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Laboratory experiments on the observation of caustics when light rays are refracted by a "random" smooth
surface are described. The analogy between caustics in geometrical optics and the singularities that arise in
irrotational flows in a cold collisionless medium is discussed. The analogy is then extended to a very
important cosmological process—the formation of the large-scale structure of the Universe. It is shown that
in an expanding Universe the evolution of smooth irrotational perturbations, which grow under the influence
of the gravitational force, leads to the formation of structures geometrically similar to generic optical caustics.
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1. INTRODUCTION

A familiar phenomenon in optics is that of caustics,
when converging light rays produce a sharp increase in
the light flux at certain points. In modern language,
one can speak of catastrophes in geometrical optics.
This phenomenon can be reproduced in the laboratory.
The characteristic singularities of various types pre-
dicted by the theory are clearly shown in the photo-
graphs.

Geometrical optics can be regarded as a special case
of mechanical motion of noninteracting particles.
Therefore, our photographs are a good aid for illus-
trating some results obtained in mechanics.

Moreover, these results still hold good in the theory
of the collective motion of particles in their own gra-
vitational field. Such a theory is an inseparable part of
modern cosmology—it describes the occurrence of
structure in the Universe. That is why the word cos-
mology appears in the title.

The deep reason for the similarity of the optical and
mechanical phenomena considered here is to be sought
in the well-known opticomechancial analogy (see, for
example, Ref. 1).

The simple laboratory experiments are not intended to
replace exact theory or laborious numerical calculations
with high-speed computers. However, these experi-
ments can help the intuitive understanding of the es-
sence of the considered phenomena. A simulating ex-
periment may also be helpful in pedagogical and popu-
larizing lectures.

The material is presented below in an order that dif-
fers from the Introduction. First, we consider the me-
chanics of noninteracting particles (Sec. 2); we then
describe the optical models and the results obtained

with them (Sec. 3) in the one-dimensional (a) and two-
dimensional (b) cases. Finally, in Sec. 4 we make a
giant extrapolation to consider the question of the large-
scale structure of the Universe.

2. NONINTERACTING PARTICLES

Modern mechanics makes wide use of the concepts of
a vector field and transformations of it. A systematic
exposition of such an approach is given in Arnol'd's
book.1

The basic idea is due to Lagrange; the motion of mat-
ter can be described by specifying the instantaneous
position of every particle r (its "Eulerian" coordinates
x, y, z) as a function of its initial position $ (as a func-
tion of its "Lagrangian" coordinates 4, TJ, f ) and the
time t:

r = r (q, t).
One can say that the motion consists of a continuous

transformation of the vector field r as a function of the
continuously varying scalar parameter t. The law of
this transformation is determined by specifying the
velocity field u:

dr
d7=u-

In its turn, the velocity field can be specified by some
law depending on the acting forces; however, here we
shall not be concerned with this aspect of the problem.

We take the simplest case when no external forces act
on the matter. Moreover, we omit the internal forces,
i.e., all interactions of the particles of matter with each
other. In other words, in the equations we ignore the
stresses or, in the case of a liquid or gas, the pressure
and viscosity. Then every particle of the matter moves
with constant velocity.

It would appear that the problem has been simplified
so much that nothing interesting can be expected from
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its solution. We are now dealing with simple uniform
and rectilinear motion of individual particles of matter,

r = H> + (i - i.) u,

u being constant for each particle. This means that
u = uty) but there is no time dependence.

Nevertheless, it can be shown that the study of a con-
tinuum, i.e., not one but an entire ensemble of particles,
leads to interesting and nontrivial results even in this
simple case.

To be specific, we assume that the initial density of
the medium at the time t=ta = 0 is everywhere constant,
p =p0. The motion is given in the Lagrangian system by
the simple formula

We pose the problem of how the density distribution
changes with the passage of time,

A specific feature of the problem is that the trajec-
tories of noninteracting particles can intersect.

We take the simplest case of one-dimensional motion:

x = \ + tv (I).

This case is considered in detail in the book of Zel'do-
vich and Myshkis.2

Two particles whose initial positions are |a and £2 are
at the same point x' if the equation

l' '•= X, = X2 = E, + t'l ,2V (li) **li + t'l,2V (i2)

holds at the time

t l > 2 = "(Ei)'-" (Ei) '

Such a time exists in the future if for £2>£l

v (1.) < i> (EJ.

For two neighboring particles (we omit the index of t ' )

The amount of matter in the small integral d£ is

dm = pnd£.

The quantity dm is conserved during the motion. We
can write

dm = p dx,

where Ax must be chosen in accordance with the choice
of d£.

Thus, we obtain

It follows that the time of intersection t ' of the neigh-
boring trajectories is a time at which the matter densi-
ty becomes infinite. The curves of the dependence of
the density on the coordinate x with infinite peaks are
considered in Ref. 2.

As was shown in Ref. 3, allowance for pressure eli-

FIG. 1.

minates the caustic singularity in a mechanical system.
Similarly, the finite wavelength of light eliminates the
infinite light flux in an optical caustic. Strictly speak-
ing, caustics exist only in the limit of infinitesimally
small wavelength or infinitely low pressure. Therefore,
the caustic representation is helpful when the wave-
length of the light or, respectively, the pressure can
be ignored.

A theoretician may say that the above expressions are
rather simple and transparent. In principle, the matter
could be clearly demonstrated by putting the corre-
sponding distributions on a computer display and taking
a corresponding film. However, at the present time it
is impossible to append such a film or a video tape to
each copy of Uspekhi and invite the reader to examine it.

However, there is a way—which we shall describe in
the following section—of achieving visualization in the
literal sense of this word, i.e., seeing with the eyes of
a distribution of brightness of light corresponding to
the density distribution in the above expressions.

3. OPTICAL MODEL

a) One-dimensional case

We replace the particle trajectories by light rays. All
the following treatment is in the framework of geome-
trical optics.

We imagine a horizontal plate illuminated from below
by a parallel pencil of rays, for example, from a point
source after passage through a converging lens (Fig. 1).

If the plate is plane-parallel, the rays remain vertical.
We now take a plate with a smoothly varying thickness
(Fig. 2). When the rays pass through such a plate, they
are deflected somewhat differently at different points.

We denote the deflection angle by a; regarding it as a
small quantity, we replace tana by a. For each ray, a
is given: a is a function of the point a = <*(£)•

Thus, we now have # = £ +2a(£).

We have obtained complete analogy with the one-di-
mensional inertial motion of particles! The vertical
coordinate z plays the role of the time.

We place a screen along the path of the rays. Depend-
ing on the value of z the illumination of the screen
shows an entirely different picture.

Close to the plate, at small z, the illumination is al-
most constant. The differences in the illumination at
small z increase in proportion to z. We shall denote
the illumination by the same letter p as the density in
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FIG. 2.

a mechanical problem:

The first term retained in this expression corresponds
to linear perturbation theory, when 6p =p -p0«p0.

However, with a further increase in z, i.e., the dis-
tance between the screen and the plate, a bright point —
a caustic — suddenly appears.1' This point then divides
into two, other caustics appear, and so forth.

It is assumed that the surface of the refracting plate
is given by a fairly smooth random function.

Figure 3 shows a series of photographs illustrating
what we have said. Note further that in the absence of
sharp breaks on the surface of the refracting plate,
i.e., for bounded da/d|, there is nowhere complete
shadow on the screen.

At some parts of the screen we have p > p0 and at indi-
vidual points p = °°, but this infinity is integrable, and
fpdx always converges. However, we nowhere have
p = 0 and, a fortiori , nowhere the absurd p < 0.

The abrupt appearance of points with p = °°, caustics,
is an example of the phenomena treated by catastrophe
theory. In this connection, we recommend to the reader
the elementary but very informative booklet by Arnol'd4

published by Zannie and his popular paper in the journal
Priroda.5 To those who wish to make a thorough study
of catastrophe theory we can recommend the books of
Refs. 6 and 29.

As an exercise, we recommend the reader to construct
the curves p(x, z) for z <z' and z>z', before and after
the appearance of the first caustic. We also suggest the
reader would c onsider what happens when the c onverging
lens in Fig. 2 is removed. Then a diverging beam of
rays is incident on the plate from below.

''if the homogeneous problem is reproduced by means of a
plate in which one of the surfaces is bent only in one direc-
tion, z =z<x), and the width of the plate is equal to Ay , the
point is transformed into a strip of length Ay.

FIG. 4.

Finally, as a last problem we consider the case when
the surface has a break of a small angle. Then there is
also a discontinuity of the ray angle, namely, two
neighboring rays with infinitesimal separation have
slopes differing by a finite amount a(x-O)* a(x+Q).
The reader is invited to consider the two cases corre-
sponding to different signs of the difference between the
inclinations of the rays.

b) Two-dimensional case

We now turn to the two-dimensional case (Fig. 4). We
consider a plate lying in the x, y plane for z =0 (assum-
ing approximately a thin plate). It is illuminated from
below by a pencil of rays parallel to the z axis. The
corresponding arrangement — the light source and lens
(cf. here Figs. 1 and 2)— is not shown in Fig. 4. The
screen is arranged parallel to the plate, i.e., at dif-
ferent (but in each individual experiment constant) val-
ues of z.

Each individual ray passes through the plate at a
point $2 = (x=l,y =»J, z=0); here, ^2 is a two-dimen-
sional vector (| , 77). In the general case, a ray is
slightly deflected from the direction parallel to the z
axis, so that subsequently both *and>> change. We have
for the ray

or, in vector form,

where r2 a2 are two-dimensional vectors lying in
planes perpendicular to z , and the z coordinate again
plays a distinguished role. The vector a2 = (a, , ay ) is
the two-dimensional velocity, and z plays the part of
the time. Once again, with the passage of time, i.e.,
with growth of z , the initially small contrasts in the
illumination increase, and then bright sections —
caustics — appear. This time, however, the observed
picture has several singularities, which can be clearly
seen in photographs, but they are not so trivial (Fig. 5).

The caustics arise in the form of short sections.
When they have only just appeared, it can be readily

FIG. 5.
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"merging"

"Swallow tail"

FIG. 6.

seen that the bright boundary is not at all similar to
a circle or an ellipse, even an elongated one; rather
it is similar to the contour of what is called a Cupid's
bow.

Analysis shows that with the passage of time, i.e.,
with increasing distance of the screen in the z direction
from the critical z' at which the caustic is generated,
the thickness of the illuminated region increases as
doc(«-z)3'2, and the length as Joe (2-z')1/2. There-
fore, the ratio l/d, which characterizes the degree of
elongation, increases with decreasing (z -z'): l/d
<x (z -z')"1. This means that the caustic is generated as
a line and not as a spot.

Subsequently there is intersection of the caustics and
the occurrence of the more complicated structures
shown in Figs. 6-9.

Figure 6 shows two typical events—the merging of two
"bows" and a rearrangement of swallow tail type. The
names "swallow tail," "purse," and "pyramid" (see
below) for the singularities arise from the character-
istic shape in three-dimensional space. The photograph
in Fig. 6 has a sketch that "deciphers" the image. It is
not easy to photograph some of the singularities. For
example, at the extreme points of "bows," at which two
bright boundaries converge and touch, the brightness is
particularly great (in the approximation of geometrical
optics it is infinite), but it is also large in a certain
neighborhood of this point (but finite), where there is
as yet no caustic but there soon will be. The image of
such points in the photograph is smeared and amor-
phous.

The rigorous classification of such structures is not
a simple problem; it requires professional mathemati-
cal knowledge. We refer the reader to the papers of
Arnol'd—alone7"9 and together with members of our
group.10

The structure in Fig. 7 is called a "pyramid"; Fig. 8
demonstrates a "purse."

FIG. 7.

FIG. 8.

We note a general tendency to the formation of dark
regions separated by a mesh of comparatively bright
bands (see Fig. 9). This can be seen particularly well
in photographs of the screen deliberately taken with the
camera out of focus. Such a photograph smooths the
details but makes it easier to see the general structure.

The general and strongest impression is that we take
a smooth plate with smoothly varying thickness. The
absence of breaks, notches, etc., is proved by the fact
that the screen near the plate is uniformly illuminated.

Bright regions and the sharp boundaries of these re-
gions arise only at a sufficient distance from the plate.
The abruptness of their appearance and the sharp bound-
aries are common to the one- and two-dimensional
problems. A new feature in the two-dimensional prob-
lem is the definite structure— pattern— produced by the
rays (see Figs. 5—9). There are no such patterns in the
orginal plate, in which the lines of equal thickness have
smooth shapes !

We note one further fundamental aspect of the formu-
lation of the experiment. We describe in more detail
the mechanism by which the rays are curved, for which
we consider the shape of the plate.

Suppose its lower surface is strictly flat, z =0, while
the upper is defined by the equation

2 = 20 + { (z. y),

where z0 is the small mean thickness and £ is a random
but smooth function of x and y. Ideally, we would wish
to specify £ by means of the Fourier integral

here <pk is the random phase, for which all values from
0 to 2ir are equally probable; £k is a random variable
distributed in accordance with the normal law (f k) =0,

= 1; and/ ( Ik I) is a regular function that defines

FIG. 9.
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the spectrum, for example, We~*2 , which decreases
sufficiently rapidly both as £— 0 and as fe— <*> .

In practice, we used cells, in which a layer of water
was poured between a flat plastic plate and an upper
plastic plate slightly bent by skilled hands. It is very
difficult to avoid the formation of axisymmetric con-
vexities and concavities, which are naturally obtained
when a finger is pressed onto the heated and softened
plate. Axisymmetric deformations of the plate produce
nontypical axisymmetric structures. However, after
many trials a certain skill was acquired, and we be-
lieve the structures of the illuminated regions shown
in the photographs are fairly typical.

However, irrespective of the skill in bending the
plates and their actual shape, the arrangement of the
experiment is such that one always simulates a defi-
nite — irrotational — type of motion of particles.

Indeed, the deflection of a ray in accordance with the
laws of geometrical optics lies in the plane passing
through the normal to the surface and the undisturbed
ray. For rays originally propagating along the z axis
to the surface given by the expression z = z0 + £(x,y), we
obtain

*,= -(n-l)§, *„=.-(„-!) f

(n is the refractive index), or, in vector form,

«3 = — (n — 1) grad2 £.

We recall that a2 is the analog of the initial velocity.
If a velocity can be expressed as the gradient of a func-
tion £ , then the curl of the velocity vanishes identi-
cally2) :

Unfortunately, it is impossible to simulate by a suffi-
ciently simple and convenient method a three-dimen-
sional structure or caustics in three-dimensional space.

To conclude this section, we mention some publica-
tions in which the reader can learn about the latest
results of the use of catastrophe theory in geometrical
optics: Refs. 28 and 30.

4. LARGE-SCALE STRUCTURE OF THE UNIVERSE

It remains to explain how the word "cosmology" came
to appear in the title of the paper. The scale of the ex-
periments are different — a few centimeters and billions
of light years in the Universe — and the materials are
different — light rays in the laboratory and atoms or
heavy neutrinos in the Universe. In fact, we have be-
come used to such differences; the aim of modeling is
to have different scales !

For small deflections of the rays, the velocity of their

2)Strietly speaking, we prove this for the initial velocity dis-
tribution on z =0 as a function of *=f andy=J). It can be
shown that later for z > 0, when x = { , ji =ij, the relation 3ar/
8y - 8Bj/ar = 0 holds as before. However, this assertion be-
comes meaningless within regions bounded by caustics, where
three or more different sets |, TJ correspond to one x and y.

motion in the x, y plane is small, and the z coordinate
does indeed play the role of time measured along the
trajectory in the x, y plane for a Newtonian particle.

We aim to interpret experiments with light rays and
caustics as a model of the formation of the large-scale
structure of the universe.

The initial deflection of the light rays after passage
through the plate is the analog of the initial perturba-
tions, and the formation of the brightly illuminated re-
gions simulates, in our view, the formation of dense
clouds of gas. We assume that the occurrence of an
atom-plasma or heavy-neutrino giant cloud with a
strongly flattened shape is accompanied by or precedes
the formation of individual galaxies. Galaxies do not
occupy the whole of space. To a large extent, galaxies
are combined in clusters, and the clusters of galaxies
and isolated galaxies, taken together, retain for a long
time—to the present epoch—a "recollection" of the
cloud in which they were born, and they are distributed
principally near the surfaces of superclusters and
around the lines of their intersections. More and more
frequently observers speak of a cellular structure of
the matter distribution in the universe.11"14 What is the
similarity and what is the difference between the Uni-
verse and our modest models? The similarity is that
at the stage of formation of the structure in the Unir
verse one can ignore the plasma pressure and one can
ignore the random thermal velocities of the heavy neu-
trinos.

The neglect of the pressure means that the motion of
neighboring "particles" in the Universe is independent,
like the motion of neighboring light rays. Here it is
necessary, perhaps, to be more precise: The motion
of neighboring rays is independent, and each ray is a
straight line with given point of intersection $2(£ = x0,
r\ =y0) of the plane z = 0 and given slope a2(x0,y0). How-
ever, the motion of neighboring rays is correlated in
the sense that if they are neighbors their slopes, i.e.,
the vectors a2, are necessarily nearly the same. This
is not a general property of rays but a property of the
plate, the condition of smoothness of the plate. We en-
counter the same smoothness of the initial conditions in
cosmology for very deep reasons for which we do not
have space to discuss here.

However, there is a deep and, at the first glance,
insuperable obstacle—the rays in the model do not
interact with one another at all. The particles in the
Universe do not interact through pressure, but for them
the gravitational interaction is decisive.

Taken together, they produce a definite coordinate-
and time-dependent gravitational field, and they move
in this field. Since the time of Newton (see his famous
letter to Bentley) the instability of uniformly distributed
matter has been known at the qualitative level. At the
beginning of this century, Jeans15 developed a quantita-
tive Newtonian theory of the instability. In the middle
of our centry, Lifshitz16 considered small perturbations
of a homogeneous expanding Universe. The decisive
role of gravitational instability in the formation of
structure of the Universe is beyond doubt.
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How can this be reconciled with our proposed simula-
tion?!

In 1970, one of the authors (Ya. Z.) proposed an ap-
proximate nonlinear theory of the gravitational insta-
bility of cold matter in an expanding Universe17 (see
also Ref. 14).

The solution can be written in Lagrangian form:

o (J) 1 (t) u

here, a(t) is an increasing function of the time which
describes the general expansion of the Universe, and
b(t) is an increasing function of the time that describes
the growth of the perturbations . The spatial distribution
of the perturbations is given by a function of the La-
grangian coordinates u($). All details relating to the
conditions of applicability of this solution, its accuracy,
etc., can be found in our publications in Refs. 18-25.
Here, we restrict ourselves to demonstrating the simi-
larity of the approximate solution and the optical model.

We write the solution in the form

R = q + % u (n>),

where we have introduced the new variables

R=_£.=_.r=___

For a definite choice of the scale of the spatial picture
(transition from r to R) and the effective time T the so-
lution in the coordinates R, ty, r is exactly equivalent
to the problem of the motion of free entirely noninter-
acting particles or rays.

The gravitational interaction has been hidden in the
definition of the function r = b(t).

The equivalence of the two problems is approximate.
However, the approximation is sufficiently good for the
structure that arises in the model to describe the struc-
ture of the Universe.

We note further the fact that the gravitational interac-
tion is characterized by a potential and therefore the
effective velocity is irrotational , i.e., curl u = 0. Irro-
tationality in the sense of the derivatives of the compo-
nents of the vector u with respect to the components of
the Lagrangian coordinate ip ensures irrotationality in
the Eulerian space as well. This property of uty) is
common to our optical model and the Universe.

As we have already noted, a restriction of the optical
model is that it is two-dimensional (plus the coordinate
z, which plays the role of time), whereas the Universe
is three dimensional (plus the time).

The approximate formula describes a period that goes
far beyond the limit of the theory of small perturbations
and includes the formation of caustics.3' However, its
region of applicability is also restricted, in the regions
of maximal density phenomena rapidly arise that the
approximate theory does not describe: shock waves,

3)The formation of caustics In problems of the general theory
of relativity for dust particles (p = 0) moving in a synchron-
ous frame of reference was noted earlier in Refs. 26 and 27.

many-stream configurations, break up into galaxies,
etc.

But nevertheless the structure of the Universe today
still carries the imprint of the heroic period of caustic
formation!14

We recognize that our optical model belongs methodo-
logically to the time when physics was done with seal-
ing wax and string. This is still true if the light source
is a laser.

Today, the three-dimensional picture corresponding to
the approximate solution can be obtained on a computer
display. Moreover, the corresponding pictures can,
using density coding by means of color, be expressed
as a film.

But recognition of the far reaching possibilities of
modern technology does not diminish the joy of the
direct observation of cuastics appearing abruptly as
the screen is displaced in a perturbed beam in a dark-
ened laboratory.
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