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An account is given of the current state of the problem of linear coupling between electromagnetic waves.
Conversion effects are discussed for waves in the radio, optical, and x-ray frequency ranges in different

inhomogeneous, weakly-anisotropic media, such as magnetoactive plasma (in the laboratory and in space),

“plasma + magnetized vacuum” system, liquid crystals, ferroelectrics, lightguides, and so on. The linear
coupling phenomenon arises when waves traverse an inhomogeneous portion of a medium in which dispersion
curves converge and the wave polarization structure undergoes a change. A qualitative analysis is presented of
linear wave conversion, which can be used as a basis for determining in a relatively simple manner the
possibility and efficacy of wave coupling, and to exhibit the characteristic dependence of the conversion effect
on the properties of the inhomogeneous medium. The qualitative analysis is accompanied by a discussion of
the solution of a number of standard problems that are of interest in connection with specific applications of
the linear wave-conversion effect.
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1. INTRODUCTION

The problem of linear wave coupling (in its rigorous
formulation) has been with us for more than a quarter
of a century. Systematic research in this branch of
physics began in the 1950s in connection with the study
of wave propagation in ionospheric plasma and in
broad-range irregular microwave and acoustic wave-
guides (see, for example, Refs. 1-10). It was found
that the propagation of waves through an inhomogeneous
portion of a medium was accompanied by a nonadiabatic
change in the geometrical optics amplitude. This phe-
nomenon was called linear wave coupling or linear
mode conversion. At present, the linear coupling phe-
nomenon is being studied in a variety of branches of
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physics, including optics, quantum radiophysics, hy-
drodynamics, acoustics, electrodynamics, plasma
physics, and so on. The total number of papers devoted
to this topic can now be counted in thousands, and con-
tinues to increase rapidly. Several reviews and review-
type papers have been published (for the current state of
the relevant mathematical theory—see Refs. 26~28 and
the references cited therein). It is no exaggeration to
say that the problem of linear wave coupling is among
the most important problems in the linear theory of os-
cillations and waves,

However, until recently, the theory was unable to
provide a qualitative and, at the same time, sufficiently
detailed description of linear conversion effects in a
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more or less general physical situation, i.e., for waves
of arbitrary nature in an arbitrary, anisotropic, inho-
mogeneous medium. The point is that linear coupling
problems for which solutions are available are largely
confined to special cases of wave propagation. The con-
sequence of this is that it is very difficult to envision
linear.wave conversion not only in some newly emerging
extensive range of applications, for example, in seis-
mology,?® or the optics of inhomogeneous media,* but
even in the classical case of a plasma in a newly cre-
ated or newly discovered situation. It may actually ap-
pear that the theory of waves and oscillations is power-
less in the face of this problem, and that linear cou-
pling proceeds quite differently in each particular
case.’®

The aim of this review is not only to familiarize the
reader with new results and new areas of application of
the linear coupling effect, but also to provide a quanti-
tative analysis of linear conversion and to demonstrate
its possibilities. The qualitative approach will enable
us to perform a unified analysis of linear wave coupling
in very different situations, for example, in magneto-
active plasmas, liquid crystals, ferrodielectrics, elas-
tic bodies, lightguides, planar waveguides, and so on.
This is particularly important because the phenomenon
is only just beginning to be studied in these areas, and
the number of interested parties is much greater than
the number of “specialists in linear coupling.”

Specifically, our review is devoted to the coupling of
electromagnetic waves in weakly anisotropic, smoothly
inhomogeneous media. This area includes at present
the greatest number of experimental investigations, and
important results have already been reported.?

It is well known® 3% that, in a linear homogeneous
stationary medium, an arbitrary radiation field can be
looked upon as a superposition of normal waves of the
form &, A (w,k,) exp fi(wf — k r)], where the frequency
and the wave vector k, are connected by the dispersion
relation, and &, is a vector defining the polarization of
the ith normal wave. This decomposition can be used in
an inhomogeneous medium as well, except that the pa-
rameters of the medium (refractive indices n,= |k,lc/w
and polarization coefficients) are then local properties
of the medium and, consequently, are functions of posi-
tion. When the properties of the medium vary slowly,
the complex wave amplitudes f(r) = A4;(r) expfi¢ (r)] in
the above expansion are determined by the eikonal equa-
tion for the phase ¢ (r) (which is not then equal to
-k, r) and the law of conservation of energy for the
amplitude A (r) of each of the waves. This approach is
called the adiabatic approximation, the WKB approxi-
mation, or the geometrical optics approximation.3 ™%

However, under certain definite conditions, the wave
field may not obey the geometrical optics approximation
in an inhomogeneous portion of the medium (even when
the medium has slowly-varying properties), and one

'Yn this review, we shall mostly refer to papers published in
recent years. As far as earlier work is concerned, we
shall refer to monographs and review papers in which these
results are summarized.
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then speaks of the linear wave coupling phenomenon.
The essence of this phenomenon is that, when the inho-
mogeneous portion of the medium is traversed by the
radiation, the amplitude ratio and the phase difference
between the waves comprising the radiation are found
to vary in a manner that is different from that predicted
by the geometrical optics approximation. Moreover,
the waves are no longer independent (we are discussing
waves whose polarizations #(r) at each point in the
medium are determined by its local properties; see
below). There is a mutual conversion both of waves
traveling in opposite directions (incident and reflected
waves) and waves propagating (transporting energy) in
the same direction. In particular, when a geometrical
optics wave of a particular type (for example, ordinary
waves) is incident on the region in which coupling oc-
curs, two coherent geometrical optics waves (ordinary
and extraordinary) are found to leave the region. This
process is linear, since it is not connected with a vio-
lation of the principle of superposition of wave fields.
The adjective, ‘linear,” will be omitted henceforth,
since we shall not consider nonlinear interactions.

Let us consider a simple example of wave coupling.
Suppose the radiation propagates in a plane layered
medium in the direction of the z axis (anisotropy axis
L) and undergoes a smooth azimuthal rotation through a
finite angle ¢, (see, for example, Fig. 1 with a=7/2;
in a magnetoactive plasma, the anisotropy axis L is
parallel to the magnetic field B,). Next, suppose that,
at entry to the above inhomogeneous region, the radia-
tion is a linearly polarized wave with E || L, which is an
extraordinary wave in geometrical optics. In the geo-
metrical optics approximation, the field E should then
rotate as the anisotropy axis L rotates, remaining pa-
rallel to it throughout the process. This adiabatic re-
gime corresponds to the absence of coupling, since the
ordinary wave does not appear. However, when the
anisotropy axis rotates at a sufficient rate, and the de-
gree of anisotropy is very low, the electric vector will
necessarily lag behind the anisotropy axis, and will
cease to be parallel to it. It is well known® that, in the
limit of an isotropic medium or of vacuum, the field
E will cease to rotate with L altogether. This means
that, in general, radiation leaving the inhomogeneous
region will be a superposition of ordinary and extraor-
dinary waves that will be polarized along and at right-
angles to the anisotropy axis, respectively. Conse-
quently, a conversion of the geometrical optics waves
will have taken place.*®

FIG. 1. “Rotating” set of coordinates and the optical
ellipsoid Re g3 %, %, =1(x,=x,y,2). They axis follows the
anisotropy axis L and the vector b has a fixed direction in
space: bliz,

Zheleznyakov et al. 878




Wave conversion is determined by the nature and
scale of the inhomogeneity of the medium in the region
of coupling, and therefore carries information about the
structure of the inhomogeneity. By varying the degree
of inhomogeneity, we can control the wave conversion
efficiency and, consequently, the intensity and polar-
ization of transmitted and reflected waves.

Consider the one-dimensional propagation of mono-
chromatic waves in a stationary medium without sourc-
es (three-dimensional propagation will be treated in
Sec. 2D). If we remove the time factor exp(iwt), the
wave equations for the N components X, of the field
will take the form of the following first-order differen-
tial equationg?:432.38

’

e = —iTe,

(1.1)

where e represents the N-component column vector
constructed from the complex field variables

X, (a=1,...,N), and the square matrix 7'= T(z) is de-
termined by the local properties of the medium, i.e.,
it has the same form both in homogeneous and in inho-
mogeneous media, and does not contain differential op-
erators. Frequency dispersion is represented by the
function 7(w). The prime indicates differentiation with
respect to the dimensionless position coordinate

§{= ko2, measured along the direction of propagation
{the z direction), and k,=w/c, and ¢ =const is the char-
acteristic wave velocity (in electrodynamics, the ve-
locity of light in vacuum).

For the matrix 7, we define at each point in the medi-
um a complete set of eigenvectors e, for whichee}r=1
(i=1,...,N), and the refractive indices », are the
eigenvalues in Te,= n.e,. Next, we use the canonical
transformation

y - -
ezzliflgh & =Dy, (1.2)
and replace (1.1) with the equations for the complex
amplitudes of the coupled waves, assuming® that
n,=nfo), e,=efL), f,= f{L)
N
fitinf,= Ziaijfj! a4y = —

-
1

LE T, (1.3)

The dependence of f, on the f, (i #j) indicates that there
is a linear relationship between waves in the inhomo-
geneous medium, where a,,#0. The factors & (&) will
be determined from the condition a,,=~&’+ #i*=0 or,
equivalently, from

[0}
T eieit =0, (1.4)

This condition signifies that the local values of the re-
fractive indices for the coupled waves are independent
of the inhomogeneity of the medium [see (1.3)]. It is
readily verified that the geometrical optics asymptotic
behavior of (1.1) leads to independent solutions of the
form &,e, exp(~i [n d¢), in which the factors ¢, satisfy
(1.4). Therefore, according to (1.2), coupling of the

n the transformation leading to (1.3) we used the related
{to &,) set of vectors (&i* (8",- g"'*:é”). It defines the
so-called “ transfer’” waves that are the eigenvectors of
the transposed matrix: TT&*=n, £i*, Hence T,,

= Eﬁl n; giagg*‘
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geometrical optics waves is described by a change in
the amplitudes S

For the electromagnetic field, we have N= 4. The
derivation of equations describing the coupling of elec-
tromagnetic waves is given in Sec. 2, where the explicit
form of the coupling coefficients a,; is also given.

In the limit of weakly inhomogeneous media (a,,~ 0),
Eq. (1.3) yields the solution in the WKB approximation:

L
fi-fitmexs =i | n@ac].

Ein

(1.5)

Linear coupling manifests itself as the difference be-
tween the solutions of (1.3) for an inhomogeneous medi-
um (au¢ 0) and the WKB solutions given by (1.5). The
difference is that the polarization of the geometrical
optics wave, which is set by the ratio XO‘/Xﬂ of the wave
field components, is not adiabatically conserved as it
should be locally for the given geometrical optics wave.
In other words, different components of the field
change in an uncoordinated manner (from the point of
view of geometrical optics), altering the local structure
of the particular normal wave e, and thus generating
other waves. Hence, it is clear that the final result of
the analysis of wave coupling should be the prediction of
the polarization structure of the total wave field. Gen-
erally speaking, this problem can be solved directly on
the basis of the original set of equations given by (1.1)
for the field components X, which is, indeed, occa-
sionally done (Refs. 1, 3, 11, 12, 30, 36-39, and
others). However, it will become clear later that a
more effective and convenient approach is to use the
above transformation to the coupled equations for the
complex wave amplitudes, given by (1.3).

Since, in a nonabsorbing medium with n%>0, the total
stationary energy flux S, carried by the coupled waves
does not vary along the z direction, the wave-conver-
sion process can be characterized by the redistribution
of energy among the waves. It will become clear in
Sec. 2 that the condition given by (1.4), or, more pre-
cisely, the cg{ldition Rea, = 0, ensures that the energy
flux density &, = ®,e, will be constant. When this densi-~
ty is normalized to unity, the law of conservation of en-
ergy assumes the simple form®

(1.6)

8.=2) fift — 3} f,ff —const,
i E

where the summation indices 7 and j label geometrical
optics waves propagating in the direction of the +z and
-z axes, respectively. The foregoing refers to the case
where |Imn,;| « |»,| and the waves are weakly absorbed
in the region of coupling. Henceforth, absorption will
be neglected unless stated to the contrary.

At present, the approximation of two coupled waves
(propagating in the same or in opposite directions) is
usually employed in coupling theory and is given by

31t is important to emphasize that this method is not valid
in regions that are opaque to the ith wave (n? <0) in which
its energy flux vanishes and the original geometrical optics
substituiion given by (1.2) and (1. 4) cannot be made (see
Ref. 14).
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fitingfi=a,5f5,
fa -+ ingfy = oy,

This is valid in a smoothly inhomogeneous medium in
which, in a given region, there are two coupled waves
with converging (for waves propagating in the same di-
rection) dispersion curves n, ,(t), or with dispersion
curves approaching zero (for waves propagating in op-
posite directions). Two-wave coupling is discussed
qualitatively in Sec. 3. When the scale of the inhomo-
geneity in space is of the order of one wavelength, all
the waves are usually coupled; the most interesting
situation then is that of random inhomogeneities,?-25:4¢
However, we shall not be concerned with such ques-
tions here.

(1.7)

2. BASIC EQUATIONS AND APPROXIMATIONS OF
THE THEORY OF COUPLED ELECTROMAGNETIC
WAVES

A. Normal waves in an anisotropic medium.
Geometrical optics

The equations for a monochromatic electromagnetic
field in a stationary anisotropic medium without sourc-
es have the following form:

rot B = ik,D, rot E = —ik,B,
Di(w, 1) = ¢y (0, 1) E; (0, 1),

(2.1)

(2.2)
where D is the electric displacement, and B is the mag-
netic induction, E is the electric field, €,, is the com-
plex permittivity tensor, k,= w/c, and spatial disper-
sion is ignored. For a plane electromagnetic wave
propagating in the direction of the 2z axis, Eq. (2.1) re-
duces to e’= —iTe (1.1) where

Ey 0 0 0

—F 0 0 1
‘“’z( Bi) o I= (E“E;; ezl 0
0

2g—1 2g-1
By g%y, &gy

1
3) (2.3)

0,

and £?= (¢, ~ £,,¢,")™" and £](w,r) is the reciprocal
permittivity tensor (Ei = e"lij). The latter is convenient
for a medium without sources,*# in which the longi-
tudinal component of the electric displacement is zero

(D,=0).

The four normal waves in (2.3) and (1.1) consist of
extraordinary (»,) and ordinary (#,) waves propagating
in the direction of the z axis (i=1,2; n, ,=n,,, K, ;
= ,‘o) and in the opposite direction (i=3,4; n; ,= -7, o
K; 4= K, o). The corresponding eigenvectors and eigen-
values are

£y - 1
s | —Ey) _ V 8nje —iK; 2.4
g‘”( Bz) = VR (—tK) 2.4
Byl ny
R E - S PR (2.5)
¢, 0 5 \Baxx vy xy q e I
S i
Kz.(l:q:F qu— 8;2’ q:_vsz;_;zz’ (2'6)

where K, s-z’E”/E{x is the polarization coefficient of the
ith wave. According to (2.6), the ordinary and extra-
ordinary waves are polarized elliptically, i.e., the real
part of the electric field Re [E,exp(iwf)] of each wave
describes an ellipse in space in the course of time.
When there is no absorption, so that ¢,,= ¢7};, the x,y
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axes can be arranged so that Reg} = 0 and, consequent-
ly, €1=—¢}. It then follows from (2.6) that the polar-
ization ellipses of the ordinary and extraordinary waves
are mutually orthogonal: K, -K,=-~1. The ratio of the
principal axes of these ellipses is determined by q.
When |g| > 1, the ellipses degenerate into mutually
perpendicular straight lines (along the x and y axes,
respectively) and, when |g) <« 1, they degenerate into
circles (with opposite directions of rotation of the elec~
tric field vector).

The geometrical optics approximation is valid when
the properties of the medium vary sufficiently slowly in
the direction of wave propagation: the waves (2.4) then
propagate independently of one another, their phases
and amplitudes are determined by the refractive in-
dices, in accordance with (1.5), and the polariza-
tions follows the varying properties of the medium,
in accordance with (2.4) and (2.6). The factor
1/Vn {1+ K3 in the amplitude of each wave &, (2.4)
corresponds to the law of conservation of energy in the
particular wave, i.e., to a constant Poynting vector
I{c/8r)Re[E B}],l = const [the fields in (2.4) are chosen
so that this constant is equal to unity]. In a three-di-
mensionally inhomogeneous medium, each of the geo-
metrical optics waves will propagate along the ray de~
fined by the eikonal equation® ™ (V¢i)® = 2.

B. Helical waves

In a homogeneous medium, the x,y axes assume
fixed positions and are conveniently oriented to lie
along the optical axes of the medium in the plane per-
pendicular to the direction of propagation, i.e., the z
axis (or, more precisely, along the axes of the ellipse,
Refelx®+ (e + €]}) xy + €;,9%] = 1). In a uniaxial aniso-
tropic medium, this means that the anisotropy axis de-
termined, for example, by the magnetic field B, in a
plasma, or the director L in a liquid crystal, lies in the
y,2z plane (Fig. 1). The optical axes in an inhomogene-
ous medium can, in general, rotate as they move along
the z axis (their azimuthal rotation is characterized by
the variation of the angle ¥ in Fig. 1). If we consider
the projections of E and B along the x and y axes of the
coordinate frame that “rotates” together with the rota-
tion of the optical axes (the z axis is fixed), the matrix
T in the propagation equation (1.1) assumes the form

0 —ty 0 . 1
I~ ' 0 1 0
T=(a’e;}c e%e31 0 ’\P') ;

3g-1 -1 __ '
ey, elel) W 0

(2.7

where ' = kb dy/dz is the local rate of rotation of the
optical axes in space. The tensor £7} in the matrix T
(2.7) has a fixed form and does not explicitly depend on
the angle ¢, in contrast to the matrix 7 (2.3) in the non-
rotating coordinate frame.

When ¢’ = const, and the medium is homogeneous in
all other respects, the equation e’= —iTe (1.1) yields
the normal waves in a medium with uniformly rotating
optical axes. We then have

1

- Ey — >
z —E, 1/ 8r/e — 1K
8, = V) = e ~ : 2. 8
( g’) Viasrorwr |~k | (29
v m+v'EK,
Zheleznyakov et a/. 880




R —[e (ek + e53) -+ 292 12— 2ie? (e5) — e51) ¥'n
+ (et — %) (%e73 — ¥') — ebezlezt =0,
(2.9)
(2.10)

Ri= —iE, Eii = (s%e5 — ¢ — 1) (ie2ez) -+ 2'n,) .

These waves will be called helical waves.*¥™7 All
quantities referring to these waves will be indicated by
a tilde. It is clear from (2.9) that there are four helical
waves with different refractive indices 7, that are de-
termined by a fourth-degree equation (in general, not a
biquadratic equation, as was the case for the ordinary
and extraordinary waves in a homogeneous medium)®
and its different polarization coefficients I?',. Equations
(2.7)-(2.10) include absorption. However, even when
there is low absorption, the polarization ellipses of the
helical waves will not, in general, be orthogonal:
R’lf(z# —1. The description of the propagation of elec-
tromagnetic waves in terms of the helical waves is
very convenient in cholesteric liquid crystals, in twist-
ed waveguides, in helicoidal ferrodielectrics, and in
plasmas with a sheared magnetic field.

The normal-wave structure in a medium with a peri-
odic helical inhomogeneity is relatively simple when the
optical axes rotate smoothly and the medium is weakly
anisotropic [see (2.5)~(2.9)]:

(WIVEl €, 4 [ni—nll <o (nitnd) e, (2.11)

Since we shall frequently return to this important spe-
cial case, let us write out the corresponding approxi-
mate formulas for two helical waves propagating in the
same direction fthey follow from (2.9) and (2.10) with

e =—g0]:

BVt a (v )V F 1),
o Cyea)

i (el viVE)

(2.12)

Kio=qFV @+1, ¢=

(2.13)

It is clear from these two expressions that the gyro-
tropy (ice,/2) and the rotation of the optical axes of the
medium (¢'/Ve) lead to effects of the same kind and are,
therefore, additive. In all other respects, the helical
waves behave in this case in the same way as the ordin-
ary and extraordinary waves. In the absence of rotation
of the optical axes, the helical waves are identical with
the ordinary and extraordinary waves. We note that,

as in the case of (2.4), the energy flux density associat-
ed with the helical waves (2.8) is normalized to unity.

DThe difference between the refractive indices #, and i (or
#, and 7,) for two helical waves propagating in opposite di-
rections occurs in magnetoactive (gyrotropic) media with
rotating optical axes when (7} —£;1)¢¥ = 0. This is connected
with the fact that the direction of rotation of the optical axes
of the medium in one case is the same as the direction of
Faraday rotation, whereas, in the other, it is in the opposite
direction.??"122 The result is that, alongside the well-known
nonreciprocity of Faraday rotation of the plane of polariza-
tion, we now have the additional polarizational nonreciprocity,
namely, the difference between the polarization ellipses and
phase velocities of normal waves propagating in opposite
directions.

5)The expression for &; , given by (2.13) is valid when the
denominator in the expression for § does not vanish:

6/ eey + 9! /VE 1> 101 /20y’ /VE ).
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'

The geometrical optics of helical waves can be con-
structed by analogy with the geometrical optics of or-
dinary and extraordinary waves. The only difference is
that the parameter ¥’ must be regarded as a local char-
acteristic of the medium, just as 5-111 is (see Refs. 43
and 47).%

C. Wave coupling for normal incidence on a plane-
layered medium

Consider the propagation of waves in a plane-layered
medium in the direction of the inhomogeneity axis (z
axis). We shall use helical waves, i.e., we shall not
ascribe a uniform rotation of the optical axes to the in-
homogeneity of the medium. According to (1.2)-(1.4),
we introduce the geometrical optics replacement of the
form e=73%, f,#;, which ensures the transition to geo-
metrical optics asymptotic behavior:

1

/—2: é @/l —ik

= v COT R 2.14
( B Y mar Ry oy R, | TR (2.14)
T ni+y'K;

This leads us to the following equations for the interac-
tion between helical waves:

fi-t ingfy
_ é @iy 1) (5129 4 By (it np) g (14 Kok v (ﬂﬁfmf
et eV R+ Ty ron® VR 4 Ryt 2w 6 ’

(2.15)

We have assumed in the transformation to (2.15) that the
polarizations of the helical waves are determined by the
gyrotropy and rotation of the optical axes, but not by
absorption or, more precisely, we have used equation
€,.= —¢,.. For this common case, the coupling coeffi-
cients in (2.15) are antisymmetric, i.e., a,,=—ay,.
This can be verified by differentiating the identity
(4 n) (4 KK y= — 20 (K, + K ), (2.16)
which follows from (2.9) and (2.10}.” If there is no ro-
tation of the optical axes (y’= 0), the set of equations
given by (2.15) yields the following equations for the
coupling of ordinary and extraordinary waves:*-18

6Mt is appropriate to emphasize here that a large number of
periods of the helical structure is not essential to enable us
to introduce and use helical modes even though, for any other
periodic structure, this condition is necessary for the defi-
nition of normal waves. The point is that, for a given direc-
tion of propagation, it is only helical (azimuthal) rotation
that will ensure that the constitutive relation (2.2) and Eqs.
(2.1) will remain unaltered, and this enables us to perform

a local analysis over an arbitrarily small segment of the
structure. In particular, helical waves can be used to de-
scribe the propagation of radiation when the optical axes of
the medium rotate through a finite angle ¥3<1,

It is clear from (2.16) that the nonorthogonality of the polari-
zations of the helical waves that is characterized by the de-
parture of K;K, from -1 is proportional to the rate ¢’ of
rotation of the optical axes in space. We note that, at the
degeneracy point for the two waves #; =7, (i #j), the expres-
sion under the square root in (2.14) will not be zero, since
Ii- #I-(j because of the particlﬂar choice of eigenvectors in
(2.8). We note that, when K,:f(i and #,=#;, the expression
under the square root will vanish by virtue of (2.16).

7)

Zheleznyakov et al. 881



P ing . —
fidindy= —¥ReER fy e f gy Sl g

21/ reny 21/ reng (2 17)

'+in ¥ Re—-ng Y ne—ny _ ing
furtinefy =W JELI gy et py g,

. in; ne—n ne+n

—infy=a— f; — ¥ — 0 f, W 20
fimindy =g fi—1¥ FL o ki,

. . — tng ne+n

—inyf,= —i¥ el - Yy e 70
f.; Ofb Zl/neﬂo f1+ 2"0 f2+ 2]/"2"0 fa,

where ¥ = —g’R(¢*+ 1)]™. Equations (2.15) and (2.17)
include absorption provided it does not violate the con-
dition g} = ~¢,1. If there is no absorption, we have the
law of conservation of energy in the form given by (1.6).
This follows directly from (2.15) and (2.17), which have
the form of (1.3). This can be verified if we recall that
the coupling coefficients for these equations satisfy the
following symmetry relations: a,,= —a;‘, for waves i, j
propagating in the same direction, and a = aj}; for
waves i, i propagating in opposite directions.

It is clear from (2.15) and (2.17) that, when the medi-
um is highly inhomogeneous (large values of the deriva-
tives #/, }?;, ¥”), all four geometrical optics waves are
closely coupled with one another. The theory of wave
coupling has not as yet been developed for this case. In
the homogeneous medium, for which a,,= 0 for all i, j,
the normal waves propagate independently of one an-
other. For a smooth inhomogeneity of scale A>»x (A is
the wavelength in the medium) for which the coupling
coefficients g ; in (2.15) and (2.17) are small, the cou-
pling between waves propagating in opposite directions
and the coupling between waves propagating in the same
direction can be considered separately under certain
additional conditions. In the case of above-barrier re-
flection, the conversion of the former waves corre-
sponds to reflection with a refractive index approaching
(but different from) zero”*?% (see Sec. 3D). This re-
flection ( coupling of two waves of the same type) occurs
when waves of the other type can be neglected [see
(2.17)]:

f{+i”1f1=—9fa Q:l—"’

f;—mf,:Qf‘ ? 2n * (218)

We note, by the way, that analogous equations for two
helical waves propagating in opposite directions can be
obtained from (2.15). Reflection from n= 0 points and
from regions with negative »® will not be considered be-
cause, for regions for which n? <0, the waves are non-
propagating, and the original geometrical optics sub-
stitution (1.2)—(1.4) is no longer meaningful (see Ref.
14).

The coupling of waves propagating in the same direc-
tion is described by equations of the form
f;+i;i{f1 = “i}fz
fit ingfy=¥f,

y_ ¥
¥= Py (2.19)
[see (2.11)~(2.75) and below]. In this case, wave con-
version occurs in the region where the refractive in-
dices approach one another [#; - #i,| <#, + #i,. The ab-
sence of reflected waves under the condition A>> A will
be ensured when the two refractive indices #, and #,
are sufficiently different from zero.

The law of conservation of energy follows from (2.18)
and (2.19), and is written in the form

882 Sav. Phys. Usp. 26(10}, Oct. 1983

(2.20)

{f = 1fs [ = const
for waves propagating in opposite directions and

{71 * + 1fy P = const (2.21)

for the waves propagating in the same direction. This
corresponds to purely imaginary and purely real cou-
pling coefficients  and ¥, respectively. Comparison
of (2.18) and (2.19) will show that the coupling coeffi-
cient for the accompanying waves is determined by the
change in 7, i.e., the wave polarization }?1_2 (2.13) is
independent of #; ,, whereas the coupling coefficient of
the colliding waves is determined exclusively by the
change in their refractive indices. We emphasize that
(2.18) and (2.19) are suitable for the description of ar~
bitrary (including strong) wave conversion, despite the
assumed continuity of the inhomogeneous variation in
7, , and ¢ on the scale of the wavelengths in the medium.
The conditions for an effective coupling between the
waves will be obtained in Sec. 3.

D. Quasi-isotropic approximation of geometrical
optics (three-dimensional case). The Budden-
Kravtsov equations

Under the conditions defined above, the interaction of
waves in a three-dimensionally inhomogeneous medium
can be reduced to the one-dimensional case by using the
“quasi-isotropic” approximation of geometrical op-
tics,34-37.38.47.52 Thig approximation is valid in a weakly
anisotropic, smoothly inhomogeneous medium.® Ac-
cording to this method, the electric displacement and
magnetic induction D(r), B(r) are sought in the form of
an asymptotic series in powers of k3!, as is usually
done in the geometrical optics of an isotropic medium.
We now use in (2.1) and (2.2) the smooth inhomogeneity
and weak anisotropy (l¢,,-£0,,] < ¢) as small parame-
ters, and introduce the geometrical optics replacement
of the form of (2.14). This gives us the Budden-Kravt-
sov equations:?-3

A ikgfo= f 2@+ ) 5L 3 2.22

o thgafy= — £ 2@+ )1 5L
These two equations have the same form as (2.19)
which was obtained in the one~dimensional case. How-
ever, the role of the dimensionless coordinate ¢ is now
played by k., where [ is the path length along the
quasi-isotropic ray. The shape of the ray is deter-
mined by the eikonal equation in the isotropic medium
with refractive index Ve =(n,+ n,)/2. The introduction
of the quasi-isotropic ray is connected with the fact
that, approximately, we need not distinguish between
ordinary and extraordinary rays under the conditions of
weak anisotropy in the wave coupling region.?*:3® The
amplitude factor 1/V7,~£™/* in (2.14) is now replaced
by the new factor A, which satisfies the equation

8'Wave coupling has not been extensively investigated!?-20%1,24
in three~dimensionally inhomogeneous media with strong
anisotropy and arbitrary inhomogeneity. Several special
cases of oblique incidence on an anisotropic plane-layered
medium have been considered in plasma physics, 137164853
in the optics of cholesteric liquid crystals,’% in magneto~
optics,*® and in integrated optics. 257
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div(Ve A%’1)= 0, where 1l is the unit vector along the
quasi-isotropic ray. This last equation is obtained
from Maxwell’s equations together with (2.22) as a con-
dition for the consistency of the first order approxima-
tion equations in the above small parameters. The fac-
tor A, which takes into account the variation in the re-
fractive index ve and refraction, ensures that energy
conservation (2.21) is satisfied along the ray.

In the three-dimensional case, we use the orthonor-
mal set of coordinates x, y, z transported along the
quasi-isotropic ray and following the rotation of the op-
tical axes (see Fig. 1, where the z axis is parallel to
1). The angle ¢ is the angle between the y axis and the
direction in the x,y plane specified by Rytov’s law3!.3¢
dx/dl= T™ (T is the radius of curvature of the ray and
the angle x is measured from the ray normal in the x,y
plane). In other words, the angle ¢ is the angle between
the y axis that follows the optical axis and the electric
field vector b of the linearly polarized radiation propa-
gating along the quasi-isotropic ray on the assumption
that the medium is isotropic and its refractive index is
Yve. With this definition, the derivative §’ represents
both the rotation of the optical axes and the twisting of
the ray itself.*”

Thus, in a weakly-anisotropic medium, the coupling
of waves propagating in the same direction is described
in a practically identical manner in both the one-dimen-
sional and three-dimensional cases.

The coupling with reflected waves in the three-dimen-
sionally inhomogeneous medium in the quasi-isotropic
approximation is evidently impossible to take into ac-
count because reflections occurring in this type of
medium violate the locally plane structure of the wave
field, which is essential for the validity of the quasi-
isotropic approximation (Refs. 21, 34, 38).

E. Equations for the transfer of wave polarization in
inhomogeneous media

In the above discussion, we considered monochroma-
tic waves of given polarization at each point in space.
However, in practice, we frequently have to deal with
waves whose frequencies are concentrated within a nar-
row interval Aw<< w.%:59°% Their polarizations are
slowly-varying and, generally speaking, random func-
tions of time. The theory of transfer of this type of
radiation therefore employs quantities of the form
E,E} (a,B=x,y), in which a time average has been
taken within the interval Af>> 1/Aw (or a statistical
average over the ensemble). The corresponding trans-
fer equations, including coupling between the waves in
a three-dimensionally inhomogeneous weakly anisotrop-
ic medium, can be deduced from the Budden-Kravtsov
equations (2.22). Neglecting reflected waves, we find
from these equations that the quadratic combinations
Ji;=fif I of the complex amplitudes of the two waves
propagating in the same direction satisfy the following
transfer equations:®

9Equations (2,23) are referred to as “polarization transfer
equatiom;,’,’.‘;?";8 since f;=e" **, where e is the resultant
field and &°* represents the ‘‘transfer” waves that are
orthogonal to the normal waves ?;* [see (1.2) and (1.3)].
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Th=2(Imn) S, — ¥ (J, 4+ 1),
J;Z:Z(Imgz) Jzz‘f’{i’(-’tz‘fﬂnz)‘
J{zzi(;5_;1)-’12‘*"?(-[11'_-’22)-

(2.23)

Since the properties of the medium are assumed to be
determined, we can transform to the quantities E_E}
with the aid of the geometrical optics substitution (2.14)
and, using the quasi-isotropic approximation, we obtain

e(6ap) = Topvalye, lap=go eA2E B} ~ o &1 42D, D,
(2.24)

where the polarization tensor I, refers to a unit fre-
quency interval and unit solid angle along the ray.

The coordinate system used in the above expressions
is defined in Sec. 2D. The polarization transfer tensor
T 4v5 Will be shown to be expressible in terms of the
components of the normal waves €, in the same way as
in the homogeneous medium;**™ however, it now de-
pends on the coordinate {= g/l along the ray. Thus, in
the quasi-isotropic approximation, the transfer equa-
tions given by (2.24) in an inhomogeneous medium differ
from the corresponding equations for the homogeneous
medium only by the dependence of the coefficients on
the space coordinates. The transfer equations thus
take into account the coupling between the waves (this
was previously demonstrated by numerical calcula-
tions® in special cases). This result was expected be-
cause the original Maxwell equations did not contain de-
rivatives of the medium parameters. This can be readi-
ly exploited to generalize the transfer equations given
by (2.24) for the inhomogeneous medium to the case
where the coupled normal waves are nonorthogonal
(nonorthogonality was not taken into account above). To
show this, it is sufficient, as in the homogeneous medi-
um, to take into account the nonorthogonality of the
helical waves 50'. in the expression for the tensor
T, a5 (s€€ Refs. 33 and 67).

It follows from (2.23) for (2.24)] that, in the absence
of dichroism, with Im#, =Im#,, the ratio of the inten-
sities of the polarized (coherent) and unpolarized (non-
coherent) components of the radiation remains the same.
In this case, effects associated with coupling between
the waves in the theory of transfer of partially polarized
radiation obviously apply only to the polarized (coher-
ent) component, and can be investigated on the basis of
the Budden-Kravtsov equations given by (2.22) without
introducing the transfer equations. However, analysis
of the transfer equations is essential in the presence of
dichroism, and of depolarization, scattering, and emis-
sion by the medium itself. The latter factors are usu-
ally statistical in character. They can be taken into ac-
count relatively simply by replacing the stochastic field
equations with the transfer equations, having included
in their right-hand sides the corresponding root-mean-
square parameters of depolarization, scattering, and
emission by the medium. The transfer of radiation un-
der the conditions of linear wave coupling has not been
examined with allowance for these factors although they
are of undoubted interest in the theory of generation and
propagation of waves, for example, in magnetoactive
plasmas or liquid crystals.33,59762.68,70
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3. QUALITATIVE ANALYSIS OF LINEAR WAVE
CONVERSION. THE COUPLING PARAMETER

Let us now consider the qualitative picture of the
coupling of two waves propagating in the same direc-
tion, which is described by the set of coupled equations
given by (2.19) with real coupling coefficients ¥ = —q,,
= a, and refractive indices #, ,. The coupling between
two colliding waves (2.18) with purely imaginary cou-
pling coefficients Q = in’/(2n), and the more general
case (1.7) with complex coupling coefficients and re~
fractive indices (i.e., with allowance for absorption),
can be analyzed analogously.

A. Conversion matrix and conversion coefficient.
Limiting cases (geometrical optics, isotropic
medium, jump in anisotropy)

The set of equations given by (2.19) enables us to find
the values of the functions /2, f2** and the correspond-
ing radiation field (2.14) at exit from an inhomogeneous
layer from given values f!*, f,!" at entry. Since the set
is linear, we have

= Fufl +Ffy, 3" =Fofi + Fuff, (3.1)
where the four quantities F;; form the conversion ma-
trixs®

VOO Sout q
—Y@eior 1/1-0#?) o (-— ;S " C)' (3.2)

This is readily verified by substituting

_ (Fu Fuay __ ]/1_—_69-”
F—(Fn Fn)_(

in

fr.2=08y,z0xp (—-i S ;dt_’,) ) ’T=%(zl+;z)» (3.3)
which reduces (2.19) to the symmetric form
6;+12‘(;“1“7‘z)61=“?62 §o 7 (3.4)

8y (7 — i) By = F6, 20+

The first column of the conversion matrix is obtained
from the solution (5,, §,) under the boundary conditions
dir=1, 6i*= 0. Since energy conservation (2.21) has al~
ready set the ratio of the moduli of 6" and 3%, we
may introduce the notation

S =V T Ge-iv, 68" = —V Qe-ie+w, (3.5)

where possible phase differences are represented by
the factors exp(-iy) and exp[-i(¢ + ¥)]. The second col-
umn of the conversion matrix is obtained under the
boundary condition 5{*= 0, 5i"=1. Simple substitution
in (3.4) shows that (-5}, 5¥) can be taken as the solu-
tion, where §, and 6, are the previous solutions used in
determining the first column. This enables us to write
the conversion matrix in the form given by (3.2) if we
also take into account the relationship between &, , and
/i given by (3.3).

The quantity @ in (3.4) is the so-called conversion co-
efficient that determines the relative intensity of waves
of a given type (at exit) when a wave of another type is
incident on the layer:

ut out
[Franllls 16012

in
= TrFiRr T aE. or fo =0 (3.6)
out out i
o J | 18 I o f2 =0.

Thi*T 1l [sin(2
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It is clear that 0< @ <1. The coefficient of conversion
into the same wave is 1 — Q. This is clear from the law
of conservation of energy given by (2.21), which was
also taken into account in deriving (3.6). It follows
from the symmetry of (3.4) that the two expressions in
(3.6) lead to identical values of Q.

The quantity ¢ in (3.2) obviously determines the
phase difference between waves of the first and second
type at exit from the layer when a wave of the second
type is incident upon it. In the geometrical optics ap-
proximation, the quantity v is identical with the “Fara-
day” phase difference

Cout
Yo=% S (7‘1“'72)(19
t

(3.7

The onset of coupling signifies that the conversion
coefficient @ is nonzero, and the phase difference v is
different from the value given by (3.7). This is clear
if we compare the conversion matrix F given by (3.2)
with the matrix F, obtained by solving (3.4) in the ab-
sence of coupling when ¥ = 0:

Lout
[aa) o
1?0 - in

exp (—i

(3.8)

Lout
0 exp (—i | Fap
t.

in

The last matrix corresponds to the geometrical optics
approximation.

In the limiting case of an isotropic medium (i, =#,),
the equations given by (3.4) can also be readily solved,
and the conversion matrix assumes the form

tou
P S (-1 | Ra), (3.9
where )
n=— | Fdg=F +Ferctg 7, (3.10)
An=nom—nm=%(arctg5°u¢—arctggm)- (3.11)
According to (3.10),
g= —ctg2n, K,=—R1=1gn, (3.12)

i.e., the increment An on n represents the wave polar-
ization (2.13) along the propagation route ¢, ¢ . This
change determines the magnitude of the conversion co-
efficient in the limit of the isotropic medium:

Q = sin®an [see (3.9)]. The phase shift is then y =0 and
the phase is ¢ =0 or 7. Transforming to the field com-
ponents E, and E, with the aid of (2.40), we can readily
show that there is no change in the polarization of the
resultant radiation in the layers ¢, , £, in this case,
and the matrix F given by (3.9) produces a simple con-
version between two decompositions of this polarization,
namely, decomposition into two orthogonal polariza-
tions of normal waves at entry to the layer and decom-
position into two other orthogonal polarizations at exit
from the layer. We now adopt the convention that by
normal waves in the isotropic medium we shall under-
stand waves that are obtained by a limiting transition
from the anisotropic medium and, consequently, the
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waves have a definite polarization [see (2.6) and (2.13)]
fore,;~eb,,.

In an anisotropic medium, %, ##,. However, for lay-
ers with a small geometrical optics phase difference
(3.7), (l74l < 1), the terms +i/2(%, — 7,) 5, , in (3.4) can
again be neglected in the limit of the isotropic medium.
The conversion matrix F for such inhomogeneous lay-
ers (anisotropy “jumps”) is identical with that given
by (3.9).

B. Riccati equation. Strong and weak conversion

It is convenient to perform a qualitative analysis of
the coupling process by using (3.4) [or (2.19)] together
with the Riccati equation for the complex wave ampli-
tudes P = —if,/f, that follows from it:

= i(P— 1)—2iG (n) P. (3.13)

The variable 7n is given by (3.10), and the characteris-~
tic function G(n) has the form

)=t = Bt = (3 ) L

2¥ an’ 7

(3.14)

To obtain the Riccati equation given by (3.13), it is con-
venient to write (3.4) in the canonical form
d8,/dn + iG () & = 8,
a8, ldn — iG (m) 8, = —8,.
According to (2.14), the ratio P directly determines the
polarization coefficient at any point along the ray:

(3.4a)

K= _i_E_"= i) (iz‘_ip)

i (3.15)

The elements of the conversion matrix (3.2) can be
expressed in terms of P in the following way. The con-
version coefficient @ and phase ¢ are found by solving
(3.13) under the boundary condition Pyn,,) = 0:

Po’('ﬂout): - ‘;}/__ao exp (ip)

(3.16)

(a wave of type 2 alone is incident on the layer). The
validity of (3.16) becomes clear if we consider (3.2) and
(3.6). In its turn, the phase shift ¥ is given by

Nout Nout
1= | 6man=—ne | Py(mydn, (3.17)
Tin Min

where Py(n) is the solution of (3.13) under the same
boundary condition. The formula given by (3.17) is ob-
tained by integrating the standard substitution P(n)

= G(1) + i5;*d6,/dn that relates the Riccati equation
(3.13) to (3.4a).

According to (3.13) and (3.4a), the entire process of
variation of polarization along the ray (including the
coupling region) is determined by the behavior of the
characteristic function G(n) within the range a7 of the
variable 7(¢) in the medium. For example, if, in the
inhomogeneous medium, we can linearize (2.13) by tak-
ing 7= q,° ¢, and the refractive index difference can be
approximately represented by the quadratic expression
7, ~ 71, = (Bn)g XV 1+q2%, then An=7/2, and the charac-
teristic function is

(An)o
g s1md2n *

G(n)y=

(3.18)
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It is clear that the solution of (3.13) with G(n) given by
(3.18) will describe not only wave coupling in the par-
ticular layer (see Secs. 4A and 7C), but the solution
will be also valid in all other layers with the same
characteristic function G(n), independently of the spe-
cific refractive index distribution 711'2(5) and the quan-
tity g(2).

It is clear from the form of the function 7{g) in (3.10)
that, within the g interval between —« and +«<, the vari-
ation in n will largely be confined to the region where
G*~1, and the value of X, , given by (2.13) will corre-
spond to the elliptic polar’ization of the geometrical op-
tics waves. On the contrary, for g*>> 1 (linear polar-
ization), the variable n will be practically constant,
remaining close to zero or 7/2. For g%« 1 (circular
polarization), the values of n will be close to 7/4.

In the limiting case of high values of the characteris-
tic function } G(n)| > 1 between n,, and n,, fi.e., when
n, #7, and, according to (3.14), the variable 7 varies
slowly along the ray], the approximate solution of
(3.13) can be found in the form of an expansion in the
small parameter G}, <« 1, where G_,, is the smallest
value of |G(n)| within the interval between 75,, and 7
We then have

out *

Nout n
P(ou)={P(n,)—t | exp[2i | G(man]an}
n Tin

in
Nout
x exp[ —2i S G da].
" (3.19)

This result corresponds to the inclusion of the terms
~i and -2{G{n)P (but not iP?) in (3.13) and differs by
the presence of the small corrections of the order of
Gl as compared with the geometrical optics solution

min

in which only the term —2iG(n)P is included.
The conversion coefficient is now not equal to zero,
but remains small in comparison with unity (weak cou-
pling):
TNout n 2
Qzl 5 exp| 2i S G(n)dq]dnl <Gt

Tin in

(3.20)

The phase shift ¥ is not very different from the geo-
metrical optics value ¥, given by (3.7). The behavior of
the phase ¢ of the created wave is more complicated.
In simple cases, the new wave arises almost in quadra-
ture with the incident wave: @=x7/2 or @=—-2¥,%7/2
[see (3.19)].

According to (3.16), the coupling is weak when | P2}
<« 1 throughout. In this case, for any function G(7) we
can neglect the term 7P? in (3.13), and obtain an expres-
sion identical with (3.19). Consequently, it describes
weak conversion even for | G(n)i < 1. Moreover, if we
assume approximately that, even for |G(n)! <1, the
phase of the function P is determined by an expression
of the form given by (3.19), the solution of (3.13) for
|P| leads to a conversion coefficient whose form is
similar to that of (3.20):

O=sin2|m§ut oxp [ 2i :(I G (n)dn)dn |-
n

in in

(3.21)
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Judging by special cases,™ the formula given by (3.21)
will also describe approximately both effective and
strong conversion. This is characteristic for cases
where phase discrepancies are small as compared with
geometrical optics. The situation is typical for transi-
tional layers because, for such layers, |y - ¥, =(an/
2)? [see (3.7), (3.17), and (3.26)].

In the limiting case where |G(n)| «< 1 (%, and 7, are
then very close to one another and 1 continues to vary
along the ray), it is also possible to find explicit ex-
pressions for @, ¢, and . This can be done by sub-
stituting @, which converts (3.13) with the function G(n)
into the analogous Riccati equation with G(n) = 1/G(7),
and then again using a solution such as (3.19). It is
readily verified that this solution yields small correc-
tions to @, ¢, and ¥, obtained earlier in the limit of an
isotropic medium (3.9) (when G(n) = 0). In particular,

Q = sin® An-l1 — O (69)], (3.22)

1Y~ %! <1, and the created wave is almost in phase
{(¢=0) or in antiphase (¢ ~+7) with the incident wave.
When {an|~1 in the layer, this case corresponds to
strong coupling.

According to (3.22), a small change in 7 along the
ray (as compared with unity) leads to the appearance of
only weak coupling: @<<1. The foregoing is valid not
only for |G(n)t <« 1, but also for inhomogeneous layers
with |G(n)1 < 1.!% When 1G(n)|> 1, we have @<« 1 for
any increments A7y along the ray [see (3.20)].

Summarizing the above discugsion, we may conclude
that effective coupling with conversion coefficient
©~1/2 can occur only in inhomogeneous layers in which
the characteristic function G(n) falls to values |G(n)|
< 1 within the interval 1An] ~1. This conclusion can be
confirmed by analyzing the phase structure of the
Riccati equation given by (3.13).

Figure 2 shows a few characteristic examples of the
behavior of the function G(n). Curve 1 refers to the lay-
er described by (3.18) and curve 2 represents the limit-
ing polarization effect, when the radiation leaves the
anisotropic medium (%, #7,) and enters the isotropic
medium (%, = #,). Here the coupling is strong with con-
version coefficient @, = sin®An when |an| ~1, and the
function G(n) falls sufficiently rapidly from the values
{G(m)|>1 to values [ G(n) | << 1. The result of this is
that a large proportion of the increment An and, conse-
quently, the main change in the polarization coefficients
of the geometrical optics waves occur for |G(n)| < 1.
The same function G(n) obtains over the transition from
the homogeneous anisotropic medium to the highly in-
homogeneous anisotropic medium for which &, #7, and
G(n) tends to zero with increasing n because of the high
derivative g’ [see (3.14)].

19The golution of (3.13) lor (3.4a)] is conveniently sought
over a small range of values of 5 in terms of a series in Ay.
This yields @ ~(an)? «1. In particular, the coupling effect
turns out to be weak when the polarization of the geometrical
optics waves remains either linear or circular along the
beam: it is then clear from (3.10)—(3.12) that the increment
An is small along the beam.,
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FIG. 2. Simple forms of the function G(7) in transitional
layers: l—layer with constant sign of #y —%,; 2—transitional
layer between anisotropic and isotropic media; 3—layer with
a change of sign of #, —#,; 4—layer with G(n)~ const~1.

At this point, it is useful to note the following sym-
metry properties: as the curve representing G(n)
changes sides, so does the conversion matrix, and when
the curve is symmetric (for example, curve 1 in Fig.
2), the conversion matrices for the two halves differ by
the complex conjugation of the off-diagonal elements.
All these conclusions can be readily verified by consid-
ering the set of coupling equations given by (3.4a).

The foregoing results can also be deduced from the
Riccati equation for the polarization coefficient of the
resultant radiation:

K' =122 (K—K) (K~ Ky, (3.23)
1

This follows from (3.13) after we substitute (3.15), but
can also be written at once, as in a homogeneous medi-
um, because the derivatives of the parameters of the
medium do not appear in this equation (cf. the derivation
of the transfer equations in Sec. 2E). The last feature
enables us to extend this equation by including absorp-
tion, dichroism, nonorthogonality of normal waves,
and strong rotation of the optical axes of the medium,
because these factors are included in the coefficients
7, , and K, ,. The corresponding generalization of the
equation given by (3.13) for the amplitudes of the cou~
pled waves can be obtained by employing (3.15) in the
reverse direction.

C. Coupling parameter in transitional layers

The propagation path of electromagnetic waves in a
smoothly inhomogeneous medium usually passes through
regions with linear and circular polarizations of the
geometrical optics waves and transitional regions be-
tween them. It is shown above that wave coupling oc-
curs only in these transitional regions. For one transi-
tional region, An=+7n/4, and, for two, an= +n/2. The
coupling is weaker when |G(n)| > 1 along the entire ray.
It remains weak when the function G(n) falls to values
{G(m1 =1 on a small interval {An| <1, but retains high
absolute values everywhere else along the ray. Con-
versely, the coupling becomes effective (@ ~1/2) when
1G(n)] <1 over a wide interval ] an| ~1 (Fig. 2). Final-
ly, strong coupling occurs when |G(n)| << 1 over an in~
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terval |An]~1, When An= +7/4 and An=x7/2, the con-
version coefficient approaches its maximum values
(1/2 and 1, respectively).

Consider a transitional layer characterized by a
monotonic variation of 7 (and of §) and lying between
two neighboring regions in which the geometrical optics
approximation is valid. It is clear from the foregoing
that, when the variation of G(7n) over most of the inter-
val An does not exceed the magnitude of the function it-
self, the effectiveness of the conversion in the transi-
tional layer can be characterized by the parameter
G = G(n,), where 1, is a fixed point (for example, the
midpoint) in the interval An. In the case of a transi-
tional layer with | An| ~ 1, the interval An must include
the region where g%~ 1, and the coupling parameter can
be defined by'"

ng—ny

2%

G=1G(n)

(3.24)

I~ .
q?~1 et
Depending on the sign of the ellipticity parameter g,
the value 2= 1 corresponds to 7= 37/8 and 5= 7/8, re-
spectively [see (3.10)].

When the medium includes a transitional region in
which there is an appreciable change in the polarization
K, , (2.13) of the geometrical optics waves (i.e. |ap|~1
along the ray) and the relative change in the charac-
teristic function G(n) is less than or comparable with
unity within this region, the values of the coupling pa-
rameter enable us to judge the degree of wave conver-
sion., In particular,

o<1 for G>1,

1
Q~’2_Qmax for G~11 (325)
Q =~ Qmax for G,

where @, = sinAn. The function @(G) is shown sche-
matically in Fig. 3. When G> 1, the formula given by
(3.20) can be employed and shows that @(G) can exhibit
oscillationg because, in this case of weak conversion,
the coupling region may not be localized and phase ef-
fects are found to appear. However, the most interest-
ing and nontrivial case is that of effective coupling
(9~1/2 for G~1, |Anl ~1). More sophisticated
methods (see Sec. 3E) must then be used to obtain the
analytic form of @(G).

sin’A 7|

L (I )
0 1 A G
e

£
z/1471

FIG. 3. Characteristic dependence of conversion coefficient
@ on the coupling parameter G. A similar curve has been
obtained numerically for An =r/2 in the case of a neutral
current layer in plasma.™

Hiwe note that, in Cohen’s paper,“‘ the ‘“‘coupling parameter”
was defined to be the fuaction G () and not the quantity G
given by (3.24) and introduced previously in Refs. 3, 33,
and 52.
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We emphasize once again that the relations given by
(3.25) with the conversion parameter (3.24) are valid
only for a small increment |An|~1 in the transitional
layer. The magnitude of @ is then 0.5—1. The guantity
@ decreases when the increment An is smaller. How-
ever, in any case, Eq. (3.22) shows that the maximum
conversion coefficient is @, = sin®An and is reached
when 1G(n)l <1 and, in particular, G <1, in the transi-
tional layer.

Next, we note that, according to (3.14) and (3.10),
T out Lout

2 { eman= [ @ —ma

Tin Cin

(3.26)

Hence, it follows that, when in the transitional layer
we have along the ray segment &, , ¢ . coincident with
the region of effective coupling (| Ani~1, IG(n) s 1),
the order of magnitude of the absolute value of

?i‘;‘” (7, — 7,)d¢ does not exceed unity. Since the condition
[ (7, = n,)d§ ~ 1 determines the spatial period of beats
between the geometrical optics waves, it is clear that
effective coupling occurs when an appreciable change in
the polarization of these waves occurs within this peri-
od (i.e., when the period of the beats occupies the in-
terval |An| ~1). It is, therefore, not surprising that,
as can readily be verified, the coupling parameter
(3.24) is of the order of the ratio of the inhomogeneity
scale A of 7 at the point §*~1 to the period of beats
between the waves 2n/k,! 7, — #i,| at the same point:

G =12 (n— 1) koAl (3.27)

7 gt

In other words, coupling occurs when the polarization
of the resultant radiation does not succeed in following
the variation in the polarizations X, , of the geometrical
optics waves. This conclusion is most readily under-
stood if we turn to (3.23), which gives the polarization
K, and if we consider the “Faraday” integral [(%, - 72,)d¢
as a new independent variable. Qver the interval within
which [(7z, — 72,)dg << 1, the increment on the unknown
function K in (3.23) is also small and, consequently, the
polarization of the resultant radiation remains practi-
cally constant, whereas the polarizations of the geo-
metrical optics waves i(x,z’ which are determined by
the local properties of the medium, can undergo a sub-
stantial change (in an inhomogeneous medium). How-
ever, the change in the polarization of the resultant
radiation occurs over an interval on which [(#, - 7i,)dg
21 (of course, subject to the condition I{#I_{L2 which,
by the way, is unimportant in the presence of coupling).
This follows from (3.23) which shows that the charac-
teristic scale of the change in the polarization, deter-
mined by the ratio |K/K’| for [K|~1, is equal to the
period of beats between the waves 27/k4li, ~ 72,1, but
is independent of the derivatives 121’,2, n{ ,. The result
is that, as soon as the inhomogeneity scale A = 13/
q | 2., for the geometrical optics waves (2.13) becomes
less than the period of the beats, the situation cannot
be described by the geometrical optics approximation,
and we have wave coupling.

The significance of the transformation of the original
field equations given by (1.1) and (2.3) or (3.23) into the
canonical coupling equations (3.4a) or (3.13) should now
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be clear. Information on the coupling phenomenon is
implicit in the original equations and appears in the
form of different functional characteristics of the in-
homogeneous layer, for example, 7, ,(£) and g(¢). On
the contrary, in the canonical coupling equations, all
the information about the conversion effect is borne by
the single function G(n), given by (3.14), which is thus
the differential characteristic of the inhomogeneous lay-
er. The function G(n) explicitly contains the derivative
g' (it determines the spatial rate of change in the polar-
ization of the geometrical optics waves). This enables
us to introduce the local spatial “rate” of the coupling
process and, in particular, to introduce the coupling
parameter as the average of this “rate” in the transi-
tional region in which coupling occurs,

When there are two or more transitional layers in
which coupling occurs, the phase characteristics of
wave conversion become of fundamental importance. In
fact, multiplying together the conversion matrices
(3.3) for two such layers (with parameters @, ¢, %
and @, ¥;;, Yy, respectively), and bearing in mind
the phase difference 6= 1/2k, [(7, — #,)d¢ acquired by
the waves in the gap between the layers, we obtain

Q=[V0r(1—0m+V 0u(1—01

—4V0:0u 1—01) (1 —0Qur) sin? [5 + v+ —;—(‘Pu —‘PI)] .
(3.28)

In the case of two identical transitional regions forming
an inhomogeneous layer that is symmetric with respect
to the point {= 0, we can rewrite (3.28) in the form (see
Secs. 5B, 6A, and Refs. 50 and 169):

(3.28a)

Q = sin%’-ch%",
where
28" = 28 + 2vypit+ eu— 1 + 7, s"= archeh 4Qr{1— Q)I-', Q1=Qu.

It is clear that complete conversion depends on wave
interference, and conversion effects in the two neigh-
boring layers can cancel out. On the other hand, when
we have a periodic sequence of transitional layers,
with weak coupling in each of them, complete conver-
sion may be substantially amplified as a result of reso-
nance interference between the waves.

D. Qualititative analysis of coupling between waves
propagating in opposite directions

The coupling equations for the waves given by (2.18)
can be reduced by the substitution F=(f, —if,)/v7 to
the canonical wave equation F” + n?F = 0. The latter is
investigated in a large number of papers (see Refs.
7-10, 26-28, 51, 75, 92, etc.). Here, we merely note
the analogy between coupling phenomena for waves
propagating in the same and in opposite directions. In
accordance with (2.18), we confine our attention to
above-barrier reflection (n2>0). It follows from (2.18)
that the reflection coefficient #= —if,/f, is a solution of
the Riccati equation

d#

?9*=§2—1—2i§(9)55, (329)

where 6= —[ '/(2n)]d¢ = -Invn, 9(6) = 2n%/n’. It dif-
fers formally from the Riccati equation for waves
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propagating in the same direction (3.13) merely by the
replacements § ~in, %(8) ~-iG(n) and the fact that, to
determine the conversion coefficient we must seek the
solution of (3.29) subject to the boundary condition
#(&,,) = 0, and the solution of (3.13) subject to the
boundary condition P(¢g,,) = 0. It is therefore a relative-
ly simple matter to extend the analysis given above to
the case of coupling between two waves propagating in
opposite directions. We need only allow for the fact
that, when the interval of variation of the variable 7,
given by (3.10) in the case of waves propagating in the
same direction, is restricted to the segment [0, 7/2],
the interval of variation of 7 in the case of waves
propagating in opposite directions is unlimited, i.e.,
(=e; +=). (We note, by the way, that in the case of
waves propagating in the same direction, the presence
of absorption will also ensure that the variable 1 and
the function G(7) become complex, and the interval ap
may become unlimited.) In particular, the maximum
conversion coefficient is given by

Qmax = |sin®Ay | (] sin®An | + | cos®An )t (3.30)

with An or {A¢ for waves propagating in the same and in
opposite directions, respectively.

For a transitional layer in which n({) is a monotonic
function, effective reflection with conversion (reflec-
tion) coefficient @ = |2 12/(|#|%+ 1)~1/2 can occur only
in a layer in which the characteristic function %(6) falls
to values |9(6)1 <1 on |Af) 2 1. Proceeding by analogy,
we may introduce a coupling parameter ¥ governing the
conversion efficiency in a transitional layer n,,, n_,,
and consider the dependence of the reflection coefficient
and the phases of the waves propagating in opposite di-
rections on the coupling parameter. When phase effects
are relatively unimportant, we may again® use the ap-
proximate formula given by (3.21) with the replacement
n—= -8, G(n) ~i%(6) and sin—~ sh. Phase effects and in-
terference between the coupled waves propagating in the
same direction (see Sec. 3C) become important in the
case of reflection from a sequence of transitional lay-
ers.

E. Methods of solving linear coupling equations

Qualitative analysis of wave coupling enables us to
identify regions of effective conversion and to estimate
the size of the effect directly from the form of the in-
homogeneity in the medium without resorting to the so-
lution of the equations. Various approximate methods
of solving the coupling equations are being used to ob-
tain more detailed information. They include different
variants of perturbation theory,!:7-28:34,49.72,77,184 pqj_
fications of the WKB method,?¢:7 7 the method of phase
integrals, the method of undetermined Tsvan multipli-
ers),® 9255 the method of the comparison equation (lin~
ear associated equation),?®-%° numerical meth-

ods,® 7480787 the method of standard prob-
lems 7,30,36~39,47,52,71,75,76,88-91,93 and SO on
, .

The advances achieved in recent years in the theory
of wave coupling are, in many respects, due to the ap-
plication of the method of standard problems, i.e., the
derivation of exact solutions for a sufficiently broad
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class of inhomogeneous layers and the comparative
analysis of their properties. The principle of this
method can be conveniently illustrated by considering
the equation®?

d26,
0 1 ()8, =0,

Imy=1—L20 4 g2 (), (3.31)
which follows from (3.4a). Let us choose the character-
istic function G(7) so that its form corresponds to the
particular type of coupling (see Sec. 3B and Fig. 2),

and so that Eq. (3.31) reduces to one of the equations
that we have investigated, whose solutions can be ex-
pressed in terms of known functions. According to
(3.14), this choice imposes one differential relationship
on all the functions defining the inhomogeneous profiles
of the parameters of the medium. By integrating this
relationship we obtain a class of functions correspond-
ing to different specific realizations of the homogeneous
layer (dependence of the parameters of the medium on
position along the ray). Wave coupling in each of these
realizations is described by the conversion matrix
which we can find from the known asymptotic behavior
of the special functions of the chosen standard problem.
Thus, by working “outwards,” i.e., by starting with the
chosen standard function G(7), we reduce the initial
problem to other problems which, generally speaking,
are simpler. These are: determination of the conver-
sion matrix with the aid of (3.13), and determination of
the set of realizations of inhomogeneous layers in which
conversion is described by the chosen standard problem,
i.e., with the aid of (3.14). Both these problems can

be readily solved, and this will be demonstrated below.
On the other hand, if we start by specifying a particu-
lar profile of the inhomogeneous layer, the wave cou-
pling problem will often lead us to a complicated differ-
ential equation, whose solution is unknown. Neverthe-
less, the nature of the conversion effects can still then
be identified by finding the function G(7) and exploiting
the qualitative analysis together with known standard
problems with characteristic functions G(7) of the same
kind. Moreover, when the true function G(7) is not very
different from the standard function, we can readily
find corrections to the standard conversion matrix by
using perturbation theory.

4. WAVE CONVERSION IN MAGNETOACTIVE
PLASMA

Plasma situated in an inhomogeneous magnetic field
B,(r) is an important and the most extensively studied
example of a gyrotropic medium in which the conversion
of electromagnetic waves is possible. In a smoothly
inhomogeneous magnetoactive plasma, the coupling be-
tween ordinary and extraordinary waves'? occurs in
regions where the refractive indices

2lye are concerned with high-frequency waves in cold plas-
mas. Analysis of coupling between low-frequency waves
propagating, for example, in the Earth’s ionosphere, can
be performed in an analogous manner,’® ™2 Moreover,
we neglect spatial dispersion, the presence of which in
“hot” plasma leads to coupling between plasma, Bernstein,
cyclotron, and other waves,!r311-13:1%18,%-97 onq 56 on, This
range of problems demands at least a separate review, and
will not be examined here.
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FIG. 4. Refractive indices for normal waves in magneto-
active plasma as functions of electron density v and magnetic
field # (schematic). Circles show wave coupling regions.

n%,2:1——v+vV1:cosa(K,‘2+V;cosa)“ (4.1)
approach one another (see Fig. 4), and is connected
with variation in polarization coefficients

——— in2
K ,=qFV g+, q=—2(1Lf_s,,‘)%;, (4.2)

where we have used (2.6) and the identity a;; z—gyi for

a plasma with the magnetic field By lying in the y, z
plane (Fig. 1); « is the angle between B, and the direc-
tion of propagation (the z axis), u= u4/w,, v= W%/ u?,
wpy = eBO/mc is the electron gyrofrequency, w, = (4meiN/
m)* ‘% is the plasma frequency, and N is the electron
density of the plasma (¢ and »m are the electron charge
and mass, respectively).

It is clear from (4.2) that the variation in the polar-
ization of ordinary and extraordinary waves along the
ray and their coupling occur because of the inhomo-
geneity of the magnetic field B(r), both in magnitude
and direction, which results from the inhomogeneous
distribution of electron density. Conversion is then
most effective in a weak quasitransverse or a strong

quasilongitudinal magnetic field;33 %
costa < 1, (4.3)

(4.4)

Vug i —v, v <1

w1, sinfe 1, v<Vu
The coupling parameter (3.24) is substantially reduced
in these regions as compared with the value G~kqad
that is characteristic for plasmas with a~z~ 1 ~-ul~1
and vy<1-v. It follows that, when conditions (4.3) and
(4.4) are satisfied, effective coupling is possible in
denser and more homogeneous plasma. The inhomo-
geneity in plasma density turns out to be important
when we consider propagation along a strong magnetic
field in post-critical plasma(l« v<« vz, region IV in
Fig. 4), or in the neighborhood of plasma resonance
(v~1, region IIl in Fig. 4). The last case is complicat-
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ed by the vanishing of the function n*¢) at the point
v=1 and the singularity of this function at v=v_,. We
shall not examine this in the present paper (see Refs.
1, 3, and 14).

A. Weak quasitransverse magnetic field

When the inhomogeneity scale A is largely deter-
mined by the change in the direction of the magnetic
field along the ray, the coupling parameter G in (3.24)
in the case of (4.3) is given by%13.52.7

COS &
d cosa/dl |qamt”

G, = I/Z_kovu

=TT

(4.5)

According to Sec. 3C, in a transitional layer from
quasilongitudinal propagation (qfn"' 0) to quasiperiodic
propagation (g2, ~ =), or the other way round, the max-
imum conversion coefficient is 1/2 and this is reached
for G,« 1. In that case, an incident circularly polar-
ized wave of a given type will traverse the inhomogene-
ous region A with practically no change in polarization.
Consequently, the region of quasitransverse propaga-
tion in which normal waves are linearly polarized will
be entered by coherent ordinary and extraordinary
waves of equal intensity, and their superposition will
ensure circular polarization of the resultant equation.
As G, increases and the increment An decreases for
a%,#0, ¢°, #=, the conversion efficiency will fall (see
Sec. 3C and Fig. 3).

When the waves successively traverse two transi-
tional layers with g%~ 1, the conversion of ordinary and
extraordinary waves may become complete: @=1 for
G, «< 1. This occurs when the waves traverse a region
of transverse magnetic field in which its longitudinal
component in the direction of propagation changes sign
(Fig. ba). When cosa=1[/A,and, u, ' = const, we then
have Jcompare this with (3.18)]

vus/?

UL (4.6)

G(n)=— koA cos™3 27,
and Eq. (3.31) has an exact solution that can be ex-
pressed in terms of parabolic cylinder func-

tions.8:50.93,165 The conversion coefficient is given by?®®

Fout

e N

" 7-v %

2y .

i |7
A AT A 7
_7.—
7in
By
g A 7z 7
gt g=-1 gi>7 g=7 <7 ¢ F piet g=1 gie1 ¢
gZ»1 7=

o1 Q=-=-}---= O aorf-mm O -
41 QO f= OO gorh=mmm @ =S
st Q- OO farf—mom e}

a)
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(4.7)

Qmexp (—22) mexp (— ),

0, =(nolo}A/8c)*

(this result was originally obtained by the method of
phase integrals®®9). The expression for  in terms of
w, in (4.7) is written for v« 1, in which case,

G, < w™ [see (4.5)]. The critical frequency w, is intro-
duced on the basis of the condition 7G,/4vV2 = 1.

At low frequencies for which w« w_, where G > 1,
the waves propagate independently, following their dis-
persion curves (Fig. 5a) and reversing the sign of rota-
tion in accordance with the change in the sign of the
longitudinal component of the magnetic field. As the
frequency increases, the geometrical optics approxi-
mation breaks down and, when w> w, and G, <1, the
radiation does not “feel” the change in the magnetic
field, and retains the sign of its circular polarization
just as for propagation in a vacuum. Finally, when
G,~1, we have the intermediate case in which the in-
cidence of a wave of a given type on the coupling region
results in the emergence of two coherent waves from
the region, namely, the ordinary and the extraordinary
waves. The ratio of their intensities is @/(1 ~ @), and
depends on frequency [see (4.7)]. When w~w,, this ra-
tio becomes equal to unity, which corresponds to linear
polarization. The frequency w, of reversal of the sign
of the polarization (or the value of the coupling parame-
ter G, at a given frequency) is a convenient source of
information about local plasma parameters [magnetic
fields in the solar corona®®:%:1% (Fig, Ba), electron
density in ionospheric or laboratory plasma,® and plas-
ma in the inner magnetosphere of Jupiter®3:191],

As an example, we recall observations of the rever-
sal of the sign of polarization of the slowly-varying
component and microwave bursts of solar radiofrequen-
cy emission at about 3 GHz (see Refs. 33 and 100, and
the references therein). This effect can be explained by
assuming that the emitted radiation passes a coronal
region of a quasitransverse magnetic field in which
w,/27~3 GHz. It can be used in (4.7) to show that the
magnetic field in the coupling region is B,~5 Oe if we
suppose that N~3+10% cm™ and A ~10!° cm; the defini-

FIG. 5. Behavior of dispersion branches and wave polariza-
tions in the case of propagation through a quasitransverse
magnetic field (a) and neutral current layer (b).
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FIG. 6. Emergence of solar radiofrequency radiation from
an active region above a bipolar sunspot group through a
transverse magnetic field (a) and zero magnetic field (b).

tion of w_then shows that this estimate is relatively
insensitive to the parameters N, A, but is much more
sensitive to the frequency w.

Wave conversion is also found to occur when a region
of zero magnetic field is traversed, in which the main
contribution to the scale A is provided by the change in
the magnitude of the field and the corresponding cou-
pling parameter3-52.7%

Vi

—4V9 — 2
Go=4V2kpVI—veosta TV ‘th

< 1. (4.8)

This situation occurs in neutral current layers in plas-
mas (see Fig. 5b), which play an important role in the
explanation of the origin of magnetic substorms and
solar flares. The phenomenon of wave coupling can be
used as a basis for the diagnostics of current lay-
ers®®74.1% (Fig, 6b): by measuring the conversion co-
efficient @ and knowing the function @(G) in a current
layer (it is calculated in Ref. 74), we can determine the
coupling parameter G and, consequently, establish the
connection between the layer parameters «,, A, and
cosa.

B. Strong quasilongitudinal magnetic field

In a strong quasilongitudinal magnetic field, the coup-
ling parameters associated with the variation in the
magnetic field in both direction (@ = «a(£)) and magni-
tude (« =u(¢)) are respectively given by

G = Vv k.,v’ sina

LN Vo dsina/dl |g2~1’

G — V2kwsinta Yu l (4.9)
® [1—v] d Yudt fgaet,

where, in accordance with (4.4), the subscripts “paral-
lel” and “infinite” indicate that sina <« 1 and« >» 1, re-
spectively. Let us illustrate the situation by consider-
ing the Epstein-type transitional layer (see Ref. 7):

—= 9in —gqout - ny—n,

9(9) 1-+exp (4 V' 20/G) Fou 5 2V 41 ot (4.10)
where ¢,,>¢g_,, >0 and G=G, or G= G,.. The corre-
sponding function (3.14) is

Gy)=— G (Zin —qout) (1-+ctg? 2n)¥2 (4.11)

212 (9inTctg2n) (94, tctg 2n)

and is illustrated by curve 1 in Fig. 2. The solution of
(3.31) in the case where (4.11) is valid takes the form of
hypergeometric functions and is analyzed in Ref. 52. It
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"k

turns out that the conversion efficiency increases mono-
tonically with decreasing G and with increasing differ-
ence g,, ~q,,, across the layer [i.e., with increasing in-
crement Ay, given by (3.11)]. When the layer contains
a transition from quasitransverse propagation (g;, = *)
to quasilongitudinal propagation (¢, —~0), we have

o=[t+en (7))

(4.12)

In complete correspondence with the results of the
qualitative analysis, the conversion coefficient is @ «<'1
for G>1 and @ ~1/2 for G< 1. The coupling deter-
mined by the parameters G, and G, has not been previ-
ously considered although it is interesting, for exam-
ple, in the investigation of semiconductor plasma in a
strong magnetic field, or in the analysis of the polar-
ization characteristics of the radioemission escaping
from the ionosphere of Jupiter and from the magneto-
spheres of neutron stars.

C. Conversion effects in the “plasma + magnetized
vacuum” system

In strong magnetic fields of up to 5x10*2 Qe, the im-
mediate neighborhood of neutron stars—x-ray pulsars—
must be looked upon as a medium consisting of tenuous
plasma (v <« 1) and magnetized vacuum.'®?"1% In a medi-
um of this kind,

g=Vpie [y Blob ), (4.13)
where
o= () () () 1, B S mtetimoe
The region where
‘1———;—vu/a(u—1)l<<1 (4.14)

is the most interesting. In this region, the influence of
plasma on the polarization of normal waves in the x-ray
range is comparable with the influence of the magnet-
ized vacuum, and the variation in ¢ can be assured by
the inhomogeneity in plasma density. Wave conversion
is possible under these conditions.*%?

When the condition v sinfa > 2lcosa| for quasi-
transverse propagation is satisfied in the plasma, the
polarization of waves will be nearly linear. Suppose
that the plasma density decreases in the direction of
propagation of the waves. According to (4.13), the quan-
tity ¢ will then decrease from values {g|> 1 down to
zero. It will then change sign, and its absolute magni-
tude will again become large. In accordance with the
foregoing, the polarization of the wave will at first be
determined by the plasma and will be nearly linear with
the vector E lying along the x axis for the extraordinary
wave, and the vector E lying along the y axis for the
ordinary wave. In the “cancellation” region, which in-
cludes the layer where 1 - (1/3)vu/a(x - 1) =0, the po-
larization will be nearly circular. Finally, in tenuous
plasma with low values of v, the polarization of the
waves will be determined exclusively by the magnetized
vacuum, and will again be nearly linear. However, the
extraordinary wave will then be polarized along the y
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axis, and the ordinary wave along the x axis. In the
coupling region, where ¢*>~1, the corresponding cou-
pling parameter is given by!®*

G,=12V 2 kjau ctg?a

(4.15)

|
dv/dl gt ?
where u = const >1, a= const.

The rotation of the plane of polarization that was
seen above to accompany the transition from the plasma
into the region where the properties of the waves are
determined by the magnetized vacuum will obviously oc-
cur only in the geometrical optics approximation when
G,>> 1 and there is no coupling. If, on the other hand,
the coupling is strong, there will be no rotation of the
plane of polarization during the propagation process,
and the waves transform from extraordinary to ordinary
(and vice versa). For a linear density profile, the con-
version efficiency is described by the familiar formula
(4.7) in which G, is replaced with G,.2%* 1t follows from
the condition G,< 1 that, in a broad range of angles
a~1, there is appreciable coupling if Aw= 1 keV (soft
x rays). The density in the coupling region can be found
from the condition 1—1/3vu/a(u - 1) = 0, according to
which N,~10% cm™. Since the wave coupling phenome-
non occurs in a broad range of angles, it may be ex-
pected that it will be important in the evolution of the
polarization of radiation emitted by x~ray pulsars.!®

D. Limiting polarization effect

Mutual wave conversion may have an influence on the
polarization of radiation entering vacuum from magneto-
active plasma (for example, plasma produced in ther-
monuclear fusion installations or the magnetospheric
plasma; see Refs. 1-3, 33, 58, 86, 98, and 101,
where the respective experiments and observations are
discussed). In such cases, there is an inhomogeneous
region that connects the anisotropic medium to the
vacuum {or an isotropic medium). When the polariza-
tion of radiation that has traversed this region differs
from that calculated in the geometrical optics approx-
imation, we say that the limiting polarization effect has
taken place. It is clear physically that, when v or u is
sufficiently small, i.e., when the degree of anisotropy
is low, the influence of the magnetic field B,(r) on the
polarization should tend to zero. As v —~0, the waves
should propagate as in a vacuum, and, as u—~0, they
should propagate as in an isotropic plasma. This is
why, beginning with a certain level, the polarization of
radiation emerging into vacuum (or an isotropic plas-~
ma) will cease to vary and, in the course of subsequent
propagation, the polarization ellipse will assume a fixed
shape, which will be the same as it was at entry into
the region of weak anisotropy (“limiting polarization™).
Conversely, according to the geometrical optics ap-
proximation, the polarization ellipse should, even here,
have a variable shape, depending on the variation in the
parameters v, u, and o [see (4.2)]. This means that
wave coupling occurs for small values of v and u in the

13)Ana.lysis of radiowave conversion effects in the magneto~
spheres of radio pulsars'® must be performed with allowance
for the fact that the plasma in the magnetospheres of neutron
stars (radio pulsars) is probably relativistic.
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transitional region between the anisotropic and the iso-
tropic medium.

The foregoing qualitative analysis (see Sec. 3C) en-
ables us to identify the following features of the limiting
polarization effect. To begin with, it is clear that, if
the polarization of normal waves (4.2) varies little
[lani «< 1, see (3.11)] as they emerge into the isotropic
medium, the limiting polarization will obey the geo-
metrical optics approximation and, consequently, the
limiting polarization effect will be practically ab-
sent.!® According to Sec. 3C, both here and in the gen-
eral case of emergence from an anisotropic medium,
corresponding to {~ +«, the polarization of the radia-
tion (which can be arbitrary) will cease to vary when-
ever the “Faraday” integral [f_(n, — n,)d{ ceases to in-
crease. The interval of values of ¢ in which [(»,
-n,)d{~1 is referred to as the limiting polarization re-
gion.

If, on the other hand, the transition from anisotropic
to isotropic medium is accompanied by an appreciable
change in the polarization of normal waves (| an| ~1),
i.e., quasitransverse propagation is replaced by quasi-
longitudinal propagation (or vice versa), then wave
coupling must be taken into account. It becomes appre-
ciable and leads to the limiting polarization effect when
the coupling parameter is G= 1 in the coupling region
g?~1. Depending on the position of the coupling region
relative to the limiting polarization region, there are
then three different possible situations. When the cou-
pling region is located closer to the isotropic medium
than the limiting polarization region, the increase in
the “Faraday” integral [ (n, - n,)d¢ in the coupling re-
gion is small and G <« 1, in which case the limiting
polarization effect corresponds to strong coupling and,
to an extent, can be regarded as trivial {see Sec. 3A).
When the coupling region lies on the other side of the
limiting polarization region, i.e., within the body of
the anisotropic medium, the evolution of limiting polar-
ization is largely determined by wave conversion in the
coupling region because the polarization obeys the geo-
metrical optics approximation during subsequent propa-
gation toward the isotropic medium and, in particular,
in the limiting polarization region. The third possible
situation is, in our view, the most interesting. Here,
the coupling region coincides with the limiting polariza-
tion region and G~1 (in this case, the characteristic
function G{n) has the form of Curve 2 in Fig. 2). This
situation has been analyzed in Ref. 106 by considering

149t is precisely this type of situation that has been analyzed
in the well-known paper by Budden,!®” who examined the at-
mospheric propagation of a wave reflected from the Earth’s
ionosphere, assuming that the inhomogeneity was connected
with a variation in the effective collision frequency
§=vg,/ w. The quantity ¢ in (4.2) is equal to' Va sin’x
x[2(1 =v~is)cosal™! and is a slowly-varying function of
s for s<«1 and v #1, The increment |An|<«< 1 and the evolu~
tion of the limiting polarization do not then, in fact, accom-
pany wave coupling: Qq,, <1, see (3.30). It is obvious that
this conclusion is also valid for tenuous (v << 1) magneto-
active plasmas in which the inhomogeneity on the boundary
with the vacuum is connected with the change in plasma con-
centration, 3952
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FIG. 7. Limiting polarization in the transitional layer (4.16)
between magnetoactive plasma and vacuum (schematic). The
ordinary wave is incident on the layer from the left.

the example of the standard problem'® for a transition-
al layer with an inhomogeneous magnetic field, de-
scribed by the equation

d —
= —vVucosa(g+ 1)

Gy’

G(n)=Getg [_(1/'2> nA('?wn) 1.

(4.16)
where Ap is given by (3.11), 0<an<(n, - 7/4), and
G = const (see Fig. 7). We then have!'®®

Q=1+ letg (G,An) ctg (GaAw)), (4.17)

. 4n?
eiv — o Vietg (G,An) etg (G An)]

- T (—26GAn/m) T (2G,An/n) ik(ln DGAR/n
2 (—Gy8/n) I (G,An/m) ’
(4.18)

V=g ;S (ny—na) dg

in

T ({1/2)— 2i G Ay/x) 1
+ “g[ T2 — (G A/ T {(1/2) F @ an/my ) *

(4.19)

where T is the gamma-function and G, ,= VI—G +iG.
The phases ¢ and y enable us to determine the shape
and orientation of the limiting polarization ellipse {see
Fig. 7). The conversion coefficient @ characterizes the
limiting polarization effect which, according to (4.17)
is stronger for larger increments An and smaller cou-
pling parameters G.

The difference between the region of departure from
geometrical optics and the region of limiting polariza-
tion is emphasized in Ref. 108. Denisov®® considers
more complicated and less frequently encountered mod-
els of limiting polarization regions containing many
transitional layers, i.e., many local coupling regions
with g*~1 (or, in other words, a single distributed
coupling region). For example, one model discussed by
Denisov® is
L<<lin
>0

R(G—8) for

We=— 0 for

(4.20)

ﬁ:const, n2~n1={
(%= const), for which the system of transitional layers
has the form

g=—ctg 2n = — ctg [2n, + 2¥ (§, — )] (4.21)

(see Fig. 8). In each of the transitional layers in which
g changes from +« to —e, the conversion process is
characterized by the coupling parameter G determined

15)The method of phase integrals is ineffective in this case
because it will not yield the phase of the waves and, conse-
quently, will not solve the problem of limiting polarization
(for example, it cannot be used to determine the orientation
of the output polarization ellipse).
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FIG. 8. A system of transitional layers and the characteristic
function G (7(£)) = (k/2 ¥2)¥ (£, — £) in the region between the
anisotropic and isotropic media for the model defined by
(4.20).

in accordance with the qualitative analysis given in Sec.
3. As the radiation emerges from the anisotropic medi-
um and passes through the successive transitional lay-
ers, the coupling parameter undergoes a successive re-
duction because the function G(7(¢)) decreases (see Fig.
8). Complete conversion is determined by the interfer-
ence of waves in the successive transitional layers
(Sec. 3C).

This situation arises when zk/¥%<< 1, and effective
conversion with coupling parameter G< 1 occurs in a
large number (~2¥%/kh > 1) of transitional layers. The
“Faraday” integral evaluated along the path crossing
these layers is then large: [(n,-n,)d¢=2[G(ndn
~2¥%/h> 1. Accordingly, the qualitative analysis
shows that the polarization of radiation emerging into
the isotropic medium will vary even in the region where
G(n) < 1. This can be seen from the exact solution giv-
en by (4.20), which is expressed in terms of the para-
bolic cylinder functions.

The picture is simplified in the other limiting cases,
where 3h/%%>>1 and the function G(n) decreases so
rapidly that the transition from G{n) > 1 to G(n) <« 1 oc~-
curs in a single (last) transitional layer. According to
the exact solution given by Denisov,®® the conversion
process is weak: Q~2¥?/h<«< 1. This result is in
agreement with the qualitative analysis and follows
from (3.20). In this case, the remaining transition lay
ers in the anisotropic medium do not affect wave cou-
pling or the limiting polarization effect.

E. Plasma with a sheared magnetic field

In the foregoing discussion, we did not take into ac-
count the shear of the lines of force of the magnetic
field B, i.e., the variation in the direction of the pro-
jection of the magnetic field on to the plane perpendicu-
lar to the direction of propagation (see Sec. 2B). This
inhomogeneity is typically encountered in tokamaks,** %8
in the magnetospheres of rotating accreting neutron
stars,'®® in rotational discontinuities and shock waves,
and in low-frequency helical and magnetohydrodynamic
waves.** These situations are also known to involve
wave coupling, which becomes possible even as a result
of inhomogeneity in the density of tenous plasma (v
= 1(8) «1).

The wave-coupling theory is readily extended to the
case of plasma with a sheared field. Instead of ordinary
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and extraordinary waves, we must then consider the
helical waves introduced in Sec. 2B. The conversion of
these waves is characterized by the coupling parameter
G given by (3.24), and occurs in regions where g*~ 1.
Since ¢ and § are different [see (2.6) and (2.13)], the
position of the coupling region g*~1 in plasma with a
magnetic field shear is different from that in the ab-
sence of shear, for which the coupling region is deter-
mined by the condition g2 ~1. The presence of shear
gives rise to the conversion of helical waves in new
intervals of the plasma parameters, and for a broader
range of inhomogeneities. In particular, inhomogeneous
shear (1" #0) leads to helical-wave conversion. A de-
tailed analysis of this is given in Ref. 47, but will not
be reproduced here because, fundamentally, the cou-
pling phenomenon in plasma with a magnetic-field shear
is very similar to the analogous phenomenon in liquid
crystals of the cholesteric type (see Sec. 5).

5. LINEAR COUPLING IN THE OPTICS OF LIQUID
CRYSTALS

Whereas, in magnetoactive plasma, the study of mag-
netic-field shear and helical-wave conversion is merely
an extension of wave-coupling theory, the investigation
of the entire range of problems associated with the ro-
tation of the optical axes of the medium in the absence
of magnetic activity'® is of fundamental importance. In
fact, the ordinary and extraordinary waves in nongyro-
tropic anisotropic media are linearly polarized (g2 = =)
and, consequently, are not coupled when the orientation
of the optical axes of the medium is fixed in space
[coupling coefficient ¥ = 0 in (2.17), since g= const].
Wave coupling becomes possible only in the case of ro-
tation of the anisotropy axes which occurs, for exam-
ple, in liquid crystals, ferromagnetic structures (Sec.
6), in mechanically stressed (twisted) bodies 112,113
and under other conditions.

A. Helical waves in a cholesteric crystal

Liquid crystals retain orientational order despite the
partial or complete absence of spatial order. This
means that the long axes of the molecules are preferen~
tially aligned in the direction of the unit vector L—the
director. In cholesteric liguid crystals (including
smectic crystals) containing chiral molecules without
mirror symmetry, the director I{z) describes a helix
of pitch g= 2n/1¢’ Ik, along the z axis (this is the
“cholesteric helix”). The pitch and the nonuniformity
of this helix can be controlled by placing the cholesteric
crystal in external electric, magnetic, or ultrasonic
fields, or by varying the temperature, pressure, or
chemical composition of the crystal. The rotation of
the optical axes that is connected with the rotation of the
director has a radical effect on the optical properties of
the crystal. An example of this is the Bragg reflection
of light of wavelength A= g, 55-114.115

18)The natural (molecular) optical activity is, in most cases,
weak!19 and can change the structure of the normal waves,!'?
including helical waves,!!! only in the course of propagation at
a small angle to the anisotropy axis.
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We shall now consider the coupling of helical waves
propagating in the same direction,® which occurs dur-
ing propagation along the z axis in a smoothly inhomo-
geneous cholesteric helix (inhomogeneity scale A> A,
pitch g> A, ratio of A to g can be arbitrary).!” Helical
waves, i.e., normal waves in a medium with a uniform
helix (¥’ = const), have very close dispersion branches
by virtue of the weak anisotropy of the liquid crystal
(ag=¢g,-8g,<g, usually ac/e ~10™) and slow rotation
of the director plane ({¢’{/Ve < 1). For such waves,
Aesin? o
et (5.1)
where a is the angle of inclination of the director L to
the z axis (see Figs. 1 and 9). The quantity g, deter-
mined by the local properties of the cholesteric crys-
tal, defines the refractive indices #, ,, given by (2.12),
and the polarization coefficient K, , of the helical
waves, given by (2.13). When §*> 1, so that the helix is
not highly twisted, the helical waves are polarized lin-
early and are actually indistinguishable from the ordin-
ary and extraordinary waves (%, ,~n, ,). When g« 1,
i.e., when the spiral is highly twisted, the polarization
of the helical waves is circular. The director then
executes a large number of revolutions in one period of
the beats between the ordinary and extraordinary waves.
As a result, the optical anisotropy of the liquid crystal
is lost, and the light propagates just as in an isotropic
medium with refractive index ve = (R, + 7,)/2 = (n,+ ny)/
2.

Rg—ne

29’

~

=20V 41, 7=

The coupling conditions for an inhomogeneous helix
are

| Anf~1, G=|——“‘/?“" <1 (5.2)

7

2~ 1

[see Sec. 3C and the definitions of n and A7 given by
(3.10)—(3.12)], so that it is clear that effective helical-
wave conversion in inhomogeneous liquid crystals can
occur only in transition from a highly twisted to a
slightly twisted helix, or vice versa (i.e., when |aF) ~1
in the region g®~1). According to (5.2), this transition
must be sufficiently rapid. In particular, within the
pitch of the helix, there must be an appreciable change
in g, i.e., the degree of anisotropy 4¢, in the inclina-
tion of the vector to the axis of the helix, or in the pitch
of the helix itself. The propagation of light along a uni-
form helix with 7= const is not accompanied by wave
coupling and is fully described by the geometrical optics
of helical waves, 5-51,86,1147116

B. Polarization properties of an inhomogeneous
cholesteric helix

We shall now consider specific examples of light-
wave coupling in cholesteric cells in which a thin layer
of the liquid crystal (thickness d~1073~ 1072 cm) lies
between two transparent plates (Fig. 9). The inhomo-

!DNumerical calculations on the propagation of polarized light
in a number of specific models of a highly twisted inhomo~
geneous helix with pitch g~ A are reported in Ref, 80. Even
in a smoothly inhomogeneous helix with A > 2, it turns out that
Bragg reflection gives rise to coupling of waves propagating
in opposite directions, whereas the conversion of helical
waves propagating in the same direction is weak.
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FIG. 9.
type (schematic):
b) hybrid; c) homeotropic.
wave coupling.

Inhomogeneous liquid-crystal cells of the cholesteric
a) homogeneous (with variable pitch);
Circles show regions of helical-

geneity can be associated with either boundary condi-
tions or with external fields.!1#.115.117,118

Suppose that the pitch of the helix varies linearly,
i.e., gl&)=g"+¢, g’= const, and the director is LiL z
(e=7/2, Fig. 9a). For this transition from a highly
twisted to a slightly twisted helix, exact solution yields
(4.12) with coupling parameter G = 8v¥21/1¢’|k,, from
which it follows that, for a highly inhomogeneous helix
for which the derivative g’ is large, the coupling is
strong, whereas, in a weakly inhomogeneous helix, the
conversion is exponentially small. Qualitatively similar
results are obtained by solving other standard prob-
lems,%8:!19 for example, the problem of a layer in which
Y =Yg, ie., g g™, although the coupling parame-
ter is now different:

V2 (e — mo)® [$7 (5.3)

Let us now suppose that the angle between the direc-
tor and the axis of the helix is not constant, but is
represented by the function a(g). Figure 9o shows a
hybrid cell with L L z(a=7/2) on the entrance wall and
L || z(a =0} on the exit wall. The variation in § can now
be qualitatively described by''®

¢= 1@+ 46 §<"e—"u>d€]‘2’
L.

in

q(gm) 2 0. In this case, the
= const within the interval Ay

(5.4)

where g,. = (&) >0 =
function (3.14) is G(n) =

of (3.11), and exact solution is elementary:
Q= (G2+ 1)t sinz(Anl/G2+ 1), (5.5)
gy = —tg@=- VG’_+1 tg (AnV GTLH). (5.6)
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FIG. 10. Transformation of the polarization ellipse in a hybrid
cell in the approximation in which G (7)=const for weak
(G%»1), effective (G2=3), and strong (G?<«1) coupling. Type
2 wave is incident from the left,

These two formulas describe the transition of waves
from one dispersion branch (#,) to another (#%,), and the
corresponding conversion of polarization (Fig. 10).

In the homeotropic cell shown in Fig. 9¢, the molecu-
lar axes are parallel to the axis of the helix on both
walls (a=0). This cell can be modeled by a layer in
which

~ _ Qo i
YT (5.7

We have given the explicit dependence of 7 on the angle
Y of rotation of the plane of the director because, ac-
cording to (5.2), it is precisely the nature of this de-
pendence that determines the effectiveness of the cou-
pling. The quantity 7 is a maximum at the center of the
cell, where = 0. Along the edges of the cell, g,,
=~7,.~0. Inthis case, the conversion coefficient is
given by'?

0=sin (Z) i 222,
It depends not only on the coupling parameter p >0,
which characterizes the degree of inhomogeneity of the
layer, but also on the interference factor sin¥(ng.p/
4v2), which involves the geometric path difference be-
tween the two coupling regions with 72~1 [see (3.28a)
and Fig. 9¢]: ng.p/4VZ =(3) [ (2, —7,)d¢. It follows that,
in a highly inhomogeneous homeotropic cell (p<«<1,
Q0> 1), the conversion process is not necessarily com-
plete (@ #1), since coupling in these two regions may
cancel out as a result of interference.

(5.8)

Coupling between helical waves leads to a redistribu-
tion of the luminous flux among the waves, and thus
gives rise to a “nonadiabatic” change in the polarization
of light in inhomogeneous liquid crystals. The polar-
ization of light can be varied by varying the conversion
efficiency through a variation in the external conditions
and fields that determine the inhomogeneous structure
of the cholesteric helix. Special polarizers that trans-
mit a particular helical wave can then be used for heli-
cal-wave selection at entry to and exit from the liquid-
crystal cell.

We now draw attention to the fact that the coupling
parameter G and, consequently, the degree of conver-
sion @ are functions of frequency [cf. (4.7)]. For exam-
ple, when (5.3) applies, we have Gx w* and, for approx-
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imate estimates, we can put pw) —n,w)] =« w, The
result of this is that the inhomogeneous liquid-crystal
helix between the two polarizers transmitting different
helical waves can be used as an optical frequency fil-
ter.®11% Thig filter will not transmit light in the fre-
quency region for which G(w) > 1; the filter will be par-
tially transparent outside this region and will transmit
light with polarization corresponding to the polarization
of the helical wave produced as a result of conversion
for G(w)< 1.

C. Orientational phase transition and the Mauguin
cutoft

The theory of wave coupling is of particular interest
in connection with the problem of the relationship be-
tween the polarization cutoff threshold and the phase
transition point in liquid-crystal structures.!'”-1!® These
transitions, usually referred to as Frederiks transi-
tions, occur when there is a change in the magnitude of
the applied electric or magnetic field, and are connect-
ed with the reorientation of the long axes of the liquid-
crystal molecules under the influence of the fields.
Figure 11a shows the so-called nematic twist structure.
The Frederiks transition occurs in this system in a
longitudinal electric field E: when a certain critical
field E ,, is exceeded, the molecules find it energeti-
cally more convenient to align themselves gradually
along the field. Depending on the field strength, the
angle a between the director and the helix axis, for ex-
ample, at the center of the cell, will vary as shown in
Fig. 11b. The result of this is that the twist structure
becomes inhomogeneous, and helical-wave coupling be-
comes possible. When polarizers are placed on either
side of the system and transmit only one of the helical
waves, an increase in the electrical field eventually re-
sults in the extinguishing of the transmitted light, and
this is sometimes referred to as the adiabatic Maugin
cutoff,®+1'7 i e., the cutoff of the geometrical optics
propagation of light. It occurs at a certain threshold
field E, (optical threshold, see Fig. 11b) and is due to
the transition of the light wave from one dispersion
branch to another. When E >E,, this transition is com-
plete, and the system consisting of the twist structure
and the two polarizers becomes opaque.

a) b)

FIG. 11. Nematic twist structure with twist angle $,=7/2 in a
longitudinal field E: a) characteristic form of the distribution
along the layer of the quantity g« sin'e and of the 4,y disper-
sion curves given by (5.1) (circles show helical wave conver-
sion region); b) threshold characteristics.
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Since the Frederiks transitions are phase transitions
of the second order,'**18 the attendant changes in the
optical properties of liquid-crystal structures are very
small when the field exceeds the critical value by a
small amount. On the other hand, a substantial defor-
mation of the structure is necessary to extinguish it al-
together. This means that the optical threshold must
substantially exceed the critical field for the transition.
A similar situation occurs not only for the twist struc-
ture, but also in a number of other cases (see Refs. 88,
114, 117-120). The connection between the optical
threshold E, and the critical field for the phase transi-
tion E ,,, remained unclear for a long time. However,
the relationship was elucidated as a result of a qualita-
tive analysis of the coupling phenomenon. The ob-
served cutoff field £, corresponds to the appearance in
the structure of a coupling region g2~1 in which 14g|
~1 and the coupling parameter is G(E) ~1. Hence, for
the Maugin cutoff in the twist structure with y,= 7/2
(Fig. 11), we have!®

2 8 g,
Eo:E"“(-n]/—é) In [——HL},

In (87"1;0) ( > 9)

where §,= wln,—n,ld/nc. For example, for typical
values® d=13 um, the critical field is E, = 0.6E,,.
Equation (5.9) has been used to explain the mea-
sured®-!!7 relationship between the polarization cutoff
threshold and the thickness d of the twist structure and
light frequency w. In particular, (5.9) shows that E,/

E ., is a logarithmic function of the thickness of the ne-
matic twist structure. The dependence on frequency
and twist angle y, is more complicated, and is discuss-
ed in Ref, 88. Accurate formulas such as (5.9) for op-
tical thresholds can be used to investigate the structural
properties of liquid crystals in terms of their optical
properties, and to measure the liquid-crystal parame-
ters,®.119.120 The first step is, of course, to find the
phase transition point E__;, and the optical threshold E,
from independent measurements. Thus, the wave cou-
pling phenomenon in liquid-crystal structures of the
cholesteric type can also be exploited for polarization-
based light conversion and to investigate the properties
of liquid crystals.

D. Polarization diagnostics of dynamic processes

Light-wave conversion in liquid crystals can be used
to investigate various dynamic processes that modify
the inhomogeneity of the helix, and to measure the cor-
responding conversion coefficients. These processes
include diffusion, heat flow, hydrodynamic flows, ori-
entational waves, chemical reactions, and so
on.!14:117.118,12L  The point is that, in contrast to geo-
metrical optics, light transmitted by an inhomogeneous
liquid crystal structure after linear coupling carries
information on the inhomogeneity of the structure.®?
This opens up the possibility of polarization diagnostics
of dynamic processes in liquid crystals.

Let us illustrate this by a specific example. Figure
12 illustrates the diffusion of chiral molecules in a ne-
matic liquid crystal. The presence of the chiral mole-
cules results in the appearance of the cholesteric helix,
whose pitch is inversely proportional to the concentra-
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FIG. 12. Transitional diffusion layer: a—concentration of
chiral molecules r(z) and cholesteric structure of the
director L(z) at times ¢ =0 and {4>0; b—conversion
coefficient Q as a function of the coupling parameter G «vVD?
for a high initial concentration of chiral molecules (the
graph was constructed numerically for (7%= gk g(ng—n e)/41r]2
=1/16).

tion of these molecules.'' Suppose that, at =0, there
is a sharp boundary between the cholesteric and the
nematic crystals. In the course of diffusion of the chir-
al molecules, the scale of the inhomogeneity of the
helix will vary in accordance with the diffusion law in
proportion to v Df, and there will be an accompanying
variation in the coupling parameter G = 2V Dik,ln, —n,l
and conversion efficiency @(G) (Fig. 12). Hence, by
following the polarization of light and recording the
function @(#), it is possible to observe the diffusion
process and then determine the diffusion coefficient D.
All that needs to be done is to record the time 7, at
which the conversion efficiency falls by a factor of two
since, as is shown in Ref. 82, this should occur for G
=1. We then have

D = e [4t,0? (ne— ng)?| L.

(5.10)

The time ¢, at which the diffusion coefficient is mea-
sured amounts to only a few seconds rather than the
hours or days that are necessary in other currently
used methods.

6. LINEAR CONVERSION IN MAGNETIC MEDIA

All that we have said about the coupling of helical
electromagnetic waves in magnetoactive plasmas and
liquid crystals will also apply to magnetic media. In
magnetically ordered crystals,'**:!?° the relative aniso-
tropy and gyrotropy in the optical and infrared ranges
are up to 107°-1072 sp that, in accordance with the fore-
going, we have the possibility of wave coupling even in
the case of a continuous inhomogeneity of the medium®®

18 Apart from optics, coupling effects can be observed in the
microwave, millimeter, and submillimeter ranges of in-
homogeneously magnetized ferrites and, apparently, in the
ultraviolet range in the case of metallic ferromagnetic ma-
terials when they become transparent.

897 Sov. Phys. Usp. 26(10}, Oct. 1983

A> A, The necessary condition is that the inhomo-
geneity along the beam must take the form of either a
nonuniform helical rotation of magnetization M, or of a
transition from quasilongitudinal to quasitransverse
(relative to M) propagation, or vice versa. Either in-
homogeneity is inherent in the internal structure of
magnetic media (domain walls, helicoidal and sinusoid-
al structures, spin waves), but can also be produced by
an external magnetic field. Of known examples, we note
magnetic semiconductors*®®?28 (for example, those with
wurtzite or spinel structure), ferromagnetic materials,
helicoidally ordered *He (see Ref. 129), and ferromag-
netic liquids (suspensions of ferromagnetic particles) in
a magnetic field.** A nonuniform distribution of a
magnetic impurity or mechanical stress introduced
while the crystal is being grown will also introduce an
inhomogeneity into the nematic structure.

A. Optical properties of Bloch-type domain walls

The optical polarization method is very convenient and
sometimes the only way of studying inhomogeneous do-
main structures,'237125,1317135 agnecially in the investiga-
tion of the dynamics of domain walls in pulsed pro-
cesses.'*13® The domain structures used in magneto-
optics are usually in the form of thin ferrodielectric
films (1073~107% cm) that are transparent to optical or
infrared radiation.!?” We shall now consider the propa-
gation of light in this type of film with a Bloch~type
domain wall.®-13.13% We ghall suppose that the film is
a plane-layered structure in the direction of the z axis.
We shall also suppose that the magnetization vector
M(z) in the film rotates on a helix through a finite angle
¥, in a region with characteristic scale 2¢ (Fig. 13) in
accordance with the following law:

w:z—:"’-arctgexp (—g) ——%
(— 00 << z < - 00). (6.1)

The domain wall inhomogeneity gives rise to coupling
between the helical light waves with conversion coeffi-
cient*"-88

FIG. 13. Bloch-type domain wall and characteristic behavior
of dispersion branches of %; , and quantity 4. Circles show
helical-wave conversion regions.

191 practice, absorption is considerably even in such thin
films. Because of dichroism, it can then influence the
nature of the conversion of geometrical optics waves, for
example, when the difference {Im#,df— [ Im#,d¢ is of the
order of unity in the coupling region (see Refs. 39, 75, 94,
116, and 139). This effect will be neglected below.
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Q =sin? o ch™2 [ ko (ng— 1) & | (6.2)

(when £.,=1). Infact, this expression gives the con-
version coefficient for ordinary and extraordinary
waves because the latter are identical with the helical
waves outside the domain wall, where ¥’'=0. 1t is
clear from (6.2) that there will be no conversion in a
domain wall with ¢, = 7 and, consequently, in a sequence
of such domain walls, even when there is rapid rotation
over the small scale £. This result is related to the
symmetry of the layer (6.1): interference between the
waves ensures that coupling effects in the first half of
the layer are compensated by coupling effects in the
second half [see Fig. 13 and Eq. (3.28a)2%].

This cancellation will not occur in the case of rotation
through, for example, the angle ¥,= 1/2 (see Fig. 11).
This type of domain wall can evidently be produced in
an external magnetic field under the appropriate bound-
ary conditions. According to (6.2), effective conversion
will occur when the domain-wall thickness is £% §;,
= {nkgln, —ny)/217, and light propagation will then be
subject to geometrical optics £> £,,. When crossed
polarizers are placed on either side of the nematic film
and transmit light that is linearly polarized in the plane
of the magnetization vector M, the domain structure will
be transparent for £> £,,. When, on the other hand,
£« £, the structure will be opaque and, under the con-
ditions of strong coupling, the linearly polarized light
leaving the first polarizer will maintain constant plane
of polarization as it propagates through the magnetic
crystal. It will therefore be extinguished by the second
polarizer, which is crossed with the first. Clearly,
this system is capable of operating as a shutter con-
trolled by the external magnetic field.

B. Highly twisted helix

A common case encountered in magnetooptics?6 125131
and liquid-crystal optics®-%17 jg that where the pitch
of the helix produced by the rotating magnetization M
or director L is small in comparison with the period of
spatial beats between the ordinary and extraordinary
waves: 1¥’| > In,—n,l. If the medium is weakly aniso-
tropic, so that |n,—nyl <n,+ n,, the pitch of the helix
g= 21/ 1y’ |k, can be either less than or greater than the
wavelength A= 21/VE k,. We now turn to the properties
of helical waves in this kind of system.??) For such
systems,

Ro=mrvtzzen ) BoR)rn, weteiin, (5.9

200Thig is obvious in the case of narrow domain walls, where
kyIng—ny |t «<1, According to Sec. 3, light propagation oc-
curs in this case just as in the isotropic medium, indepen-
dently of the nature of the magnetization. The result is that,
if the angle ¥, is arbitrary, direct composition of the linearly
polarized wave incident on the domain wall into two linearly
polarized waves at exit from the domain wall yields @ =
sin’yy—in complete agreement with (6. 2).

Myor simplicity, we are neglecting the natural gyrotropy and
assume that n;=€;}, 7 2=¢€;}. The restrictions on £7,, €5,
€;) and ¢’ that this imposes can be derived from (2. 9) and
2.10).
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M=y
3
g

Ba= na—v:’—i!.a (6.4)
2¢'ny g

(Eifz)z':

It is clear from (6.4) that, when |y’ > In, - n,l, the
polarization will be nearly circular (K} ,~1) and, con-
sequently, will not vary even on an inhomogeneous helix.
Effective coupling between waves propagating in the
same direction is therefore impossible. It follows from
(2.15) that the coupling of waves propagating in opposite
directions will then occur just as in the isotropic medi-
um with refractive index n= v(nZ+ n3)/2, and can be de-
scribed by (2.18). According to Sec. 3D and Ref. 76,
reflection will become effective only in a highly inho-
mogeneous medium when 1n’|/(2n%) 21 and | an| ~1.

C. Above-barrier reflection near Bragg resonance

The above conclusion does not apply to the case of
Bragg resonance,®-56:131.140 iy the neighborhood of which
there is effective coupling of waves propagating in op-
posite directions, even in a smoothly inhomogeneous
periodic structure (here, we are concerned with above-
barrier reflection). According to (6.3) and (6.4), Bragg
resonance will occur in a helix when n, <y’ <n,, and one
of the helical waves will not propagate: #2<0, I-{is 0
(to be specific, we assume that §*>0, n,>n,). We are
dealing with a wave that is polarized near the Bragg
resonance, so that the end point of the vector E de-
scribes a helix that is identical in shape with the helix
described by the magnetization M or the director L.

(At the same time, throughout the Bragg resonance re-
gion ¥’ ~n, the other wave has a helical structure with
opposite rotation, and propagates freely; for this wave,
#2=(2n)?, K,~-1.) In the neighborhood of the Bragg
resonance, when p, - 'S n, - n,, the refractive index
for the wave of type 2 is nearly zero: 7%= (n,— '),

- Y’). This wave will therefore be effectively coupled
to its reflected wave. According to (2.15), the coupling
equations are given by (2.18) with coupling coefficient
Q= iK}/(2K,) ~in}/(27,) lin the last equation, we have
taken into account the fact that K,=(n, - n,) ™7, (see
(6.4)]. They are analyzed qualitatively in Sec. 3D
where the conditions for effective reflection are also
elucidated.

As an example, let us consider a hyperbolic transi-
tion layer of finite thickness ¢, ¢ .., in which, in the
neighborhood of the Bragg resonance (n,- ' <n, - n,),
the refractive index falls smoothly from the low value
f(¢1,) to a still lower value 7(§,,): 7,(8) = 78,0/
[L+(£-¢,,)/k,A] (this can be assured by a smooth re-
duction in the pitch of the spiral as the Bragg reso-
nance boundary is approached ¥’ —-n,-0). The incre-
ment in the variable 6= —lnV7, is the Riccati equation
(3.29) is then given by

A8 =0y, —0ip =In Vf_;L’__ (6.5)

) ' 7 (Gout) '

and the coupling parameter is
§ =2n, (Lin) Ko, (6.6)

since ¥(6)=2r%/n;= const. This enables us to obtain an
exact solution of (3.29) and to determine the reflection
coefficient:
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=
i

T2 \L:L-m

sin? (A0 Y F2— 1) [92—1 +sin2(ABVF =1 for H=1,

{shZ(AeVi GE)[1--F2+sh2(ABYT— 89"  for F<1.
(6.7

Hence, it follows that there is weak conversion of

waves propagating in opposite directions when the incre-
ment Af is small: R=(Af8)?«1 for A6« 1. When Af

2 1, reflection is still weak for ¥> 1 (Rks ¥ 2« 1),
Reflection becomes effective when the coupling parame-
ter is ¥~1. When ¥—1, the reflection coefficient R
tends to (A6)%/[1 + (26)?], so that R~1/2 when A2 1.
Finally, strong reflection occurs for ¥« 1, and there
is a rapid variation in the refractive index and a6< 1.
The reflection coefficient is then R=th?a6 ~1 [ef. (3.30)].
We also note that, in the case of effective coupling with
% >1, the reflection coefficient exhibits oscillations as
a function of the increment A6 and of the coupling pa-
rameter ¥. These oscillations vanish for ¥<1.

7. COUPLED MODES IN WAVEGUIDES AND
LIGHTGUIDES

So far, we have been concerned with the propagation
of waves in an unbounded medium. On the other hand,
there is often considerable interest in waveguide propa-
gation in situations where the structure of normal
waves (modes) and the nature of their propagation are
determined by the properties of the guiding (lateral)
surfaces.

A. Mode coupling in waveguide systems

Wave (mode) coupling will again arise when the
boundary conditions on the above surfaces vary along
the propagation path. Such problems are widely known
in electrical engineering (inhomogeneous transmission
lines),*'17° electrodynamics (irregular wave-
guides),* %22 acoustics (stratified ocean),”®-*% and inte-
grated optics (planar and fiber lightguides).23-57- 141,192
The coupling phenomenon is also of considerable inter-
est for the physics of surface waves in which consider-
able advances have been made in recent times,? 1437248

Despite the fact that mode conversion in the above
cases occurs as a result of the presence of inhomogene-
ous boundaries, the coupling equations and the corre-
sponding qualitative analysis are similar to those de-
veloped for the unbounded medium in Secs. 2 and 3.
The only difference is that the mode-coupling coeffi-
cients g, in the coupling equations are determined by
the local properties of the boundaries. Thus, a Riccati
equation of the form given by (3.29) can be obtained®®
for the reflection coefficient for the principal mode and
the corresponding resonantly coupled to it reflected
mode in a plane corrugated dielectric waveguide of
variable thickness (inhomogeneous Bragg mirror, Fig.
14). In this case, the variable ¢ and the function %(9)
are determined by the parameters of the corrugated
waveguide and not by the refractive index. The effect
of the waveguide thickness gradient on the reflecting
properties of the Bragg mirror is investigated in Ref.
89 by considering the standard problem of a corrugated
waveguide with a linear thickness profile, using the
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FIG. 14. Planar dielectric waveguide with inhomogeneous
Bragg mirrvor.

perturbation theory method. The conclusions are in
agreement with the qualitative analysis of the coupling
of two modes of opposite direction of propagation that
can be made on the basis of the Riccati equation, as
described in Sec. 3D.

Similar problems on mode conversion in waveguides
and systems of coupled waveguides have been investigat-
ed in the literature.*-2436.87,1477152,165 The corresponding
problems relating to lasers with distributed feedback
have also been examined.®*%3.1%¢ However, all this lies
outside the framework of the present review. We
therefore refer the reader to the literature, and con-
sider in detail only the case of the single-mode twisted
birefringent waveguide. We shall use this example to
show that the analysis of the coupling phenomenon de-
scribed above can be used to investigate mode conver-
sion in waveguide systems.??)

B. Helical modes in a twisted lightguide

There has been increased interest in the course of
the last five years in the polarization properties of sin-
gle-mode fiber lightguides. This is connected with the
introduction of fiber technology that ensures that the
polarization of radiation remains unaffected over fiber
lengths of hundreds of meters or more, and with the
likely applications of such fibers in optical communica-
tion systems, optical devices, gyroscopes, hydro-
phones, various transducers, and so on.!4%:1557161

The regular birefringent single-mode lightguide is
analogous to an anisotropic medium: it supports two
principal modes (with amplitudes £, and E,) with differ-
ent phase velocities (¢/»r, and c/ny) and practically lin-
ear and orthogonal polarizations (these are the so-
called LP-modes).***'!**® Mode degeneracy is removed
in the manufacture of fibers of circular cross section
by the unavoidable ellipticity of the core cross section,
bending, optical anisotropy of glass due to internal or
external mechanical stresses, and so on.'*™!%° The
period of the spatial-mode beats is then 27/k,ln. - 1,1,
and is usually of the order of 0.1-10* em. The propaga-
tion equations for the coupled LP modes in a weakly di-
rectional and weakly anisotropic lightguide can be writ-
ten in the form?!®" 158

2)gjtuations in which the mode coupling coefficients and the

corresponding propagation constants do not vary along the
waveguide have been examined in the literature (see, for
example, Refs. 4, 32, 141, and 155). The coupling phe-
nomenon becomes trivial under these conditions because

it is then always possible to transform to new normal modes
that are not coupled. The interaction phenomenon discussed
below is due not simply to coupling, but to irregular coupling
between modes along the waveguide.
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E; +in,E,=aE'y,
Ey +in B = —ak,,

(7.1)

where x, y are the local optical axes of the fiber (in the
transverse cross section) along which the principal
axes of the polarization ellipses of two normal modes
are directed (see below).

The coupling coefficient « is real and is determined
by the deformation of the fiber core, the effect of ex-
ternal fields, and the anisotropy and gyrotropy of the
glass. In a twisted lightguide, it is also determined by
the azimuthal rotation of the optical axes. The last fac-
tor ensures that o>y’ and is the most important in
real situations because it ensures that the coupling co-
efficient @ can reach values of the order of in, —n,|
(see Refs. 157-160). In this case, the properties of
the normal modes in the lightguide are highly variable
and (this is particularly important) their polarization
becomes elliptic. This can be seen from the expres-
sions for the refractive indices #, , and polarization
coefficients I~(1’2 of the normal modes of a uniformly
twisted fiber, which are readily found from (7.1) for
n,,= const:

":1.z=—;’("=+"v)i‘|>ll/§z+1| (7.2)

ne—ny

Py
The existence of these normal modes has long been
established experimentally.’®® As in the unbounded
medium [see (2.12) and (2.13)], we shall refer to them
as helical modes.

K,'3=’Q-ZFV;Z+1 s 52

The helical modes will become coupled in an irregu-
lar and, in particular, inhomogeneously twisted light-
guide in which n,, n,, ¥'# const. This can be described
in precisely the same way as in Secs. 3, 5, and 6 be-
cause the geometrical optics substitution (1.2) [see also
(2.14)], i.e., the transformation to coupled helical
modes, ensures that (7.1) again leads te (2.19), (3.13),
and (3.23) for the complex amplitudes f, , of the helical
waves, their ratio P= —if,/f,, and the polarization co-
efficient K= —iE /E,, respectively. All the above con-
clusions about the nature of the various interactions
will therefore remain in force. As in the case of liquid
crystals (Sec. 5A), effective conversion of helical
modes will occur only in those segments of the wave-
guide in which there is a transition from a highly twist-
ed (on the scale of the mode beat period) to weakly
twisted fiber, or vice versa. In this type of transition,
there must be an appreciable change in g in one pitch,
i.e., there must be a change either in the birefringence
(see Sec. 7C) or in the pitch itself (see Sec. 7D).

Mode conversion can be undesirable under certain
conditions, for example, in optical communication
cables, because it produces dispersive spreading and
other changes in pulsed optical signals. It can be sup-
pressed by removing irregular coupling regions in
which g2~1. This is done either by enhancing the bire-
fringence of the fiber by increasing ¢ throughout, or by
highly twisting the fiber and thus reducing g along its
entire length (see Refs. 158, 160).

There are also conditions where effective conversion
is of considerable interest, for example, as a way of
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measuring the local optical characteristics of a

fiber '5:*%2 or as a way of controlling the polarization
of radiation transmitted by a fiber without breaking the
lightguiding circuit.’®® Thus, it has been shown!®® that
the variation in the polarization of a light signal depends
both on its input polarization, i.e., on the relative in-
tensity of the modes, and on the position of the perturb-
ing source in the lightguide, i.e., on the phase differ-
ence with which the mode arrives in the irregular cou-
pling region. All this requires detailed analysis of the
amplitude and phase characteristics of the conversion
effect. Whereas, in the case of weak interaction, this
analysis was performed relatively simply in a general
form (see Sec. 3 and, for example, Ref. 164), in the
case of effective coupling, one must turn to the various
standard problems (see Sec. 3E).

C. Lightguide with irregular birefringence

Let us begin by considering a uniformly twisted (¥’
= const) lightguide in which there is a smooth transition
from a birefringent nondegenerate fiber to a degenerate
isotropic fiber. Suppose that the birefringence falls to
zero in accordance with the linear relationship ny-n,
= An+§. This means that there is also a linear relation-
ship of the form g = (4an/2¢’}¢, and this corresponds to
a smooth transition from linear polarization of the heli-
cal modes at one edge of the coupling region (%=~
for {—= -=) to circular polarization at the other (g2=0
at the point {= 0). This type of irregularity profile
occurs, for example, in the case of a linear variation
in the mechanical stress or ellipticity of the lightguide
core. It follows from the exact solution®® (Fig. 15) that
the conversion matrix (3.2) and, in the final analysis,
all the characteristics of the conversion effect in this
linear model, are determined by the following coupling
parameter:

”/4F ——————— Z. —
M &
Rzl
A
4
77238

475

a5

425

FIG. 15. Linear model of transition from birefringent to
degenerate lightguide. A single linearly polarized mode is
present at entry to the transition region: a-—conversion
coefficient @ and axial ratio R of the polarization ellipse;
b—phases ¢, Av=v —v; and inclination x = (r +¢)/2 of the
polarization ellipse to the y axis at the degeneracy point.
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G=8V2 " (7.3)

Figure 15a shows the relative intensity @ of the cre-
ated mode and the ratio of the axes of the polarization
ellipse of the resultant radiation R=1- 2/ Q{1 - Q) at
¢= 0 on the assumption of single-mode degeneracy well
away from this point. When G<<1, i.e., in the case of
a sharp irregularity and weak twisting, the conversion
coefficient is a maximum and is given by @=1/2 - (3G/
32v2)*/% In this case, linearly polarized radiation
corresponding to one mode at entry traverses the cou-
pling region up to £= 0 practically without change in
polarization, and R=7G/16vV2 <« 1. Since the helical
modes are circularly polarized at {= 0, the linear po-
larization at this point corresponds to the superposition
of modes of equal amplitude. Consequently, @, .= 1/2.
As the coupling parameter G increases, the degree of
conversion is reduced, and the degree of circular po-
larization increases. Finally, when G>1, i.e., in the
case of weak irregularity, a helical mode of a given
type will reach the point = 0 in one pitch practically
without conversion (@~ 2/G*<< 1). The polarization of
the resultant radiation will therefore be nearly circular
for this mode: R=~1-2y2/G.

Figure 15b shows the phase characteristics of the
conversion process. The phase ¢ of the created mode
varies monotonically from -7 to —7/2, i.e., for strong
coupling, the new mode appears in antiphase, whereas
for weak coupling it appears in quadrature with the in-
cident wave (this property is typical of the coupling
phenomenon; see Sec. 3b). The difference &Y= 7 -7,
between the mode phases 7 as compared with the geo-
metrical optics situation is small and is of interest only
in the case of effective coupling for which G ~1.

In the case of a symmetric irregular layer, for
which the degeneracy segment in the fiber is bounded by
birefringent regions on both sides, and the quantities
n,—n, and g vary linearly between infinite limits [see
(3.18)], the conversion coefficient is @ = exp(-7G/4v?2)
and can reach unity (complete conversion). A similar
symmetric linear model is also encountered in the
problem of two coupled lightguides.!® However, it was
investigated in the greatest detail in connection with
nonadiabatic transitions in quantum systems (see Refs.
50 and 93 and the literature cited therein).

D. Nonuniformly twisted lightguide

We now turn to the nonuniformly twisted single-mode
lightguide in which the irregularity scale is A= [$/(dy/
dz) | = const and the birefringence is n, ~ n, = const. It
is clear that we then have

PO =0 exp (— ) (7.4)
i.e., the twist period is g(§) = 27/k,¥’ and the quantity
3(8) = 39( Dkyne—n,)/27 that determines the local char-
acteristics of the helical mode (7.2) varies exponential-
ly. The solution of (3.13) can then be shown to reduce
to Bessel functions.!'® Analysis of this solution shows
that the helical-mode coupling region is localized near
G®=1, and its characteristic size is equal to the irregu-
larlty scale A. Hence, it follows that the coupling pro-
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cess is unaffected by regions of highly twisted light-
guide, where g/2<« 27/kyin,-n,|, or regions of lightly
twisted lightguide, where g/2> 27/k,in,—n,|. By tak-
ing the asymptotic representations of the Bessel func-
tions for 3%(¢,,) ~0 and g*¢, ) ~~, we obtain the ele-
ments of the conversion matrix (3.2):

Q0= 1+9Xp(2|/z)} (7.5)

YT=gen
n ‘ i Lou N6/ VE Lin )G/ !
:V%{Ch<#€i)r\%ﬁﬁf)sngtwb 2 it ) csv} ,
(7.6)

1——0;@’«?; —-T (?, 4;/6/5) [F (_}+ 4;0/5)]—1
gl@_"'i‘_)_'ic/:vieimrﬂz’
X{ i J (7.7)

where TI' is the gamma function. As can be seen, the
character of the optical polarization phenomena deter-
mines the coupling parameter given by G= 2V2 in
-n,lk,A. When G>1, mode conversion is exponentially
small, and it follows that a simple transition from a
highly twisted to a lightly twisted segment of the fiber
lightguide (or vice versa) is insufficient for effective
coupling. The transition must, in fact, be rapid, on

the scale of the mode beats: we then have G<1 and

Q~1/2 [see (7.5)].

According to (7.6) and (7.7),
mine the phase relationship between the modes.
Comparison of the phase shift ¥ with its geometrical
optics value 7, given by (3.7) shows, as expected (see
Sec. 3B), that the two are appreciably different only for
G ~1 when the size of the coupling region A is of the or-
der of the spatial mode beat period (see Fig. 16a). Fig-
ure 16b shows the other phase relationship A¢= ¢
- f‘out (R, - 7,)d¢ that characterizes the difference be-
tween the phase ¢ of the mode created as a result of
coupling from the geometrical optics phase. The latter
was calculated on the interval between the section &,
in which the departure from geometrical optics of the
helical modes is particularly strong G({ mi,) =minG(g),
up to the exit point £ ,,. In other words, the phase ¢
does not contain the geometrical optics phase differ-
ence produced after the coupling region. It is clear
from A@(G) that, when the single mode 7, arrives at
the irregular segment of the lightguide, then under con-
ditions of effective conversion (G = 1), the second mode

coupling will also deter~
119

i
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FIG. 16. Exponentially twisted fiber lightguide. The phases
Ay=7v-—+, and Ag are plotted as functions of the coupling
parameter G.
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#; will appear approximately in antiphase with the first:
AP =T.

By determining the conversion coefficient @ and the
phases ¢ and ¥ from polarization measurements, it is
possible to deduce information on the coupling parame-
ter G and on mode interference and, consequently, to
determine the irregularity scale A, the birefringence,
and the type of twist of the fiber. This possibility of
nondestructive diagnostics of local lightguide parame-
ters and of the radiation emitted by external local
sources (probes) is available for all irregular light-
guides in which mode coupling takes place (including
time-dependent cases; cf. Sec. 5D).

Problems relating to constant polarization, regular
conversion of polarization, and the diagnostics of opti-
cal properties are also encountered in the case of mul-
timode lightguides when depolarization produced in them
is small.'®-1¢7 Multimode lightguides have large core
diameters as compared with single-mode lightguides,
and their properties are therefore closer to those of an
unbounded anisotropic medium. It may be convenient to
use the quasiisotropic approximation of geometrical op-
tics (see Sec. 2D) without introducing the waveguide
mode in the analysis of the propagation of light in such
systems. One way or another, there is no doubt that
the coupling phenomenon connected with polarization de-
generacy has the same character in the case of the
multimode lightguide as in the examples of unbounded
medium and single-mode lightguide, considered above.
In particular, it may be expected that conversion ef-
fects will be found as a result of recently initiated ex-
periments'® on the polarization properties of twisted
multimode lightguides excited by a parallel beam of
light propagating at an angle to their axis.

CONCLUSIONS

In the last few years, studies of the propagation of
polarized electromagnetic waves and their mutual linear
conversion have ranged well beyond the framework of
classical microwave physics, or plasma physics, and
have attracted considerable interest in connection with
the discovery and application of unusual polarization
properties in various inhomogeneous anisotropic media
and waveguide structures. All this refers to the wide
interval between the radio- and x-ray frequencies and
to most types of medium, including magnetoactive plas-
ma (laboratory and space), the “plasma + magnetized
vacuum” system, liquid crystals, ferroelectrics, mag-
netic semiconductors, dielectric waveguides, and so on.
Although there are specific reasons for the increased
interest in each special case, there is a general ten-
dency to use polarization effects associated with linear
wave conversion (and the corresponding polarization
techniques) to investigate the inhomogeneous anisotropic
structures themselves, and hence develop new polariza~
tion devices and instruments. In particular, the phe-
nomenon of linear wave conversion is beginning to play
an appreciable role in optics—above all, in the optics
of liquid crystals and lightguides—where the polariza-
tion properties of inhomogeneous helical structures
have been intensively investigated in the last few years.
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In these and many other cases, qualitative analysis
of linear wave coupling is necessary {(and occasionally
sufficient) as a basis for the investigation and applica-
tion of this phenomenon. An important point that has
frequently been noted above, but which we must empha-
size once again, is that the linear coupling phenomenon
is determined not only by the type of behavior of wave
dispersion branches but, to a comparable extent, by
the type of behavior of their polarization. Qualitative
analysis and, above all, determination of the coupling
parameter that takes this circumstance into account
can be used to elucidate the possible occurrence and
the degree of effectiveness of wave coupling in any par-
ticular situation. Moreover, it will be clear from this
review that qualitative analysis will also point to the
characteristic features of the conversion effect as a
function of the properties of the inhomogeneous medium
and of waves propagating within it. (Examples were ex-
amined in Secs. 4-7; they do not, of course, exhaust
the entire range of phenomena connected with linear
wave conversion.) All this can be done without obtain-
ing a direct solution of the coupling equations (this is
particularly valuable because direct solution is, in
most cases, rather difficult). Our review suggests that
a sufficiently fundamental understanding of linear wave
conversion effects can be achieved by relatively simple
means. This is particularly important at present in
view of the expanding range of application of linear
wave conversion effects.

The authors are indebted to V. L. Ginzburg, Yu. A.
Kravtsov, and B. M. Smirnov for useful suggestions that
have helped us to improve the content of this review.
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