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1. INTRODUCTION

There are at least three experiments1"3 that were per-
formed in 1981 with superconducting tunnel junctions,
in which the quantum-mechanical behavior of one of the
degrees of freedom of a macroscopic system has been
reliably observed. The aim of this note is to review
these experiments and discuss briefly further investi-
gations and applications of the phenomena thus dis-
covered.

The possible observation of quantum-mechanical be-
havior of macroscopic bodies has frequently been dis-
cussed since the very beginning of quantum-mechanics
(see for example, Refs. 4 and 5). This discussion usu-
ally involves the dynamics of one of the enormous num-
ber of degrees of freedom of a macroscopic body. As
an elementary example, which will turn out to be useful
in our further discussion, let us consider a two-dimen-
sional physical pendulum in the form of a solid body
with a fixed axis in the gravitational field. Its mechani-
cal motion as a whole can be characterized by a gen-
eralized coordinate <p—the angular deflection from the
position of equilibrium, and the corresponding general-
ized momentum—the angular momentum M.

Although the motion of microparticles making up the
given body can be essentially quantum-mechanical, and
(f is a function of the coordinates in these particles,
the variation of (f in time can be described with ade-
quate precision by classical mechanics under normal
conditions. Nevertheless, under certain conditions
quantum-mechanical effects may have to be taken into
account even in the dynamics of this degree of freedom.
In fact, it follows from the commutation relation for the
operators representing the conjugate variables <p and M

\<f, M\ = m, (l)
that these two quantities cannot be determined simultan-
eously with perfect precision. Because of this, the cen-
ter of mass of the pendulum cannot be in a state of rest
(<p = Q, M = 0) even at zero temperature T. In other
words, in addition to thermal fluctuations, the center of
mass must exhibit fluctuations of quantum-mechanical

The existence of such quantum-mechanical effects in
macroscopic systems has long been seen by the majori-
ty of physicists as necessary,4"10 despite the absence
(as far as the present author is aware) of direct experi-
mental evidence.1"3 Nevertheless, the question of an
acceptable description of such phenomena has given
rise to considerable dispute. The essence of the discus-
sion can be formulated as follows. Is it sufficient to
perform the usual quantization of motion for a given de-
gree of freedom without taking into account the presence
in the macroscopic body of an enormous number of
other (internal) modes? Thus, in the example of the
pendulum, is it sufficient to use the usual Hamiltonian
function.

iJ ' • \™/

where Ecis the amplitude of the potential energy and J
is the moment of inertia, with <p and M being regarded
as operators subject to (1)?

The source of doubt can be traced to the two funda-
mental differences between macrosystems and micro-
systems:

(1) The parameters of a macrosystem (for example,
£cand J)are averages over the motion of the component
microparticles.

(2) An isolated degree of freedom may be coupled to
internal modes, which may give rise, for example, to
damping (friction).

Experiments1"3 have given an affirmative answer to
the above question. They have confirmed that, in the
limit of negligible damping, an acceptable description
of the quantum-dynamics of macroscopic bodies is
given directly by quantizing the classical equations of
motion of the given degree of freedom and, when damp-
ing is appreciable, it can be correctly described by the
corresponding methods of quantum statistics.6'7§ "•12

The experiments alluded to above have become possi-
ble as a result of the use of unique objects, namely,
superconducting tunnel junctions. However, the exploi-
tation of the phenomenon of superconductivity has given
rise to certain difficultes in the interpretation of experi-
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ments, and even to a degree of confusion. Let us con-
sider this question in more detail.

2. TWO TYPES OF QUANTUM-MECHANICAL
MACROSCOPIC EFFECTS IN SUPERCONDUCTIVITY

The point is that, in addition to the "true quantum-
mechanical" macroscopic effects that we have con-
sidered, it has been well-known since the early 1960's
that there are other effects in superconductivity, which
are usually referred to as either quantum-mechanical
macroscopic effects or coherent effects (to avoid con-
fusion, we shall use the latter term).

The best known coherent phenomena in superconduc^
tors are the quantization of magnetic flux and the
Josephson effect (see, for example, Refs. 13 and 14).
The essence of these effects is that certain macro-
scopic quantities characterizing superconducting sys-
tems are connected by relationships that follow directly
from the fundamentals of quantum mechanics and ex-
plicitly contain Planck's constant. For example, the
electric current / flowing across a weak contact be-
tween two superconductors (the Josephson junction) con-
tains a specific component, namely, the super current
/s, which is a periodic function

supercurrent /s in the junction is equivalent13"16 to the
presence of the additional binding energy1'

s = /csin<p, <P = Xi — (3a)

of the phase difference Xi,2 between the wave functions
#l>2 describing the state of the condensate of Cooper
pairs in the contacting superconductors. The dependence
of <p on the voltage V across the junction is then given
by

dif
At (3b)

which follows directly13-14 from the Schroedinger equa-
tion.

Real Josephson junctions exhibit a considerable devia-
tion from (3a) (see, for example, the review given in
Ref. 15). Moreover, the current / may contain a num-
ber of other components. More than that, the unusual
relationship, given by (3), between the current and the
electromagnetic field is responsible for the very com-
plex and specific electrodynamics of Josephson junc-
tions and structures containing them.13-18 A total of
about 4000 publications17 has been devoted during the
last two decades to the investigation of all these prob-
lems and to the practical application of weak supercon-
ductivity. Nevertheless, the above principle of describ-
ing coherent effects has been found to be completely
satisfactory in practically all cases.

Let us now note the fundamental difference between
true quantum-mechanical and coherent effects. In the
latter case, the formulas given by (3) show that all the
quantities referring to a given degree of freedom (cp, V,
I, Q = fldt, and so on) can have precise values at the
same time. In other words, despite the quantum-
mechanical nature of (3), the quantities involved in these
relationships are, in fact, classical variables and, in
that sense, coherent effects can be regarded as classi-
cal.

The latter conclusion becomes even more obvious if
we rewrite (3) in terms of energy: the presence of the

U t const, (4)

Coherent effects are thus seen to produce an additional
"potential" energy U{ (<p) for the motion of the system
along the coordinate <p, but the motion itself may exhi-
bit completely classical behavior.

To summarize, we may say that coherent effects are
none other than the coherent quantum-mechanical mo-
tion of microparticles (for example, Cooper pairs in a
superconductor). At the same time, true quantum-
mechanical effects consist of the quantum-mechanical
motion of the macroscopic object as a whole.2'

We now have the natural question as to whether these
two types of quantum-mechanical effect can coexist in
a given system, for example, in a Josephson junction.
Despite the fact that the possibility of small quantum-
mechanical fluctations in such junctions has been con-
sidered for a relatively long time (for example, see
Refs. 18-22, 52, and 55), it is only recent work that
has given us a sufficiently clear understanding of the
conditions necessary for the manifestation of true
quantum-mechanical macroscopic effects in supercon-
ductivity.

As an example, let us consider a single Josephson
function. If we take into account not only the "potential"
energy given by (4) but also the "kinetic" energy of the
electric field

where C is the junction capacitance, we find that the
Hamilton function again is given by (2), with the angular
momentum M now given by

which is proportional to the imbalance Q between the
electric charges in the superconductors forming the
Josephson junction.

According to the approach described in Section 1, to
achieve the transition to the quantum-mechanical de-
scritpion, it is sufficient to use the Hamiltonian given
by (2), with <p and M looked upon as noncommutating
operators (1).3) The only "trace" of coherent effects
is then the specific form of the function U( (<p).

11 This can be easily verified by calculating A (7, as the sum of
elementary amounts of work Ia Vdt when the phase varies
slowly:

&U,

Z 2

= j (SV At = -j- j /s d<f = - -A. 7C [cos q,J}.

21 Leggett29 Introduced a quantitative criterion to distinguish
between these effects.

"Another way of writing Eq. (1)

demonstrates even more clearly its physical meaning: the
modulus of the commutator of the imbalance n in the numbers
of Cooper pairs In the electrodes and the phase <f is equal to
unity.
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It follows from the analogy between the properties of
the above system and the well-known properties of the
two-dimensional pendulum that its quantum-mechanical
properties will clearly appear when the ground-state
energy becomes comparable with the characteristic
energy £cand, at the same time, is greater than the
masking thermal energy kT:

hi,; > AT, a (7)

where a is a coefficient of the order of unity, w is the
classical frequency of small oscillations of the system
around the position of equilibrium <p = <p^ and

(8)

(in the present case, <f>0 = 0). In the theory of the Joseph-
son effect, the latter frequency is usually referred to as
the plasma frequency.

The situation may, however, become complicated by
the fact that Josephson junctions can exhibit appreciable
damping. The basic mechanism responsible for this
damping is that the current flowing through the junction
has an essential quasiparticle component IQ which is a
function of the voltage V across the junction, in contrast
to /s given by (3). In the simplest case, this function
may be regarded as linear and free of dispersion:

(9)

where R is usually not very different from the resistance
of the junction in its normal state. It is clear from (3)
and (9) that, in the classical limit, the inclusion of this
component leads to the following equations for small
oscillations:

(0"2Cp -L- (Oc*<P -J- Cp = 0, (10)

where w c is usually called the characteristic junction
frequency and is given by

A- 1 fi \
">c-= — , 1=(—J (ID

The ratio of the two frequencies w and wc character-
izes the rate of damping and is very dependent on the
type of Josephson junction. For tunnel junctions,1'1

the ratio to/wcis usually in the range 0.1-0.001, the
damping is small, and the condition for the transition
to the quantum mechanical state is, as before, given
by (7). Conversely, for junctions with indirect (non-
tunneling) conductivity and in the form of point contacts
or thin-film microbridges,15 we have the reverse situa-
tion: damping is large and o>/wc» 1. There is as yet
no rigorous quantum-mechanical theory of this case,
but qualitative analysis23'24 shows that, in most formu-
las, it is sufficient to replace w by u>cwith a coefficient
of the order of unity.

Bearing this in mind, we can readily write out the
final condition for the appearance of true quantum-
mechanical macroscopic effects:

min [ha), AT, aEc (12)

This condition clearly shows why true quantum-me-
chanical macroscopic effects have been successfully
observed in Josephson tunnel junctions. It is precisely

these junctions that retain the strong nonlinearity at
helium temperatures (£T^10~15 erg), i.e., they have a
small Ec (thus, for a junction with/c~ 30 jiA, Eq. (4) shows
that Ec~ 10~14 erg). Moreover, the frequencies involved in
(12) can be relatively high. Thus, with present tunnel junc-
tion technology (cf. for example, the review given in Ref.
25), the critical current densities can be up to about 10s A/
cm2 or more, which corresponds to plasma frequencies
o>2 1013 s"1. At the same time, the characteristic fre-
quency o)c remains close to the theoretical limit,14

jrA(0)//i!, where A(T) is the energy gap, which for
typical superconductors (Pb, Nb) is about 1013 s"1.
It is thus clear that the value of /z uic for modern tunnel
junctions can be taken up to about 10"1" erg, so that both
conditions in (12) are satisfied.

3. MACROSCOPIC QUANTUM-MECHANICAL
TUNNELING

We now proceed to the analysis of specific experi-
ments. We note at once that, even when the conditions
given by (12) are satisfied, the detection of true quan-
tum-mechanical macroscopic effects is not a trivial
problem. In fact, direct measurement of quantum-mecha-
nical fluctuations encounters a fundamental difficulty
because any measuring device is also subject to such
fluctuations (zero-point fluctuations) (see, for example,
Refs. 26 and 27). We can escape from this dilemma by
exploiting the internal nonlinearity of the system under
investigation so as to "amplify" the quantum-mechanical
fluctuations in one way or another, i.e., use them to
stimulate some process that occurs with relatively high
intensity. When this intensity reaches the "classical"
level, the process can be examined with conventional
devices without taking into account their quantum-
mechanical properties.

The first such possibility was implemented in the ex-
periments reported in Refs. 1 and 2, and was speci-
fically put forward in 1978 by Leggett22 (see also Ref.
29), although the basic possibility of quantum-mechani-
cal measurements of this type was frequently con-
sidered by Blokhintsev (see, for example, Lecture 12
in Ref. 30). Suppose that a Josephson junction is con-
nected to a simple external circuit in the form of a
source of direct current /, just below the critical cur-
rent for the junction (Fig. la). The Hamiltonian for the
system must then also include the term UK which is
equal to the product of the generalized coordinate tp
and the corresponding generalized force

F -«L=-L/ (13)
" dip 2e '

so that the resultant potential U=Ut+U6 has the "wash-
board" form (Fig. la):

V = EC (1 — cos q>—j- (f\,

where the local minima occur at the points

q>0 = arcsin-£- + 2;t*:, ft = 0, ± 1, ±2, . . . ,

(14)

(15)

and correspond to "classically" stable states of the
phase difference, i.e., the usual superconducting state
of the Josephson junction.13"16
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FIG. 1. Principles of experiments on macroscopic quantum-
mechanical tunneling in Josepbson junctions with small (a)
and large (b) damping, and dependence of potential energy U
on the Josephson phase difference <p in these experiments (c).
Arrows on the last figure indicate schematically the mechanism
of the decay of the metastable state <p & ip^. thermal activation
over the barrier U0 (1) and quantum-mechanical tunneling
under the barrier (2).

It is clear that the thermally activated decay of this
metastable state will have a finite probability at a finite
temperature T. Classcial theory31'32 (see also Chapter
8 in Ref. 16) gives the following expression for the rate
of this decay:4'

x-cl=^-exp (_£), (16)

where U0 is the height of the energy barrier (Fig. 1) and
the "attempt frequency" u>A is approximately (exactly,
in the limit of small and large damping) equal to
min | u), wc |. The frequencies u> and wc are again given
by (8) and (11), but now with allowance for the contri-
bution of the current / to the potential U in (14). In the
most important case / — /c, we have

2e)^, d7)

1, (18)

so that, as / — Ic, the height of the barrier decreases
and the rate of decay increases.

The possibility of detection of this type of decay is
very dependent on damping in the junction.16 When this
damping is small enough, so that

£«2e)-'/>, (19)

finite inertial will ensure that the system will not stay
at the next minimum, but will slide down the "wash-
board" and gradually acquire a velocity <p until the
average velocity <p reaches a constant value because
of increasing dissipation. From the point of view of
the observer, this process corresponds to a jump from
the superconducting state of the junction (<p= V=0) to the
"resistive" state with sufficiently large potential differ-
ence V= (tt/2e) cp, usually of the order of a few milli-
volts. A potential difference of this magnitude can
easily be determined by a classical device because it
substantially exceeds the level of not only quantum-
mechanical but also thermal fluctuations in practical

voltmeters. It is precisely in this way that the therm-
ally activated decay of the metastable states of Joseph-
son junctions was first measured13 in 1974, and good
agreement was achieved between the decay rate r~l and
(16) (for w/wc«l).

On the other hand, when the condition opposite to that
given by (19) is satisfied, damping will confine the sys-
tem to the nearest local minimum ̂  = cp0 + 2p, which
again corresponds to the superconducting state. The
resulting short (-w^-lO"12 s) and weak (!Udt**h/2e
" 10~15 V.s) voltage pulse is very difficult to measure.
A different path is more successful: the Josephson
junction is included as part of a superconducting ring
with high enough inductance Lz(K/2e)Icl (Fig. Ib). A
current / can then be established by applying an extern-
al magnetic field Be to the system ("single-contact
interferometer"1"6):

(20)

'4' This formula, as well as all the subsequent formulas for
the lifetime r, is valid under the usual condition o>AT»l,
in the absence of which the very meaning of the concept of
lifetime is ambiguous.

The jump of the system to the neighboring metastable
state (£<p~2it) then leads to small jumps in the magnetic
flux and the current:

A<D R (21)

which are readily detectable, for example,37 by a super-
conducting quantum-mechanical interference device
("squid") using, by the way, a similar Josephson inter-
ferometer as the sensor.5' These measurements, also
performed34 in 1974 have demonstrated good agreement
with (16) for junctions with high damping (u>/u>c»l).

If we now reduce the temperature and thus increase
Tcl, the true quantum-mechanical effects will ensure
that the lifetime of the metastable state will not increase
without limit, but will reach a certain constant r^as
T—0. In fact, quantum-mechanics shows that there
should be a finite probability that the "particle" (in the
present case, the macroscopic system) will succeed in
passing under the energy barrier U0. Simple calcula-
tions based on the principles indicated above show that
the rate of this "macroscopic quantum-mechanical tun-
neling" is given by the following expression35 at T=0:

0) / U \ 1/2 / 36 U \ ^OO^

which is valid for systems with small damping (w/wc

«1). We note that the use of the WKB approximation
to solve this problem2'36'52 leads to an incorrect pre-
exponential factor; this coefficient was erroneously
omitted from formula (8) in Ref. 35.

The transition from the classical limit (16) to the
quantum-mechanical limit (22) can also be easily per-
formed. To do this, it is sufficient to sum the decay
intensities due to all the thermally excited energy
states of the system in the region of the metastable
state. The result of this type of calculation35 is illus-
trated in Fig. 2, from which it is clear that the transi-
51 Another, even a more convenient, method consists of mea-

suring such spontaneous sudden changes in the magnetic flux
in the interferometer of the squid itself utilizing the fine
structure of the plateau in its r.f. characteristic (cf. Ref. 16,
Ch. 14, and also Refs. 38, 51).
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FIG. 2. Lifetime T of the metastable " superconducting" state
<f = <p0 as a function of the temperature T for junctions with
small damping and different values of the ratio of the barrier
height f/o to the energy K o>/2.

tion from thermal activation to macroscopic quantum-
mechanical tunneling is continuous but relatively rapid,
and occurs at temperature T0 given by

»(D

2.T
(23)

The situtation in the case of appreciable damping is
much less clear. Caldeira and Leggett have shown23 that
a small (u>/ci>c«l) linear dispersion-free damping in-
troduces an additional exponential into the expression
given by (22), namely,

(24)

Qualitative analysis shows23'24 that, in the case of ar-
bitrary damping, the lifetime r^is given by the same
formula:

(25)

but the question as to what is the preexponential factor
and what are the precise coefficients in the arguments
of the exponentials (25) remains open.6'

All the above expressions were obtained back in 1980,
but the validity of the simple idea on which they are
based (see Section 1) has frequently been disputed.
Some authors consider that, when macroscopic quantum-
mechanical effects are calculated, it is necessary to
take into account, in one way or another, the effect of
internal degrees of freedom (which is different from
damping). In other words, it may be that the contribu-
tion of coherent effects to the true quantum) mechanical
effects do not simply reduce to the appearance of the
effective potential U, (<p) of the form given by (3), and
that the entire quantum-mechanical calculation must be
performed "from first principles," i.e., at the micro-
scopic level. The early experiments in this field37-38

did not make the situation any clearer, since they did
not lead to any definite conclusions.

These doubts were, however, removed by two striking
experiments performed at the Bell1 and IBM2 labora-

tories. In both experiments, Josephson tunnel junctions
with relatively small damping were connected to a
source of current /, and the current was gradually in-
creased until the voltmeter connected across the junc-
tion recorded the spontaneous jump to the resistive
state. The corresponding current was recorded and
then reduced to zero (to take the Josephson junction
back to the superconducting state), and the cycle was
repeated. This experiment was repeated many times,
and the result was the distribution of the jump probabil-
ity density w along the current axis, which took the form
of a peak lying a little below /c. From this distribution
using the formula7)

(26)

one can readily establish the lifetime of the metastable
superconducting state T as a function of the current /,
and then compare the result with the above formulas
taken together with (18).

Although the experiments reported in Refs. 1 and 2 are
basically similar, the conditions given by (12) were
satisfied in different ways. The IBM group used Nb-Nb
tunnel junctions with relatively low current density
(about lO^lO2 A/cm2) and relatively high specific ca-
pacitance (about 10~5 F/cm2). The plasma frequencies
of these junctions were relatively low, of the order of
3xlOn-1012 s-1, so that they had to be cooled to tem-
peratures of the order of 30-100 mK to reach the quan-
tum threshold (23). This was done by placing the junc-
tion directly in the mixing chamber of a helium refrig-
erator, which meant that the measurements could be
performed at temperatures down to 3 mK (!). The
technical level for this experiment is also indicated by
the following figure: the width of the peak in w(/),7>

which is given by

a - <(/ - </»»>v« (27)

reached 3 nA at low temperatures, and it was shown
that external pick-up had no appreciable effect even
under these conditions (anyone working with Josephson
junctions will know how difficult it is to reduce the pick-
up level even down to a few hundred nanoamperes).

Figure 3a illustrates the basic result of this experi-
ment, namely, the dependence of cr on temperature for
a junction with /c^ 1.6 piA, R =* 530 n, C = 100 fF. It is
clear that, for TS 1000 mK, a (and, therefore, the life-
time r) is a constant. However, this constant agrees
with (22) only for junctions with relatively low current
density, i.e. small damping (u>/o>c~0.01), whereas for
junctions with aj/aic^O.2, the argument in the exponen-
tial has to be increased by a factor of two to achieve
comparable agreement with this formula. This differ-
ence could be explained by the influence of damping if
the coefficient a in (24) were of the order of five
rather than unity. The origin of this discrepancy is

6)Recently Golub and lordatii53 obtained estimates in agreement
with formula (25).

7)In order to obtain it, it suffices to take into account the fact
that the probability p of the jump having occurred increases
with time according t o p = T ~ l ( f > (1 —p).

8)The angle brackets denote statistical averaging

{...)= . .)"•(/>(!/.
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FIG. 3. Width a of the probability distribution of jumps to the
resistive state as a function of temperature In the experiments
performed by the IBM group2 (a) and the Bell group1 (b). Solid
lines are calculated from classical theory [see Eq. (16)1.
Inserts show the current-voltage characteristics of the Joseph-
son junctions employed.

still not clear, but there is no doubt that macroscopic
quantum) mechanical tunneling has now been detected
(following the heated discussions during the Sixteenth
International Conference on Low Temperature Physics
in August 1981).

In contrast to the experiment just described, the Bell
group used Pb(In)-Pb tunnel junctions with much higher
current densities (up to 5 x 105 A/cm2) and somewhat
lower specific capacitance (-0.6 x 10~5 F/cm2). Such
junctions have very high plasma frequencies (~1013 s"1),
so that the experiments could be performed at "ordi-
nary" helium temperatures, i.e., above 1 K. Figure 3b
shows the function a(T) for a junction with /c=<300 pA,
R=* 5 12, and C =* 10 fF. It is clear that, below 2.2 K,
the measured dependence deviates from the classical
behavior. However, in this case, a cannot be directly
compared with the corresponding theoretical predictions
for T— 0. The point is that, in contrast to the niobium
junctions used in Ref. 2, lead junctions1 have highly
nonlinear current-voltage characteristics (see the in-
sert in Fig. 3), which shows that there is strong dis-
persion of damping in such junctions. Comparison with
quantum-mechanical calculations performed in the dis-
persion-free model can therefore be only approximate
under these conditions. The authors of Ref. 1 found that
agreement with (22) and (24) could be achieved by as-
suming an effective resistance R between 15 and 35 ft
(normal resistance 5 JJ), which is not inconsistent with
existing data on the impedance of tunnel junctions of
this kind.

The conclusions that can be drawn from these two ex-
periments1'2 are thus seen to be very similar: the
existence of macroscopic quantum-mechanical tunneling
can be regarded as demonstrated, with high degree of
confidence, but it is too early to conclude that there is
quantative agreement with the theory.9' This quantita-
tive comparison can be approached in two ways:

(1) The Caldeira-Leggett theory23 can be generalized
to the case of dispersion-free damping of arbitrary
strength (w/wc~l)> and the results can be compared
with the data2 on Nb-Nb junctions.
9)Very recently a communication51 appeared concerning the

observation of this effect in contacts with high damping (using
a squid).

(2) The theory of macroscopic quantum-mechanical
tunneling can be developed on the basis of the micro-
scopic theory of the Josephson effect,39>4° and the result
can be compared with data on junctions made of metals
other than transition metals, for example, Fb(In)-Pb.lo)

Finally, we note that macroscopic quantum-mechanical
tunneling can also be observed in superconducting struc-
tures of a different type. It can now be regarded as
demonstrated that the low-temperature tail of the R(T)
curve of a resistive phase transition between sufficiently
thin superconducting films is the consequence of the
thermal activation of pairs of antipolar Abrikosov vor-
tices (Refs. 41-43).n) The width of the transition can
be estimated from the following expression which fol-
lows from the theory of Aslamazov and Larkin44 for the
high-temperature tail of the transition:

Ar«rc-£a, (28)
wqm

where R = (ay*)"1 is the normal resistance "per square"
of the film and K<yn= 4K/e2^ 16.5 kft is the quantum-me-
chanical unit of resistance. It is natural to assume
that the resistance of still thinner films fl/SjRqm)
should remain finite even at T^ 0 because pairs of vor-
tices will be generated by quantum-mechancial fluctua-
tions in the superconducting condensate. The relevant
experiments have already begun45 and, in all probability,
an acceptable theory of this phenomenon will soon
emerge. Distributed Josephson junctions and granular
superconducting structures exhibit similar properties.

4. OBSERVATION OF QUANTUM-MECHANICAL
CURRENT FLUCTUATIONS

Practically simultaneously with the experiments on
the macroscopic quantum-mechanical tunneling, true
quantum-mechanical macroscopic effects were ob-
served under somewhat different conditions at the Uni-
versity of California (Berkeley). Let us again consider
a Josephson junction with a given constant current /,
but let us now suppose that /> /c. We then have Joseph-
son generation13"16 in the junction with frequency u> Y,
which, according to (3b), is proportional to the constant
voltage across the junction.

UvS^=^F. (29)

Fluctuations in the phase cp, including quantum-mechan-
ical fluctuations, contribute to the low-frequency fluc-
tuations in the voltage across the junction, and these
can be measured relatively simply.

The theory of such fluctuations in the voltage V has
been developed in a series of papers18"22l4e for different
special cases. Let us consider the simple case of the
Josephson junction with strong dispersion-free damping,

101 First steps in this direction were taken in Ref. 54.
U)Here it is necessary to note that even small inhomogeneties

of the film can lead to the pinning of these vortices with the
thermal activation of such pinning centers producing a con-
siderable masking effect. Apparently it is just for this rea-
son that quantitative agreement with the simple theory41'42

was successfully achieved very recently utilizing very perfect
films.43
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so that the dynamics of the phase tp in the absence of
fluctuations is described by (3) and (9):

and 5 pirn long. The length L was such that1

(33)
(30)

Analysis of this "resistive" model shows21 that the
spectral density SK(w) for small fluctuations in the volt-
age at low frequencies u> « w v is given by the simple
expression

( o - o > v ) ] , (31)

where RA (I) is the differential resistance at the working
point and S, (co) is the spectral density of the Langevin
force (in this case, of the current If), which must be
inserted into the right-hand side of (30) to achieve ade-
quate description of the fluctuations. Generally speak-
ing, this source, I f ( t ) , is a complicated nonlinear
combination of fluctuations of thermal, quantum-me-
chanical, and shot origin.22-"6 However, when the dis-
sipative subsystem is in thermodynamic equilibrium ,
the fluction-dissipation theorem6'7 is valid for If :

n ut6 =—
/ fto \ j
( t r ) - *

(32)

In addition to the expected first term in braces, the
formula given in (31) contains two further terms. In
the language of radio engineering, their appearance
is explained by the downward conversion of the fluc-
tuation frequency, which occurs when they are mixed
with intrinsic Josephson generation in the contact.
The fundamental point is that the corresponding con-
version coefficient (7c/2/)2 can be of the order of unity
even for w«u>r, and this means that the conversion of
high-frequency current fluctuations to low-frequency
voltage fluctuations occurs with a very high (~u>K2/d)2)
quantum-mechanical gain. We note that this amplifi-
cation is forbidden by the Manley-Rowe relations47 and
becomes possible only because of the specific nature of
the nonlinearity of the Josephson junction.14

Let us now suppose that the temperature is low enough
(kT<,Kuv) although, of course, £T»ffui. The formula
given by (32) then provides us with a simple description
of the quantum-mechanical fluctuations in the current
6((j)Y,T)~ffuv/2, and (31) shows that these fluctuations
may provide an essential contribution to the low-fre-
quency fluctuations in the voltage. We note that, owing
to the high quantum-mechanical gain mentioned above,
we again need not consider quantum-mechanical fluctua-
tions in the measuring instrument because their contri-
bution at the frequency of the voltage measurements is
proportional to /zu;/2, which is much smaller than
KWy/2.

Such measurements of low-frequency fluctuations in
the voltage across the tunnel junction have, in fact,
been performed.3 To produce a system as close as
possible to the resistive model (30), the Pb(In)-Pb
tunnel junction with critical current /c-1.5 mA and
capacitance C^O.7 pF was shunted by an external re-
sistor with R^ 0.1 n, which was much smaller than
the internal junction resistance. The resistor was in
the form of a thin (40-100 nm) Cu(Al) film, 10 titn wide

which is a necessary condition for the equilibrium of the
electron subsystem and, consequently, for the validity
of the fluctuation-dissipation theorem (32). In the above
expression, A0«i (DrB)1/2 is the electron diffusion length
corresponding to the energy relaxation time TB (in typi-
cal cases, A<jS 1 nm).

The experimental results are illustrated in Fig. 4,
and it is clear that they are in good agreement with (31)
and (32) when the experimental values of Rd (solid
curve) are used. On the other hand, if we adopt the
frequently expressed but poorly justified view that zero-
point fluctuations are "fundamentally unobservable,"
and exclude the corresponding term Kw/2 from (32),
the calculations (broken curve) turn out to be in clear
conflict with the experimental results (full points).

Thus, the experiment described in Ref. 3 was the
first to measure directly the quantum-mechanical
fluctuations in an isolated degree of freedom of a ma-
crosopic physical system. Detailed analysis of such
measurements shows that they are possible (or, more
precisely, that the influence of fluctuations in the mea-
suring instrument can be neglected) only when certain
definite conditions are satisfied. In particular, it clear-
ly follows from the derivation of (31) by the method of
slowly-varying phases (see Ref. 48, or section 6.2 of
the monograph in Ref. 14) that Sr(u) contains the con-
tribution not of the entire Langevin force If but of only
one of its quadrature components, which is in phase
with Josephson generation by the contact. However,
measurement of one of the quadrature components is,
in fact, one of a class of "quantum nondemolition mea-
surements"8"10 for which the effect of fluctuations in
the measuring instrument can, in principle, be made
arbitrarily small. The experiments described in Ref. 3
are thus interesting from another standpoint as well,
namely, in all probability, this is the first realization
of quantum nondemolition measurements.12'

FIG. 4. Spectral density of low-frequency fluctuations In the
voltage across a shunted tunnel junction as a function of the
average voltage across the junction: 1—total density of fluc-
tuations measured In the experiment described In Ref. 3; 2—
measured fluctuations with the component RfSt(u) subtracted;
3—calculated values of the latter component based on (31) and
(32); 4—the same calculation but with Ku/2 omitted from (32).

121Thls remark Is due to R. F. Glffard.
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5. CONCLUSION

Thus, by exploiting the specifically nonlinear proper-
ties of the Josephson junctions, it has been possible1"3

to demonstrate experimentally the presence in weak
superconductivity of not only previously well-known
quantum-mechancial macroscopic or "coherent" effects,
but also "true quantum-mechanical" effects. In the
more general context, these measurements constitute
the first experimental demonstration of the quantum-
mechanical behavior of an isolated degree of freedom
of a macroscopic physical system.

It is possible that the existence of such effects is in-
tuitively obvious to some people and does not, there-
fore, require experimental verification.

However, it seems to the present author that the ob-
servation of true macrocopic quantum-mechanical
effects in superconductivity is a significant achievement,
at least for the following reasons:

(1) The experiments described above lead us to the
important realization that "all is well" with quantum
mechanics even at the macroscopic level, i.e., the
transition from classical to quantum-mechanical be-
havior in macro-objects occurs in precisely the same
way as in micro-objects. This gives us confidence in
planning actual quantum-mechanical experiments and
(no less important) in considering thought experiments
with macro-objects.

(2) Attempts to obtain quantitative agreement between
experiment and theory have shown that there are certain
basic gaps in our knowledge of even the simplest quan-
tum-mechanical systems. Thus, as was noted in Sec -
tion 3, the problem of quantum-mechanical tunneling
in highly-damped systems has not as yet been solved.
Generalizing a little, we may say that, in all probability,
we do not know the simple equations describing the
quantum-mechanical evolution of a one-dimensional
Brownian particle without inertia in a potential U(<p).
In other words, it turns out that we do not know how to
generalize the Fokker-Planck equation to the quantum-
mechanical case.

(3) Finally, experiments1"3 have shown that the Joseph-
son tunnel junctions fabricated by modern technology
(i.e., having high current densities) are the most suit-
able objects for experiments with macro-objects at the
quantum-mechanical level. There are at least two
groups of such experiments that are of interest at present.

First, we face the real possibility of being able to
realize the recently proposed9-10 schemes for the opti-
mum detection of extremely weak signals and, as a
consequence, we may well be able to overcome the so-
called "quantum-mechanical limit" of the sensitivity26-49

of detecting systems in a broad frequency range, ex-
tending from a few tens of kilohertz to hundres of
gigahertz.

Secondly, it is now possible to formulate experiments
designed to verify the fundamental assumptions of the
quantum theory of measurement. The point is that this
theory was developed in the early days of quantum
mechanics4'5 and was essentially designed for measure-

ments of the parameters of micro-objects. The quan-
tum-mechanical analysis of measuring devices is then
unrealistic because of their complexity, and this has
been the reason for the sharp differentiation between
the object and the measuring device in the theory of
measurement.

The situation is radically altered by the advent of
macro-objects with quantum-mechanical behavior. For
example, experiments on the macroscopic quantum-
mechanical tunneling constitute an obvious realization
of the famous "Schroedinger cat" paradox50 (see also
Ref. 4, Chapter 11). However, in this experiment,
the "measuring device" is, in fact, not the voltmeter
but the Josephson junction itself. Its nonlinearity leads
to an increase in the signal to a level such that the
realization of one of the quantum-mechanical alterna-
tives (whether or not tunneling has taken place up to a
given instant of time) can be recorded by a very crude
external device which is definitely known to have no in-
fluence on the dynamics of the processes involved. It
thus becomes possible to achieve a complete quantum-
mechanical description of the system consisting of the
object plus the measuring device.

It may well be that actual or thought experiments per-
formed with such systems will throw new light on the
fundamentals of quantum mechanics.

The author is indebted to V. B. Braginskif, V. L.
Ginzburg, I. O. Kulik, V. V. Mgulin, I. M. Ternov,
and V. V. Shmidt, and also to R. P. Giffard, L. D.
Jackel, J. Clarke, R. H. Koch, J. Kurkijarvi, A. J.
Leggett, and M. Tinkham for useful discussions of
problems examined in this note. He is also indebted
to S. A. Vasenko for help with the drawing of Fig. 2.
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