УСПЕХИ ФИЗИЧЕСКИХ НАУК

ИЗ ТЕКУЩЕЙ ЛИТЕРАТУРЫ

539 125.4

ВЗАИМОДЕЙСТВИЕ ПРОТОНОВ ПРИ НАИВЫСШИХ УСКОРИТЕЛЬНЫХ ЭНЕРГИЯХ

И. М. Дремин

Самые высокие энергии соударения ускоренных в лабораторных условиях частиц достигнуты в ЦЕРНе на ускорителях со встречными пучками — ISR- и SPS-коллайдерах. Максимальные энергии в системе центра масс равны соответственно 63 и 540 ГэВ, что отвечает энергиям в системе покоя одной из сталкивающихся частиц около 2 ТэВ и 150 ТэВ. В ISRколлайдере пучок протонов может сталкиваться с встречным протонным или же антипротонным пучками, тогда как в SPS-коллайдере навстречу протонам летят только антипротоны.

Мы рассмотрим результаты, полученные на обоих коллайдерах, поскольку хотя SPS-коллайдер значительно превышает ISR по энергии, но, например, изучение различия в протон-протонных и протон-антипротонных соударениях доступно нам лишь до энергий ISR-коллайдера. Кроме того, сопоставление данных в этих двух энергетических интервалах позволяет выявить общие тенденции в поведении основных характеристик взаимодействий адронов при очень высоких энергиях.

Подробное обсуждение физики частиц при энергиях ускорителейколлайдеров уже проводилось на страницах УФН (см. статью Хоргана и Жакоба, УФН, 1982, т. 136, с. 219). В этой краткой заметке будут приведены данные экспериментов, выполненных на коллайдерах в 1982— 1983 гг., по изучению основных характеристик взаимодействий протонов с протонами и антипротонами, т. е. по измерению полных сечений, реальной части амплитуды упругого рассеяния вперед, дифференциального сечения упругого рассеяния, неупругих процессов при малых и больших переданных импульсах. Приводимые данные публиковались в виде препринтов ЦЕРН, в отдельных статьях в различных журналах (чаще всего в «Physics Letters», где, начиная с конца 1981 г., практически в каждом номере появлялись статьи с данными от коллайдеров), в трудах конференций «XIII Multiparticle Dynamics» (Волендам, Голландия, 1982 г.) и «Proton-antiproton Interactions» (Ла-План, Франция, 1983 г.) *).

4. ПОЛНЫЕ СЕЧЕНИЯ

Уже при энергиях Серпуховского ускорителя (до 70 ГэВ в лабораторной системе) было замечено, что полное сечение взаимодействия протонов с протонами перестает падать с ростом энергии (так называемый «серпуховский эффект»). После запуска ISR-коллайдера в 1971 г. было обнаружено, что сечения взаимодействия частиц начинают заметно увеличиваться с ростом энергии. Эта тенденция сохранилась и при энергии

^{*)} Я не буду касаться данных о промежуточных бозонах (см. УФН, 1983, т. 141, с. 499).

SPS-коллайдера. От серпуховских энергий до SPS-коллайдера сечения растут более чем в полтора раза, как видно из рис. 1. Приведем численные данные о полных сечениях при $\sqrt{s} = 540$ ГэВ (три крайние правые точки на рисунке): $66 \pm 7 \pm 3$ мбн (UA4, 1982), $71 \pm 7 \pm 3$ мбн (UA4, 1983); $64,5 \pm 9,3 \pm 4$ мбн (UA1, 1983) *).

К сожалению, три цифры с большими ошибками не заменяют давно ожидаемой одной, но с малыми ошибками. Увеличение светимости ускорителя решит эту проблему.

При более высоких энергиях существует лишь косвенная оценка, основанная на некоем пересчете данных, полученных в космических лучах на установке «Fly's Eye». Она приводилась в докладах Йодха на упомянутых выше конференциях:

Для сравнения приведем таблицу данных при энергиях ISR. Наглядно виден рост сечений. Интересно отметить, что разность сечений продолжает надать с ростом энергии. В достаточно широком интервале (при энергиях

Таблица

Полные	сечения	протон	-протонно	го, про	тон-антип	ротонного
BBAI	имодейсти	вия и 1	ах разност	ь пря з	энергиях	ĪSR

Энер- гия $\sqrt{\frac{s}{s}}$, ГэВ	с ^{рр} , мбн (группа, год)	с ^{рр} , мбн (группа, год)	Δσ, мбн (группа, год)
30,6	-	$40,26\pm0,2$ (R 211, 1982)	
52,8	$\begin{array}{c} 44,70\pm0,40\pm0,13\\ (\text{R 210, 1982}) \end{array}$	$43,26\pm0,20\pm0,13$ (R 210, 1982)	$\substack{\begin{array}{c}1,44\pm0,45\\(\text{R 210, 1982})\\0,96\pm0,30\pm0,13\\(\text{R 211, 1982})\end{array}}$
62, 3	45,25 <u>+</u> 0,3 (R 210, 1983)	44,68±0,22 (R 210, 1983)	0,57±0,30 (R 210, 1983)
62,5	44,33±0,29 (R 211, 1983)	'43,93±0,27 (R 211, 1983)	0,40±0,32 (R 211, 1983)

выше 10 ГэВ) эту разность можно хорошо аппроксимировать следующей феноменологической зависимостью: $\Delta \sigma \approx 78,2 \ s^{-0,57}$, откуда при подстановке *s* в ГэВ² получается разность сечений в мбн. Такая зависимость соответствует нашим представлениям о вторичных реджевских траекториях.

^{*)} В скобках указывается экспериментальная группа, сообщившая данный результат и год его опубликования. Первая цифра после основной — статистическая ошибка, вторая — систематическая погрешность. Относительно данных группы UA4 следует иметь в виду, что в них может быть дополнительное систематическое завышение на 1-2 мбн, связанное с тем, что в этом эксперименте фактически выдается не σ_{tot} , а значение произведения ($1 + \rho^2$) σ_{tot} , где ρ — отношение вещественной и мнимой частей амплитуды упругого рассеяния вперед, которое согласно оценкам по дисперсионным соотношениям может лежать в пределах от 0,1 до 0,2 при этой энергии (см. ниже). Появление такой комбинации связано с тем, что путем использования оптической теоремы можно исключить неопределенность в измерениях, обусловленную плохим знанием светимости ускорителя, выразив ($1 + \rho^2$) σ_{tot} только через измеряемые величины — долю упругих процессов и наклон дафракционного конуса. Группа UA1 измеряет ($1 + \rho^2$)^{1/2} σ_{tot} , т.е. поправка к их данным примерно вдвое меньше. На Европейской конференции по физике высоких энергий в Брайтоне (июль 1983 г.) этой группой была приведена также цифра 67,6 \pm 5,9 \pm 2,7 мбн. Если использовать предсказываемое теоретически значение $\rho \approx 0,15$, то усреднение всех данных даст величину полного сечения $\sigma_{tot} = 67 \pm 4 \pm 2$ мбн.

Функциональная зависимость сечений от энергии не противоречит предельному ограничению типа ln² s, налагаемому теоремой Фруассара. Следует, правда, отметить, что численно сечения все еще значительно ниже предельных фруассаровских значений. Теоретическое понимание такого

Рис. 1. Поведение полных сечений взаимодействия протонов с протонами (светлые кружки) и антипротонами (темные кружки) в зависимости от энергии.

роста сечений требует знания природы ведущей реджевской особенности померона, который должен быть «надкритическим», т. е. лежать выше 1. Такая особенность могла бы получиться в мультипериферической кластерной теории. С ростом энергии обычно учитывают перерассеяния, т. е. многопомеронные обмены.

2. УПРУГИЕ ПРОЦЕССЫ

Доля упругих процессов в полном сечении слабо меняется (если меняется вообще) при переходе от ISR- к SPS-коллайдеру:

$$\frac{\sigma_{el}}{\sigma_{tot}} = 17.6 \pm 0.4 \pm 0.3\%$$
 при ISR и $20 \pm 2\%$ при SPS.

Отношение вещественной и мнимой частей амплитуды упругого рассеяния вперед измерено лишь до ISR-энергий. Как известно, оно близко к нулю при $\sqrt{s} \sim 20-30$ ГэВ (т. е. при лабораторной энергии около 300 ГэВ), отрицательно при меньших энергиях и положительно при больших, возрастая от 0.029 ± 0.10 при $\sqrt{s} = 30.6$ ГэВ (R 211, 1982) до $0.10 \pm \pm 0.02$ при $\sqrt{s} = 62.5$ ГэВ (R211, 1982) в протон-протонных взаимодействиях. Данные по протон-антипротонным взаимодействиям менее точные, но не противоречат ожиданиям: $\rho^{\bar{p}p} = 0,14 \pm 0,13$ при $\sqrt{s} = 62,5$ ГэВ с $\Delta \rho \equiv \rho^{p\bar{p}} - \rho^{pp} = 0,04 \pm 0,04$ (R 211, 1982). При энергиях SPSколлайдера непосредственных данных об этом отношении нет. Теоретические оценки дают интервал значений от 0,1 до 0,2 в зависимости от вида экстраполяции хода сечений при более высоких энергиях. Наиболее разумные цифры близки к 0,14 \pm 0,03.

Дифференциальные сечения упругого рассеяния (рис. 2) экспоненциально падают с ростом квадрата переданного импульса |t| при малых значениях его, причем в области |t| < 0.2 ГэВ² наклон дифракционного

Рис. 2. Дифференциальное сечение протон-антипротонного упругого рассеяния при энергии $\sqrt{s} = 540$ ГэВ.

конуса заметно больше, чем в области |t| > 0,2 ГэВ². В районе 0,8 < |t| < 1,4 ГэВ² при SPS-энергиях образуется широкое плечо и не заметно провала («дипа»), наблюдавшегося при низких энергиях. Вообще, do/dt падает на 6 порядков по величине при изменении |t| от 0,03 до 1,5 ГэВ². Значения наклона дифракционного конуса $b_{pp} (d\sigma/dt \sim \exp(b_{pp} t))$ в области |t| < 0,2 ГэВ² при $\sqrt{s} = 540$ ГэВ таковы: $17.2 \pm 1,0$ ГэВ⁻² (UA4, 1982), $17.6 \pm 1,0$ ГэВ⁻² (UA4, 1983), $17.1 \pm 1,0$ ГэВ⁻² (UA1, 1983), а в области |t| > 0,2 ГэВ² наклон конуса равен $13.6 \pm 0,2$ ГэВ⁻² (UA4, 1983), $13.7 \pm 0,2$ ГэВ⁻² (UA1, 1983). Для сравнения приведем соответствующие цифры при ISR-энергии $\sqrt{s} = 52.8$ ГэВ (R 210, 1982):

$$|t| < 0,2 \Gamma_{\vartheta}B^2: b_{pp}^{-} = 13,92 \pm 0,37 \pm 0,22 \Gamma_{\vartheta}B^{-2}, b_{pp} = 13,09 \pm 0,37 \pm 0,23 \Gamma_{\vartheta}B^{-2}, |t| > 0,2 \Gamma_{\vartheta}B^2: b_{pp}^{-} = 10,68 \pm 0,20 \Gamma_{\vartheta}B^{-2}, b_{pp} = 10,34 \pm 0,30 \Gamma_{\vartheta}B^{-2}.$$

Видно, что дифракционный пик становится все уже по мере увеличения энергии. В области ISR протон-антипротонные сечения идут несколько круче протон-протонных. Характер изменения сечения (плавный или с изломом) в районе $|t| = 0,2 \Gamma \partial B^2$ пока не выяснен и будет изучаться сцепиально.

3. НЕУПРУГИЕ ПРОЦЕССЫ

a) Область малых поперечных импульсов

Как и при более низких энергиях, на SPS-коллайдере в неупругих процессах рождаются в основном частицы с малым поперечным импульсом относительно оси столкновения. Так, дифференциальное сечение рожде-

ния частиц с поперечным импульсом 0,3 ГэB/c на семь порядков больше сечения при поперечном импульсе 10 ГэB/c. Поэтому средние характеристики неупругих процессов практически полностью определяются частицами с малым поперечным импульсом.

Средняя множественность заряженных частиц на SPS-коллайдере заметно выросла по сравнению с ISR. Приводятся такие значения: 27,4 + 2 $(\overline{\text{UA5}}, 1982) \cong 26.5 \pm 1.0 (\text{UA5}, 1983)$ для инклюзивных процессов. Для сравнения, при ISR-энергиях соответствующая цифра была около 15 (R 210, 1982). В процессах, где нет однократных дифракционных возбуждений нуклона, средняя множест-венность выше: 28,9 ± 0,4 (UA5, области 1983). B ограниченной сравнительно малых псевдобыстрот п средняя множественность заряженных частиц в событии меньше: 21,1 🛨 \pm 1,0 при $|\eta|$ < 3,5, где $\eta =$ $= -\log \operatorname{tg} (\theta/2), \theta - \operatorname{угол}$ вылета ча-

Рис. 3. Распределения по псевдобыстроте вторичных частиц, рожденных в неупругих протон-антипротонных взаимодействиях при энергиях ISR (нижние точки), и SPS-коллайдеров (верхние точки).

стицы (UA1, 1983). Закон роста средней множественности с энергией близок к ln² s.

В первом приближении распределение частиц по множественности хорошо описывается обычно приводимыми кривыми скейлинга Кобы-Нильсена — Олесена, хотя намечаются некоторые отличия — более узкий максимум при малых множественностях и увеличение роли процессов с множественностью, заметно превышающей среднюю.

Инклюзивное распределение вторичных частиц по исевдобыстроте имеет ту же форму «шляны» (или «колокола» со слегка вдавленной серединой), что и при ISR-энергиях, но высота «шляпы» и ширина ее заметно увеличились (одна половина ее показана на рис. 3). Рост высоты распределения заметно превышает рост сечения, что видно из значения сечения при нулевой быстроте $\frac{1}{\sigma} \frac{d\sigma}{d\eta} \Big|_{\eta=0}$, которое было равно приблизительно 2 при ISR-энергиях (рис. 3), а стало примерно в полтора раза больше при SPS-энергия: 3.3 ± 0.2 (UA1, 1982, 1983), 2.7 ± 0.45 (UA5, 1982, 1983) для инклюзивных распределений и 3.1 ± 0.4 (UA5, 1982, 1983) — для событий без однократного дифракционного возбуждения нуклона. Хотя полуширина распределения] и выросла с 3.25 дој примерно 4, этот рост

9 УФН, т. 141, вып. 3

заметно меньше расширения возможного (допустимого законами сохранения) интервала быстрот при переходе от ISR к SPS.

С ростом множественности полуинклюзивное (при заданном числе частиц) распределение по быстроте становится более узким и все четче проявляет максимум.

Как и при энергиях ISR, на SPS-коллайдере отмечают сильные близкие корреляции двух частиц по быстроте (с $\Delta y \approx 2$). В то же время стали более заметны дальнодействующие корреляции. Например, среднее число частиц, летящих в заднюю полусферу, линейно растет с увеличением числа частиц в передней полусфере: $\langle n_{\rm B} \rangle = a + bn_{\rm F}$ (где $b \approx 0.5$ и слегка увеличивается с энергией). Отметим, что в е⁺е⁻-аннигиляции подобная корреляция отсутствует (там $\langle n_{\rm B} \rangle$ не зависит от $n_{\rm F}$).

Отмечают также рост среднего поперечного импульса рожденных частиц. Так, для заряженных пионов он вырос до 440 МэВ/с (UA1, 1982, 1983) по сравнению с 360 МэВ/с при ISR. Еще заметнее рост среднего поперечного импульса тяжелых частиц: от значения около 400 МэВ/с при ISR он вырос до 700 \pm 120 МэВ/с в случае К-мезонов и до 670 \pm 200 МэВ/с в случае А-гиперонов (UA5, 1982). Интересно отметить здесь же, что доля протонов по отношению к сумме каонов и пионов осталась примерно такой же, как на ISR, тогда как доля каонов по отношению к пионам выросла на 40% в интервале поперечных импульсов от 0,4 до 1,4 ГэВ (UA2, 1983).

Интересно, что в области $E_{\rm T} \sim 25 - 30$ ГэВ происходит заметное изменение характера процесса. Тогда как при меньших $E_{\rm T}$ имеет место практически линейная зависимость $E_{\rm T}$ от числа частиц в струях, то при больших $E_{\rm T}$ ³ наблюдается рост импульса этих частиц при весьма слабой зависимости их числа от $E_{\rm T}$.

Характерные особенности обнаружены и для гамма-квантов при SPSэнергии. Среднее число гамма-квантов линейно растет с ростом числа заряженных частиц с наклоном d $\langle n_{\nu} \rangle / dn_{ch} = 0.90 \pm 0.08$, как и следовало ожидать, если они получаются из распадов нейтральных пионов. В этом случае должны были бы совпадать средние множественности заряженных пионов и гамма-квантов (по два на один нейтральный пион). Однако измеренное значение $\langle n_v \rangle = 34 \pm 2$ заметно превышает $\langle n_{ch} \rangle$, указанную выше. Это отличие можно объяснить, если предположить, что рождается заметное число п-мезонов (их доля по отношению к нейтральным пионам оценивается как 0,32 (UA5, 1982, 1983) или даже 0,55 (UA2, 1982)). Основное превышение числа гамма-квантов над заряженными пионами сосредоточено в области малых исевдобыстрот - там, где на рис. З образуется плато с небольшим провалом при | η | < 2. Соответствующее распределение для гамма-квантов плавно спадает от значения около 4,5 при $\eta = 0$ до 3 при $|\eta| = 2$, а при больших $|\eta|$ практически совпадает с тем, что показано на рис. З.

Свойства средних характеристик инклюзивных и полуинклюзивных распределений заряженных частиц достаточно хорошо описываются теоретическими схемами, содержащими в качестве «затравки» надкритический померон и учитывающими эффекты перерассеяния.

б) Область больших поперечных импульсов

Хотя процессы с рождением частиц с большими поперечными импульсами составляют малую долю всех неупругих процессов, с ними связаны большие надежды на выяснение партонной структуры адронов. Экспоненциальный спад дифференциального сечения при малых поперечных импульсах сменяется степенным падением инклюзивных распределений частиц с большим поперечным импульсом. Однако наблюдать «чистый» закон p_{T}^{-4} , который ожидался бы при доминантности кварковых диаграмм с одноглюонным обменом, пока не удалось. Более того, в литературе неоднократно обсуждался вопрос о том, наблюдаются ли вообще кварковые (или глюонные) струи в адронных взаимодействиях с большими поперечными импульсами. Разнообразие мнений было связано с разными постановками экспериментов (триггеры или 4л-калориметры). Сейчас, видимо, можно утверждать, что на этот вопрос получен ответ: струи, действительно, существуют, но надежная идентификация их возможна при достаточно большой суммарной поперечной энергии события $E_{\rm T} > 30$ ГэВ ($E_{\rm T} = \sum E_i \sin \theta i$).

Этот вывод был сделан вначале по результатам экспериментов R 807 и R 110 (1983 г.) на ISR, а затем струи наглядно проявились на SPS-коллайдере. Исследовалась такая характеристика, как циркулярность события, определяемая как $C = 2\sum_{i} q_{Ti}^2 / \sum_{i} p_{Ti}^2$, где q_{Ti} и p_{Ti} , соответственно, попе-

речные импульсы к осям струй и к оси соударения. Она равна единице для сферически-симметричных событий и нулю — для вытянутых вдоль одной оси (оси струй). Оказалось, что инклюзивное распределение при Vs = 30 ГэВ описывается плавной кривой с максимумом при $C \approx 0.6$ и близко к даваемому обычным цилиндрическим фазовым объемом. При Vs = 45 ГэВ, выделив события с $25 < E_T < 30$ ГэВ, экспериментаторы обнаружили в их распределении по циркулярности новый пик при малых $C \approx 0.2$. А когда при Vs = 63 ГэВ были отобраны случаи с $35 < E_T < 40$ ГэВ, то все распределение имело только один резкий максимум при $C \approx 0.05$, что свидетельствовало о явно струйном характере событий.

Аналогичные выводы можно было сделать и по зависимости C от $E_{\rm T}$. При $E_{\rm T} \leqslant 30$ ГэВ $C \approx 0.6$, а при бо́льших $E_{\rm T}$ она резко падает к нулю. Доля струйных событий растет с ростом $E_{\rm T}$ от одного-двух процентов при $E_{\rm T} = 20$ ГэВ, до 80% при 40 ГэВ.

Согласно результатам той же группы в этом интервале поперечных импульсов спаддифференциальных сечений с ростом поперечного импульса носит степенной характер, а не экспоненциальный, как это было при энергиях ISR.

Интересное и необычное поведение наблюдено в эксклюзивной реакции pp \rightarrow pp $\pi^+\pi^-$ при s^{1/2} = 63 ГэВ. Дифференциальное сечение этого процесса как функция от массы пары пионов после прохождения через максимум и плавного спада обнаруживает резкий спад при $M_{\pi\pi} \sim 1$ ГэВ и потом плато до массы ~ 1.4 ГэВ, которое сменяется постепенным падением, а затем опять резким скачком вниз и вторым плато при массах ~ 1.6 ГэВ. Если образование пионной пары происходит за счет взаимодействия двух глюонов (из партонного состава адронов). то эти «аномалии» в поведении сечения можно было бы связать с проблемой существования глюболов.

Четкие струи наблюдались на SPS-коллайдере. Большая начальная энергия позволяет зарегистрировать струи с очень большими $E_{\rm T}$. Так, например, имеются два случая с $E_{\rm T} = 186$ и 161 ГэВ соответственно; наблюдалось несколько десятков струй с полной массой (энергией в СЦМ струи), большей 50 ГэВ. Два примера наиболее типичных струй показаны на рис. 4. Распределение по углу рождения струй в системе центра масс сталкивающихся партонов широкое и обладает максимумом при угле порядка 60°, что иногда интерпретируется как одноглюонный обмен между сталкивающимися глюонами — партонами начальных адронов *).

^{*)} Напомним, что при энергии SPS-коллайдера глюоны становятся наиболее «активными» партонами адронов (подребнее см. обзор Р. Хоргана и М. Жакоба, упомянутый выше).

и. м. дремин

Интересно отметить также, что в 20% струй с поперечным импульсом выше 12 ГэВ было обнаружено рождение чармированных частиц (это идентифицировалось по максимумам в распределениях масс Кл- и Кллсистем, которые должны наблюдаться при рождении и распаде D- и D*мезонов).

Таким образом, наблюдение струй явилось наглядным подтверждением правильности представлений о партонной структуре адронов. Пока

Рис. 4. Два характерных примера появления струй в протон-антипротонных соударениях на SPS-коллайдере.

(По осям отложены псевдобыстрота η , азимутальный угол ϕ и поперечная энергия E_T .)

в таких процессах не найдено никаких отклонений от качественных предсказаний квантовой хромодинамики.

4. ЭКЗОТИЧЕСКИЕ СОБЫТИЯ

На SPS-коллайдере был предпринят также поиск таких экзотических событий, как Кентавры, указания на которые появлялись в космических лучах при несколько бо́льших энергиях (события с большим числом вторичных заряженных частиц и аномально малым числом нейтральных частиц). Таких событий не нашли ни в группе UA5 (1982 г.), ни в UA1 (1983 г.). Так, при статистике в 48 000 событий получено ограничение на сечение рождения Кентавров $\sigma_{\rm prod}$ < 1 мкбн. Возможные объяснения: 1) энергия SPS-коллайдера мала по сравнению с теми энергиями, при которых Кентавры наблюдались в космических лучах; 2) в космических лучах имеется некая экзотическая компонента; 3) Кентавры объясняются весьма редкими флуктуациями.

Подводя итог, можно сказать, что исследования на SPS-коллайдере уже принесли много новых сведений о свойствах адронов и их взаимодействий при высоких энергиях. Несомненно, что увеличение статистики эксперимента поможет не только уточнить общие характеристики, описанные выше, но и выяснить более тонкие особенности явления.

Физический институт им. П. Н. Лебедева АН СССР