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The possible existence of superconductors with high transition temperatures is analyzed for both the ordinary
electron-phonon interaction and nonphonon superconductivity mechanisms. The existence of such systems
depends on a negative static dielectric permittivity. The possible occurrence of this situation for an electron-
ion system is analyzed. It is shown that negative values of the static dielectric permittivity are possible in the
case of strong local-field effects, i. e., in the case of exchange-correlation interactions in the electron subsystem
or the localization of point ions for an electron-phonon system. Equations for the transition temperature of
strong-coupling superconductors are analyzed. Restrictions imposed on the transition temperature by the
equations themselves and by the conditions for stability of the material are examined.

PACS numbers: 74.10. + v

CONTENTS

1. Introduction 688
2. Condition for superconductivity in weak-coupling systems 688
3. The dielectric permittivity and the problem of high-temperature superconductivity 689

a) Possibility of negative values of the static dielectric permittivity, b) Homogeneous
electron gas. c) Dielectric permittivity of a crystal.

4. Superconductivity equations for strong-coupling systems 694
a) General analysis of strong-coupling effects, b) Derivation of superconductivity equations
for strong-coupling systems.

5. Transition temperature of superconductors with a strong-electron-phonon interaction 697
a) Calculation of the transition temperature, b) Spectral density of the electron-phonon
interaction; dependence of Tc on the properties of the normal metal.

6. Conclusion 702
References 703

1. INTRODUCTION
The search for superconductors with high transition

temperatures is one of the most urgent and interesting
problems in solid state physics. The successful resolu-
tion of this problem promises huge practical benefits
which completely justify not only the many original
papers on the problem but also the appearance of yet
another review. The really active research on the prob-
lem of high-temperature super-conductivity, however
(and unfortunately), has been mostly theoretical, begin-
ning in 1964 after Little's1 and Ginzburg's2 suggestions
regarding the possibility of nonphonon superconductivity
mechanisms. There is a detailed review in Ref. 3 of the
history of the problem and its state in 1977. In the
present review we wish to discuss some new results
which have appeared since then. Of particular interest
is the determination of the role played by local-field and
strong-coupling effects in the problem of high-tempera-
ture superconductivity, including the cases of nonphonon
superconductivity mechanisms (see, in particular, Refs.
3-5).

Section 2 of this review is a discussion of the condi-
tion for the efficacy of superconductivity mechanisms.
This is not a new question nor the first discussion of it,
so we attempt to deal with it as briefly as possible.

Section 3 is a detailed discussion of the question of
negative values of the static dielectric permittivity and,
in particular, the interrelationship between the exist-
ence of values e(q, 0) <0, on the one hand, and magnetic
and structural instabilities of the system, on the other.
In Section 4 we derive superconductivity equations for

strong-coupling systems. Section 5 is devoted to super-
conductors with a strong electron-phonon interaction.
Some possible restrictions on Tc which exist within the
framework of the Eliashberg equations are discussed.
There is a detailed analysis of the microscopic deter-
mination of the spectral density function for the elec-
tron-phonon interaction. We adopt a system of units
with tt, kB= 1.

2. CONDITION FOR SUPERCONDUCTIVITY IN
WEAK-COUPLING SYSTEMS

We begin our examination of the problem of high-
temperature superconductivity with a brief review of
what is known about systems exhibiting a weak cou-
pling.3 We will then be in a position to formulate clear-
ly several basic questions which will remain important
in a more rigorous discussion of the problem. Further-
more, the subject is of interest in its own right, since
many of the theoretical papers on the problem of high-
temperature superconductivity have in fact been devoted
to weak-coupling systems.

We first note that if we write the effective electron-
electron interaction in a quasi-isotropic system in the

form

(i)
where e(q, w) is the total dielectric permittivity of the
system, we can express the critical temperature for
the superconducting transition, (or simply "transition
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temperature") Tc, as a function of c(q, 01) as follows3:

where

(2)

(3)

and X and n are the constants of the attractive electron-
phonon (exciton) and repulsive Coulomb interactions.
The quantities w, X, and (i can be expressed in terms
of integrals of the spectral density of the dielectric
permittivity, Ime'Hq, w). We will omit these expres-
sions (which are given in Ref. 3) and simply write a re-
lation between the constants X and /n which is very im-
portant for the discussion below:

H->•=--If (Q)(-^j£-e-l(q,0)\. (4)

Here MO) is the electron state density at the Fermi sur-
face, and the angle brackets on the right side of (4) in-
dicate the average over the momentum q.

As was first noted by Cohen and Anderson6 (see also
Ref. 7), Eqs. (2)-(4) yield some rather stringent limita-
tions on the maximum transition temperature T™". For
example, if we assume that X and ^ satisfy

A<|i , (5)

then Tc, thought of as a function of the average phonon
frequency w, is bounded and has a maximum r™"* at
some frequency o>op. In the most favorable case ( X = ;u),

rmax
e = - «-«S (6)

where EF is the electron Fermi energy. If strong-cou-
pling effects are taken into account in a simple way, the
coupling constant X is renormalized and replaced by
X/(l + X), and we find an even more stringent limitation
on T?":

rcm" = -£fg-*->-<"«. (7)

Adopting the values1* eF = l eV and X = p.= 1/2, we find
T™" to be of the order of 1 K. We wish to emphasize
that this restriction applies in equal measure to any
superconductivity mechanism, either phonon or non-
phonon. Furthermore, it follows from (2)-(7) that the
optimum average frequencies u>o]), which correspond to
T™", in fact lie in the region of phonon frequencies of
the crystal. This circumstance shows that in systems
in which inequality (5) holds any nonphonon supercon-
ductivity mechanism would be completely ineffective.
Consequently, the inequality converse to (5),

X>^ , (8)

may be regarded as a condition for the existence of an
effective superconductivity mechanism with high values
ofT c .

A more careful analysis of the superconductivity
equations reveals yet another factor which tends to low-
er Tc, which was not considered above. The equations
describing superconductivity in weak-coupling systems,7

of which expression (2) for Tc is a solution, ignore the

11 The value ^ = 1/2 is the largest value of the Coulomb constant
in the weak-coupling limit.3

possibility of spin fluctuations. These effects can be
taken into account through a generalized random-phase
approximation which incorporates, in addition to the di-
rect Coulomb repulsion, the exchange interaction be-
tween electrons. The expression for Tc in this approx-
imation can be written8

7-c = _»_eXp[-(X-M*-o( i lnTl r )"1] , (9)

where a is a numerical coefficient of the order of unity.
The condition for superconductivity in this approxima-
tion is

X>!i* + ouliiTlT. (10)

It can be seen from this inequality that at large values
of (i the spin fluctuations lower Tc greatly. Berk and
Schrieffer9 were the first to point out the destructive
effect of spin fluctuations on superconductivity. This ef-
fect is often cited as responsible for the absence of
superconductivity in such metals as palladium.

It thus follows from this discussion that in systems
with a positive static dielectric permittivity [i.e., with
E(Q>O) >0] superconductivity, if possible at all, is so
only at very low temperatures, under the conditions
X £ j j . ^ l [see (9)]. Unfortunately, very low tempera-
tures are not of much practical interest. It follows that
a question of fundamental importance to the entire prob-
lem of high-temperature superconductivity is whether
the static dielectric permittivity can take on negative
values, and we must determine just how s(q, 0) might
become negative.

3. THE DIELECTRIC PERMITTIVITY AND THE
PROBLEM OF HIGH-TEMPERATURE
SUPERCONDUCTIVITY

a) Possibility of negative values of the static dielectric
permittivity

The permissible values of the static dielectric per-
mittivity have been discussed previously in several
places.3"6'10"13 Kirzhnits analyzed the problem in de-
tail.13 He showed that the assertions in the literature
that e(q,0) can take on only positive values are in fact
valid only if spatial dispersion is ignored, i.e., only
for c(q, 0) with a wave vector q = 0. This is the case
dealt with, for example, in Landau and Lifshitz' book.10

Generally speaking, it is not correct to extend this as-
sertion to systems having a spatial dispersion [i.e., to
the dielectric permittivity e(q, 0) with q#0], as has been
done by Pines and Nozieres11 and Cohen and Anderson.6

Kirzhnits13 showed that negative values of the static
dielectric permittivity do not contradict causality and
are consistent with stability of the system. However,
the question of whether systems with e(q, 0) <0 actually
exist was essentially not taken up in Ref. 13. Some re-
lated questions had been discussed in an earlier paper
by Martin.12 That paper dealt with the existence of the
Kramers-Kronig relations for the function s(q, a)) and
the possible violation of these relations. The problem
of negative values of c(q, 0) was not taken up, although
violation of the Kramers-Kronig relations for the func-
tion e(q, u>) may in fact mean that the inequality s(q, 0)
<0 can hold. The actual existence of either isotropic or
crystalline systems with a negative static dielectric
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permittivity was studied in detail in Refs. 4, 5, and 14.
The physical nature of the effects which give rise to a
negative e(q, 0) was determined, as were the conditions
required for the actual occurrence of these effects in
several systems. It was shown that the inequality
e(q,0) <0 can arise only from local-field effects, i.e.,
from a difference between the effective field acting on
the particles of the medium and the average field in the
system, with respect to which the dielectric permittivity
is determined. Local-field effects are by no means fun-
damentally new effects in the theory of condensed sys-
tems; they have been under study, albeit for other pur-
poses, for a rather long time now, in both classical
electrodynamics15"17 and classical18 and quantum19 plas-
mas. In this section we briefly review some results
derived in Refs. 4, 5, 14, and 20, and we discuss some
implications of these results for the problem of high-
temperature superconductivity.

b) Homogeneous electron gas

We begin with the very simple model of a homogene-
ous, interacting electron gas on a neutralizing sub-
strate in which there are no phonon excitations of any
sort. We may therefore study the possibility in princi-
ple of the nonphonon superconductivity mechanisms
proposed by Little1 and Ginzburg,2 and we can reach an
understanding of the factors which make it extremely
complicated to produce real materials in which such
mechanisms operate.

We begin by formulating the basic questions which we
will discuss for a homogeneous electron gas. First, we
must show that it is possible in principle for the in-
equality e(q, 0) <0 to hold. Second, we must determine
which instabilities can occur in an interacting electron
gas and to what extent these instabilities may prevent
the appearance of negative values of the static dielec-
tric permittivity.

The properties of an interacting electron gas can be
characterized completely by the single dimensionless
parameter ra, which is related to the electron density n
by

-*• = £<<*»•.)•• (11)

The parameter ra gives (in units of the first Bohr radi-
us, aB= I/me2) the radius of the sphere whose volume
is equal to the average volume per electron. This pa-
rameter is the same in order of magnitude as the ratio
of the potential energy of electrons with a Coulomb in-
teraction to their average kinetic energy.

It is a well-known fact (see the reviews in Refs. 5 and
19, for example) that at small values of rB (ra« 1) the
properties of an interacting electron gas are similar to
those of an ideal gas of noninteracting particles, and
the static dielectric permittivity in this case is definite-
ly a positive quantity [e(q,0)>lj. Also, no instabilities
of any sort occur in the electron gas under these condi-
tions. As the parameter ra in the electron gas increas-
es or, equivalently, as the density decreases, the static
dielectric permittivity may turn negative. At the same
time, as the parameter r, increases the electron gas
may become unstable with respect to the formation of

states with a space-charge wave or spin-density wave.
To find those values of ra at which the static dielectric
permittivity becomes negative in an electron gas, and
at which instabilities with respect to transitions to
states with a space-charge wave or a spin-density wave
occur, we write expressions for the dielectric permit-
tivity for the charge susceptibility x(q;0), and the spin
susceptibility xs(q»0)- These expressions are5-20

v (q) XQ (q. Q) /12)

(13)

(14)

q, o> fo (q, o)'
X (<I' 0) = H-V(q)H-°«(q,0)]X o(q, 0)

x.(q, 0)=- liBXo (1. 0)

l -F (q)G(q , 0)X 0 (q , 0)

here F(q) = 47re2/q2, G(q, 0) is the charge local-field cor-
rection function, G(q, 0) is the spin local-field correc-
tion function, JUB is the Bohr magneton, and Xo(<l>0) is

the ordinary Lindhard function,

^>n|^i], d5)

where kY is the Fermi momentum.

We first note that expressions (12) and (13) yield

(16)

as the condition for the occurrence of negative values of
the static dielectric permittivity; as the condition for
an instability with respect to the appearance of a space-
charge wave (x= °°) they give

i
f (q)G(q, 0 )>F(q )+- (17)Xo(q. o> •

Since G(q,Q) and XoWiO) are monotonically increasing
functions of the parameter r,, it follows from (16) and
(17) that the static dielectric permittivity becomes
negative at values of r3 smaller than those which corre-
spond to the spontaneous appearance of a space-charge
wave in the system.

The appearance of space-charge waves or, equiva-
lently, crystallization usually occurs as a first-order
phase transition, i.e., at values of r3 smaller than
those which follow from condition (17). This circum-
stance, however, by no means rules out the existence
of negative values of the static dielectric permittivity.
First, as we will show below, the static dielectric per-
mittivity e(q,0) is negative for an interacting electron
gas in a state with a space-charge wave. Second, the
value r'g1', at which e(q, 0) becomes negative, and the
value ri2', at which the electron gas crystallizes, are
markedly different in order of magnitude (r!1)« r(

8
2)).

The static dielectric permittivity of the electron gas
becomes negative at20 ra-s> 6.02. In contrast, the crys-
tallization of an electron gas occurs at ra« 70-100 ac-
cording to Monte Carlo calculations and calculations
based on various approximations.23

A far more complicated question is that of the rela-
tionship between the negative static dielectric permit-
tivity and an instability of the system with respect to the
spontaneous appearance of a spin-density wave. In the
already mentioned random phase approximation (which
takes into account the exchange interaction on the elec-
trons in addition to the direct Coulomb interaction) the
charge and spin functions of corrections for the local
field are equal to each other19 :
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G(q, 0) = G(q, 0) -= - f - (18)

This means that the negative value of the quantity
e(q, 0) appears at the same values rs = 6.02 for which
the system becomes absolutely unstable with respect
to the spontaneous appearance of spin-density wave.

It can be shown,20 however, that the transition to the
ferromagnetic state of an interacting electron gas is
always a first-order phase transition; it is a transition
to a state of complete magnetization, with the spins of
all the electrons aligned in the same direction. In the
generalized random-phase approximation this transition
occurs at20'24r3=(2jr/5a)(21/3 + 1)^5.45. In the ferro-
magnetic phase, the static dielectric permittivity be-
comes negative at rs= 7.61. It is clear, however, that
in this case, even with negative c(q, 0), there can be no
question of the existence of an ordinary superconducting
state, with a pairing of electrons with antiparallel
spins. In the ferromagnetic state of a homogeneous
electron gas with a negative static dielectric permit-
tivity we might expect the existence of a superconduc-
tivity with a triplet pairing of electrons, somewhat
similar to the superfluidity of liquid 3He. However, a
homogeneous electron gas does not exist in nature. The
best approximation of the model assumed here is the
electron fluid in a simple metal, in particular, cesium,
where ra = 5.64. This value of ra is larger than the val-
ue rs= 5.45 which corresponds to a transition of a
homogeneous electron gas to a ferromagnetic state in
the generalized random-phase approximation. Experi-
ments with cesium, however, reveal no magnetic
anomalies of any sort. This fact alone shows that this
simple model fails to describe the properties of an in-
teracting electron gas.

Let us consider the relationship between negative
values of &(q,0) and an instability of the system with re-
spect to the spontaneous appearance of spin-density
waves, taking both exchange and correlation effects in-
to account. The charge and spin local-field correction
functions, G(q, 0) and G(q, 0), can be written5-25

G(q , 0) = - - [

G(q, 0 ) = - [ G , ( q , 0)-G0(q, 0)].

(19)

(20)

Here, G,,(q, 0) is the local-field correction function for
electrons with parallel spin, and Ga(q, 0) is the equival-
ent for electrons with antiparallel spins. All these func-
tions, as well as G(q, 0) and G(q, 0), are positive defin-
ite.5 To take only exchange interaction into account is
to ignore the correlations between electrons with op-
posite spins. As mentioned earlier, in this case we
would have G(q, 0) = G(q, 0). When correlation effects
are taken into account, as can be seen from Eqs. (12)
and (14) with (19) and (20), the static dielectric per-
mittivity becomes negative for values of ra below those
corresponding to the occurrence of a spin instability:

To determine the specific values of r3 we must in some
way calculate the local-field correction functions. The
solution of this problem has attracted a huge number of
papers26"28 (see also the reviews in Refs. 19 and 29).
This problem has been analyzed in detail20 by the den-

sity-functional method. The most common approach to
calculating correlation effects in this method is to use a
local approximation for the exchange-correlation ener-
gy functional:

£xc [n (r)} = \ drexc (n (r)), s (r)) n (r). (22)

In this approximation the functions G(q, 0) and G(q,0)
are20

G(q. 0)=~jgr-£r{esc<«, •)»] (23)
and

g(q, 0)=-^-^Kc(»<*>!• (24)

Using the expressions which follow from the micro-
scopic calculations of Ref. 30-33 for the exchange-
correlation energy £xc(w,s), which use various approx-
imations to incorporate correlation effects, Rashkeev20

calculated the functions G(q, 0) and G(q,0) in the limit
of small q. As a result, he calculated the ground-state
energy of the system; the quantity lim(J_0fq2E(q, O)]"1,
which determines the sign of the static dielectric per-
mittivity at small momenta q; and the magnetic sus-
ceptibility for various values of parameter ra. Table I,
from Ref. 20, shows the values of r^, at which the
static dielectric permittivity becomes negative; ra

2), at
which a phase transition to a ferromagnetic state oc-
curs; and also ra

3', the point of the absolute instability
of the paramagnetic state, in which the spin magnetic
susceptibility diverges in various approximations.30"33

It can be seen from Table I that all four approxima-
tions which were used lead to roughly the same values
for r^. We also see that correlation effects lead to
r^ values smaller than the value ri1)= 6.02 which is
found in the generalized random-phase approximation.
As for the transition to the ferromagnetic state, we
note that the values of rs

2' in the case with correlation
effects are higher than those in the purely exchange
case. Correlation effects thus reduce both the tendency
of the homogeneous electron gas to switch to a ferro-
magnetic state and the importance of spin fluctuations.
Expression (9) for the superconducting transition tem-
perature, derived in the generalized random-phase ap-
proximation, thus clearly exaggerates the effect of
spin fluctuations on Tc. Perdew and Datta34 recently de-
rived some similar results regarding the calculation of
ra

3'. They did not discuss the possibility of a first-or-
der phase transition or the possibility of negative val-
ues of the static dielectric permittivity.

The values found for ra
2) (corresponding to the ferro-

magnetic transition) in all these methods, which are
the most common in the recent literature, are clearly
unrealistic. As Vosko et ol. have recently shown,35 the
approximations used in Refs. 36-39 for the dependence
of the function excl«,s) on the spin density s are un-
satisfactory at densities in the metallic range (lsra

s 6). Vosko et al. derived an interpolation expression
for Exc(n,s) from a comparison with numerical data ob-
tained by the Monte Carlo method.21-22 This expression
TABLE I.

r \ 1 )

'i=)
r l3>

Ref. 33

5.145

IB. 33

18.10

Ref. 30

5.109

10-25

11.16

Ref. 31

5.06

8.82

9.82

Ref. 32

5.225

7.72

8.46
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was used by Rashkeev,20 who found the following values:
ri1>= 5.28, r<2 )= 79.7, and r!3)= 99.1.

The results obtained on r!2) and ri3' through the use
of the approximation of exc(«, s) proposed by Vosko
et a/.35 are thus quite different from the results found
previously. In particular, these new results show that
at densities corresponding to real metals a homogene-
ous electron gas is very far from a transition to a fer-
romagnetic state. Spin fluctuations also have a negli-
gible effect on the physical characteristics of such a
gas at ra« 80. The maximum values of r, found in
metals are 5.18 for Rb and 5.64 for Cs. There are, it
is true, some indications36 that the static dielectric
permittivity at small momenta q is in fact negative in
cesium. Even if this is the case, however, this cir-
cumstance could be of no real importance for high-
temperature superconductivity. Returning to the condi-
tion for the existence of negative values of the static
dielectric permittivity, (16), we see that since the
function Xo(l>0) decreases with increasing momentum q
the corresponding minimum value of ra, which we are
defining as r^1', corresponds to the appearance of
negative values of the static dielectric permittivity as
q — 0 . As the momentum q increases, progressively
larger values of r, are required for negative e(q, 0).
Even in cesium, therefore, with rs= 5.64, the static
dielectric permittivity, if negative at all, is so only in
a very small region of momentum space. The corre-
sponding interaction constant is thus generally positive
(i.e., pS A), since it is determined by an integral over
the entire momentum space. An effective superconduc-
tivity with a nonphonon mechanism might operate in a
homogeneous electron gas only at the rather large val-
ues 80»r,»6. Unfortunately, we are unaware of the
existence of any corresponding systems in nature. The
question might be posed more pointedly: Could such
systems exist at all?

Up to this point, the entire discussion has been of the
model of a homogeneous interacting gas on a rigid, in-
compressible substrate. In this model, as has already
been emphasized repeatedly, negative values of the
static dielectric permittivity are completely permissi-
ble, and they do not contradict any general conditions
of causality or the stability of the system. What hap-
pens if we alter the model slightly to take into account
a possible compression of the substrate? This ques-
tion can be treated most simply in the jellium model,
quite popular in the theory of metals, in which the ions
are treated as a continuous, homogeneous charged
medium. The phonon oscillations in this system are
expressed in the following way in terms of the dielec-
tric permittivity of the electrons, eel(q, 0):

(25)

where fipl = V 4irNz2e2/M is the ion plasma frequency.
We have also introduced the subscript "el" on the di-
electric permittivity to emphasize that this is the di-
electric permittivity of the electron gas, not of the en-
tire system (the electron gas plus the homogeneous ion
fluid). It can be seen from (25) that in this system it
would be impossible in principle for the static dielectric

permittivity of the electron gas to take on negative val-
ues, so that there could be no effective nonphonon su-
perconductivity mechanisms. The appearance of nega-
tive values of cel(q, 0) in this system would quickly lead
to an instability of the phonon spectrum [u>2(q)<0]. This
is the only model to which it is valid to apply Pines and
Nozieres' proof11 that the static dielectric permittivity
cannot have negative values. We might note that there
is complete screening in this model because of the ion
oscillations: e^t(q,0) = 0, (i.e., X= p.).

c) Dielectric permittivity of a crystal

In the homogeneous and isotropic models which we
have been considering up to this point the dielectric per-
mittivity is a function of only the momentum (aside from
the frequency). In crystals, all the dielectric-response
functions become matrices in the space of reciprocal
lattice vectors. The condition for the stability of the
system in this case must be formulated as a require-
ment that the sign of appropriate quadratic forms of
these functions must remain constant. In particular,
the condition for the stability of the system with respect
to charge perturbations is that the susceptibility ma-
trix5-37 x(q+ K, q + K',0) be negative definite, where K
and K' are reciprocal lattice vectors. This matrix is
related to the dielectric-permittivity matrix:

X (q + K, q + K', m) = "»+*'' [e-'(q + K. q + K', co)-6KK']. (26)

In turn, the condition for the effectiveness of the super-
conductivity mechanisms is that the matrix e"Hq+ K, q
+ K',0) be negative definite; this case would correspond
to an electron-electron attraction.

It can be shown37 that a necessary condition for the
satisfaction of this criterion is that the macroscopic
static dielectric permittivity cm(q, 0), defined by

(q, 0) = - 0, q + 0, 0) • (27)

must be negative. To avoid complicating the discussion
with secondary details, we will discuss in this section
the possible existence of negative values of this macro-
scopic dielectric function in crystals.

In simple metals, where the off-diagonal matrix ele-
ments of the dielectric matrix s(q+ K, q + K',0) with
K#K' are small, of the order of the small electron-ion
pseudopotential Kte(K-K'), we can write the macro-
scopic dielectric permittivity in the following form

em(q. 0. q + 0, 0)-

(28)
Expression (28) shows that the macroscopic dielectric
permittivity is always smaller than the diagonal element
of the dielectric matrix, e(q+ 0,q+ 0,0). It does not
follow at this point that em(q, 0) is smaller than the di-
electric permittivity of a homogeneous electron gas of
the same density, since the diagonal matrix element
£(<!+ 0><1+ 0)0) is also changed by the electron-ion
pseudopotential. Nevertheless, it can be proved rigor-
ously that in a perturbation theory in the pseudopotential
the macroscopic dielectric permittivity of an electron
gas in a simple metal is in fact always smaller than
c(q, 0) for a homogeneous electron gas of the same den-
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sity. This conclusion means that in simple metals the
condition for the existence of nonphonon superconduc-
tivity mechanisms is worse than in the case of a homo-
geneous electron gas.

This conclusion does not apply to all metals by any
means. Even if a weak pseudopotential exists we cannot
use perturbation theory to calculate £m(q, 0) if there are
reciprocal-lattice vectors K= 2kF in the metal. The sit-
uation is even more complicated in the transition metals
and semimetals, where perturbation theory in the crys-
tal potential is immediately ruled out. In these systems,
however, the situation may be more favorable for the
existence of negative values of the static dielectric per-
mittivity than in a homogeneous electron gas or a sim-
ple metal; the possibility is aided by the presence of
congruent parts of the Fermi surface in the electron
band spectrum. We know from the theory of exciton
dielectrics38 that the diagonal matrix element of the sus-
ceptibility of the band electrons,

I + o .o)^-±y. :*""*•:'' (29)
diverges in this case at a momentum qc which connects
congruent parts of the Fermi surface. For the macro-
scopic dielectric permittivity sm(q, 0), an expression
similar to Eq. (28) can be written5 for momenta q
near qc:
, ,„ o^ 1 ^- (*.-"W)X.(q-4-0. q + 0, 0)

m i l , «y l-(4iK«/? ')C(q, 0 ) X o ( q + 0, q + 0, 0)
_ vi Ae(q+0 , q + K. 0 ) A e ( q + K. q^O. 0)

•4 Mq + K, q+K, 0)

(30)

Here, in contrast with (28), the summation is over all
the vectors K, including K= 0. The quantity As(q+ 0,
q+ K, 0) is that part of the dielectric matrix which does
not have singularities at q = qc. Unfortunately, specific
calculations of the local-field correction functions
G(q, 0) for Bloch electrons present formidable difficul-
ties and have not been carried out in practice. For sys-
tems with congruent parts of the Fermi surface38 the
quantity (4;re2/<j'2)G(q, 0) is usually assumed equal to
some constant g2. Under the assumption Xo(q + 0,q
+ 0,0) >0 it follows from (30) that the electron macro-
scopic dielectric permittivity of such systems becomes
negative under the condition

(31)

Let us compare this condition with (16), which is the
condition for the existence of negative values of c(q, 0)
in a homogeneous electron gas. The two conditions are
formally of the same type, but actually there is a very
important difference, which stems from the properties
of the function Xo(q + 0,q+ 0,0). In a homogeneous elec-
tron gas, XQ(<I,O) remains finite at any momentum q, so
that condition (16) can hold only at large values of the
exchange-correlation interaction constant. In the case
of systems having congruent parts of the Fermi surface,
in contrast, condition (31) can be satisfied at any values
of the exchange-correlation interaction constants, in-
cluding arbitrarily small values, because of the diver-
gence of the function Xo(q + 0,q + 0,0).

However, some further explanation is necessary. As

we have already seen, in a homogeneous electron gas
with a strong exchange-correlation interaction there is
the possibility not only that the static dielectric per-
mittivity will take on negative values but also that there
may be a phase transition to a state with a spin-density
wave or a space-charge wave. For a homogeneous
electron gas we were able to show that instabilities as-
sociated with these waves occur at values of the inter-
action constants larger than those at which values
e(q,0) <0 appear. There has been no corresponding
analysis of the situation for systems with congruent
regions of the Fermi surface, but it is doubtful that an
instability associated with a spin-density wave will gen-
erally occur at values of the interaction constants other
than those which satisfy condition (31), as in the case
of a homogeneous electron gas. Whether these constants
are larger or smaller than those corresponding to con-
dition (31) is a question for which we do not yet have an
exact answer. As for instabilities associated with the
appearance of electron space-charge waves, we note
that they cannot occur at all in a crystal. In this case,
electrons will cause structural transitions in the crystal
even at far smaller values of the exchange-correlation
constants. We have already discussed the simplest case
of this instability, in the example of the jellium model.
It is thus clear that the problem of nonphonon mechan-
isms for superconductivity is only now coming under
serious study. The solution of this problem will re-
quire, first and foremost, the development of exact
microscopic calculation methods for dealing with
strongly interacting inhomogeneous electron systems.

Turning to the sign of the total dielectric permittivity
of the system and the contribution of the electron-pho-
non interaction to this function, we see a much clearer
picture. The local-field effects in the ion subsystem of
the metal play a governing role. Generally speaking,
the local-field effects are greatest in a system of local-
ized point charges.4-5 The localization itself is, in a
sense, a consequence of nothing other than the local-
field effects. In metals, at least in simple metals, the
ion subsystem may be treated very accurately as a sys-
tem of point charges. Fortunately, a system of local-
ized charges which are oscillating with a small ampli-
tude around their equilibrium positions may be treated
exactly with full account of the exchange-cor relation
interaction. For simplicity we shall explain the situa-
tion for the particular case of a Wigner crystal of
classical point charges in which, of course, there is
no exchange interaction between charges, and correla-
tion effects can be taken into account exactly. The di-
electric permittivity of such a crystal is5

<«,«>-i+* 2 (32)

where n^ = 4nZ*e*N/M is the square of the plasma fre-
quency of the charges, <^x(q) is the oscillation frequency
of the crystal, and eqxis the polarization vector of
these oscillations. As mentioned earlier, in the jellium
model, which ignores the localization of the ions and
thus correlations between ions, there is only a single
collective oscillation, specifically, longitudinal plasma
oscillations with the frequency
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<o = Q,,. (33)

The inhomogeneity of the system or, equivalently, the
local-field effects in a system of point charges split
this excitation into three oscillation modes: a longi-
tudinal mode w,,(q) and two transverse modes w^q).
The frequencies of these oscillations obey a strict sum
rule39:

JX(q) = Qp]. (34)i v '
It is easy to see from (32) and (34) that this fact—the
splitting of the single collective oscillation of the jelli-
um model into three modes—causes the static dielec-
tric permittivity of a Wigner crystal to become negative
at arbitrary vectors q. In particular, for vectors q in
a high-symmetry direction we have

(35)

The total dielectric permittivity of simple metals
has been analyzed in detail14; both the ion and electron
systems have been taken into account. It was shown that
the part of £tol(q, 0) which is due to the electron-phonon
interaction can give rise to negative values of this func-
tion. The physical nature of this phenomenon is abso-
lutely the same as in a case of a Wigner crystal: local-
field effects in the ion subsystem and a splitting of the
ion plasma oscillations into longitudinal and transverse
phonons. The coupling of the electron-phonon interac-
tion constant A and the Coulomb constant jj. can be de-
scribed by

(36)

where Fle(q) is the pseudopotential of the electron-ion
interaction, and

Fc(q) = ̂ l (37)

is the ion Coulomb potential. In simple metals we can
write sum rules for the phonon frequencies which are
similar to (34), and we can demonstrate the inequality

(38)

It is this inequality which makes it possible for the
electron-phonon coupling constant A to exceed the Cou-
lomb constant n in metals. The second factor,
(^(qJ/F^q)), is usually less than one, and the final
relationship between the constants A and p. is deter-
mined by the mutual effects of the two quantities, i.e.,

v Eel (q, 0) art (q) / |(q)

In particular, we find As y. for the alkali metals. In
polyvalent simple metals (lead and aluminum, for ex-
ample), on the other hand, A is larger than /i.

An expression for the relationship between A and y.
similar to (36) was also derived in the paper6 by Cohen
and Anderson which we mentioned earlier. Their in-
terpretation of the results, however, was clearly incor-
rect. For example, it was assumed in Ref. 6 that the
static dielectric permittivity cannot ever be negative
k(Q)O) >!]. The existence of an expression like (35)
was regarded as a manifestation of scattering processes
in the electron-phonon interaction. Actually, as we

have already seen, expression (36) and the inequality
(8) which follows from it,

are in fact consequences of a negative total dielectric
permittivity of the system. Generally speaking, (36) is
written without consideration of scattering processes.
The incorporation of these processes, however, adds
no new information to the fact that the inequality A > jj.
actually does or does not hold. All that is required is
to replace the longitudinal phonon frequency u^(q) by the
average phonon frequency {(^(q)). In the simplest case
this replacement takes the form

(39)

w<| (q) 3 I 0)| (q) + <o\ (q) J •

To conclude this section we take a brief look at the
meaning of inequality (38), which may be thought of in
a sense as the condition for the existence of an ordinary
phonon mechanism for superconductivity. If we write
the longitudinal-phonon frequency at small q as

co l | (q )=c j , (40)

where c is the longitudinal sound velocity, then inequal-
ity (38) can be rewritten in the form

c<cj; (41)

where Cj is the longitudinal sound velocity in the jellium
model, given by

_!_ m
3 M

(42)

and VT is the electron Fermi velocity. We should point
out that Kulik40 derived a condition for superconductiv-
ity back in 19b4 which is actually the same as (41).
The derivation in Ref. 40 made use of the method devel-
oped by Silin et al.41'*2 and Kantorovich43 for describing
electron-phonon systems. This method is based on
singling out the macroscopic electric field in the inter-
action of ions and electrons. By its very nature, this
approach is valid only for describing phenomena char-
acterized by small momenta, while for superconductiv-
ity it is large momentum transfers which are important.
The limited applicability of this condition can also be
seen clearly from the derivation above. Curiously,
however, condition (41) does a fairly good job of separ-
ating metals into superconductors and nonsuperconduct-
ors, according to Ref. 40.

4. SUPERCONDUCTIVITY EQUATIONS FOR
STRONG-COUPLING SYSTEMS

a) General analysis of strong-coupling effects

As was shown in the preceding section, a necessary
condition for the existence of an effective mechanism
for high-temperature superconductivity is a negative
static dielectric permittivity [e(q, 0) <0] (for isotropic
systems) or a negative definite matrix for the static
dielectric permittivity for crystals. In most theoretical
papers on the problem, however, this circumstance has
not been fully heeded, since the specific calculations
have usually been carried out in the random-phase ap-
proximation. That the dielectric permittivity is posi-
tive in an isotropic, single-component plasma in the
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FIG. 3.

FIG. 1.

random-phase approximation can be seen directly from
£qs. (12) and (15) above. In the more general case of a
multiband metal or semiconductor it can also be shown
rigorously4-5 that the matrix for the static dielectric
permittivity is positive definite in the random-phase ap-
proximation. It is clear that the many attempts to find
effective nonphonon mechanisms for a high-temperature
superconductivity in multiband metals and semiconduc-
tors in the random-phase approximation (see, for ex-
ample, Refs. 44-46 and the more detailed review in
Ref. 3) have not been justified, for precisely this rea-
son.

As we showed in the preceding section, the static di-
electric permittivity could have negative values only be-
cause of local-field effects, i.e., in systems with a
strong interaction or an anomalously high polarizability.
In Feynman-diagram terms, the dielectric permittivity
could have a negative sign only by virtue of the so-
called vertex functions in a calculation of the total po-
larizability of the system:

n (q, 0}
= —11 \ dpdcoG (p, co) C (p — q, -co) T (p, to; p — q, —w; q, 0),

(43)

where r(p, (u; p - q, -cu; q, 0) is the vertex function. Un-
fortunately, it is not possible to write anything in the
way of a closed equation for the vertex function in its
general form. Figure 1 shows the set of diagrams of
lowest order in the effective interaction Feff(q, o>)
= 477e2/<?2E(q, u>). A wavy line corresponds to Ve f f(q, to).
The fact that the vertex functions must be incorporated
in a calculation of the polarizability of the system in
order to obtain negative values of c(q, 0) means that
these functions must also be taken into account in a cal-
culation of the effective electron-electron interaction.
The simplest diagrams for the effective electron-elec-
tron interaction are shown in Fig. 2. The calculations
from (2) for Tc and the derivation of condition (8) (X> /j.)
for the effectiveness of the superconductivity mechan-
ism in Refs. 6 and 7 actually used an approximation for
the electron-electron interaction which corresponds to
only the diagram in Fig. 2(a). This approach is clearly
inadequate for strong-coupling systems; the vertex
functions must be taken into account more accurately.
The corrections to the bare interaction Keft(q, w) of the
types in Figs. 2(b) and 2(c) can be taken into account
quite simply. The electron-electron interaction can be
written as the skeletal diagram in Fig. 3, where the
dark triangle represents the complete vertex function

r. A diagram of the type in Fig. 2(d) on the other hand,
does not reduce to this form but may still prove to be
important, especially for a correct analysis of the spin
structure of the electron-electron interaction and for a
calculation of the anomalous Green's functions.

Kirzhnits3 has carried out a detailed perturbation-
theory analysis of the corrections of second order in
V,,tt(q., w) and of their effect on the critical temperature
of the superconducting transition for weak-coupling
systems. For strong-coupling systems, e.g., for a
single-component plasma with rs»l, all the perturba-
tion-theory diagrams must be taken into account. The
problem thus becomes essentially unsolvable by per-
turbation theory and must be approached in a different
way, e.g., through the use of some sort of variational
principle. For systems with congruent regions on the
Fermi surface it is possible to identify certain diagrams
as the most important. These diagrams are shown in
Fig. 4 for the vertex function r in the quasi-isotropic
approximation. It should be noted, however, that this
problem has yet to be analyzed systematically.

b) Derivation of superconductivity equations for
strong-coupling systems

An exact equation for the single-particle Green's
functions for the electrons of a normal metal was de-
rived in Ref. 47. The results can easily be generalized
to the case of a superconducting metal by introducing
a Nambu representation for the electron operators in
the usual manner fc=(r,t)],

..,.., ? ;<*>

and examining the matrix Green's function

G(x, x') = -i<r,i|-(3:).

The following expression is found for the function
C(x,x'):

' (x, x') =-- i - 1,-U,,, (x) T3- 2 (x, x ' ) ,

(44)

(45)

(46)

where 1 and T, are the ordinary Pauli matrices,
0 i i
1 0

Ue[f(x) is the effective Hartree potential acting on the
electrons, given by

) = e- \ d r ' - (47)

(pe(r,t)) is the expectation value of the electron density,
given by

(pe (r, ( ) > = -«Sp (T3G (x, x)),

+ u +•
d

FIG. 2. FIG. 4.
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and Fle(r-R°n)is the unscreened electron-ion potential.
Also, £(*,#'), the eigenenergy part and a matrix in the
space of Pauli matrices, is given by

2 (x, x') = — i \ dx, dx2 f dr" f_ ,
J J I * * I

XeFot (z f ; r", i)T3G(x, X2)r3r(x2, x', x,),

(48)
where Tix-^x',Xj) is the matrix vertex function defined
by

;'. x,) = t, ̂ "l (»..''). (49)

The function £"*,(#,#'), the inverse dielectric permit-
tivity of the system, can be written

(50)
here D^(t) is the phonon Green's function, and c~t\(x,x')
is the inverse matrix for the dielectric permittivity of
the crystal electrons. The function t~^(x,x') is deter-
mined by

6^(1,1') = 6 (i-z')+ | dz.dr'-jj^-nCr', f; x,} e;,' (xlt x'), (51)

where R(x,x') is the total electron polarization operator,
given by

n<"- '•> = •*&$- (52)
The matrix £(*,#') can be expanded in Pauli matrices
and written in the form

2(x,x') = ll6(x-x')-Z(x,x')]-jri + l(x, x')T3 + q,(x, Z')TI. (53)

The functions Z(x,x') and £(#,#') determine the band
structure and the renormalization of the spectrum of
perturbations of the metal; they are nonvanishing in the
case of a normal metal also. The function <p(x, x'), on
the other hand, is the anomalous eigenenergy part,
which determines the superconducting order parameter.
Garland48 has derived some equations which are actually
the same as (46) and (48).

For quasi-isotropic weak-coupling systems, for
which the random-phase approximation is valid, we may
ignore £(x,x') and assume Z(x,x')= S(x-x'), thereby
retaining only the anomalous eigenenergy part, ip(x,x'),
in (48). The vertex function T(x2,x',x1) can be replaced
in this approximation by the simple expression

F (x,, x', x,) = 16 (Xl - x') 6 (i, - x,).

In this case the problem simplifies substantially, and it
becomes a simple matter to calculate, for example,
the critical temperature for the superconducting transi-
tion, Tc; the answer is given by (2).

For strong-coupling systems, in contrast, to solve
Eqs. (48) is an exceedingly difficult problem. In the
first place, these equations are extremely difficult to
solve even for a normal metal. Only a very few at-
tempts have been made to develop a systematic ap-
proach to the problem of calculating the single-particle
properties of normal metals on the basis of the solution
of Eqs. (48). The customary band- structure calcula-
tions for metals adopt at the outset a single-particle

model in the density-functional method. The interrela-
tionship between these two approaches has received es-
sentially no attention.

It might be possible to simplify the calculations of the
superconductivity characteristics of metals by rewriting
the equation for the anomalous eigenenergy part,
<p(x,x'), in such a way that the exact Green's functions
of a normal metal appear in this equation. Unfortunate-
ly, this cannot be done in a general form, but it is pos-
sible to write a corresponding equation for Tc in the
case T C <E F . For this purpose we write the total
Green's function G(x,x') as

G (x, x') = GN (x, x') - dx,<1x,GN (x, .r,) ,. x2) T,GN- (.T=. ,•>•'),

(54)
where G^x,x') is the matrix Green's function for the
electrons of a normal metal, given by

GN- (x, x') = •K <*, *') 1

0 G N ( I ' -

weSubstituting (54) into expression (48) for ~£(x,x'
find

X ef^t(xi, f t)T,GN(z, x2)T3F(x2, x', x,)

— i f dx, dx2 dx3 dx4 f dr" ,,_*,,.[ etot(*i. f, t)

X t3GN (x, x3) (p (x3, xs) T,GN- (xs, x2) T (x2, x', x,).

We now write the eigenenergy part, Z ( x , x ' ) , in a form
analogous to (53):

S (x, x') = SN (x, x') + <p (x, x') T!,

where

N ~ o s>, |

is the eigenenergy part of the Green's function of a nor-
mal metal, which satisfies the equation

SN= — i dx,dx2 dr' tit (x, ft)GN(x, x2) F (x2, x', x,),

(55)
where rK(x2,x',xi) is the vertex part, which does not
contain anomalous Green's functions.

In the derivation of the equation for <p(x,x') we cannot
ignore the anomalous vertices, but at T= Tc it is suffi-
cient to consider only those anomalous vertices in
which the anomalous Green's function appears only
once. The situation regarding these vertices is very
reminiscent of that regarding Coulomb vertices in the
electron- phonon system of a normal metal. In that
case, the need to take into account the phonon correc-
tions in the vertex function in the term in SA, due to the
Coulomb interaction gives rise to an asymmetry in the
number of Coulomb vertices in the terms associated
with the Coulomb and electron-phonon interaction. The
Coulomb vertices appear quadratically in the contribu-
tion to the eigenenergy part due to the electron-phonon
interaction. There is a corresponding situation in the
equation for the anomalous eigenenergy part <p(x,x').
The vertex Green's functions of the normal metal, TN,
also appear quadratically in this equation, in contrast
with (55) for the normal part, SN. Finally, the equation

Sov. Phys. Usp. 25(9), Sept. 1982 0. V. Dolgov and E. G. Maksimov 696



for the function <p(x,x') can be written in the symbolic
form4

<r- -i \ rxKcef,;,fixexrx<p, (56)

where we have suppressed some of the indices on the
functions to save space.

Comparison of (55) and (56) shows that the processes
which give rise to the pairing of electrons and to the ap-
pearance of an order parameter, on the one hand, and
to a renormalization of the properties of the normal
metal, on the other, correspond to completely different
interactions. Pairing corresponds to the interaction

V";t rxr,,--,;,rN

while renormalization corresponds to

1','V f r,.Fh;i\.

An important point here is that the interaction 7"tf is
repulsive even if the static dielectric permittivity is
negative, while the sign of the pairing interaction is de-
termined by the sign of the static dielectric permittivity.
However, nothing approaching a detailed analysis of
these equations has been carried out for systems with
nonphonon superconductivity mechanisms.

The situation is far more settled in systems with an
electron-phonon superconductivity mechanism. For
such metals, Eqs. (48) have been analyzed in detail in
the review by Scalapino49 and in a couple of books,3-8

and we will not dwell on these equations here. We sim-
ply note that for pure metals it is necessary to take into
account the anisotropy of the superconductivity order
parameter, and the calculations accordingly become
much more complicated.50 Actually, this anisotropy is
quite small in most metals. Furthermore, in dirty
metals, with impurities, the anisotropy disappears at a
rather low impurity concentration, so that it is suffi-
cient to examine the order parameter averaged over the
Fermi surface. For this quantity we have the well-
known superconductivity equations which are usually
called the "Eliashberg equations" after the researcher
who derived them back in 1960 (Refs. 51 and 52). We
move on now to a study of those equations.

5. TRANSITION TEMPERATURE OF
SUPERCONDUCTORS WITH A STRONG ELECTRON-
PHOTON INTERACTION

a) Calculation of the transition temperature

We write the Eliashberg equations for T = Tc in the
customary form3,>>,49,5o,52.

1— Z(i (B n ) ieo n = -aTVT si

here A(zojn) is the superconductivity order parameter,
Z(iun) is the renormalization of the Green's function of
the normal metal, u / n = ( 2 n + 1)" ,̂ and A(za>m -zuO is
defined by

The function a2(u)g{u) is the spectral density of the
electron-phonon interaction; g(v) is the phonon state
density, and a(ou) is the interaction constant of electrons
and phonons with a given energy w.

We first note that the contribution of the direct Cou-
lomb repulsion [the second term on the right side of
(57)] is written in a very simplified model form. Such
a simple expression can be used for the following rea-
sons: First, as was explained in the preceding sections
of this review, local-field effects in the ion subsystem
in a system with a strong electron-phonon interaction
allow the electron-phonon interaction constant X to be
significantly larger than the Coulomb interaction con-
stant ja, and this is the actual situation in all real super-
conducting metals. The coupling constant A in super-
conductors ranges from \= 0.4 in aluminum to X = 2.6
in lead-bismuth alloys. In none of these metals does p.
exceed 0.2 or 0.3 (Ref. 53). Because of the large differ-
ence between the average phonon frequencies and the
Fermi energy, there is a further decrease in the con-
tribution of the direct Coulomb interaction, due to a re-
scattering of electrons and a transition to the Coulomb
pseudopotential /J.*= M/P-+ Mln(eF/<5)]. As Batyev has
shown,54 the transition from n to jj.* occurs not only in
the weak-coupling case but also in a more accurate
study of strong-coupling effects. The direct Coulomb
repulsion in most real superconductors thus has a very
small effect on Tc, and it can be described completely
by the simple model used in (57).

This discussion does not, of course, mean that the
Coulomb interaction between electrons is totally unim-
portant in such metals. It is extremely important in
shaping the phonon frequencies of metals, in the
screening of the electron-ion interaction, etc. The
spectral density of the electron-phonon interaction,
a2( <*>)g{ it}), must of course be found by a method which
correctly incorporates both the electron-ion and elec-
tron-electron Coulomb interactions. We will take up
the microscopic definition of this function and methods
for calculating it a bit further on; at this particular
point we simply wish to point out that well-developed
methods are available for finding the function a^w^oj)
from tunneling measurements in superconducting55"58

and even normal59'60 metals. The function a\ta)g(u) is
thus known quite well for a very large number of
metals and alloys.

Moving on to a calculation of Tc, we first rewrite
Eqs. (57)-(58) as a single linear equation for the func-
tion A(tajri). The critical temperature Tc is then deter-
mined by finding the eigenvalues of this equation:

,,max
V K(n, n', rc) An. = 0, (60)

where
K(n, n', Tc)

(61)

(59)

In this equation we introduced
. _ A ( i M n )
" lf>,,l '
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and on the right side of (57) we ignored the direct Cou-
lomb repulsion. Where necessary, the contribution of
this term, which is quite unimportant for our purposes,
can easily be restored in the final results.

A major effort has been devoted to solving Eq. (60)
and to deriving an analytic expression for Tc (Refs. 61-
63), starting with the work by McMillan.64 It is perhaps
worth noting that in all these studies it was not Eq. (60)
which was solved but instead Eqs. (57)-(58), analytical-
ly continued to continuous values of the energy w. Be-
fore we take up the specific solutions of these equations
we would like to answer another, completely pertinent
question: Is it possible in principle to derive an analy-
tic expression for Tc from Eq. (60)? Actually, as can
be seen from (57)-(61), the transition temperature is a
functional of the function a2(o/)^o>). When we talk about
deriving an analytic expression for Tc, we are implying,
in view of the very nature of the problem and the results
of Refs. 61-64, that it is possible to express Tc in
terms of several moments of the function a2( ia)g( o>) .
Clearly, this problem cannot be solved for an arbitrary
function a^w^w), and the results derived for Tc will
unavoidably be approximate.

For systems with weak and intermediate coupling,
the problem has been studied in detail.63 A method
based on iterations in the parameter X-/(l + X) has
yielded the following analytic expression for Tc:

M }], (62)

where X is the electron-phonon coupling constant, given
by

(63)

(64)

and the other quantities in (62) are defined by

K = TJ ) ln

(65)
and jj.* is the Coulomb pseudopotential. For a suffi-
ciently narrow peak in the phonon state density, or in
the absence of phonon modes of greatly different fre-
quency, AT becomes 1/2. In this case, expression (62)
for Tc is actually the same as the McMillan expression
with the one modification that the Debye energy of the
phonons is replaced by wlog:

m W10g [~ i-J-X "| / fif\\

If we consider a situation in which the function
a2(u>)g(u) can be represented as several isolated peaks,

2 / \ rj I \ ^Cl A f W i ft / \ i (irj\

the logarithmic-average frequency wlog becomes

(68)

where X is the total coupling constant. It follows, in
particular, from (68) that as some one of the frequen-
cies u, tends toward zero the transition temperature

should do so also. This result is obviously wrong, how-
ever, if only for the simple reason that Eqs. (62) and
(66) themselves were derived under the assumption that
all the frequencies W j satisfy the inequality &{>TC.

If the system contains low-frequency oscillation
modes with w(s Tc, these modes must be taken into ac-
count more carefully than in the derivation of (62) and
(66). With this goal in mind, we write X(jwn) as the sum
of the two terms \(iun) and X2(iwn), where \(iun) is the
contribution of the low-frequency modes. The following
representation can be written for \(i^n) in the case in
which the corresponding frequencies u^ satisfy the in-
equality oij« Tc:

Here we have introduced coupling constants for the cou-
pling of the electrons with the low-frequency modes, \,
defined in accordance with (63) by

and M(l) is the first moment of the function

(69)

If we now substitute expressions for \(iun) into (60)
and (61), which determine Tc, we easily see that the
contribution from \(iun) cancels out completely for
n= 0. The low-frequency modes have an effect in this
case only through the quantity M(l)/(2irTcn)2. If we use
representation (67) for a2( uj^ uij , we find the follow-
ing for X1(/wn) for

(70)

It can be seen from this expression that if the electron-
phonon coupling constant Xx remains constant or de-
creases as wi tends toward zero then the low-frequency
phonons will have no direct effect of any sort on Tc.
If, on the other hand, Xj^ increases in accordance with
X» 1/Wj as Wj tends toward zero, then A/U) remains
finite, and the low-frequency phonons contribute to Tc

even at w1= 0. This possibility has been pointed out
elsewhere.65 The behavior A ~ l / w J at small wlt how-
ever, could hardly be given any physical meaning.

A more interesting possibility is the existence of
solutions for the Eliashberg equations which have Tc

above the typical phonon frequencies. This possibility
was first pointed out by Allen and Dynes66 and results
from the existence at large X of a finite ratio M(l)/
(2irTc)

2»l. Here Tc is expressed in terms of M(l) as
follows:

0.

A more accurate calculation yields

Tc = 0.1827VM (I). (71)
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TABLE II. Dependence of the coefficients in (74) on the Cou-
lomb interaction.67-69

TABLE III.

»•

H*=0

H* -- 0

n *

H* =P 0

BO

0 12273
"8

V 1+2 45n*

.,

—0 3433G

.,,, + 2.797,.,

«:„

—0- 196
aji (i + 2 . 7 n « ) >

-=,

0.2547

ctS,(l+2.8|»")3

«.

0.615

02:

—0.2915

.S.,1+2.7,,.,.

»53

-0.420
43

Allen and Dynes66 suggested combining Eqs. (66) and (71)
in the form2'

Tt
1,11(1-1-1.1•1 1

I.62X) J ' * '

where /t and/2 are some empirically selected functions,

. I ?. ^3 /2 -11 /3
' '• I 2.46-j-9.35u* I \

Here

co ( l ) --±M(0),

where Af(0) is the zeroth moment of the function
(22( U>)p"( Ct)) .

(73)

A more systematic effort to derive an analytic ex-
pression for Tc for coupling constants A = l was under-
taken in Refs. 67-69, where it was suggested that Tc

be written as a power series in I/A:

1 '*3 \ u (2) /

(74)

This expression can be derived in a straightforward way
by substituting expansion (59), in powers of <jf/(2itT^z,
into (61). As a result, Tc depends on only the quantities
A and the average phonon frequencies u)(n), defined in
terms of moments of the function a2( uj)g( <jj)M(n + 1):

"+". (75)

The moments themselves are defined as follows, by
analogy with (63):

M (;<) = 2 f dco <ona2 (co) g («). (76)

The coefficients au are the same for all superconduc-
tors and are listed in Table II.

Calculations of Tc for real superconductors, through
the use of the functions a2(u)g((u) from Refs. 55 and 56,
lead to good agreement with the experimental data (Ta-
ble III). For metals with large values of A, however,
the convergence radius for this series depends strongly
on the shape of the spectrum; for mercury ( A = 1.62),

2>Allen and Dynes66 used numerical coefficients slightly dif-
ferent from those in Eq. (66), which was derived analytically
by Karakozov et a/.63

Material

HS
l l :
i 'b
Sl i
Ta
Tl
Tl,,BBi0.,
I ' l> , . -Bio . ,
l'K.sBi,,.3;
Plv«Bi0..8

l.fc!
11 80i
t 55

0.710
0 692
0-785
0.78
2.03
2.13
2.58

.(.ifcAn

3.33
3.27
U.48
3 81
4.58
2.21
2.16
(i.85
6.80
4.66

•<r>

2.31
2 97
5.99
3.55
4.39
2.11
1.99
6.09
5.97
3.81

,(7!)

i 14
3 41
7.21J
3.98
4.75
2.32
2 20
8.20
8.28
0.18

,-(71)

<0
6.78
7.47
4.84
3.78
2.95
2.99
8.52
8.72
7.03

T<~>

5 32
3.60
7 ,43
3.07
3.45
2.40
2.29
8 50
8.69
6.89

r«xpt

4.19
3.40
7.23
3.72
4.47
2.39
2.30
8.45
8.95
7 00

for example, the value calculated for Tc from (74) be-
comes negative. The method of the Fade approximant
can be used to improve the convergence of this series;
as a result we find70

(77)

where the coefficients At are given by (74). Results
calculated from (74) and (77) with the help of the func-
tions a'2(u)g((ij) constructed from the tunneling charac-
teristics55-56 are shown in Table III; we see from these
results that expression (77) is in good agreement with
experiment over a broad range of A ( X > 0.7). Shown for
comparison here are some results calculated from (72)
and (62) and from the McMillan expression ("McM").

It can be seen from this analysis and the numerical
calculations that the effort to derive an analytic expres-
sion for Tc which holds over the entire A. range and for
any function a2(<jj)g(ui) has not been successful. At best
it is possible to write expressions like (62), (74), or
(77). In general, if the function a2(w)g-(u>) is known
there is no particular need to derive analytic expres-
sions for Tc; modern computers can easily find Tc di-
rectly from Eqs. (60) and (61). On the other hand,
analytic expressions are more convenient for analyzing
the dependence of Tc on the properties of the normal
metal, especially when certain moments of the function
a2(ijj)g(u>) are known experimentally but not the function
itself.

Working from the expressions derived for Tc, we can
attempt to answer the following questions:

1) Are there any internal restrictions on the possible
values of Tf"* embodied in the Eliashberg equations?

2) Which types of functions u2( u)g( <o) are preferable
for the existence of high values of Tc?

It would be more systematic, however, to seek
answers to these questions by the method developed by
Bergman and Rainer.71 They calculated71 the functional
derivative 5Tc/5a2(u)g(<jJ), which shows which frequen-
cies are the most effective for increasing Tc. This
function tends toward zero as w — 0 , indicating that pho-
nons with very low energies are ineffective. At higher
frequencies the function 6Tc/Sa2(u>)g{ w) falls off as 1/u
and has a maximum at w~2uTc. It follows, in particu-
lar, that the most preferable function ui^a^ai) from
the standpoint of high values of Tc would be of the form

a- (co) g (co) = ^46 (co — «„),

where w0~2irTc:. Whether the function a2(o>)£(u>) in a

699 Sov. Phys. Usp. 25(9), Sept. 1982 0. V. Dolgov and E. G. Maksimov



real metal could actually be of this form or one close
to it is a question which can, of course, be resolved
only by studying the particular properties of the metal
in question.

Bergman and Rainer's method71 can also be applied
to the problem of identifying possible restrictions on
the value of Tc which arise in the Eliashberg equations.
Leavens72 has shown that for the values of Tc given by
Eqs. (60) and (61) there is an upper limit

T?" <a („)»(„), (78)

where the a(n) are certain constants, and the w(n) are
determined by (75) and (76). To calculate the constants
o(n) we need an expression for the functional deriva-
tives 6/rc/5G(w, w) where G(n, w) = u"a\ w)g( u>). This
expression can easily be derived by the method of
Bergman and Rainer.71 A specific calculation carried
out by Leavens72 shows that a(n) is finite for only the
zeroth and first moments. Forn*2 , Leavens found
o(n) = «, so that condition (78) leads to no restrictions
on Tc. For the first two moments, on the other hand,
the following inequalities arise:

co) g (to)

i = 0.258 dcoora2 (tii) g ((o)
(79)

As Leavens has shown, the first of these limitations is
the more stringent if X is not very large:

Table IV shows experimental values of Tc, along with
the values of 7^ and T* calculated for several super-
conductors. We see from this table that for the most
real superconductors the experimental values of Tc

are not greatly different from their maximum possible
values. To learn whether these maximum values can be
attained in some way or other, and to determine wheth-
er it is possible in general to produce superconducting
metals with Tc significantly higher than 22.4 K. (T\ for
tantalum), we will need a microscopic study of the
function ut\<j})g((i>) and of its relationship with the
properties of the metal.

b) Spectral density of the electron-phonon interaction;
dependence of 7~c on the properties of the normal metal

To derive an exact microscopic expression for the
function a\u*)g(u>) will require a systematic analysis of
superconductivity equations (46) and (48) with a
thorough account of the electron -electron Coulomb inter-
action. Unfortunately, this problem has not yet been

TABLE IV.

Material

Hg
In
PI)
Sn
Ta
Tl
Pi>o.7B'o.:i
Pbo.ssBio.js
Pb0.45Bi0 65

l

1.6
0.805
1.55
0.72
0.69
0.795
2.01
2.12
2.59

T«P«
J C

4.19 .
3.40
4.23-
3.72
4.47
2.36
8.45
8.95
7.0

r.

7.1
7.35

10.8
9.17

li:l
5.36

12.0
12.3
11.4

Tc

.11.3
11.6
14.6
18.8
22.4
10.43
14.5
14.7
13.8

solved—for superconductors or even normal metals.
Working in second-order perturbation theory in the
weak electron-ion pseudopotential, Scalapino49 derived
the following microscopic expression for the function

The integration here is over the Fermi surface, VF is
the electron velocity on this surface, wp_p, x is the fre-
quency of phonons with momentum p-p', and g-p_p, x is
the matrix element of the electron-phonon interaction.
For simple metals gttt-^ can be written in the form

vl e ( P ,P '>. (81)

Here ep_p,^ is the phonon polarization, and Kle(p,p')
is the screened electron-ion pseudopotential, given by

(82)

where rpF(p- p') is the vertex function of the Coulomb
interaction, Zc is the renormalization of the electron
Green's function due to the Coulomb interaction,
£ e i (P~P '>0) is the dielectric permittivity of the elec-
trons, and Vle(p-p') is the bare electron-ion pseudo-
potential. At small momentum transfers we have the
following important relation:

l i r n V (q) Vie (q) _ yie(q)
0-0 Zct,l (1, 0) - 8e, (q. 0)

Z
N (0) (83)

where Z is the valence of the ion and MO) is the elec-
tron state density on the Fermi surface. Equation (83)
shows that at small momentum transfers the renormal-
izations of the screened pseudopotential due to the ver-
tex function and Zc cancel out completely. This circum-
stance means that a calculation of the function
a\u)g(u>) must systematically incorporate both these
functions [rpF(q) and Zc]. Such calculations, however,
are extremely complicated, even when we take into ac-
count the fact that rpF(q), £el(q,0) and Zc are deter-
mined by the properties of a homogeneous electron gas.
For the transition metals one can derive for the func-
tion a2(u)g((i>) expressions which are formally very
similar to expressions (80)-(82). In this case, how-
ever, the functions rpF(p,p'), e.^P.P'.O) and Zc(p,p')
must be determined not only for a homogeneous electron
gas but also for a system of interacting Block electrons;
the problem of calculating the function a2(u))g(u)) be-
comes even more complicated.

All the existing calculations of the function a2(a>)o(ci>)
have actually been based on the simple single-particle
approach to a system of Bloch electrons, rather than a
systematic analysis of the interacting electrons. A
Schrodinger equation with a periodic potential V(r) is
used to determine the electron band structure. The
electron-phonon interaction matrix element gflS-t>i is de-
termined from the gradient of this crystal potential:

*..>. (84)

For simple metals the parameters of the crystal po-
tential or, more precisely, pseudopotential, are usu-
ally chosen by fitting the theoretical calculations of the
shape of the Fermi surface to experimental data.
Either a single plane wave73-74 or a sum of several
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plane waves,75'76 is used for the electron wave functions
which appear in the expression for the matrix element
gf p1 *• The phonon frequencies are calculated by a
force-constant method. The functions a2(u)g(<j}) cal-
culated in this manner agree fairly well with the exper-
imental data at a qualitative level. Quantitatively, the
agreement of the calculated and experimental curves of
otz((jj)g(<ju) is not very good.

For transition metals, Gaspari and Gyorffy77 have de-
veloped a procedure for calculating M(l), which is the
first moment of the function o>2( uj),g( u,) and which is usu-
ally denoted by N(0){l2)/M, where M is the ion mass.
Gaspari and Gyorffy showed that this quantity can be
expressed in terms of the phase shifts in the scattering
of an electron by the crystal potential and in terms of
the electron state density on the Fermi surface, MO).
The phase shifts and N(0) can be calculated by any
standard method for band-structure calculations.3'8-32

This procedure was subsequently generalized to calcu-
late not only M(l) but also the function a2( o^ cv)
itself.77"80 As for simple metals, the calculated func-
tions a2(<ju)g(u) are in a reasonable qualitative agree-
ment with the experimental data, while the quantitative
agreement leaves something to be desired. A detailed
analysis of the nature of the discrepancies between the
calculated and experimental values of u2(u>)g-(cu) has
been carried out for simple metals76 and also for tran-
sition metals.80 It follows from the results that the
available methods for calculating a2( <ju)g( u/) cannot be
expected to reveal the superconductivity properties of
metals more accurately than in order of magnitude.

Glotzl et a/.80 believe that the primary reason for
the inaccuracy of the calculations in the pseudopotential
approach to simple metals is the definition of the
pseudopotential Fie(p,p'): Band-structure calculations
can give this quantity only at p - p ' = K, where K is a
reciprocal-lattice vector. To calculate m\u)g(ui), on
the other hand, requires knowledge of the function
Fie(p,p') for arbitrary differences p-p'. This will re-
quire making assumptions of some sort regarding the
nature of this function, since it cannot be calculated
analytically from (82). We should add that there is yet
another fundamental reason for inaccuracies in the ex-
isting calculations of the function a2(u)g(ui) for simple
metals: Expression (81) for the matrix element gfif, x
is correct in second order in the bare pseudopotential
Kie(p,p'), and only in this order is it a matrix element
of the gradient of the screened pseudopotential Vif(r)
in (82), which determines the band structure of the
metal. In general, on the other hand, in the many-par-
ticle approach and in an interacting system of electrons
and ions, the electron-phonon interaction matrix ele-
ment cannot be represented as the gradient of some po-
tential.

To prove this assertion we write the electron-phonon
interaction matrix element for Bloch electrons in the
form81-84

where

V . P - ( q + K) e,, i

..P' (1 + K) = drup*. (r) e-'iq+ (86)

is the scattering form factor for the Bloch electrons,
and wp(r) is the Bloch part of the wave function,

Tp (r) = u, (r) e'P.

The quantity e~}(q + K, q + K',0) is the effective dielec-
tric permittivity of the Bloch electrons; it incorporates
the effects of the renormalization due to the vertex
function. It is an extremely complicated matter to find
ei,(q+ K,q+ K',0) explicitly, but the result is not very
important for our purposes. The only important thing
is the following circumstance: For Bloch electrons,
e~}(q+ K, q+ K', 0) is a matrix in the space of the re-
ciprocal-lattice vectors K and K'. For a homogeneous
electron gas, on the other hand, we would have
£~Hq+ K, q+ K',0) = 5KK e"1(q+ K). It is then easy to see
that for free electrons the expression for gr f, x can be
rewritten in the form of (84), where VF(r) is

)Fl e(q + K). (87)

In the general case of Bloch electrons, we denote the
vector within the summation over K' as W(q+ K),

W (q + K) = g eel (q + K, q + K', 0) (q + K') Tle (q + K'), (88)

and we resolve it into its components parallel and per-
pendicular to the vector (q+ K). The expression for
•§-p,p',» can then be rewritten as

P-, >.= -'' V w"

The first term in square brackets here derives from
the component of W(q+ K) parallel to q+ K and is given
by

i 0) v^ (q + K),(90)

where
") Fle(q + K')n K' ffl, q - K , 0)

Correspondingly, the second term can be written

, 0)Fle

s-
K'

0) (q + K') V,.

(85)

(91)

(92)

We note that the first term in (89) corresponds to the
rigid-ion approximation, which is the one customarily
used to calculate the function a\ u^a>). The total
crystal potential is used as the function V(r). Glotzl
et al.BO have pointed out that it is most likely this cir-
cumstance which is responsible for the difference be-
tween the theoretical and experimental values of
a2(oi)o<w). It can be seen from (89)-(92) that the
rigid-ion approximation is indeed completely unjusti-
fied. The existence of terms of the type rot M(r) in the
change in the crystal potential due to phonons has been
mentioned in several cases.B2~84 Unfortunately, nothing
approaching a detailed quantitative analysis of rotM(r)
and of its contribution to the electron-phonon interac-
tion has so far been carried out.
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The conclusion that the rigid-ion approximation is in-
adequate does not, of course, mean that all the micro-
scopic calculations of the function &2( u>)g( co) and also of
the electron-phonon coupling constants X which have
been carried out must be discarded as worthless. On
the contrary, several of these calculations have re-
vealed some extremely interesting qualitative results,
e.g., on the nature of the differences between the con-
stant X in superconducting and nonsuperconducting car-
bides and nitrides of transition metals85 and the ten-
dencies in the behavior of Tc in the series of 4d transi-
tion metals86 (see Refs. 3, 8, and 50 for more details).
It is clear, however, that it will not be possible to con-
struct a rigorous quantitative theory for the electron-
phonon interaction without a systematic analysis of the
role played by the transverse effects associated with
the function rotM.

Returning to possible restrictions on rc imposed by
the solution of the Eliashberg equations, we note that
the only restrictions which are important in this theory
are those associated with inequalities (79). Since there
are no restrictions of any sort on the function a2(o>)o{cu)
or its moments in the Eliashberg equations themselves,
these equations actually impose no restrictions on Tc

either. On the other hand, it follows from the micro-
scopic definition of the function a2(u)g(<ju) that the mo-
ments of the function cannot be arbitrarily large for any
metal. In particular, an expression for the first mo-
ment M(l) for simple metals can be derived in second
order in Vie in the rigid-ion approximation:

Af(l)-*y--!ff.ftTto)Qi.. (93)

Here r3 is the compressibility of the electron gas, fipl
is the ion plasma frequency, and t^e(q) is the mean
square screened pseudopotential, given by

(94)

In simple metals, V^e(q) is quite small (~0.01 -0.05),
so that M(l) is also small in comparison with the square
of the ion plasma frequency. Yin et a/.89 derived cor-
responding restrictions on W(0){/2) for the case of
transition metals also, using a technique developed by
Pettifor87-88 for evaluating the matrix elements of the
electron-phonon interaction. Unfortunately, by them-
selves these restrictions are not much help for pro-
ducing superconducting metals and alloys with the high-
est possible values of Tc. Returning to (93) we see that
the primary restriction on M(l) is imposed by the small
values of V^e(q), but in the approximations used in de-
riving (93) the quantity V^,(q) is determined primarily
by the value of the bare pseudopotential Fu(q), which
is a property of the particular atom and cannot be ar-
bitrarily changed. Furthermore, the quantities r, and
fipl are determined by the valence and the equilibrium
volume of the metal. The equilibrium volume depends
in turn on the properties of the pseudopotential. It is
thus clear that in order to reach an understanding of
the factors which restrict the values of M(l) and thus
Tc we need a self-consistent solution of the overall
problem of calculating the electron and phonon proper-
ties of metals.

A far more helpful factor restricting the values of
A/(l) in metals was pointed out by Gomersall and
Gyorffy.90 Taking the single-particle approach to the
theory of the electron-phonon interaction, they showed
that M(l) determines the renormalization of the average
phonon frequencies of the metal due to the electron-
phonon interaction:

where eF is the Fermi energy, and MO) is the electron
state density on the Fermi surface. Using this expres-
sion for the 5d transition metals, Gomersall and
Gyorffy90 reached the conclusion that the mean square
frequency for 5d metals having a bcc structure vanishes
at n= 4.7 and 6.8 electrons per atom—corresponding to
the actual boundary between bcc and hep lattices in the
5d transition metals. The results derived in the single-
particle approximation cannot, of course, be relied
upon completely, especially since the quantity (n2)0 re-
mains completely undetermined in this approach, but it
can be shown rigorously50 in the adiabatic many-parti-
cle approximation that an expression analogous to (95)
actually exists for the average phonon frequencies. It
is also possible to derive for (fi2)0 an exact expression
in terms of the matrix of the inverse dielectric permit-
tivity of the Bloch electrons. Unfortunately, no specific
calculations of (n2)0 have so far been carried out. The
so-called band contribution to the phonon frequencies,
on the other hand, which is related to the contribution
of the function a2( w)g( <x>), has been calculated in the
rigid-ion model for several transition metals and al-
loys.91'92 These studies have shown that it is the term
caused by the electron-phonon interaction which can ex-
plain the various anomalies in the phonon spectra of the
transition metals and alloys studied in Refs. 91 and 92.
It follows from (95), even without reference to the exact
definition of (n2)0, that the values of M(\) for any metal
are restricted by

(4/5) tTN(0) (96)

for otherwise a lattice instability would occur in the
system. It is of course clear that condition (96) is in a
sense excessive. In a real system we could hardly have
the mean square phonon frequencies vanishing. A lat-
tice instability usually occurs upon the softening of
some particular wave branch wx(q) and in a small re-
gion of the wave vectors q. This circumstance—the
interrelationship between the phonon frequencies and
the matrix element of the electron-phonon interaction—
thus cannot give us any general restrictions on Tc.
All it can do is reemphasize the need for specific, ex-
act calculations of all the properties of metals.

6. CONCLUSION

Let us briefly summarize the results of this review.

1. It has been shown that a necessary condition for
the effectiveness of a superconductivity mechanism,
i.e., for the existence of reasonably high values of Tc

(at least TC>1 K), is that the total static dielectric per-
mittivity of the system be negative. It has also been
shown that this condition can be fully satisfied in real
metallic systems, and no contradiction of any sort
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arises with either causality or the stability of the sys-
tem.

2. Furthermore, this condition clearly holds in all
real superconductors because of the ion contribution
(or, equivalently, because of the electron-phonon in-
teraction) to the total dielectric permittivity of the
crystal. The physical reasons for a negative sign of
the total static dielectric permittivity in electron-ion
systems are the strong local-field effects in the sys-
tem of point ions, because of which the electron-phonon
interaction is stronger in absolute value than the direct
Coulomb repulsion of electrons in such systems. In
the simplest case of a quasi-isotropic system, the con-
dition under which the total static dielectric permittivity
is negative is the same as the superconductivity condi-
tion derived some time ago by Kulik40:

' ac ̂  £• jellium ;

where Cac is the actual sound velocity in the metal, and
C j e i H u m i-8 'ne sound velocity in the jellium model.

3. For nonphonon superconductivity mechanisms to
be effective, the electron part of the static dielectric
permittivity must take on negative values [eel(q, 0) <OJ.
We have shown here, for the particular case of a one-
component electron plasma on an incompressible sub-
strate, that such a situation is also completely possi-
ble. In particular, the inequality eel(q, 0) <0 holds in
this model over a very broad range of electron-gas
densities, 6< r 3 <75 , and no instabilities of any sort
occur in the electron gas itself up to rs=75. In metallic
systems, however, because of the coupling of the elec-
trons with the phonon system of the crystal, negative
values of £el(q, 0) may cause a phonon-frequency insta-
bility. In particular, the phonon frequencies are ex-
pressed in terms of Ee l as follows in the jellium model,
which treats the ions as a homogeneous, continuous
medium:

(0=(q)=-
i (q. "I •

It can be seen from this expression that negative values
of £el(q, 0) in such a system unavoidably lead to a pho-
non instability. In real crystals, in which the phonon
frequencies are more complicated functions of the static
electron dielectric permittivity, it is quite possible that
the inequality eel(q, 0) <0 may hold. In this case, the
question of the coexistence of a nonphonon supercon-
ductivity mechanism [eel(q, 0) < 0] and a stable phonon
spectrum must be resolved through a specific, exact
calculation of the properties of the system.

4. The static electron dielectric permittivity can have
negative values only in systems with a strong exchange-
correlation interaction. It then follows, in particular,
that we must go beyond the scope of the weak-coupling
approximation to deal with the problem of high-temper-
ature superconductivity. An equation derived for deter-
mining Tc with allowance for strong-coupling effects
shows that the condition for the effectiveness of a super-
conductivity mechanism fetot(q, 0) <0] which had been
derived earlier in the weak-coupling approximation is
also a necessary condition in the strong-coupling case.

To determine whether this is also a sufficient condition,
i.e., whether Tc is actually high in a system with a neg-
ative static dielectric permittivity, will require finding
an exact solution of this equation. Unfortunately, no
systematic theory of this type is presently available.

5. In the superconductivity theory based on the Eliash-
berg equations there are no restrictions of any sort on
the possible values of Tc. A joint analysis of the super-
conductivity equations and the dynamic equations of the
lattice, however, shows that such restrictions actually
do exist and result from the effect of the electron-pho-
non interaction (more precisely, the adiabatic electron-
ion interaction) on the phonon frequencies. Unfortunate-
ly, again in this case we lack a systematic theory at
present which would yield anything approaching rigorous
estimates of the maximum possible values of Tc or
which would predict practical measures for developing
materials with high values of Tc. On the other hand, the
outlook here is quite good because of the development of
methods for microscopic calculations of the electron
and phonon properties of metals.
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