises in the plasma volume at a distance /' = (o, + w,)/ /
(@, — @,} from the boundary. In the third approximation in
the field, there can be a transverse echo at the frequency w,
=5+ 0, — (o, <2):
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202522 HyxgAg (K (W5 200g) + %500y)
W3y {Wy4-005)3

. 21
X BBy Eqzexp (— iwgt) exp (—-2—-—(20% |z—11|) ’
X [1—iV 3 sign (z—1,)], (2.9)

wherez =, = (w; + @, + w,)| / @, is the point at which the
echo reaches it maximum intensity. We see that the ampli-
tude of echo (2.9) is proportional to p, i.e., to the fraction of
electrons reflected specularly from the boundary, and we see
that the shape of this echo is symmetric in space with respect
to the position of the maximum, /,. A similar approach was
taken in Ref. 80 to study the echo of electromagnetic waves
in an unbounded plasma.

The longitudinal spatial echo in a semi-infinite plasma
was also analyzed by the ballistic theory in Ref. 78. Mono-
chromatic signals with frequencies w, and w, satisfying
®,, > (Van Kampen waves are propagating normal to the
boundary) are specified on a grid positioned a distance/ from
the boundary. A general expression is derived for the longi-
tudinal echo field of order (p + g) (without the assumption
that the external perturbations are of small amplitude, so
that the saturation of the echo can be described). The maxi-
mum intensity of this field occurs at the point

P g0, + pwy 1
»e Gy — pWy

E® (z, 1)=413

n2 m2c3

(2.10)

The amplitude of the echo of order (p + g) is also proportion-
al top, the fraction of electrons reflected specularly. By mea-
suring the amplitudes of the echo signal it is thus possible to
carry out a direct experimental study of the nature of the
electron reflection from the plasma boundary.

¢) Spatial echo in a plasma with a diffuse boundary in the
approximation of a given field

The boundary of a plasma is frequently not sharp and is
instead characterized by some distance over which the den-
sity changes near the plasma surface (we will call this the
“plasma-vacuum transition layer”). A boundary of this type
may form as a result of some particular potential profile, for
example. It was shown in Ref. 81 that the nature of the longi-
tudinal spatial echo in this case depends strongly on the po-
tential profile. As in the case of a plasma with a sharp bound-
ary, sources of external perturbations with frequencies o,
and o, are positioned at a distance / from the boundary
(@12 >42). We supplement the kinetic equation for the elec-
tron distribution function with the condition for specular
reflection of the electrons by the potential profile:

r (Z = Zgs U) = f- (Z = %, —V), (211)

where the electron reflection point z = z, is determined by
the condition < U z) = &, where & = fu (2) + %72 is
m m

the total electron energy (for simplicity we are dealing with
the one-dimensional case). A detailed analysis was made of
the case of a parabolic potential profile,

—Ug(zfa—1)? z<a, Uy>0,
ve={""° Ny .12
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and a linear potential profile,

—Uq(zla—1),
ve={""

z<a,

i~ (2.13)

(the parameter a determines the width of the plasma-vacuum
transition layer and is of the order of the Debye length).
Figure 1 shows the shape of the real part of the echo field,
E?(wy = w, — ,) as a function of z for the following pa-
rameter values: kT = 100 eV, 2 = 1.78:10°s ™', w0, = 1.2£2,
w,=28N,a=34cm,/=11.75cm, /' =25.845 cm, and
kT /eU, = 0.1. We see that the echo amplitude has different
shapes, depending on the potential profile; this situation
raises the possibility of experimentally studying the poten-
tial profile in the plasma-vacuum transition layer by measur-
ing spatial-echo effects.

d) Echos in plasma slabs and metal films

The modulated particle beams which undergo repeated
specular reflection from the boundary of a plasma slab may
be focused in phase and may produce a macroscopic echo
signal (some examples of such boundaries are insulating
plates and the surfaces of metal films). The most interesting
situation here is evidently that in which the slab is opaque to
the fields of the external electromagnetic waves which are
incident on the slab, e.g., under the condition @; <2 (w; is
the frequency of the electromagnetic wave, and £2 is the plas-
ma frequency of the slab), in which case the fields penetrate a
distance equal to the skin thickness §, into the plasma, while
the slab thickness is d»&;. Van Kampen waves will propa-
gate away from the slab boundary. These waves will be re-
flected from the boundaries of the slab and repeatedly modu-
lated by the fields of the external perturbations (over the skin
thickness), and they may become focused in phase near the
opposite side of the slab and excite a nonlinear echo signal.
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FIG. 1. Profile of the asymptotic shape of the echo field £ along z.
Dashed curve—Tlinear potential; solid curve—parabolic potential.
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This signal may be radiated into vacuum, i.e., there may be a
nonlinear “brightening” of the plasma slab.

Let us examine the results which have been found on
echos in plasma slabs and metal films. Revenchuk and the
present author’*?* predicted a nonlinear transmission of
electromagnetic waves through a dense slab of an electron
plasma occupying the interval 0<z<d with sharp boundaries
(boundary 1 at z = 0 and boundary 2 at z = d ). This nonlin-
ear transmission was to be a consequence of echo effects. Let
us examine the case in which electromagnetic waves of fre-
quency o; €2 (i = 1,2,3) are incident normally on boundary
1 from vacuum. These waves penetrate a distance equal to
the skin thickness, §;, into the plasma. Since the layer thick-
ness d satisfies

adgh (2.14)
(A is the electron mean free path), the linear transmission
coefficient for the waves (the ratio of the amplitudes of the
incident and transmitted waves) is exponentially small,
ky, ~exp( — d /6). If particles are reflected specularly from
boundaries 1 and 2 (at boundary 1 the particles are modulat-
ed by the fields of the incident waves), and if the frequencies
w,; are chosen correctly, then a transverse third-order mac-
roscopic echo signal at the sum and difference frequencies
@5 — @, + w, will arise near boundary 2. These echo signals
may be radiated into vacuum. The nonlinear wave transmis-
sion coefficient in this case is significantly higher than the
linear coefficient. For a plasma slab with 2 = 10" s,
5=0.510° m/s, d =208 (6~c/f2=3.10"% m), and
o; = 0.1 we find &, /k,,, 2 10° when the amplitudes of the
incident waves satisfy eE,/mw,s=~10"2. Echo phenomena
in a plasma slab were studied in Ref. 27 for the cases in which
s- and p-polarized waves are incident from vacuum.

In a nonequilibrium plasma slab along whose boundary
an electron beam is moving, a second-order nonlinear echo
signal may be generated as a result of modulation of the
beam particles.*?

Dryakhlushin and Romanov?®® studied the spatial echo
in a plasma slab under the condition of specular reflection of
the plasma particles at the slab boundaries. They dealt with
electrostatic waves, and they put the sources of the “‘exter-
nal” fields at the same point inside the plasma slab. They
derived a general expression for all points for which a plasma
echo at the frequency w, — w, is possible (w, and w, are the
frequencies of the external fields). Under the condition
aw, = Pw, (@ and B are integers), a large number of echo
oscillations may be superimposed at a single point, and an
echo resonance of a sort may arise [the amplitude of the
echo-oscillation field is proportional to (4 /d )?, where A is the
mean free path of the particles, and d is the slab thickness].

Plasma echos in metal films were studied in Refs. 28-30
under the assumption that the mean free paths of the
charged particles were much larger than the film thickness
and that a certain fraction of the particles undergo specular
reflection from the film boundaries.

It was shown in Ref. 29 that in an anisotropic crystal a
plasma echo arises even in second order, because of electrons
which are reflected specularly from the metal boundary. It
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was assumned there that electromagnetic waves with frequen-
ciesw, , <2 are incident on both surfaces of the metal film
(boundary 1 atz = Oandboundary 2 atz = d ) and decay over
the skin thickness. An echo signal at the frequency w, — o,
arises near boundary 1 in the second approximation in the
field. This signal has a sharp maximum atw, = 2w,. A corre-
sponding effect can be seen at w, = w,/2 near surface 2.
These results are valid under the rather stringent conditions

%:a«%’;«ﬁi«d«h (2.15)
where v, = [4 (37%n)"/3]/m is the Fermi velocity, m is the
effective electron mass, 8, ~c/w; is the skin thickness, and
A = v,/v is the mean free path in the metal. Some numerical
estimates were also carried out in Ref. 29 for a bismuth single
crystal, in which inequalities (2.15) can be satisfied at
@~10"-10" cm ™', so that the conditions required for a
plasma echo can be satisfied.

Leviev and Potapenko®® observed the plasma echo ex-
perimentally in a bismuth plate in a magnetic field directed
perpendicular to the surfaces of the plate. These measure-
ments involved determining the dependence of the power
level of the nonlinear echo signal on the magnetic field.

In summary, an anomalous transmission of electroma-
getic waves at sum and difference frequencies through plas-
ma slabs with sharp boundaries and through metal films was
predicted in Refs. 24, 25, and 28-30. The effect was under-
stood to result from a nonlinear phase focusing of particles
reflected in a specular manner by the boundaries of the slab
or film.

3. EXPERIMENTAL RESULTS ON PLASMA ECHOS. USE OF
ECHOS FOR PLASMA DIAGNOSTICS

a) Experimental research on echos of plasma waves, ion-
acoustic waves, and cyclotron waves

Spatial echo phenomena at the plasma frequency were
first discovered in Ref. 5. In those experiments, a plasma
column 180 ¢cm long and 5 cm in diameter with a central
density of 1.5-10® cm ~? was placed in a magnetic field of 305
G. The background pressure was ~ 1.5-1077 torr for Hy; at
this pressure the mean free path for collisions of electrons
with neutrals was 10 m; in other words, the plasma was colli-
sionless. The plasma temperature was 9.4 eV, and its Debye
length was 2 mm. The plasma was surrounded by a cylinder
5.2 cm in radius which served as a waveguide for the waves
propagating through the plasma. The plasma column was
bounded in the longitudinal direction by a negatively
charged plate whose electric field reflected electrons. Oscil-
lations were excited and studied with an array of probes
which could be moved along the radius and along the axis. A
signal of adjustable amplitude and frequency from an exter-
nal generator was applied to one of the probes in order to
arrange dispersion and damping of the plasma waves. Malm-
berg et al’ concluded from the experimental dispersion
curve [w = f(k }] that the dispersion of the oscillations in the
region k£ < 1 cm ' depends on the radius of the system, while
at k> 1 cm ™' the dispersion is dominated by finite-tempera-
ture effects. For the frequencies studied the condition k; > 2
cm ™' (i = 1,2,3) holds; in other words, the plasma can be
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assumed unbounded in the radial direction. For observation
of echos, a signal of frequency f; = 120 MHz was applied to
one of the probes (at z =0 cm), while a signal at £, = 130
MHz was applied to another probe, at a distance z =/ =40
cm from the first. In agreement with the theory, a third-
order echo was observed at the frequency
f,=2L—f,=140 MHz at a distance [*=2fl/
(2f, — f1}=75 cm from the first probe. The signal was ampli-
fied by 20 dB. The position of the echo maximum was mea-
sured as a function of the distance between the generators
[i.e.,1* = f(I)] for various frequencies of the primary waves,
/i and f,,. The dependence was found to be linear in all cases,
as expected (Fig. 2). The peak echo power P * was also mea-
sured as a function of the power of the primary waves, P, and
P,; more precisely, P; was measured as a function of P, and
P}, where P*~|EQz=1')?, P,~E},P,~E} [E,and E,
are the amplitudes of the external perturbations, and
E ‘j: (z=1") is the amplitude of the echo at the point of the
maximum , /'] (see Fig. 3). By virtue of the relationship
P*_P P2 which holds for small signals, linear depen-
dences were found. With increasing amplitudes of the exter-
nal perturbations, the echo amplitude was found to reach
saturation (and this was again a predictable result, since
higher-order effects come into play in the interaction as the
wave intensities increase). The absolute power levels from
Ref. 5 (see Fig. 3 of the present paper) are extremely crude
values, because the plasma-probe interaction is not known
accurately. For this reason, the results in Fig. 3 and else-
where corresponding to those experiments cannot be used
for a detailed comparison with theoretical results (regarding
points for which absolute values of the signals are required).

Let us assume that, as follows from (1.56), the perturba-
tion theory breaks down at fields

eE k3
moil

(3.1)

~1,

in accordance with the estimate in Ref. 5. According to
Malmberg et al., these fields correspond approximately to

®
I’ecm

S IS 1 1

L

0 20 40 50
[,cm

>

FIG. 2. Position of the maximum of the third-order echo as a function of
the distance between the generators® [/ * = 2f,{ /(2f, — f1)]. Solid curves—
theoretical; circles—experimental data for various values of f,, f;, and
£, = 2f, — f(MHz). 1) 150, 130, 110; 2) 140, 145, 150; 3) 110, 130, 150; 4)
110, 150, 190. ;
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FIG. 3. Peak power of the third-order
echo, P, = |E¥ X (z = I'}|?, as a function
of the power of the primary waves.* 1—P,
is varied, P, = — 29 dBm; 2—P, is var-
ied, P, = — 26 dBm. The absolute values
of the power are only approximate.

those primary-wave fields at which the saturation becomes
clear. The perturbation theory does not predict saturation of
the echo amplitudes. The saturation was also studied experi-
mentally in Refs. 57 and 58, where it was shown that the
behavior of the echo amplitude at fields exceeding those in
(3.1) is described well by Eq. (1.52) withm = n = 1—i.e., by
the ballistic theory. In addition, a second-order echo was
observed at the frequency f; = f; — f, = 160 MHz (f, = 120
MHz, f, =280 MHz), and the maximum of this echo oc-
curred at the point/’ = £,/ /(f, — f}), again in agreement with
the theory. Also observed there was a third-order echo, with
a single generator; this echo resulted from the reflections of
electrons from a negatively charged plate. If a generator is
positioned at a distance / from the boundary, the electrons
reflected from the plate pass twice through the grid to which
the signal w, is applied (this situation corresponds to the
model of a semi-infinite plasma with specular reflection of
electrons’78), and the echo arises at a distance

r_ 20,4 0¢ _
= Ztor; g

3 (3.2)

((')2 = 0‘)1) ’

according to Eq. (2.10), as was observed experimentally (Fig.
4). The generator was positioned at a point / = 30 cm from

FIG. 4. Third-order echo due to reflections (“sheath echo”).” This is a plot
of the output signal from the interferometer (arbitrary units) as a function
of the distance from the reflecting plate. The amplification is 30 dB;
fi=f, =/ =120 MHz.
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the plate, and a frequency of 120 MHz was applied to it. A
third-order echo was observed at the same frequency; its
maximum intensity occurred at the point z’ = 90 cm, as
would be expected from (3.2). The dependence of the peak
power P * of this echo on the power P, of the primary wave
was the same as in the preceding case: At small values of £,
there was a linear dependence (P *~ P3), and as the gener-
ator power was increased further the echo amplitude
reached saturation (Fig. 5). As in the preceding case, the
absolute values of the power are extremely approximate.
The echos of ion-acoustic waves were studied by Baker
et al ® Their experiments were carried out in the highly ion-
ized cesium plasma of a Q machine. The plasma was bound-
ed in the radial direction by an axial magnetic field of 4 kG.
The plasma density was 5-10° cm > <7 <2-10'"' cm >, and
the temperatures were 7, = 7, = 0.2 eV. Under these con-
ditions we have A /lk> 1, where A is the ion mean free path,
and / is the distance between the grids to which the signals at
frequencies f; and f, were applied. These frequencies were
varied over the interval 35-215 KHz, and the distance /
between the generators was varied over the interval 1.5-15
cm. Figure 6 shows the measured dependence of the echo
amplitude on the distance between the grids. We see that the
echo amplitude falls off as this distance is increased; Baker et
al b attributed this effect to an influence of collisions on the
amplitude of the echo signal, as in the case of electron waves.
According to the theory of Ikezi and Takagashi,® the echo
should reach its maximum intensity at the point /' = £,/ /
(f, — f1), and this result was in fact observed experimentally.
The echo appeared only under the condition f, > f|. The de-
pendence!’ = f(l )wasmeasuredforf,/(f, — f;) = 3.33,2.33,
and 1.75. The dependence was found to be linear in all three
cases. The nature of the echo was also found to be asymme-
tric with respect to the point of the maximum. Ikezi and
Takagashi’ also observed a second-order spatial echo of ion
waves. A more detailed study of the ion-wave spatial echo
was carried out in Ref. 8, where the effect of collisions on the
shape of the echo was also studied. The parameters of the
plasma there were approximately the same as those in Ref. 6.
Higher-order echos and the secondary echo were also stud-
ied in Ref. 8, and good agreement between theory and exper-
iment was found. Heymann and Sauer®® observed second-

P'dBm
ol o
o
~60 ° FIG. 5. Power of the echo due to
reflections as a function of the gen-
L erator power.” The circles are ex-
perimental data (the absolute val-
ues of the power are only
(U approximate). With increasing
generator power, the power of the
L echo signal reaches saturation.
- 80 -
1 1 S
- 40 -30 3. =20
P; dBm
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FIG. 6. Amplitude of the ion-acoustic echo (arbitrary units) as a function
of the distance (/) to the first generator, for four values of / (Ref. 4) 1—
Wy > Wy 2—w, < @y

and third-order spatial echos of azimuthally symmetric sur-
face waves propagating in a column of an unmagnetized
plasma (these waves were called surface waves since all the
electric field components reached their maxima at the plas-
ma boundary and decayed with distance from the bound-
ary®%). Porkolab and Sinnis** carried out experimental stud-
ies of the echos of cyclotron waves in magnetized plasmas
with k, #0, i.e., under conditions allowing resonances at the
higher harmonics @ = nwg, (n = 2,3). These experiments
were carried out in a column of an argon plasma with prop-
erties similar to those of the plasma studied in Ref. 5; the
condition {2 > wyg, held. Cyclotron waves were excited at an
angle from the magnetic field (k, #0). It follows from the
results that the echo amplitude depends on the magnetic
field and that the echo exists at frequencies above 2wy, in
accordance with the theory. Figure 7 shows the position of
the echo as a function of the distance (/) between the genera-
tors, described by z*=(w, — nwg.)/ (0w, — w, — pwg.).
Three curves are shown here for various values of # and p
[(2,1),(3,1), (3,2) with s = 2*/] = 2.3, 2, and 1.54, respective-
ly]. As expected, these plots coincide with straight lines.

The experimental results thus show that echo oscilla-
tions of second and higher orders can propagate in the plas-
ma. In all cases the theoretical results on the shape and posi-
tion of the echo oscillations are in accordance with the
experimental data.

The temporal echo in a plasma was observed experi-
mentally by Droanh and Rohne.® Two pulses were applied to
an argon plasma at a time separation 7 = 10-60 us; these
pulses excited standing ion waves. A third-order echo was
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observed at a time 7' = 27 after the first pulse with a wave
number k; = k, = k,(k; = 2k, — k).

b) Possible applications of echos in plasma diagnostics

The echo effect has been used to obtain important re-
sults on collisions and microscopic turbulence in plasmas.

The effect of collisions on echos has been the subject of
many theoretical and experimental studies.®7-58-85-3

Let us write the collision integral in the form of a
Fokker-Planck equation in which the effect of collisions re-
duces to dynamic friction and diffusion of particles in veloc-
ity space. The kinetic equation for the distribution function
is then

v L g e 2D, 0) N (D, ) D

(3.3)
where D,{v) is the dynamic friction coefficient, and D,fv) is
the diffusion coefficient in velocity space. We assume that
two grids in the electron plasma at z = Oand z = / excite self-
consistent waves with Fourier components E (k,w,) and
E (k,w,). Since the deviation from an equilibrium distribution
function is ~ exp(i(w,/v)z), the collision integral is dominat-

ed under the condition 91L2->1 by the term with D,(v), where

we differentiate the rapidly oscillating function exp(i{®,/v)z)
twice with respect to v. Solving (3.3) and substituting the
resulting solution into the Poisson equation for the field, we
find the following expression for the echo amplitude (the
echo maximum is at the point /' = @,/(w, — @,)/):

E® (k, o5)= % (L)zewllE' (@,/v, @) E (05/v,04) 8fo

m k33 e (wg/v, ®g) v
¥, Dy (v)
xexp (— S r)|_,, (3.4

It can be seen from (3.4) that measurements of the depen-
dence of 1gE? /I on /* can reveal the damping factor
b (v) = @?w,D,(v)/3w4v°, and thus the diffusion coefficient
D,(v).

Moeller®” has measured the echo decay which results
from diffusion in velocity space and has found the velocity
dependence of the diffusion coefficient. That experimental
apparatus used a plasma column 60 cm long in a magnetic
field of 1 kG. The electron density wasn = 1.1.10° cm > and
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the electron temperature 7, = 0.65 eV. The echo was excit-
ed by two grids to which frequencies @, and », were applied.
Here we will discuss the results obtained at f; = 350 MHz,
J5 =600 MHz, and f; = 250 MHz. The Fourier components
of the echo amplitude were plotted for various distances /.
Here the value k¥ = 10 cm™! corresponds to a velocity of
1.5.10° cm/s. The shape of this curve corresponds to Eq.
(3.4) with corrections for the grid form-factor. Actually,
collisions of electrons with neutrals also play a role. For the
given number k the amplitude of the Fourier component in
this case is proportional to

[} [ T’ , o,
la (S2) exp[ —b () BP— o T ], v= o b
(3.5)
Knowing the pressure of the neutrals we can determine A (v).
Figure 8 shows results corrected for collisions with neutrals
forv = 8.5-10’ cm/s and k = 18.5 cm ™~ !. From these results,
the damping factor b (w,/k ) can be determined [b (w,/k ) is
determined by the slope of the line]. From the series of these
results for various wave numbers, the dependence b = f(v)
can be found. Figure 9 shows both the velocity dependence
of the diffusion coefficient according to these experimental
results and the velocity dependence of the diffusion coeffi-

cient for various temperatures according to the theory of
Ref. 94:

e Q4
D, (v) ~ % T R In (ak,),

(3.6)

where vy is the electron velocity along the magnetic field,
A =1m 0'(vy, /5), ko = ms*/e*, and we have In (ak,)~ 13 for
this experiment. Figure 9 demonstrates the correspondence
between the theoretical and experimental results.

Moeller®’ also noted that expression (3.4), which was
used for the experimental determination of b (v), is valid only
for small amplitudes of the external perturbations, under
condition (1.60).

Jensen et al.%” studied the effect of microscopic turbu-
lence on the third-order echo in the presence of boundaries
(the experiments were carried out in the same apparatus as
was used in Ref. 5). When diffusion is occurring, the echo
amplitude is reduced by a factor of e ~**, where

o= §o (3 ) e o (%) 28
0

1 (3.7)
wE@
U-Nl
-1 F >~
. :\+\+
-2F b4 \+
L] .\
.—3 - \
! o
—4F e=2 ,'\
| | L i i i
0 4 8 2
1, cm

FIG. 8. The damping effect with a correction for collisions of electrons
with neutrals.”' 1—With correction for neutrals; 2—without this correc-
tion.
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FIG. 9. Curves—theoretical curves of the damping factor for a Maxwel-
lian plasma at various temperatures; points—experimental data.®!

At the point z = 2/ — /' there was a source of noise which
increased the diffusion coefficient in velocity space, since
diffusion in velocity space is related to the spectral density of
the microturbulence according to the quasilinear theory:

D, (v, z)=2n(.-’en—)zA_‘E_("X_$oM

exp [—2k; (z— 21+ 1)],
(3.8)

where 4 |E (w,k }|*/Aw is the spectral density of the noise at
the lowest mode, and k; is the Landau damping factor for
this mode. The noise source, which produced a noise band 20
MH?z wide around the generator frequency of 160 MHz, was
a probe near the transmitter. It follows from (3.7) and (3.8)
that the damping factor depends on both the noise power
and the position of the noise-generating probe, in agreement
with the experimental data in Fig. 10; this figure shows the
logarithm of the echo amplitude 4 § (at the maximum) as a
function of both the noise power (at a fixed /) and the posi-
tion of the noise source (at a fixed noise power). Moeller also
measured the dependence of In{4 /1% on /* {4, is the echo
amplitude when the diffusion is caused by the background

r

l.nAE
° @
o
D
ir o\’
a
a
o—1 °
a-2 4
a i 1

1 2 k*

FIG. 10. Logarithmic & * dependence of the amplitude of the second-order
echo, A (A = Ag/!) (Ref. 87). Line—theoretical; 1—noise power is
varied, /, = 40 cm; 2—/, is varied from 10 to 40 cm, and the noise power is
held constant.
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noise in the plasma). Figure 11 shows the results of these
measurements. From the slope of this line, the absolute value
of the diffusion coefficient D,(v) was found; the result was
found to agree approximately with (3.6).

In deriving (3.4), Moeller®” and O’Neil*® assumed that
the echo was determined primarily by the poles of v = w»/k,
i.e., by resonant electrons. O’Neil** evaluated the echo am-
plitude near the point of maximum intensity by the method
of steepest descent, while at the periphery he used the pole
approximation. As a result, the echo should become sharper
with increasing /. In the experiment of Ref. 8, however, the
echo amplitude decreased with increasing /, and the echo
became flatter (rather than sharper). Nichikawa and
Gould®! carried out some corresponding numerical calcula-
tions, which yielded results in agreement with the experi-
mental data of Ref. 8. It was also found that the echo maxi-
mum varies ~exp( — / /%), and this result was confirmed
experimentally in Ref. 93. Further experiments on the effect
of collisions on the spatial echo were carried out in Ref. 66.

Agreement has thus been found between the theoretical
and experimental results on the effect of collisions on the
echo shape and on the velocity dependence and absolute val-
ue of the diffusion coefficient.

Dryakhlushin and Romanov®® have proposed an inter-
esting method for determining the distribution function of
the plasma particles: by working from the spatial structure
of the echo field in an unbounded plasma and the frequency
dependence of the amplitude of a transmitted wave in a ho-
mogeneous plasma slab.

Eidman®® has studied the echo in a plasma with moving
sources. Nemtsov and Eidman®’ have pointed out that Van
Kampen waves can produce a localized echo field pulse
which moves at a velocity v = I /7, where / and 7 are respec-
tively the spatial and temporal separations of the external
perturbations.

CONCLUSION

We have attempted to demonstrate not only the variety
of forms taken by plasma echos in various plasma media—
laboratory plasmas, plasmas in space, metals, and semicon-
ductors—but also the clear benefit to be gained from study-
ing echos: for reaching a better understanding of collective
processes in plasmas and for several practical applications in
radio propagation and plasma diagnostics.

The foremost point to be made here is that the echo

{,cm
50 50 60 65
4 T T I DR I |
ln%
3 -

FIG. 11. Dependence of
Ind; /1% on I3, Here A, is the
2t echo amplitude, and /is the dis-
tance between the generator
and the reflecting plate.®”
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phenomenon confirms the reversible nature of Landau
damping and confirms that information about a perturba-
tion is preserved in a plasma (in the form of nondecaying
oscillations of the distribution function} even after the disap-
pearance of the macroscopic field.>™®

Important results have been obtained through the use of
echos for plasma diagnostics. Specifically, the velocity de-
pendence of the diffusion coefficient has been measured, and
microscopic turbulence in a plasma has been studied.®”-7%%¢

The echo effect has stimulated the suggestion of some
new methods for wave conversion in plasmas'®*®® and for
the “brightening” of transcritical plasma slabs and opaque
regions in plasmas,?4-27-20-2

Some extremely promising suggestions for new experi-
ments are to use echos to study the mechanisms for the inter-
action of charged particles with surfaces bounding plasmas
(insulators and magnetic walls),”>~®8" to study the reflection
of electrons from a metal boundary*®*° (since measure-
ments of the surface impedance are relatively insensitive to
the nature of the reflection of the particles—specular or dif-
fuse—the echo method is unique here, since the echo ampli-
tude is extremely sensitive to the nature of the particle reflec-
tion), and to study the band structure of semiconductors and
metals.?%->

Some extremely interesting and promising suggestions
have been made regarding the use of echos to study distribu-
tion functions® and the use of trapped-particle echos to
study turbulence in fusion-research devices.®3-7°

I am deeply indebted to B. B. Kadomtsev for reading
the manuscript and for offering some useful comments; to B.
M. Smirnov for a useful discussion; and to A. I. Akhiezer, A.
G. Sitenko, V. P. Silin, K. N. Stepanov, and V. N. Tsytovich
for discussions of these topics and for several useful com-
ments.
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