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1. INTRODUCTION

Nature provides many examples of nonlinear random
fields and waves. There is no need to comment on the
importance of studying them. This is already clear
from a brief listing: turbulence in liquids and gases,
chaotic motions of plasma, intense acoustical noise,
and random waves on the sea surface. One trend in the
development of the theory of nonlinear random waves
consists of identifying a small number of concepts and
ideas that, on the one hand, permit describing in a uni-
fied manner the behavior of nonlinear random waves of
different physical nature and, on the other, classifying
clearly nonlinear random waves according to the nature
of the interactions characteristic of them. This in-
cludes primarily the concept of weak and strong turbu-
lence. Weak turbulence is characteristic of weakly lin-
ear waves in media with strong dispersion, when the
energy of interaction of the spatial harmonics is much
smaller than the total energy. The random phase ap-
proximation, which assumes that the interaction be-

tween the harmonics is noncoherent, permits, in this
case, a closed statistical description of the turbulent
state.1-2 If the dispersion of the waves is small or is
absent, then the properties of the turbulence are deter-
mined by the strong interaction of a large number of co-
herent harmonic waves. In such cases, it is customary
to talk about strong turbulence. The best-known exam-
ple of strong turbulence is the eddy turbulence of a
low-viscosity liquid.3

The extreme difficulty of analyzing nonlinear waves,
especially strong turbulence, has given rise to another
trend in the development of the theory of such waves:
the transition from complicated equations of nonlinear
random waves to simpler model equations. One of such
model equations of strong turbulence is Burgers' equa-
tion (BE)

du . du __ d*u / , j \

The solution of BE with the random initial condition

u (x, t =.0) = u0(x) (1.2)
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takes into account the combined action of two very im-
portant mechanisms, which form the properties of real
hydrodynamic turbulence: inertial nonlinearity and vis-
cosity. Equation (1.1) is deservedly named after Bur-
gers,1' who not only proposed it as the simplest model
of hydrodynamic turbulence,4* but also clarified many
characteristics of the behavior of the model turbu-
lence.415

It is now increasingly recognized that the formation
of locally coherent nonharmonic profiles plays an im-
portant role in strong turbulence. The nature of these
structures, which have been studied primarily for spa-
tially one-dimensional waves, depends primarily on a
basic factor that limits nonlinearity in this system.
Where dispersion fulfils the role of this factor, strong
turbulence can be described as a gas of solitons distri-
buted in space.5

A different picture emerges if weak dissipation ful-
fils the role of the limiter of nonlinearity, as in Bur-
gers' turbulence (BT), which can be viewed as a gas of
large, adjoining quasiparticles.4'6'7 In this case, it is
especially interesting that the description of the turbu-
lent regime that appears can be related to the initial
conditions and it is thus possible to follow the complete
pattern of evolution of random disturbances in the sys-
tem. A detailed analysis of the stochastic regimes
arising here was made by Burgers himself, as well as
in work performed at the University of Kyoto, Gor'kii
State University, and the Institute of Physics of the At-
mosphere of the USSR Academy of Sciences.

The value of BE as a model equation for eddy turbu-
lence is sometimes questioned in view of the enormous
physical difference between the two problems. In this
respect, a more adequate model, discussed in recent
years, could be the relation between hydrodynamic tur-
bulence and stochastic oscillations of systems with a
small number of degrees of freedom.8 It is, however,
impossible to deny the similarity between BT and hy-
drodynamic turbulence. In both cases, the strong non-
linear interaction establishes universal power-law
asymptotic behavior of the energy spectrum, self-pre-
serving properties of the turbulence, etc. In view of
the undoubted generality of the problems of closing the
equations for the statistical characteristics, BT could
be useful for preliminary testing of approximate meth-
ods of closure and description of hydrodynamic turbu-
lence.7-9-11

Often, the simplest model descriptions of complex
phenomena occurring in nature in due time find an in-
creasing number of applications and acquire an increas-
ingly deeper meaning. This is precisely what has oc-

4)Jan Burgers (1895-1981) studied in Leiden with N. Bohr,
A. Einstein, H. Lorentz, and P. Ehrenfest. He was a
professor at the universities in Delft (Holland, up to 1955)
and Maryland (USA). He first worked on N. Bohr's model of
the atom, but after meeting T. Karman, he turned his atten-
tion to the problems of fluid mechanics. In this field,
Burgers obtained fundamental results and wrote a number
of books. His other works concern the physics of crystals
and suspensions and the philosophy of science (see the
obituary in Physics Today, No. 1, 1982).

curred with BE. It became clear that the description of
a wide class of nonlinear acoustical waves reduces to
BE 12-16 It turned out that the solutions of BE adequately
describe the processes of nonlinear steepening and sub-
sequent viscous dissipation of waves of different physi-
cal nature in nonlinear nondispersive media. It has
been found that BE is related to the ray description of
wave propagation, flows of noninteracting particles,
and a gas of inelastically colliding particles.7 Finally,
it has become clear that BE is a standard equation for
a wide class of waves in nonlinear nondispersive media,
worthy of occupying a place alongside the classical lin-
ear hyperbolic equation.

Under closer scrutiny, the relations between BT and
the properties of strong hydrodynamic turbulence turned
out to be even closer. Models of large quasiparticles in
BT may turn out to be close to models of a type of eddy
turbulence, when its structural nature is followed dis-
tinctly.18 The problems of describing turbulence are
related to the BE, as Struminskii indicates,19 in another
respect as well. Burgers equation describes in the
simplest approximation the potential part of the fluctua-
tion component of eddy turbulence. The next approxima-
tion gives the three-dimensional BE, which is likewise
an interesting object for research. Thus the study of
BT is apparently a necessary step along the path of
formulating models of hydrodynamic turbulence and
strong turbulence in general.

In this review, we present the basic ideas of the
theory of one-dimensional nonlinear waves in nondissi-
pative media from a unified point of view, we discuss
the physical applications of BE, and we analyze in de-
tail methods for describing the statistical properties of
BT as well.

2. NONLINEAR WAVES IN A NONDISPERSIVE
MEDIUM

a) Dispersive and hyperbolic waves

From the large variety of wave motions, it is possi-
ble to single out, with a certain degree of arbitrariness,
the classes of dispersive and hyperbolic waves.17 Dis-
persive waves, existing in a medium with its own tem-
poral and spatial scales, are characterized by the de-
pendence of the velocity of propagation on the frequency
or wave number. Hyperbolic waves arise in media
without inherent scales or if the magnitude of these
scales are incommensurate with the scales of the wave.

Weak, plane hyperbolic waves propagate without dis-
tortions with a single velocity c and, outside the region
of the source (to the right of it), they satisfy the equa-
tion

^ + c^ = 0. (2-D
dt T ax

The velocity c, however, is the same only for weak
waves. In nondispersive media, it can depend on the
amplitude, as a result of which, nonlinear distortions
of the shape of the wave appear.

The difference between dispersive and hyperbolic
waves is manifested in the basic model, serving for
their interpretation. For dispersive waves, the basic
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model is a collection of weakly interacting oscillators,
while for hyperbolic waves, it is a flow of weakly in-
teracting particles. The potential energy of the system
plays an important role in the first case, while in the
second case, the potential energy is much smaller than
the kinetic energy.

There is another aspect to the difference under con-
sideration. Dispersive waves propagate in pre-existing
structures, while nonlinear hyperbolic waves can often
be related with the process of formation of structures.

Of course, the juxtaposition of the two types of wave
motion is not absolute. In real problems of hydrody-
namics, astrophysics, and the theory of plasma, the
variation of not one, but several local parameters of
the medium (velocity, density, temperature, etc.) can
be examined. In this case, terms describing their mu-
tual influence must be introduced into the correspond-
ing equations, which can lead to the appearance of a
mixed type of motion. This is especially true for mul-
tidimensional systems. However, in these cases as
well, as a rule, characteristic times and scales, on
which one or another simplified approach is valid, can
be identified.

b) Riemann waves

So-called finite-amplitude waves, in the analysis of
which the appearance of a wave moving in the opposite
direction or, in other words, self-backscattering of the
nonlinear wave, can be neglected, are of considerable
interest in the analysis of nonlinear distortions in hy-
perbolic systems. It is convenient to study waves of
this type in a system of coordinates moving together
with the wave.

The basic equation of nonlinear finite-amplitude
waves in nondispersive media is called the equation of
the simple wave or the equation of Riemann, who ob-
tained it from the equations of gas dynamics:

= 0. (2.2)

The simplest physical example, which gives a clear
interpretation of Riemann waves, is the hydrodynamic
flow of noninteracting particles, each of which moves
along the x axis with a constant velocity. If the velocity
profile of the particles u0(x) is given at time £ = 0 , then
the velocity field u(x,t) satisfies Riemann's equation
with the initial condition (1.2). Without repeating Refs.
1 and 20, wherein this example is examined in detail,
we shall present the velocity profiles, illustrating how
the smooth profile (Fig. la) first becomes steeper due
to the fact that some particles overtake others (Fig. Ib)

t,>t,

FIG. 1. Evolution of the velocity profile « (x, t) of a Riemann
wave, a) initial profile; b) steepening of profile; c) profile
in the region of many-stream propagation.

and then, after passing them, the wave topples over and
becomes a many-stream wave (Fig. Ic). The toppling
is accompanied by a coalescence of nearby particles,
which is accompanied by gradient catastrophes: ap-
pearance of infinite gradients of the velocity field. The
onset of toppling can be found from the condition

. * . (2.3)
mm ui, (x)

c) Shock waves

Before toppling, Riemann's wave behaves as a flow
of noninteracting particles. After toppling, waves of
different physical nature separate into two types:
waves with resolved many-stream motion (the same
flows of noninteracting particles, many-stream motion
of cold plasma, multiray propagation of light waves)
and waves which are inherently single-stream waves.
Pressure waves in a gas are a typical example of the
latter. For these waves, at the instant of toppling, one
must take into account in the vicinity of the gradient
catastrophe the nonlocal interaction of the sharply
varying wave with the medium, leading to the formation
of steep drops in the wave profile, the so-called discon-
tinuities or shock fronts, as before and after which the
smooth profile of the wave satisfies Riemann' s equa-
tion as before.

There are two approaches to describing waves in a
nondispersive medium, taking shock fronts into account
(see, for example, Refs. 17, 21, and, 22). The first
approach, which almost ignores the problem of the
mechanism of the formation of shock waves, assumes
that the fronts are infinitely thin and singles out from
the possible mathematically equivalent solutions of Rie-
mann's equation, the physically true solutions, satisfy-
ing the fundamental conservation laws and the thermo-
dynamic inequalities. Here, use is made of the fact that
the differential equations describing the waves follow
from more general integral laws, which are also valid
in the regions of the gradient catastrophes.

When a Riemann wave topples over, weak shock
waves arise, whose description is based on the law of
conservation of momentum. In analogy to the flow of
noninteracting particles, the formation of discontinui-
ties can be viewed as being a result of absolutely in-
elastic collisions between particles, while the discon-
tinuity itself can be viewed as a heavy particle, formed
as a result of attachment of light particles. Weak
shock waves do not take into account backscattering by
the discontinuities (partial elasticity of collisions).

The second approach explicitly takes into account the
nonlocal nature of the interaction of the wave with the
medium in the vicinity of shock fronts and leads to
more complicated, compared with (2.2), equations. In-
clusion of dissipation in the simplest approximation
leads to Burgers' equation, which describes the absorp-
tion of energy in the region of the discontinuity as a
process occurring with a finite rate. As a result of
this, the region of the front can be viewed as having ex-
tent and structure.
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d) Applications of Riemann's and Burgers' equations

In application to waves in nondispersive media, Rie-
mann's and Burgers' equations arise as abridged equa-
tions that take into account the slowly accumulating
nonlinear and dissipative distortions. The method for
deriving such equations was developed by Khokhlov for
the example of waves in long nonlinear radio transmis-
sion lines.23 Analogous equations for electromagnetic
waves in nonlinear media and long transmission lines
were obtained by Ostrovskii.24-25 The BE and RE ap-
proximations to the analysis of nonlinear electromag-
netic waves are discussed in Refs. 26-28.

Burgers' equation is encountered even more often in
nonlinear acoustics, where it is derived from the equa-
tions of hydrodynamics of a viscous heat-conducting
medium14"17 and is generalized to the case of cylindri-
cal29 and spherical30 waves and waves in media with re-
laxation.31 The analysis of the propagation of intense
acoustical beams also reduces to such equations if dif-
fraction and nonlinear distortions are spatially separ-
ated.32-33 Thus, if diffraction of the beam is initially
more significant, then it is calculated using the linear
theory, taking into account the subsequent nonlinear
steepening with the help of the nonlinear acoustics of
spherically diverging waves (see, for example, Ref. 34).

The analysis of excitation of an acoustical wave by
intense modulated optical radiation reduces to the inho-
mogeneous Burgers' equation in acoustics.35'36 Bur-
gers' equation is also used to describe nonlinear wave
processes in thermoelastic media.37

RE and BE are used to calculate high-frequency
acoustical waves in inhomogeneous media by the method
of nonlinear geometrical acoustics. In this case, the
nonlinear distortion of the wave is described by RE,
taking into account the discontinuities, in a system of
coordinates fixed to the rays in the linear inhomogene-
ous medium.38-39

We also note that for weakly linear waves in a com-
pressible fluid, when the interaction with countermoving
waves is small due to high-frequency averaging, the
perturbations of the density and velocity of the fluid can
be represented as a superposition of waves each of
which in its accompanying system of coordinates is ap-
proximately described by BE.40'41 The approximation
of weak interaction turns out to be valid not only for
countermoving waves, but also for quasiperiodic
waves, traveling at not too small angles relative to one
another.42-43 Thus BE can also be used to describe one-
dimensional turbulence of a compressible fluid40'41 and
waves in nonlinear acoustical resonators and wave-
guides.42'43

Burgers' and Riemann's equations are usually associ-
ated with waves in nondispersive media. However,
very similar equations also arise naturally in the analy-
sis of short-wavelength radiation in dispersive media,
when the scales of the inhomogeneities in the medium
and of the slowly varying frequency and local wave
vector are large compared to the dispersive or diffrac-
tive nonlocal behavior of the waves. In this case, the
evolution of the wave parameters is described by the

equations of geometrical optics (acoustics, etc.), close
to and sometimes coinciding with RE (see, for exam-
ple, Refs. 44, 45). As Riemann's equation in acous-
tics, the equations of geometrical optics are not valid
near caustics: gradient catastrophes, where the
nonlocal behavior of the waves must be taken into ac-
count.

As examples of other applications of RE and BE, we
note also the broad spectrum of kinematic waves:
surges, motion of glaciers, waves in traffic flow,
etc.17

3. DYNAMIC OF NONLINEAR WAVES IN A
DISSIPATIVE MEDIUM

a) Basic stages of evolution

The dynamics of a nonlinear wave, including dissipa-
tive effects, is determined by the law of conservation of
momentum following from BE

+ 00 +00

M= j u ( x , i)d* = j u0(z)dz = const, (3.1)

and the relation for the rate of dissipation of energy

(3.2)

The change in the wave profile is characterized by
the toppling and dissipation times: ta = I0/u0 and ta= l\/
v, where u0 and 10 are the amplitude and scale of the
initial perturbation. The ratio of these times gives the
value of the acoustical Reynolds number:

For R0« 1, nonlinear effects are not important and
the behavior of the wave is determined by linear dissi-
pation.

In the more interesting case R0» 1, the wave passes
through three stages:

I. The initial stage before the formation of discontinu-
ities (t<tn), in which the coherent nonlinear interaction
of the harmonics in the initial perturbation with con-
servation of energy appears.

II. Stage of discontinuous waves (t^<t<tl, where tl is
determined by the same equation as tA, but, in this
case, generally speaking, it is necessary to take into
account the change in scale of the wave during propaga-
tion). At the stage of discontinuous waves, shock fronts
form in the wave. The position of the fronts can be
found from the conservation law (3.1), leading to the
rule of equal areas well known in acoustics.

FIG. 2. Profile of a shock front. 6
of the shock front.

—u2) is the width

860 Sov. Phys. Usp. 26(10), Oct. 1983 Gurbatovef a/. 860



The structure of the shock fronts can be judged from
the stationary solution of BE:

u(x — u+ (3.3)

representing a jump in the field u with amplitude u. and
•width 6 propagating with velocity ut, where

Any initial perturbations with fixed w0(-°°) = ul and
u0(

x) = u2 approach a stationary wave of the form (3.3),
but it is especially important that for small v, the
shape of the shock front is established more rapidly
than the changes in u^ and u2 and, for this reason, de-
scribes the local profile of the shock front, where ener-
gy dissipation occurs. Between discontinuities the vel-
ocity field at this stage varies according to a linear
law, corresponding to the self-preserving solution of
BE. On the whole, the wave represents a saw whose
teeth have the same slopes.

III. Stage of linear damping ( t > t l ) . At this stage, the
width of the dissipation zone is of the same order of
magnitude as the scale of the wave, the nonlinear inter-
action of the harmonics disappears, and energy is lost
due to linear dissipation.

The behavior of a nonlinear wave for .R0» 1 is inter-
preted well by two models that coincide initially: model
of noninteracting particles and model of particles under-
going inelastic collisions.

b) Relation to flow of noninteracting particles

A remarkable property of BE is that it admits an in-
terpretation from the point of view of a flow of nonin-
teracting particles, not only in the single-stream re-
gion, but also in the many-stream region of the motion.
However, in contrast to the problem of the propagation
of light, in which the streams interfere, here, we must
talk about their competition. At the stage tn<t<tl, it
turns out that of the streams arriving at a point, for
.R0» 1, only the stream with minimum action need be
included, since the other streams are absorbed by the
discontinuities.

The possibility of such an approach follows from the
exact solution of BE, which with the nonlinear substitu-
tion46-47

u(x, t) = — 2v -f- In cp (x, t) (3.4)

reduces to the linear diffusion equation, and this per-
mits obtaining a solution of the initial problem (1.1)
and (1.2) in the form

[ — s ( x , y, ()/2v]dy

exp l-sfi, y, J)/2v]dy (3.5)

s(x, y, t) = s0

The properties of the exact solutions of BE and tables
of these solutions are presented in Ref. 48.

For.R0»l, the integrals in (3.5) can be calculated
sufficiently accurately by the saddle-point method411'7:

(3.6)

The collection of quantities entering into (3.6) can be
viewed as multivalued functions: the velocity of the
particles in the stream, satisfying RE and (1.2); the
action of the stream, satisfying the Hamilton-Jacobi
equation

and, the divergence of the stream, satisfying the equa-
tion

+ „- = , - , /(*, o) = i. (3.8)

A graphic interpretation relates (3.6) to the hydrody-
namic flow of noninteracting particles. Each term in
the sum corresponds to a particle, with an initial La-
grangian coordinate y m, arriving at the point ( x , t ) .
The summation extends over all particles arriving at
the point for which _;' >0. In the Lagrangian representa-
tion, the parameters of the flow in the vicinity of a
fixed particle with initial coordinate y are described by
a system of characteristic equations, whose solution
has the form

1(31, «)=>-£=

t, u(y,

, «, duq(y, f> = -~--

(3.9)

Equation (3.6) can be viewed as an average over tra-
jectories arriving at a point with the help of a sum
analogous to a partition function. At the initial stage,
the sum contains one term, corresponding to the only
solution of RE. At the shock-wave stage, the sum can
include several terms, but, at almost every point there
exists one dominant term, which has minimum action.
For t>tlt the action of many terms (particles) becomes
comparable, so that many terms must be included in
the sum.

It is of greatest interest to use the model of compet-
ing streams to describe the properties of discontinuous
waves. In this case,

— y ( x , t) (3.10)

where y is the initial coordinate of the particle whose
action is the least of all particles arriving at the point.
Equation (3.10) gives a simple graphical rule for finding
the values of u(x,t) according to the point of minimum
action y(x,t).*t>i7 For this, by varying H, it is neces-
sary to find the first point at which the initial action
s0(y) is tangent to the parabola (Fig. 3)

i —y)' (3.11)

At times exceeding the toppling time, the entire
stream of particles separates into partial streams,
bounded by discontinuities, arising at the point xk where
the actions of the two dominant particles are equal:

- + vkt, (3.12)
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FIG. 3. Graphical determination of the point of the absolute
minimum of the action. The initial coordinate, corresponding
to the absolute minimum of the action y ( x , t ) for fixed
coordinate of the point of observation x coincides with the
point at which the initial distribution function of the action
S0(3>) is tangent to the parabola a = [- (x -y)2/2t] +H, where
H assumes the minimum of possible values.

Here y* and y~tl are the initial coordinates of parti-
cles arriving at the point of discontinuity from the left
and from the right (see Fig. 4). Taking into account
the competition of the actions of two particles, the pro-
file of the shock front assumes the form (3.3), where

For t»t^, the initial coordinates 31 j and y*, bounding
one partial stream, turn out to be in a small neighbor-
hood of the point yk, where s0 has a minimum. In this
case, for all points of the given flow, we can set y = yk

in Eq. (3.10), and from this it follows that between dis-
continuities the velocity field is described by the self-
preserving solution of RE and BE: u= (x-yk/t). The
set of linear segments as a whole forms a sawtooth
wave with teeth having a slope 1/t (Fig. 5).

In the case that the minima of the initial action are of
different depth, the discontinuities move toward shallow-
er minima, i.e., partial streams related to increasing-
ly deeper minima predominate, as a result of which,
the scale of the teeth in the sawtooth wave increases.

c) Colliding-particle model

If we examine a stream of particles with uniform ini-
tial density p= 1, then the evolution of the wave leads to
the formation of regions with high and low density. In
low-density regions (between discontinuities), the densi-
ty varies as p~l/ j , while the partial momentum of the
region has the form

Particles with the common mass

•W*

FIG. 4. Formation of discontinuities. Position of the dis-
continuity xk corresponds to the point at which the actions of
streams emanating from the neighborhoods of two minima s0

are equal.

FIG. 5. Formation of the profile of a sawtooth wave. The
centers of the teeth yk correspond to minima of the initial
distribution of the action sc.

t,

accumulate in high-density regions (on the fronts), and
from this we have the following expression for the mo-
mentum of such a heavy particle:

Evaluating the sum, we find

M=const, (3.13)

i.e., in this interpretation, (3.1) represents the law of
conservation of momentum for a gas consisting of two
types of particles. Momentum is transferred from the
light particles to the heavy particles according to the
law of absolutely inelastic collisions.

For t»tn, the entire mass is practically concentrat-
ed in the regions of the discontinuities, which can be
viewed as a gas of heavy particles with masses mk

= yM -yk and velocities

The difference between the velocities of the discontinui-
ties also leads to their inelastic collisions, as a result
of which they coalesce. The amplitudes (uk= mk/2t) and
velocities of coalescing discontinuities are determined
by the laws of conservation of mass and momentum.7

More rigorously, a discontinuity must be viewed as a
quasi-particle with internal structure and finite size,
whose spreading is limited by pressure from the low-
density region. We note that the structure of the dis-
continuity is quasi-one-dimensional. Using this fact,
it is possible to obtain a selection rule for the dominant
particle according to the minimum of the action and the
velocity field for t»ts, avoiding the exact solution of
BE 21,22 This makes it possible to generalize the re-
sults obtained to equations with a more general type of
nonlinearity of the form Q(u)du/&x.

We should point out that there is a definite analogy
between the formation of discontinuities in a shock wave
and caustics in a light wave. The latter likewise repre-
sent high-density regions of the field, whose structure
is independent of the initial conditions and which arise
at a well-defined stage in the evolution of the initial
distribution.
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FIG. 6. Evolution of a unipolar initial perturbation.

d) Unipolar and periodic waves

We shall illustrate the evolution of the waves through
the three stages indicated in subsection 3a using two
examples that are important for understanding the
properties of BT.

1. Unipolar initial pulse (M±Q, Fig. 6). At times
t>ta, it approaches the self-preserving solution of BE,
following from (3.5) with u0(x) = M5(x),i7 whose main
characteristic is that its instantaneous Reynolds num-
ber R = M/v~R0 remains constant in time. For this
reason, for .R0» 1, the wave does not reach stage III of
linear dissipation and at times t»ta, it has the form of
a triangle:

u(x, t)=
0, z<0, x>Y2Mt,

whose leading edge is described by Eq. (3.3) with

2. Sinusoidal initial field (Fig. 7)
2m

Z.
u0i.

Its evolution is discussed, for example, in Ref. 14.
Here, we point out that for R0»l, the wave will pass
through all three stages. When t<t* = t^/2ir, the nonlin-
ear ity efficiently generates higher-order harmonics,
but there are still no shock fronts and dissipation is
practically absent. At stage II (t^«t«tg), the wave
has the form of a sequence of triangular pulses with
stationary shock fronts with width S(t)~vt/I0 and ampli-
tude u.= I0/t. We emphasize that at this stage, the
periodic wave and, therefore, its energy uz~t^/tz for-
get the initial amplitude u0. At stage III (t * £d), the
width of the shock fronts equals the period of the field
and the wave again approaches a sinusoidal shape, but
it no longer depends on uv

For a quasiharmonic initial field, the wave likewise
must pass through all three stages. However, due to
the possible difference between the velocities of shock
fronts, from time to time they will coalesce and the

average distance between them l(t) will increase. Ul-
timately, the instantaneous Reynolds number R ( t ) ~ l ( t ) /
6(0 decreases more slowly than for a periodic wave and
attainment of the linear stage is delayed. This result
is especially valid for BT with a broad-band initial
spectrum. In this sense, the evolution of BT is closer
to the evolution of a unipolar pulse. The case of quasi-
harmonic initial waves, which is important for acousti-
cal applications, is examined in Refs. 14 and 50-52.

4. RANDOM WAVES IN A NONDISPERSIVE MEDIUM

a) Methods of analysis

The statistical description of random nonlinear waves
represents a special problem, even if the exact solution
of the dynamic problem is known, since it leaves unre-
solved difficulties related with averaging. One way to
overcome these difficulties is to formulate closed equa-
tions for the moments, starting from general consider-
ations concerning the nature of the statistical relations
in the given problem.3

If we examine the evolution of a regular wave packet
against the background of a noise wave, then it is na-
tural to attempt to close the equation for the average
field by introducing the turbulent viscosity, which de-
scribes transfer of energy from the coherent component
into the noncoherent component.53-54 The justification
for this approach is discussed in Sec. 6.

An equation, analogous to the Karman-Horvath equa-
tion in the theory of hydrodynamic turbulence,3 for the
correlation function of statistically homogeneous
Burgers turbulence

B(p, t) = < t)u(x + p, t)) (4.1)

FIG. 7. Evolution of a sinusoidal wave. 1) Initial distribution;
2) sawtooth wave; 3) wave at the damping stage.

follows from BE. This equation is not closed, since it
contains the third moment function {u2(x + p , t ) u ( x , t ) } ,
the equation for which contains a fourth moment, etc.
The main techniques for closing the equation involve
truncating this infinite chain of equations, setting the
higher moments or cumulants equal to zero. These as-
sumptions are valid for small Reynolds numbers or
when the probability characteristics of the turbulence
are nearly Gaussian (Millionshchikov's hypothesis).
However, for R0» 1, such closure leads to physically
contradictory results, for example, to the appearance
of negative values of the energy spectrum,57 which is a
result of the sign-alternating model distributions with a
finite number of cumulants.55>56

A detailed review of such methods in application to
turbulence in a different number of dimensions is given
in Ref. 10 (see, also, Refs. 58 and 59).

In Kraichnan's "direct interaction" approximation60"63

and in the method of "Markov stochastic models,"64"65

the infinite chain of equations for the correlation func-
tion is replaced by a model equation, which takes into
account correctly the trend in the evolution of B ( p , t ) ,
namely, the breakdown in analyticity as v — Q and energy
dissipation due to formation of discontinuities, but does
not permit following the process over long periods of
time.66'67
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In analyzing BT, use is often made of an expansion in
stochastic orthogonal functions (Wiener-Cameron-Mar-
tin method), the first term of which describes the Gaus-
sian component and the remaining terms describe the
non-Gaussian effects. The nonlinearity of BE leads to
an infinite chain of equations for the kernel of the se-
ries, truncation of which does not permit studying BT
for R0»l.

We recall also Refs. 76 and 77, where expansion of
BT into modes was used to construct a cascade model
of turbulence.

A more systematic approach to the problem involves
an analysis of the equations for the characteristic Hopf
functional.78-79 The one-dimensionality and the exist-
ence of an exact solution of BE permit more progress
along this line of thought9'80"82 than in eddy turbulence.

Summarizing what has been said above, we note that
attempts to describe BT by solving approximate equa-
tions for the correlation function or by other similar
methods are not successful for large Reynolds num-
bers.

Another approach to the statistical description of non-
linear systems is based on attempts to represent them
as an ensemble of stable and weakly interacting ele-
ments. The ensemble of particles describing a rarefied
gas or the ensemble of mode-oscillators describing
weak turbulence is an ensemble of this type. For waves
satisfying the RE and BE, such an ensemble can be
based on models of noninteracting or weakly interacting
particles.4'7'49'83'86

b) Lagrangian approach

The relation of the solutions of the RE and BE equa-
tions to the flow of noninteracting particles, indicated
in Sec. 3, makes the Lagrangian approach a natural ap-
proach to the analysis of the statistics of BT. The dis-
cussion concerns the investigation of Lagrangian statis-
tics and its use for subsequent reconstruction of the
statistics of Eulerian fields. The key relations here are
the universal coupling equations, which are of interest
in themselves for comparing different types of experi-
ments.

These equations were obtained for a compressible
fluid in Refs. 90-92. Analogous equations for an in-
compressible fluid are presented in Refs. 87-89. If we
examine a fluid particle with initial coordinate y, then
Wlt the distribution of its parameters [instantaneous
coordinate x(y,t), velocity u ( y , t ) , and divergence
j ( y , t ) ] , is related to W,, the distribution of the fields
u(x, t) and j(x, t) at the point x, by the equation

W,(), u; x, t)=\j\ W, (;, u, x; t\y)dy. (4.2)

For a statistically homogeneous fluid, this equality
goes over into

W,(j, u; ( )= \ J \ W l ( j , u; t) . (4.3)

Thus the Eulerian and Lagrangian distributions of the
same parameters of a statistically homogeneous fluid
differ by \ j \ , since a point in space has a higher proba-

FIG. 8. Difference between the Lagrangian and Eulerian
velocity distributions, due to expansion and compression of
fluid particles, j is the expansion factor, y is the initial
coordinate of the particle, and x is the instantaneous coordi-
nate of the particle.

bility of being located in an expanded particle than in a
compressed particle (see Fig. 8).

The above equations take into account the many-
stream nature of the motion. For an average number
of flows (AT) arriving at a point, we have

< ! / I). = W). (4.4)

Equations analogous to (4.2) and (4.3) establish con-
nections between many- point distributions, as well as
spectra.93

Applying the coupling equations to the flow of nonin-
teracting particles and using the equations describing
the change in the parameters s, u, q, and j along La-
grangian trajectories, we obtain the Eulerian distribu-
tion in the form

W,(s, u, }, q; x, t) = 1/K (s--^u't, u, q; x-ut] S(j-l-qt),

(4.5)
where w0(s,u,q;x) is the single-point distribution of the
initial action and the velocity and its derivative [s0(x);
ua(x); u'0(x]\.

c) Initial stage of turbulence

At the initial stage of evolution of the perturbation
(t« ta), when the velocity field satisfies the RE and the
motion may be assumed to be a single- stream motion,
the statistical characteristics of the wave can be de-
scribed using expression (4.5) and the many- point dis-
tributions analogous to it. If the initial perturbation is
a statistically homogeneous Gaussian velocity field with
a correlation function of the form

then the dependence of the average number of flows
on z = ki • t is shown in Fig. 9.

t>7

FIG. 9. Dependence on the dimensionless time of the average
number of particle streams arriving at a given point.
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t,>a

FIG. 10. Conservation of the velocity distribution for BT
before the wave topples. Aj and A2 are the spatial intervals,
corresponding to the velocity interval AM in the initial per-
turbation. Aj and A2 are the same intervals after steepening
of the profile.

?(*)

FIG. 12. Characteristics of a random wave after the appear-
ance of a discontinuity, a) Characteristic profile, b) turbu-
lence spectrum. Immediately after toppling, the wave has a
singularity u ~ Vie, which corresponds to the spectrum
g~k~*. The presence of a discontinuity leads to the asympto-
tic spectrum g~k~z.

For t^ta= I0/o, it may be assumed that the number
of flows at a point does not exceed three and it is possi-
ble to obtain an equation for the average number of dis-
continuities per unit length:

Expression (4.6) gives a criterion for neglecting dis-
continuities. In the region where such a procedure is
relatively valid t«t^, the velocity distribution in the
wave is obtained from (4.5) by integrating over all re-
maining parameters. For a statistically homogeneous
initial field, the velocity distribution is conserved:
W(u,t) = w0(u).S3-94-S5 This is explained by the fact that
compression of steepening fronts is compensated by an
equal expansion of stretching sections (Fig. 10). With
the appearance of discontinuities, compensation breaks
down and W(u,t) begins to change.96

For the spectrum of the velocity field

~ B(p, t)coskpdp

with a Gaussian initial velocity field, the Lagrangian ap-
proach gives

*<*• *) = -2^5jrexP(-a2ft2f2) j| {exp[B0(p)A2«2]-l}exp(iftp)dp.

(4.7)

The characteristics of the evolution of the spectra of
Riemannian waves, obtained independently in Refs. 97
and 98, were discussed for different physical situations
in Refs. 14, 21, and 98-100. We shall indicate some of
the characteristic features of the spectrum (4.7).

The nonlinear interaction of harmonics leads to the
fact that the spectrum grows most rapidly for large k.
If the initial spectrum g0(k) has a peak at k0*Q, then
generation of difference harmonics causes the spectrum
to flow over to the side k<ka (Fig. II).97

As fe —°°, we obtain from (4.7) the universal asymp-
totic form g-~£-^87.98,101 related to singularities of a
field of the type u ~\fx accompanying toppling of the
wave (see Fig. 12a).98 The appearance of discontinuities
causes the spectrum to fall off more slowly: g~k~2.s

However, the asymptotic form g~h'3 remains at the ini-
tial stage of the formation of discontinuities in the inter-
val

and is replaced by the asymptotic form g~k~2 as the
amplitude and the number of discontinuities increase
(Fig. 12b).96

d) Inclusion of discontinuities

Within the framework of the general analogy to the
flow of noninteracting particles, inclusion of discontinu-
ities means taking into account the competition between
streams by selecting the dominant stream. The proba-
bility distribution of the velocity at a given point in this
case can be represented in the form

W(u; x, ()= j W,(s, u; x, t)W ( (4.8)

FIG. 11. Evolution of the BT spectrum before toppling of the
wave.

where We is the joint distribution of the action and
velocity for a Riemann wave, while the cutoff factor W
represents the probability that when a particle with pa-
rameters s arrives at the point of observation, all other
particles arriving at the point have action s'>s. The
general expression for W can be found as the solution of
the problem of the absence of crossings of a given level
by a random process in the form of a continuous inte-
gral. In practice, the continuous integral can be re-
duced to a finite-dimensional integral, which can be
calculated numerically. The analytical results taking
into account the selection rule for the dominant parti-
cle, valid for any t, can be obtained by using simplified
expressions for the cutoff factor.48'49 Rigorous analytic
results can be obtained in two limiting cases, when the
number of streams included is small or very large.

e) Hypothesis of self-preserving behavior

At the stage of sawtooth waves t»ta, when, as noted
in Sec. 3, an analogy exists between discontinuities and
a gas of particles with masses n>ll= y^ — y t separated
by distances Z t = xk^ -xk, it is attractive to analyze BT
by the method of kinetic equations for the probability
distribution of the parameters mk and lk.

7 Taking into
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account the conservation of mass and momentum in
collisions between particles, a chain of equations for
the distribution functions was obtained in Ref. 7. It
was possible to close the equations with the help of the
hypothesis of self-preserving behavior of probability
distributions for BT, which, according to the hypothe-
sis, depend on the time only through the self-preserv-
ing scale l(t), which represents the average distance
between particles (discontinuities). The hypothesis of
self-preserving behavior leads to equations for the
average number of discontinuities per unit length fa)
and for the scale l(t) = fo)"1:

TT=-T<»>. £=T'- (4-9)
where a is a constant, determining the collision fre-
quency.

Additional considerations are required to find a.
The statistical invariant, following from the dynamic
invariant (3.1) and analogous to Loitsyanskil is invariant
in hydrodynamic turbulence,

) = fl0(p)dp (4.10)

is especially useful here.

Physically, expression (4.10) describes the conser-
vation of the constant component in the energy spectrum
of BT.

According to the hypothesis of self-preserving behav-
ior D~l3/f, which leads to a= 2/3. The case D= 0 is
more complicated. In this situation, a was determined
in Ref. 7 with the help of additional, inadequately justi-
fied hypotheses, which lead, however, to the correct
result a= 1/2.

Somewhat different considerations were used in Ref.
85, where the relation v~l/t was obtained from the as-
sumption that dn/dt~-n/T, where r~l/v is the time of
free flight of a discontinuity (v is the rms velocity of
the discontinuity). On the other hand, Eq. (3.12) perr
mits relating the velocity v with the distribution of the
initial action:

(4.11)

For times t»t^(l»l0), v depends strongly on the behav-
ior of the initial energy spectrum as & —0. Indeed, for
I»10, we have

FIG. 13. Average number of discontinuities per unit length as
a function of time. After the wave topples, t>ta , the number
of discontinuities gradually begins to decrease, due to their
coalescence. The asymptotic laws for the decrease are
r1/2 (D = 0) and i~2/3 (D * 0).

from which, substituting (4.13), we have

(4.14)

We note that if the discontinuities were not to coalesce,
then the energy would decrease according to the law
E~t~2, which is well known to specialists in nonlinear
acoustics.14 The decrease in the rate of dissipation of
energy is related to the motion and coalescence of dis-
continuities.

The self-preserving scale plays the role of the exter-
nal scale of BT. The internal scale can be taken as
5~vt/l. Their ratio gives the time-dependent instan-
taneous Reynolds number:

fl<*>=T = -£- (4.15)

Thus the coalescence of discontinuities in the case of
U ^ O increases the Reynolds number, as a result of
which the linear stage is never attained. The same con-
clusion can be reached from (4.15) for the case D= 0,
but, as rigorous theory shows, this result turns out to
be incorrect. For D= 0, BT still reaches the linear
stage, but the time at which this happens is large:
ti^t^Wo-

The hypothesis of self-preserving behavior and its
basic consequences are confirmed, as will be demon-
strated in Sec. 5, by a more accurate analysis. As far
as the other assumptions of the kinetic theory are con-
cerned,7 they are not justified and lead to partially in-
correct results.

- ^ p B o ( p ) d p ~ a 2 ^ - 2 (0 =

(4.12)

Substituting v~l/t, we find from (4.12)

Z(t)~3/Z)F2 (D^=0), l(t)~YolJ' (0 = 0). (4.13)

From (4.13) follow the laws governing the drop in the
average number of discontinuities, correcting Eq. (4.6)
for t»ta (see Fig. 13).

The rate of energy dissipation, as follows from (3.2)
and the hypothesis of self-preserving behavior, is re-
lated to the scale l(t) by the expression

5. TURBULENCE OF SAWTOOTH WAVES

a) Scale of correlations and the asymptotic theory

Turbulence (BT) of sawtooth waves is the most
interesting stage of BT, combining features of stochas-
tic and ordered behavior. The growth of the correlation
scale leads at this stage to the appearance of a large
parameter 1/10, due to which the starting velocity field
may be assumed to be delta correlated. The asymptotic
theory following from this, however, turns out to de-
pend strongly on the nature of the initial action field,
since the dominant particles are associated with the
minima of precisely this field. As noted above, the
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properties of BT are different for D ^ O and D= 0, which
is directly related to the differences in the action
fields.

For D±0, the initial action can be viewed as a Wie-
ner process. This case was analyzed in detail by Bur-
gers."4b

For D= 0, from the statistical homogeneity of the
initial velocity field also follows the statistical homoge-
neity of the initial action. Since the selection rule for
particles with minimum action permits including for
£ » < „ only large negative values of the initial action, the
theory of overshoots of stationary random processes
can be used to analyze BT.102'103 An ideologically simi-
lar, but technically somewhat different analysis of
statistically homogeneous BT was given in Refs. 84-86.

Aside from the two basic types of BT (D= 0,
examined in the present section, there also can exist
intermediate types of BT, which depend on the specific
form of the initial velocity spectrum and which are
realized at well-defined times.

b) Properties of turbulence in the case of D = 0

We shall discuss in greater detail the properties of
BT at the stage t»tn, assuming that the initial velocity
field is statistically homogeneous and Gaussian (al-
though this is not necessary) and that its correlation
function has the characteristic scale 10. We shall also
assume that the initial spectrum g0(k) — k " (n > 2) as
£ — 0 , from where it follows that the initial action has
the variance

The properties of BT at a point are determined by the
particle that has the minimum action of all the particles
arriving there. For t» £n, the competing particles are
associated with large negative overshoots s0, which in
the case of a single-scale function £0(p) may be as-
sumed to be uncorrelated, which permits obtaining the
velocity distribution of the dominant particles with least
action:49

00 00 00

W(u; 0= J We(t, a; t)exp[- j du j We(t, a; t)ds]ds. (5.1)
-oo _oo -oo

Here We(s,u;t) is the Eulerian joint distribution of ac-
tion and velocity following from (4.5). For 1»10, the
dominant particles will be particles that leave small
neighborhoods of the overshoots of the initial action be-
yond a very low level H0 = -as£(£ » 1), determined by
the condition that the integrand in expression (5.1) has
an extremum with respect to s:

b n

Evaluating the integral (5.1) by the saddle-point method,
we obtain a Gaussian distribution for the single-point
probability density of BT:

Q< l/ln V (t) '

(5.3)

(5.4)

(5.5)

The relative motion of the discontinuities leads to
two main differences between the behavior of the ener-
gy of BT (5.4) and the energy of a periodic wave E~ l\/
t" at the same stage t» t^ (see subsection 3d). The
first difference is the already mentioned slower dissipa-
tion of the energy of BT, described by the law E-f1

(4.14), which also follows from qualitative estimates,
to within a logarithmic correction.84"86 The second dif-
ference is that E depends on the initial amplitude of BT
< T ~ M O . The memory of the initial amplitude present in
the energy of BT, which is absent in the periodic wave,
is due to the dependence of the velocity of the discontin-
uities on a: the higher a, the more often discontinuities
coalesce, the weaker the dissipation, and the higher the
energy of BT.

Analogously, f o r / » / 0 , asymptotic expressions can
be found for the joint probability density of BT at two
points separated by a distance 2p. Just as the single-
point distribution (5.3), it is self-preserving, i.e., it
depends on the single spatial scale l(t) (5.5), the exter-
nal scale of BT. For this reason, it is convenient to
switch to dimensionless variables:

". = 71iTB(-P' *>. "1 = 770 B ( p > t}' S==TTF7'
The joint distribution of v^ and v2 has the form8

(5.6)

W(Vi, ( —i^Xexp [(1/2) cf] + <D (K2) exp [(1/2) v\)

4~?) ]" 2s dz
[€>(s+z)exp (z — z ) e x p ( — z

(5.7)
where <S> is the probability integral. The first term
here describes the properties of BT with the condition
that there are no discontinuities in an interval of length
2p, while the second term describes the properties of
BT with the condition that at least one discontinuity be
present in that interval. In contrast to the single-point
distribution, the two-point distribution (5.7) is not
Gaussian, but, of course, it approaches a Gaussian
distribution for separations of the points of observation
that are large and small, compared to l(t):

W(vt, (5.8)

From (5.6) and (5.7) it is not difficult to find the cor-
relation function and the spectral energy density of BT
(Fig. 14). The discontinuities of sawtooth waves lead to
nonanalyticity of the correlation function and a power-
law falling off of the spectrum

. .ff(*)

1ft

FIG. 14. Statistical characteristics of BT in the sawtooth
wave regime, a) Correlation function; b) spectrum, I is the
self-preserving scale of the turbulence.
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For small k, the spectrum also has a power-law
asymptotic form

«r(*. t)~^£-

(5.9)

(5.10)

and the maximum of the spectrum is displaced toward
small k in accordance with l/l.

We note that the laws E~t~l sundg~k~*, following
from the asymptotic theory, agree with the actual and
numerical experiments (see Refs. 104 and 105).

It should be added that the statistics of the parame-
ters of "heavy particles" (discontinuities) mk and lk,
which also give complete information about the proper-
ties of BT, are also of interest.84

c) Dissipation field

The characteristics of BT obtained above essentially
do not take into account the finite magnitude of the vis-
cosity. When the thickness of the shock fronts is taken
into account, the dissipation field, i.e , the gradient of
BT, has the form (Fig. 15)

»<•• •»-£-•!—{-s-
(5.11)

As long as the instantaneous Reynolds number is large,
the dissipation field, just as in hydrodynamic turbu-
lence,3 has an "alternating character": it is concentrat-
ed in randomly distributed clusters, between which
there is practically no dissipation. It is easy to con-
clude from (5.11) that the dissipation field is strongly
non-Gaussian.

The finiteness of the thickness of the shock fronts
destroys the power-law asymptotic behavior of the
spectrum of BT and leads to a more rapid falling off of
the spectrum in the dissipative interval k • 5» 1 (Ref.
85):

*(*, t) = - (5.12)

We note that the spectrum of BT drops off more rapidly
than for a periodic wave, which is explained by the fluc-
tuations of the internal scale of BT.

d) Degeneracy of turbulence

The asymptotic expressions presented above are valid
for times tl»t»ta, where tl is the time at which BT
reaches the final linear stage of degeneracy. We shall

FIG. 15. Dissipation field of BT. q (x, t) is the gradient of the
velocity field; xk are the locations of the shock fronts.

estimate it from the condition that the instantaneous
Reynolds number is equal to 1. Using (5.5), we have

(5.13)

The transition to the linear stage in BT occurs much
later than for a periodic wave, for which ^-t^-t^R^

At the linear stage, it is more convenient to investi-
gate the properties of BT by using the exact solution of
the diffusion equation, to which the BE reduces by a
substitution, since at these times, its average value
greatly exceeds the fluctuations.106

Analysis shows that for t»tl, the energy spectrum of
BT is likewise self- preserving:

g(k, t)~4v'l/ e*y exp(-2vW), (5.14)

and the energy drops off according to the law

E (t) ~ t-3/*.

The large slope of the BT spectrum at the linear stage
is explained by the long time it takes to reach the linear
regime.

e) Stationary turbulence

An important, for the theory of turbulence, example
of the appearance of stationary turbulence is BT excited
by a random external force and satisfying the inhomo-
geneous BE:

du . du S'u

where f ( x , t ) is a Gaussian field with the correlation
function

</ (x, t ) f ( x + p, t + T)> = 8 (p) 6 (T).

It is not difficult to show, using, for example, the
Furutsu-Novikov equation, that the following equality is
satisfied:98

°. *) = - (5.15)

which generalizes the invariant (4.10) to the case of BT
excited by an external force. Here

6= § 6(p)dp.

It is evident from (5.15) that BT can approach a strictly
stationary regime only if b = 0. Physically, this is re-
lated to the fact that for 6*0, pumping of energy into
the long-wavelength part of the spectrum does not have
time to compensate viscous dissipation.

It is demonstrated in Ref. 81 with the methods of the
theory of similarity that in the stationary regime the
spectral energy distribution of BT has the form

(fc) = , (kl, kL), (5.16)

where 1= f3/4s"1-/4 is the microscale of turbulence, L
is the correlation length of the exciting force f ( x , t ) ,
and E = 9(0)/2L is the rate of dissipation of energy.

In Ref. 48, the properties of stationary BT were in-
vestigated with the help of an analysis of the statistics

868 Sov. Phys. Usp. 26(10), Oct. 1983 Gurbatovet at. 868



of velocities of dominant particles. Their selection in
Ref. 48 depended on the hypothesis that the action and
the velocity are statistically independent. In this case,
it was possible to show that the stationary BT has a
Gaussian distribution and it was possible to calculate
the energy and some other characteristics of stationary
BT. Thus, for a BT spectrum in the inertial interval,
it was found that gj(h) ~E2/3/fe2L1/3, which agrees with
(5.16), but contradicts the conclusion in Ref. 81 that
there exists an inertial interval with a universal spec-
trum &~5^3. It should be noted, however, that the re-
sults obtained in Ref. 48 are not entirely rigorous and
require justification.

f) Turbulence in the absence of degeneracy

The fundamental difference between BT with D*Q and
the case with D= 0, analyzed above, Lies in the growth
of nonlinear effects and the unlimited growth of Rey-
nolds number with the passage of time. This is related
to the difference in the statistics of the initial action
and the more rapid, for t»t^, growth of the self-pre-
serving scale according to the law l ~ ( D t 2 ) 1 / 3 .

The linear stage of BT with D*Q, can be realized on-
ly for Rn« 1 and only at comparatively short times. In-
deed, if R0«l, then nonlinear effects are at first
small, but smoothing of the field by viscous dissipation
leads at times t >td to a growth of its spatial scale
1= 2/7F. Since for £>*0, the energy of the field dissi-
pates according to the law E ~ < f l 0 ' l , the instantaneous
Reynolds number increases as

the Wiener process. In particular, the correlation
function and the probability distribution of BT can be
represented in the form

and for t>td/R^, it exceeds one, after which nonlinear
effects begin to affect the propagation of the wave. Thus,
at sufficiently long times, BT with D#0 behaves as a
sawtooth wave, although with strongly smeared fronts.

Transforming to normalized coordinates x~= x
y~= y / l ( t ) , we find that the initial velocity field

has a correlation function

At times t»tn, whenwith correlation length X0= la/l.
l» 10, «o approaches a delta- correlated field. As far
as the initial action distribution is concerned, giving it
in the form

_ * __
*' V, 0= J u,(x, f)dx,

we find that for 1»10, it approaches a Wiener process,
all statistical properties of which are determined com-
pletely by its first two moments

<*.> = 0, <#=|*-ff j (5.17)

and are independent of time.

It follows from here that for R(t) » 1 and t » tn, all
statistical characteristics of BT become self-preserv-
ing and are determined by the probability properties of

W(u; f) = 4-K'..(Jf)'

B(p, ')=(|)2<»2>fi(

where

/ f - 1 Q \

00

j y*w«,(y)&y.

The specific form of the functions entering into (5.18)
can be determined numerically by the method of statis-
tical sampling or by using the theory of Markov pro-
cesses. Burgers4b obtained a relation between the func-
tion ujx and the probability that the Wiener process not
attain a parabolic boundary, which in its turn is ex-
pressed in terms of the solution of the diffusion equa-
tion. Using the representation obtained, Burgers cal-
culated the probability distributions of the amplitudes of
the discontinuities and distances between them.

g) Self-preserving behavior and dissipative structure

BT, just as eddy turbulence, is an example of a sys-
tem that reaches the self- preserving regime, arising
as an intermediate asymptotic state for <n« t« tr

The sawtooth waves arising at this stage exhibit the
property of local self-preserving behavior. In addition,
the statistical characteristics of the random sawtooth
waves, i.e., developed BT, are self-preserving. In
this case, the self-preserving behavior of BT can be
complete or incomplete,1"7 i.e., determined only by the
dimensionality or dependent on the initial conditions,
depending on the form of the initial spectrum (see Ref.
4b, 7, 49, 84-86). The self-preserving scale of BT
plays the role of an external scale of turbulence and in-
dicates the average dimensions of the locally ordered
regions (domains).

The domain structure of BT can be viewed as an ex-
ample of a dissipative structure. lna"lln The narrow
zones of dissipation, into which energy enters, are situ-
ated on the boundaries between the domains. Each do-
main is related to some partial wave, which can be
identified in the initial perturbation, characterized by
the magnitude of the action, playing in this problem the
role of an order parameter. As a result of the competi-
tion between domains, their scale, i.e., the correlation
radius of BT, increases. As the viscosity of BT in-
creases, something like a phase transition can occur:
the regime of domains is replaced by a regime with
weakly coupled harmonics; however, this transition has
a continuous character.

The regions of dissipation, which serve as domain
walls, can be interpreted as regions of high density,
forming as a result of inelastic collisions of dispersing
noninteracting particles. We note that analogous phe-
nomena can also arise with other types of interactions
between particles, if the interaction energy is much
less than their kinetic energy. The problem of disper-
sion of particles, taking into account their gravitational
interaction, leads to a cellular or domain structure,111

869 Sov. Phys. Usp. 26(10), Oct. 1983 Gurbatovef a/.



which is very similar to the structure that may be ex-
pected in a system described by three-dimensional gen-
eralization of the Burgers equation. It should be kept in
mind here that if the gravitational interaction is assum-
ed to be significant only in regions where particles
cluster, then its role at a certain stage is analogous to
the role of dissipation. It transforms the energy of
translational motion of particles into the energy of their
vibrational and chaotical eddy motion in the zone of the
front. For this reason, the initial stage of formation of
the cellular gravitational structure (while the evolution
of domain walls is not yet manifested) is apparently in
many ways similar to phenomena described by the
model of inelastic collisions.

A somewhat different point of view of BT is also pos-
sible. For finite v, quasi-one-dimensional structures,
which have the nature of traveling waves with slowly
varying parameters, arise in the regions of the fronts.
These structures are joined with one another with the
aid of separate saw teeth, which can be viewed as a
Riemannian pedestal related to the initial state. The
energy of the pedestal is gradually transferred to the
region of the fronts, where it is dissipated. This trans-
fer of energy can be viewed as resulting from collisions
of some quasiparticles with the background. A similar
approach was developed in Ref. 112 for systems that
permit the formation of solitons.

In connection with what was said above, the analogy
between strong turbulence in continuous systems and the
stochastic motion of systems with a small number of
degrees of freedom becomes clearer.8 For the latter,
together with structures such as strange attractors,
etc., trajectories combining sections of stochastic and
ordered motion are also characteristic.81" Burgers
turbulence is also an example of this type of motion.
Examining the behavior of the solution of BE with
t= const, we can say that "switching type" chaotic free
oscillations occur.

vary as they propagate, which leads to fundamentally
different mechanisms of interaction at different stages.
In addition, in contrast to dispersive media, where
satisfaction of the conditions of synchronization is more
likely to be the exception than the rule and, with inter-
action of waves, coherence sooner or later breaks
down,114 in a nondispersive medium, breakdown of the
coherence of interaction can be caused only by the self-
action of sufficiently intense noise.

We shall single out the main problems that arise in
the analysis of the interaction of the signal and noise:
1) effect of noise on the damping of the average field of
a regular wave and the closely related problem of tur-
bulent viscosity; 2) redistribution of the energy of the
signal and of the noise over the spectrum due to the in-
teraction; 3) effect of an intense signal on the trans-
formation of the statistical properties of noise.

To characterize the interaction of two components of
the initial perturbation, it is convenient to introduce the
concept of the turbulent diffusion length /d (Ref. 113), a
scale describing the smearing of the first component of
the initial field u^x) due to the interaction with the sec-
ond component u2(x) [u0(x) = u^(x) + u2(x)]. We shall de-
note the characteristic amplitudes, spatial scales, and
nonlinear times of the components of the initial pertur-
bation as Oj, lt, ti and a2, 12, t2, respectively. As pre-
viously, it is appropriate to characterize the stages of
evolution of the waves here in the language of hydrody-
namic streams of noninteracting particles.

In single-stream propagation, the diffusion length is
determined by the displacement of the initial coordinate
of the particle arriving at a given point due to the influ-
ence of the component u2. In many-stream propagation,
l^ depends on the displacement of the dominant particle,
which is limited by the condition for compensation of
the regular increase in the action by its possible de-
crease due to s2.

6. WAVE COUPLING IN NONDISPERSIVE MEDIA

a) Qualitative classification

So far, we have mainly assumed that the initial per-
turbation is single-scale noise. However, for example,
in acoustical applications niultiscale nonlinear waves
are often realized.14 Typical examples are a quasi-
monochromatic disturbance or a signal interacting with
noise with a nonoverlapping spectrum. The phenomena
arising in this case are determined by the set of nonlin-
ear times of separate components and their interaction
times. The basic physical laws governing the behavior
of multiscale waves can be understood by investigat-
ing the propagation of the sum of two disturbances with
different scales. Such an analysis is performed below
for the example of a periodic signal with a. zero con-
stant component, interacting with stationary noise.113

In contrast to the linear problem of scattering of a
wave by fixed inhomogeneities, here the self-action of
the components plays an important role. Due to the
nonlinear distortions and the formation and coalescence
of discontinuities, the properties of interacting waves

The equations obtained from these considerations for
the turbulent diffusion length of the signal MX due to the
noise w2 have the form

(6.1)
(0 = 0),

(6.2)

The interaction time of u^ with u2 is determined from the
condition l^(t) = Ij^t), where l^t) takes into account the
possible change in the scale of u± due to self-action.

We shall describe the basic types of interactions of
the components of the initial perturbation, assuming wx
is a large-scale component (li >/2).

113

1. Breakdown of the coherent structure of the small-
scale component due to phase modulation by the large-
scale component. If u2 is the signal, then the interac-
tion time is T= 12/ a^; if u2 is the noise, then the index
of the modulation attains the value one only if a^ > aj,z
and, in this case, T =

2. Breakdown of the spectral structure of the small-
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scale component and transfer of its energy into the low-
frequency range. This process can be roughly charac-
terized by the time for toppling of the large-scale com-
ponent T~t^. If uz is the noise, then, as in the preced-
ing case, the breakdown occurs efficiently only if a^

3. Breakdown of the spectral structure of the large-
scale component and transfer of its energy into the
small k range due to residual modulation by the small-
scale component. This type of interaction appears if uv

is the signal and is characterized by the time

As a comparison of the toppling and interaction times
shows, the following basic situations can arise in the
combined propagation of a periodic signal and stationary
noise:

1. Interaction of a large-scale signal with weak small-
scale noise (aj,^ >a2l2). In this case, the noise is modu-
lated by the signal, leading to a breakdown of the struc-
ture of the noise and establishment of sawtooth waves of
the signal, weakly modulated by the noise. At T= tlt the
modulation smears the structure of the signal and the
transition to the BT regime with a scale increasing with
time begins.

2. Interaction of large-scale signal with strong small-
scale noise (aili<azl2). At the initial stage, the noise is
weakly modulated by the signal. After the noise topples,
its scale begins to grow, which leads to breakdown of
the large-scale component before it topples at t = l\/lzaz

and transfer to a purely noisy turbulent regime.

3. Interaction of large-scale noise with a small-scale
signal. The breakdown of the coherent structure of the
signal occurs at t= l^/a^', its final smearing and transi-
tion into the noise regime occur at t = ija^.

As we can see, the physical picture of the interaction
of the signal and noise is different for different ratios of
the spatial scales. The answer to the question, often
arising in the theory of nonlinear waves and the theory
of scattering, concerning the physical meaning of the
separation of the field into regular and fluctuating com-
ponents

u (x, t) = (u (x, t) > + 6u (x, t) ( (6u> = 0)

is also different. The physical interpretation of the
fluctuations 5u and, what is more, the possibility of
measuring them experimentally depend on the ratio of
ls and in. In the presence of large-scale noise, the
damping of the mean field, a purely ensemble effect, is
due to the random drift, differing in different realiza-
tions, of the regular wave ua(x,t) due to the slow flow
«„. The change in the variance {(6w)2> here is also de-
termined by the random drift of the regular wave and
((6w)2)it{w^). In the opposite case, lt» 1A, the change in
((6w)2} is related to the true distortion of the statistical
properties of the noise due to the interaction with the
signal and can be found by averaging one of the realiza-
tions over an interval /„« 4*« ls. For /,«/„, the spec-
tral properties of the noise itself do not change and it is
natural to talk about the phase modulation of the signal

by the noise. In the case ls»ln, however, the interac-
tion indeed leads to redistribution of the noise energy
over the spatial spectrum.

b) Interaction of Riemann waves

We shall discuss the possibility of describing quan-
titatively the interaction of waves at the initial stage.
Before the wave topples, the interaction of its compon-
ents can, as indicated above, be viewed as a modulation
of the small-scale component by the large-scale com-
ponent. For /1»/2, the total wave at this stage can be
represented in the form117'113

u(x, *)=«, (6.3)

where ut and u2 are the solutions of BE for the separate
components,

*=*-«,(*, t)*, l=t(i--^-t).

Assume now that the initial perturbation is given in
the form ua= ua(x) -t- ?/„(#), where wn is statistically ho-
mogeneous noise. As follows from (4.5) or (6.3), the
single-point probability density W(u;x,t) has the form

W(u; x, t)= [B— » — !»,(«— wt, t)]Av, (6.4)

where us is the field of the signal in the absence of
noise and w0 is the initial probability density of the
noise.

One property of (6.4) is that W(u;x,t) does not depend
on the nature of the variation of the noise as a function
of x.

For the mean field, we have from (6.4)

(u(x, t)>= u>t(v)u.s(x—vt, t)Av, (6.5)

from where follows, for the case when us = as sink^c
and M n is Gaussian noise with variance a2, an expression
indicating the nature of the damping of the harmonics
of the mean field83:

With combined propagation of signal and noise, their
interaction dissipates the energy in the signal into new
spectral regions and changes the noise spectrum at the
same time. The influence of the long-wavelength com-
ponent on the short-wavelength component is most no-
ticeable, as follows from (6.3). In the limiting case of
spectrally strongly separated signal and noise, their
interaction can be examined in the approximation of a
fixed (but varying due to self-action) large-scale field.
The general equation for the energy spectrum of the
total wave was obtained in Ref. 115.

Let us consider in greater detail the scattering of a
small-scale signal by large-scale noise (ls«lr). In this
case, the spectra of the scattered component near the
harmonics of the signal have a similar structure to the
spectrum of a harmonic signal with a random phase
modulation,116 which is explained by expression (6.3).
The important parameter here is the index of phase
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modulation of the harmonic fn= vnk0t, characterizing
the ratio of the shift of the wave by the noise -at to the
period of the n-th harmonic of the signal. For yn« 1,
when the displacement is small, the scattered com-
ponents repeat the form of the long-wavelength noise.
We note, however, the fundamental asymmetry of the
form of the scattered signal relative to nh0, which fol-
lows from a more accurate analysis.115 Its short-wave-
length wing increases somewhat more rapidly, which
also follows from the Manley-Rowe relations.114 For
yn»l, the long-wave length modulation leads to a uni-
versal spectrum of the scattered component, independ-
ent of the fine structure of the noise spectrum117:

(6.6)

where &x is the width of the noise spectrum. As is evi-
dent from (6.6), the width of the spectrum of the scat-
tered harmonic increases both with the number n and
with time, due to which, for sufficiently short wave-
lengths, the harmonics overlap and form a continuous
power-law tail, whose boundary shifts with increasing
t toward increasingly smaller h. Thus, due to the inter-
action with noise, the energy of the initially harmonic
signal has a tendency to spread out over all h, and, in
addition, the nonlinear distortion of the signal itself in-
creases the efficiency of this process (Fig. 16). The in-
teraction of the signal and noise, distorting the signal,
also changes the statistical properties of the noise, as
is evident from (6.4). However, if a« aa, then the form
of the distribution remains the same and only its vari-
ance changes. It increases on the steep sections of the
signal [u's(x) >0] and decreases on the extended sections
[u's(x) <0]. Thus, when k^c= 0, n, for the harmonic sig-
nal we have

4" CM---IS-
The increase in dispersion for kx = TI is limited at
times t~ts. In this case, the form of the noise distribu-
tion also changes. We note, however, that the overall
picture of the interaction of the short-wavelength signal
with the noise will not change after the signal topples,

ff<K)

A
Ka ill, *

c)

FIG. 16. Spectrum of the signal interacting with large-scale
noise, a) Starting spectrum; b) deformation of spectrum at
short times; c) spectrum in the region of overlap of the
harmonics.

but rather when t<ta. Here, as before, the concept of
modulation of the signal by a long-wavelength flow is
valid and Eqs. (6.3)-(6.5) are satisfied, where now
ua(x,t) is the field of the signal including discontinui-
ties.117'113 Equation (6.6) also remains valid if we set

c) Noise and flow

The mechanism of the distortion of the spectral prop-
erties of the noise due to interaction with a large-scale
signal is graphically illustrated by the interaction of
noise with a regular flow us(x) = /3(# -xj. The field
here equals117 (see 6.3)

(6.7)

where the first term is the flow in the absence of noise
and un(x, t) is the noise in the absence of flow. For the
energy spectrum of the noise distorted by the flow, we
have from (6.11)

(6.8)

where g(k,t) is the spectrum of the undistorted noise.
It is evident from (6.11) and (6.12) that the interaction
of noise with the flow leads to three effects: a change
in the variance of the noise a2(t)=E[t/(l + p t ) ] / ( l + pt)2,
its spatial scale l(t) =_l[t/(l + pt)](l + pt), and the nonlin-
ear self-action time ta = ts/(l - #„). Here, tn= I0/a and
E(t) and l(t) are the previously studied variance and
spatial scale of noise in the absence of flow (energy and
outer scale of BT).

In the presence of an interaction with a compression
wave (0<0), whose gradient becomes infinite at time
tv = \ p \ ~ l , the variance of the noise increases and tn de-
creases, as a result of which, independent of R0= al0/v,
the noise attains the regime of sawtooth waves over a
time less than tT.

In the presence of an interaction with a rarefaction
wave (j3>0), due to the decrease in the variance and the
increase in the spatial scale of the noise, its nonlinear
self-action is stabilized and for t >p~1 = tT, the form of
the noise spectrum remains unchanged, coinciding with
the form of the BT spectrum at t = tT. Only nonlinear
stretching of the scale and decrease of the noise vari-
ance due to the interaction occur.

We emphasize once again that the analysis of the in-
teraction of noise with a rarefaction wave, which is of
interest in itself, is also useful in studying the interac-
tion of noise with a harmonic signal, since the zeros of
its extended sections determine the statistics of the
dominant particles and their order parameters.

d) Problem of turbulent viscosity

For large-scale noise and t»ta, the wave practically
forgets the signal and goes over into the turbulent re-
gime. If the noise is small-scale noise, then the turbu-
lent regime, forming at times t>ta if £„<£„ and t>ll/lno
if t3 <t^, retains a memory of the signal to a higher de-
gree. In the case of noise with D = 0, a method analo-
gous to the one presented in Sec. 5b can be used to de-
scribe the turbulent state.
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Using the selection rule for particles with minimum
action, in the region of developed turbulence (t»tn), we
obtain the following probability distribution of the field

W(u;x, t)= , *<"'• * • '>
( <I) (u; i, ()dit

(6.9)

where sa(x) is the initial action of the signal, and £ is
determined by the solution of a transcendental equation
analogous to (5.2), from which it follows that £~ VlnA,
while A can depend on the time t and the amplitude and
scale of the noise and signal, depending on the ratios
of the parameters.49

Using (6.9), it is possible to investigate the behavior
of the mean and fluctuation components of the field
u(x,t) at different stages of propagation. In the interval
ta<t<ta, the mean field coincides with the Riemann
wave of the signal, while the noise transforms into a
sawtooth wave modulated by the signal. For ts<t
<l\/aln, the mean field has the form of a sawtooth wave
with smeared fronts and scale 13. Here pulses in the
neighborhoods of the fronts of the mean field make the
main contribution to the noise. For t>l*/ola, the mean
field decays according to the law

ftgtai"<u> ~ exp — -

For the characteristics of the noise at this stage, we
have

"'"
2*|

' g i n *
5

As is evident, the mean field passes through the same
stages in the course of its evolution as the signal in the
absence of noise. This parallelism leads to the possi-
bility of introducing a turbulent viscosity, which per-
mits closing the equation for the mean field:

«(») i a(it>2

at ~*~ 2 dx - -dx' •

It is possible to close this equation by introducing a tur-
bulent viscosity if the following relation is satisfied:

a (a)'
= <«>-

3'(u)
- - (6.10)

For t»tn, for a signal interacting with small-scale
noise, from (6.9) follows (6.10) with

o'm~ (6.11)

In this case, the turbulent viscosity also correctly re-
flects the decay of the mean field and the noise-induced
of fronts in the state with sawtooth waves. We note that
in contrast to molecular viscosity, the turbulent vis-
cosity introduced in this manner depends weakly on the
time via the | and, in general, on the properties of the
signal as well.49

In the presence of an interaction between the signal
and large-scale noise, relation (6.10) is valid for
t«ts and t»tSK= la/a.ni The turbulent viscosity in
this case equals

VT = aH. (6.12)

This result, as also Eq. (6.5), was obtained using the
functional method in Ref. 82, but without any indication
of the limits'of applicability.

The turbulent viscosity (6.12) correctly describes the
damping of the signal, interacting with large-scale
noise ~exp(-£jj/< yrd</2). At the stage ts<t<ls/a, it
does not give a completely correct structure of the
mean field near the shock front, but permits estimating
its width aT~vTt/ls~a2t2/ls.

On the whole, by introducing the turbulent viscosity
(6.12) for t «n and (6.11) for t >tn (for t ~tn both equa-
tions give a quantity with the same order of magnitude),
it is possible to describe qualitatively correctly the
evolution of the mean field. Here, it turns out to be con-
venient to use as well the turbulent Reynolds number
RT = a3ls/aln. When RT» 1, the average velocity suc-
cessively passes through the stages of the Riemann
wave, sawtooth wave, and linear damping. When RT

<1, only the linear stage remains. In all stages, the
turbulent viscosity is related in a natural manner to the
previously introduced turbulent diffusion length lt.

The limits of applicability of the mean-field meth-
ocj;53,54,iis-122 kage(j on expanding the field with respect
to the fluctuation component and taking into account the
effect of fluctuations on the mean field in the first ap-
proximation only, are narrower than the limits of ap-
plicability of expression (6.11) and the concept of tur-
bulent viscosity. As is evident from (6.4) and (6.9),
this method is valid for t<tm= ls/a, ts, /n. Physically,
this means that the change in the average and fluctuation
component over the diffusion length must be small.

As far as the turbulent viscosity is concerned, it can
be introduced not only in the presence of a weak pertur-
bation of the signal by the noise, but also in the opposite
case of strong noise weakly modulated by the signal.
The spatial inhomogeneity of the noise, created in this
case by the signal, is compensated by the viscosity.
The introduction of turbulent viscosity in this case is in
many ways analogous to the introduction of molecular
viscosity in nonequilibrium thermodynamics. It is in-
teresting to note that in this case both (6.11) and (6.12)
lead to the same relation VT= E(t)t, where E(t) is the
noise energy in the absence of the signal.

We note also that any regular periodic regime turns
out to be unstable relative to perturbations which have
large-scale spectral components into which energy is
gradually transferred. As far as the turbulent state is
concerned, it may be assumed to be stable, i.e., its
characteristics change little under the influence of the
additional noise perturbation if the turbulent Reynolds
number of the initial state is large compared to the
Reynolds number of the perturbed state.

7. CONCLUSIONS

It is evident from this review that, in recent years, a
great deal of progress has been achieved in studying
Burgers turbulence, one of the important physical ex-
amples of strong turbulence, which, in this case, as-
sumes the form of an ensemble of locally coherent dis-
sipative structures.
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The analysis of BT by the method of singling out the
dominant particle can apparently be extended success-
fully to a wide class of similar problems. These in-
clude the problem, touched upon in this review, of BT
in the presence of an external force and the analysis of
potential turbulence, satisfying the three-dimensional
Burgers equation, as well as the investigation of ran-
dom waves satisfying the modified Burgers equation123

dzu (7.1)

Equation (7.1) describes nonlinear acoustical waves,
including the cylindrical or spherical divergence of the
front, inhomogeneity of the medium, and low-frequency
dissipation, as well as waves in active nondispersive
media, etc.

We shall indicate further paths for research directly
related to the problems of nonlinear acoustics, which
were omitted in this review. First of all, there is the
analysis of the interaction of waves moving in different
directions, which can be conducted using methods simi-
lar to those examined in this review, taking into ac-
count at least weak coupling of the countermoving waves.
Second, there is the transition from the state of Bur-
gers turbulence to the weakly turbulent state of an en-
semble of waves propagating at small angles.124 The
basic ideas of this approach are indicated in Refs. 125
and 126, but it deserves additional study.

Another path for research involves the development
of a unified statistical theory of one-dimensional strong
turbulence (and some of its multidimensional general-
izations) for waves in media with nonlinearity limited
by different types of interactions, arising in regions
with strong gradients. As a result of these interac-
tions, which can be represented as a form of collision,
after the wave topples or is focused, its energy is
transferred into the energy of the other type of motion.
A complete solution can be constructed here by joining
the quasi-one-dimensional structures that arise with
the residual background.

The most important problem remains the problem of
the relations between BT and eddy turbulence. There
exists a number of results that have been rigorously
justified for BT, such as self-preserving behavior of
statistical characteristics, the presence of an inertial
interval in the spectrum, dependence of degeneracy on
the invariant D, possibility of closing the equations for
the average velocity with the help of turbulent viscosity,
etc., which is of undoubted heuristic value for solving
problems in statistical hydrodynamics. It should also
be mentioned that apparently there is no basis for as-
suming that there is only one mechanism for the onset
and development of turbulence. In recent years, there
is increasing talk about turbulence having the structure
of locally coherent eddies, close to the structure of
BT.18 Such is the nature of the turbulence at the stage
when "zones of alternation" exist. Models of separate
interactions of eddies are successfully used in the theo-
ry of two-dimensional turbulence. From this point of
view, attempts to develop further the Lagrangian de-
scription of eddy turbulence could be of interest. View-
ing turbulence as a structure combining stochasticity

with local coherence presumes further in-depth study of
different types of random motion of systems with a
small number of degrees of freedom. It is also useful
to proceed further with the investigation of the analytic
relations between eddy and potential turbulence, begun
in Ref. 19.
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