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The elementary effect of induced transition interaction of a moving charge crossing the boundary between
two dielectric half-spaces with the field of a monochromatic wave scattered at this boundary is studied. The
quantitative relation between this effect and the corresponding collective process of excitation of charge
density waves at the same nonuniformity, i. e., the modulation of the flux of charged particles by the field of a
counter-propagating wave, is found. The contribution of the physical phenomena under investigation to the
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1. INTRODUCTION

The purpose of this note is the determination of the
quantitative relation between elementary effects of tran-
sition radiation and absorption by a charge crossing a
sharp boundary between two media in the presence of a
monochromatic wave refracted at this boundary and the
collective effect—the appearance of a modulation in the
originally unmodulated beam passing through the same
boundary in the presence of the counter-propagating
regular wave.

Transition radiation discovered by V. L. Ginzburg and
I. M. Frank more than thirty years ago1 is one of a few
fundamental effects of the interaction of moving charges
with materials. Together with the Vavilov-Cherenkov
radiation and normal and anomalous Doppler radiation
of an oscillator the transition radiation is a part of the
group known in classical physics of optical phenomena
pertaining to uniformly moving radiation source in re-
fractive media.2 The main characteristic features of
this group are that the interactions are brought about by
the long range electromagnetic fields, and the resulting
energy exchange of a charge with a medium is finite
when the mass of the charge approaches infinity. Two
consequences important for applications follow from
this fact. First, a large number of particles of the
medium are within the sphere of action of these fields
and the corresponding radiation intensities are charac-

terized by averaged macroscopic parameters such as
density, temperature and so on. Second, due to the
flow of charged particles there are present simultane-
ously many neighbors in the sphere of action of every
charge. As a result, the radiation of the ensemble of
particles is different from the radiation of an isolated
charge. In particular, there are always present par-
ticles in a nonmodulated beam which radiate in opposite
phase and, therefore, the intensity of spontaneous ra-
diation of such beam is equal to zero (neglecting fluc-
tuations). In contrast, in a beam that has been modu-
lated beforehand the coherent summation of radiation
fields leads to considerable increase of intensity of
radiation of every particle. For example, effective
field strengths of radiation fields of a beam in micro-
wave amplifiers and generators based on the Vavilov-
Cherenkov radiation effect achieve the order of kilo-
volts per centimeter (see Ref. 3,4), i.e., they are nine-
ten orders of magnitude higher than the radiation field
strength for an isolated charge. Thus, the beam and
the medium show their collective characteristics and,
because of that, these interactions are called "coopera-
tive."5'6 It is important that the bunching of particles of
the beam which is necessary for the amplification of
the radiation intensity may be provided by the recipro-
cal influence of the radiation field on the movement of
particles of the beam. In this sense the interaction
process is called induced when the intensity depends
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upon parameters of the radiation field7'8 in contrast
to the spontaneous radiation which does not depend on
these parameters.

The existence of induced emission and absorption ef-
fects was postulated by Einstein in his quantum theory
of interaction of equilibrium radiation with matter.
The corresponding quantitative characteristic of these
processes—the induced transition probability—is pro-
portional to the intensity of the radiation field divided
by the energy of one quantum, i.e., proportional to the
number of photons in the initial state of the field which
induces the radiation of the quantum system (a radia-
tor). Such a state in which values of the energy of the
oscillator-radiator (the number of the initial level) and
energy of the field (the number of photons) are com-
pletely determined corresponds to entirely indefinite
phases of the field and the radiator. The mean values
of the field and the radiator current in this state are
equal to zero. It is important to note that only under
these conditions is the intensity of induced exchange of
energy between the field and the oscillator propor-
tional to the square of the small interaction parameter
(the product of the charge of the radiator and of the
field amplitude, see Ref. 7).

At high levels of excitation of the oscillator and of the
field when the energy change of each of these subsys-
tems caused by radiation or absorption of one quantum
is relatively small, the classical description of the
field and of the radiator states in terms of oscillations
with completely determined amplitudes and phases is
possible. If, besides that, these oscillations are regu-
lar (monochromatic in frequency and their amplitudes
and phases do not change in time), the mean values of
the oscillator field and current in such states are dif-
ferent from zero. The intensity of the energy exchange
of an isolated oscillator with a field in such a classical
system is proportional to the first power of the small
interaction parameter, i.e., linear in charge and field
amplitude. The sign of the effect is determined in this
case by the phase relationship between the charge and
the field.7

Below we shall specifically limit our considerations
to such an energy exchange between moving charges and
the field stimulated by regular fields.

The induced interaction of regular fields with fluxes
of charged particles leading to bunching of these fluxes
into coherent bunches is one of the necessary elements
of the physical mechanism of collective interaction
which produces the formation of beam instabilities.
The important role played by the collective interactions
in applications is caused by the fact that they lead to
the diffusion and heating of the plasma in natural and
artificial systems of its confinement, to the generation
and amplification of microradiowaves, and to the ac-
celeration of charged particles. Therefore, the prob-
lem of the mechanisms governing the relationship be-
tween elementary effects of the spontaneous and stimu-
lated radiation of moving charges and collective wave
processes in charged particles fluxes is continues to
be one of the most important problems in the theory of
collective interactions during many years (see2'9"28).

The understanding of these mechanisms may open the
ways for the development of effective methods of con-
trolling the corresponding wave processes.14'17

Up to present the quantitative relation between char-
acteristics of spontaneous radiation of moving charges
and increments of corresponding beam instabilities was
rigorously determined only for kinetic Cherenkov and
magnetic bremsstrahlung instabilities of relatively low
current beams which have sufficiently broad distribu-
tion functions in velocity space.11'15'19 It was shown that
under these conditions (small flux intensities and large
deviations) the increments are proportional to sums of
the intensities of the separate radiators. The identifi-
cation of hydrodynamic instabilities for which the co-
herent summation of fields of separate particles is im-
portant with corresponding elementary effects is made
mainly by the comparison of the synchronism conditions
for a particle and a field with the conditions at which the
maximum of the increment occurs.3'4'6'10'23

It is natural to expect that the transition radiation of
the moving charges at nonuniformities of a medium may
lead to a collective interaction of the radiation with
charged particle fluxes. It is necessary, however, to
understand its special features in comparison with the
Cherenkov and magnetic bremsstrahlung radiation.1'
Indeed, the presence of an electrodynamical nonuni-
formity of the medium is a necessary condition for the
generation of transition radiation, while Cherenkov
radiation, for example, can occur also in a uniform di-
electric, and magnetic bremsstrahlung occurs in a uni-
form magnetic field. Furthermore, due to the condi-
tions of its generation, the transition radiation of one
particle is always pulsed (it exists for a finite time)
and, therefore, its intensity is characterized by total
energy losses of a radiator at a given nonuniformity
while the intensity of the Cherenkov and magnetic
bremsstrahlung radiation are determined uniquely by
losses of the particle energy per unit length of its path.
Finally, due to absence of synchronism between the
field and the moving charge, the transition radiation of
the beam may be coherent only within the limits of the
bunch of radiating particles. The spatial summation
of fields of the periodic sequence of bunches which is
characteristic for the Cherenkov and magnetic brems-
strahlung effects does not occur in the case of transi-
tion radiation.2'

Due to the special features of the transition radiation
mentioned above, its role in the processes of collec-
tive interaction of charged particle fluxes continued to
be unclear for a long time. In theoretical and experi-
mental studies of the elementary transition radiation
effect all attention was focussed only on spontaneous
radiation. The problem of induced interaction for regu-
lar fields was not considered (see Ref. 26). In the pres-
ent note we shall describe quantitatively the effect of the

''The results of the studies of characteristics of spontaneous
transition radiation can be found in the monograph of Ref.
28 and in reviews of Refs. 2, 29-33.

2'The importance of the coherence of the transition radiation
for applications was noted by V. I. Veksler.34
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stimulated transition interaction of a moving charge
with the field of a regular wave at a step-like nonuni-
formity of electrodynamical properties of the medium
and consider the connection of this effect with the col-
lective wave process, the transformation of a regular
charge density wave in spatially nonuniform media.

2. INFLUENCE OF A REGULAR WAVE ON A
CHARGE IN THE PROCESS OF ITS TRANSITION FROM
FROM ONE MEDIUM INTO ANOTHER

In this section we shall determine the change of the
energy of a charge A#' after passing through a step-
like boundary between two media in the given field of an
£-polarized wave refracted at this boundary according
to the Fresnel law.

In the general case the influence of the field on the
process of interaction of a charge with a medium may
occur through two channels: through a change of di-
electric properties of the medium under the influence
of the field and (or) through a change of the radiator
characteristics (see Refs. 14,17,19). Later in our dis-
cussion we shall neglect the first of these effects, as-
suming that the stimulating fields are relatively weak.
The most important result of the influence of the field
on the charge motion in the case of regular fields con-
sidered by us is the change of the translational charge
movement and corresponding deviation of its trajec-
tory from the trajectory unperturbed by the field (re-
tardation or acceleration together with the proper polar-
ization field of the charge). We do not take into account
the effect of the reciprocal influence of the spontaneous
radiation field on the charge movement, as well as the
bremsstrahlung of the charge in the wave field, be-
cause they are proportional to the square of the small
parameter r0/X (r0=e2/mc2 is the classical radius of
a radiator, X is the characteristic wavelength).

It is necessary to simplify as much as possible the
mathematical model for the analytical description of
characteristics of this phenomenon without changing its
essential features. With this purpose in mind we shall
consider the following assumptions to hold:

1. Electrodynamic properties of the medium in which
the exchange of energy between the field and moving
charges occurs change along the trajectory of these
charges only once and by a step (one transition between
two homogeneous semi-infinite media).

2. The energy exchange is stimulated only by waves
with polarizations which are contained in the spectra of
the spontaneous transition radiation of corresponding
moving charges at the same inhomogeneities.

3. In absence of high frequency fields the moving
charge crosses the boundary between dielectrics along
the normal to the boundary surface from left to right.

4. The external waves are regular (monochromatic),
are characterized by fixed phases and are incident on
the boundary from the right.

These assumptions allow us to consider only the pro-
cesses of interaction of charged particles (or of their

fluxes) with fields of regular £-waves scattered in
anisotropic (nongyrotropic) dielectric media with
step-like nonuniformities of their parameters. The
intensity of the corresponding energy exchange of the
moving charge with the field is linear in the amplitude
of the field, and the sign of the effect depends substan-
tially on the phase of this field.7 The results obtained
in this way can be used in many cases for calculation
of mean square characteristics in fields with random
phases. For example, the dielectric permittivity of
the medium determined by the regular field uniquely
determines also the field fluctuations in this medium,
according to the Callen-Velton theorem (see Ref. 7, 28).

Thus, let a charge q with mass m move along the
positive direction of the z-axis in a medium filled with
the transparent piecewise-uniform anisotropic dielec-
tric [s" = 6(z< 0)#e* = ?(z> 0)] in the field of a plane E-
wave coming from plus infinity. The charge has the
velocity V0 far from the boundary (z — °°) where the
radiation field is absent. We consider the dielectrics
£* being transparent for the moving charge. The above
mentioned conditions may be most completely fulfilled
in a plasma with a step-like nonuniform density placed
in a strong external magnetic field parallel to the
charge trajectory. In this case the tensor S has the
especially simple form4'6:

I
o o

0 e± 0

0 0

Such plasma is used in experiments both for the trans-
port of intense charged particle beams as well as a re-
tarding medium providing the synchronism of the beam
particles with the radiation emitted (absorbed) by
them.3-5'10-14-17'47-48 Because of this we consider an
anisotropic dielectric, the transition to the correspon-
ding isotropic dielectric being trivial. The necessary
decrease of ionization losses can be provided by the
channel the radius of which R must be large in com-
parison with the characteristic size A of the localiza-
tion region of dielectric polarization fields: fl»A.

The distribution of the wave field in the system is de-
termined by the well-known formulas

E exp( i& + z) . z>0.

Ka)

where -RB and TB are respectively the Fresnel coeffi-
cients of reflection and transmission for an £-wave:

Kc)

The change of the charge energy A^'(T; f0) induced by
the field (1) after passage through the inhomogeneity
may be determined from the first integral of the
Lagrange equation for the motion of this charge

) = -£- {E(T, J0) + A[ („), H(r , (2)

622 Sov. Phys. Usp. 25(8), Aug. 1982 S. S. Kalmykova 622



where VL(T, f0) is the sought speed of the particle on
the trajectory determined by the values of fields (1)
at this trajectory with the initial condition VL(T
= - °°, ;0) = V0 and with the boundary condition VL(T
= + 0, / f 0 ) = V L ( T = _ 0 , ta) (r = t- ta is the proper time of a
charge, ta is the Euler time of the charge crossing the
nonuniformity at the plane z =0). Integrating Eq. (2) in
the first order approximation with respect to the small
interaction parameter ji =qEQk.[-m(u> - fc.Vo)2!'1 « 1, we
find the speed VL(T, t0) and the energy change

where

5;nc(T, ta, -/,
d|(0_ (fc+)|COS Q(0

• |~<o (1 - p'el) (ej. - et,) -i- fc.P>i: (1 - ^f- ) ]

(3)

"ol, (3a)

(3b)

(3c)

^0 = kj_H0/k0ta is the amplitude of the electric compo-
nent of the incident wave normal to the boundary plane.

The dynamics of the formation of the charge energy
change stimulated by the field is especially clear in the
case when the left medium is a conductor (c~ < 0, |e,~ |

n <o_ (ft+) cos [co_ (4+) T — o>£0] — 2o>

(4)

As can be seen from this, the charge energy perturba-
tion by the field of the wave increases from zero at the
entrance to the dielectric (T = 0) to the sum of two os-
cillating and one constant terms at T > L,/V0. It is im-
portant for the further discussion, that the characteris-
tic distance Lt, at which the formation of the constant
term in the right side of Eq. (4) occurs, is precisely
equal to the length of the formation of the spontaneous
transition radiation field of the given current modu-
lated at the frequency u: L. = V0/\ u,_(fcj |.35-32

Let us consider the physical meaning of these results.
The first two terms in the right sides of Eqs. (3) and
(4) describe the oscillations of the particle energy in
the fields of the incident (+) and reflected (-) waves.
Such oscillations could also take place in an infinite
dielectric at the same fields (1). The last terms in
Eqs. (3) and (4) do not depend on time, and, therefore,
they describe the change of the kinetic energy of the
charge after crossing the nonuniformity.

The physical origin of this change is determined by
its dependence on the parameters of the particles, the
field and the medium.

Thus, the linear dependence on the field amplitude
and on the particle charge and also the dependence on
the phase of the field, <p = ut0, show that these terms
independent of time T describe the change of the charge
energy stimulated by the field (I).7

Moreover, this part of the charge losses can be con-
sidered as caused by transition interaction of the
charge with the wave field, because of a number of
other features:

(a) becoming zero as the difference of dielectric per-
mittivities approaches zero fsee Eq. 3(b)];

(b) the absence of synchronism between the charge and
the field characteristic of Cherenkov radiation as a
necessary condition for the energy exchange;

(c) the absence of dependence on the mass of the
charge (see Ref. 33):

(d) the coincidence of the characteristic size of the
region of the formation of losses with the length L. of
the formation of the field of the spontaneous transition
radiation of the modulated current; this part of the en-
ergy lost by the charge should be regarded as being
caused its transition interaction with the field of the
wave.

Therefore, according to all the features listed above,
the energy exchange of the charge with the wave field
must be considered as the stimulated transition re-
tardation (Af,'am < 0) or acceleration (&$'lmlls > 0).

It is necessary to mention especially the fact that,
due to the law of energy conservation in the system,
the energy increase occurs at retardation (A8?t*rans < 0)
of the charge by the wave field and the energy de-
crease occurs at acceleration (A#t'rans >0).

The physical mechanism of the energy exchange be-
tween the beam and the field in the system under con-
sideration can be made more clear by means of an
analogy between the movement of a charge in the field
of a reflected wave only and the rotation of a mathe-
matical pendulum. This analogy is based on the identity
of the equations for pendulum movement and charge
movement in the coordinate system connected with the
wave:

if+ Q2sirn|- = (4a)

As it follows from this equation, the processes of the
charge retardation and acceleration stimulated by the
field are periodically exchanged (the corresponding
pendulum rotates around the point of suspension with-
out change of the rotation sign). It is necessary to
"switch off" the field at the moment when the energy
change of the charge (pendulum) stimulated by the field
is minimum or maximum in order for the result of such
exchange to be finite. This problem is solved by using
drift tubes36 in ion accelerators and by limiting the re-
gion of the field concentration in beam microwave gen-
erators.37 The effects of interaction of moving charges
with periodically nonuniform dielectric media38'39 and
the effects of the radiation diffraction at the periodic
boundary nonuniformities (similar to the Smith-Purcell
effect, see Ref. 31) are based on the same principle.

The fact that the screening of the field which is neces-
sary for the effective energy exchange between the
moving charge and the field can occur only when the
spatial uniformity of electrodynamical properties of the
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medium is destroyed is most essential for our problem.
This nonuniformity follows from the initial conditions
in the case of the mathematical pendulum and of the
charge in the field of the reflected wave described by
the Eq. (4a). The charge energy mV%/2 unperturbed by
the field and its phase <P at the entrance into the field
are respectively similar to the energy of the initial
stroke and to the initial phase of pendulum oscillations,
and the stimulated transition retardation and accelera-
tion [Eq. 2(a)] are similar to the additional average
kinetic energy which the pendulum acquires due to
(positive or negative) elevation over the horizontal
plane passing through the rotation axis. Such an analogy
makes it possible, in particular, to explain why the
maximum of the amplitude of the average energy change
at the transition stimulated by the field (1) is achieved
when the phases of the rise are integral multiples of ir.
It is specifically in this case that the increase of the
charge energy preceding the change of sign of the field
is a maximum:

Such initial conditions for the pendulum correspond to
the beginning of the motion from the upper or lower
equilibrium position, when the amplitude of its rise
above the horizontal plane passing through the rotation
axis is maximum.

It is necessary to note in conclusion of this section
that in the right side of Eq. (2), we practically did not
consider the influence of the spontaneous transition
radiation fields on the charge movement in the external
wave field (1). This approximation corresponds to the
assumption that the effects caused by the spontaneous
radiation (the renormalization of the charge mass
amongst them32) which are proportional to q2 are small
in comparison with the effects of the stimulated inter-
action of the charge with the external field which are
proportional to qE0Lt.

3. INDUCED TRANSITION RADIATION OF A
NONMODULATED BEAM OF CHARGED PARTICLES

The purpose of this section is the calculation and
analysis of the expression for the time-averaged energy
flux OP'B of the radiation induced by the external Fres-
nel field (1) from the nonmodulated beam which is
crossing a sharp boundary between two media.

The periodic dependence of the sign of the transition
losses of the charge energy stimulated by the field (1)
on the field phase at the moment of crossing the non-
uniformity <j)t0 shows that the particles of the nonmodu-
lated beam which differ in phases will be retarded or
accelerated by the field (1) on passing through the same
boundary in a manner analogous to grid of klystron
bunching. As a result, the beam will become modulated
in density after passage through the nonuniformity, and
the field of the wave reflected by the nonuniformity will
be enhanced or reduced by the transition radiation of
beam particles stimulated by this field. The quantita-
tive analytical description of the dependence of the
modulation intensity of the beam on the external pa-

rameters of the system (the amplitude and the frequency
of the field, the current and the energy of the beam and
also the amplitude of the dielectric permittivity jump of
the medium) may be obtained using the following simpli-
fied physical model of such a modulator.

A monoenergetic beam of charged particles of uniform
density N0 propagates with equilibrium velocity K0 along
the axis of a sectionally uniform anisotropic dielectric
placed along a strong magnetic field (the presence of
the strong magnetic field allows one to leave out of
consideration transverse deflecting forces acting on
the beam and to limit consideration to the one-dimen-
sional movement of beam particles along this field).
The medium is an anisotropic dielectric transparent
for beam particles the dielectric properties of which
have a discontinuity in the plane z = 0. The beam ap-
proaches this plane from the left and the modulating
.E-wave (l) arrives from the right.

The intensity of the energy exchange between the beam
and the field in the system under consideration charac-
terizes the energy flux extracted by the field from the
beam. In principle, this flux can be calculated by
summing the energy losses of every particle in the
beam, i.e., by phase averaging all these losses over
the phases <P = ut0 of beam particles entering the medi-
um on the right (see Appendix 1). In the case of low
currents (N0~0) it is simpler to use for this purpose
the method of a given field and to describe the influence
of this field on the beam by hydrodynamic (Euler) vari-
ables for beam particles. Under these conditions, the
influence of the beam on the wave field is unimportant
and it may be considered as being the same as in the
absence of the beam [see Eq. (1)]. The corresponding
expression averaged over a field period for the energy
flux of the radiation from the beam particles induced by
the external field and determined by the work of the
field (1) on the flux of charged particles is, in the gen-
eral case, a complex function of system parameters
(see Appendix 2). Independently of specific values of
these parameters, the intensity of the energy exchange
between the beam and the field is identically zero in
the half-space from which the beam emerges and is
proportional to the density of the field energy and to
the density of the flux of beam particles; it becomes
zero when the discontinuity in E approaches zero and
depends also on the distance traversed by the beam
after the discontinuity (z = 0):

6P;,(z)==i(Re{- j dzV,(z, z', t)El(x, z', t)})

0, z<0,
F ( z ) , z>0;

(4b)

where E, is the longitudinal component of the field (1),
/, is the perturbation of the beam current stimulated by
the field, P0 is the density of the energy flux of the in-
cident wave

F(z) is a complex function of the coordinate z (see Ap-
pendix 2).
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The right side of Eq. (4b) is most simple when the
medium on the left (z < 0) is a conductor (\^\~x, 5,7 < 0),
and the speed of beam particles V0 is comparable to the
phase speed of the reflected wave ( |&_[ « A,), so that
the interaction of the beam with this wave becomes
dominant:

k><»bf*

where wb is the plasma frequence of the beam:
(4c)

As can be seen from Eq. (4c), the stimulated energy
exchange of the nonmodulated flux with the field of the
wave travelling in the opposite direction changes sign
passing through zero at the point of the Cherenkov
synchronism of beam particles with this wave (A_ = 0).
The corresponding energy losses of beam particles os-
cillate, as functions of the coordinate z, growing linear-
ly in amplitude, the characteristic period being of the
order of the length of the formation of the spontaneous
radiation field of the current modulated at the wave fre-
quency at: L,= [&_ "1.

It should be noted that the method of the given field
was developed more than forty years ago in Ref. 40
where for the first time an expression proportional to
the right side of Eq. (4c) was obtained for the beam in-
crement of the axially uniform oscillations of a resona-
tor. At present the method of the given field is widely
used in theoretical microwave electronics and leads to
expressions for beam conductivity of a resonator with
conducting walls proportional to the right side of Eq.
(4C)-18. 20,22,41

But the problem of the physical processes underlying
the energy exchange between the beam and the field de-
scribed by Eq. (4c) has not yet been considered. An
analysis of this problem using the results obtained above
allows one to interpret uniquely the flux 5P£(z) deter-
mined by the Eq. (4c) as a result of the induced transi-
tion interaction of the beam with the field.

Indeed, it follows from Eq. (4c) that the interaction of
the beam with the field takes place with arbitrary values
of the parameters r* including the case when the condi-
tions for the Cherenkov radiation of beam particles are
not satisfied in either of the two uniform half- spaces
(zSO) . It means that the interaction considered is not
a Cherenkov radiation (this question is discussed in
more details in section 4).

Moreover, the intensity of this interaction becomes
zero when either the difference (5*-e~) approaches
zero (i.e., R?. — 0) or the energy flux of the incident
wave P0 approaches zero.

Further, independently of the discontinuity in £ and of
the wave parameters this intensity is identically equal to
zero in the region z < 0, where there is no nonuniformity
in the medium (see appendix 2).

The elementary mechanism of the modulation of the
beam by the wave field leading to the interaction (4c)
different from zero is uniquely related to retardation
and acceleration of beam particles by the field (1). This
conclusion follows from the analysis of the origin of

different terms in the right side of Eq. (4c) by the La-
grange variable method (see appendix 1). Under these
conditions, the only sources of the contribution of the
beam to the energy change of the reflected wave are
perturbations of trajectories of the beam particles by
the field (l) which are caused, as well as in the case
(3c), by the presence of the nonuniformity in the medium
(the initial conditions for the trajectories of beam par-
ticles in the plane 2 = 0).

The right side of Eq. (4c) becomes zero at the point of
the Cherenkov resonance in the right half-space (z > 0,
A_ = 0) where the intensity of the Cherenkov interaction
of a specific charge with the reflected wave field is
maximum. This means that the Cherenkov interaction
of the beam with the field (1) does not occur under the
conditions considered.

Therefore, the set of properties enumerated above of
the energy exchange between the beam and the field al-
lows one to define it uniquely as a consequence of the
induced transition interaction of the beam with the field
of a regular wave.

The existence of the relationship between the spatial
distribution and the intensity of the induced transition
radiation of the unmodulated beam (4c) and the corre-
sponding characteristics of the spontaneous transition
radiation of the given modulated current

(5a)

of the same intensity (j-=rjN0V0) and with the same non-
uniformity of the medium is the proof of the reliability
of this conclusion. Indeed, the density of the field ener-
gy flux excited by the current (5a) is

(5b)
where Ef is the total field of the current (5a) in the re-
gion z > 0.

It follows, hence, that the right sides of Eqs. (4c) and
(5b) are related by the relation

(6 a)

Dividing both parts of Eq. (6a) by the density of the par-
ticle flux of the beam (N0V0), we obtain the relation be-
tween induced and spontaneous losses of a specific
charge under the considered conditions

The dimensionless factor on the right side of the Eq.
(6b) is substantially larger than one (H2

0»2vN0mVl, see
Ref. 42) in the considered approximation (JV0 — 0), from
which it follows that the intensity of the induced radia-
tion of a specific charge (at equal flux densities) is con-
siderably larger than its spontaneous radiation inten-
sity.

Thus, due to the transition interaction of every par-
ticle with the field of a regular wave described by the
energy change Ag",',^ in the presence of a discontinuity
in the dielectric permittivity, the initially unmodulated
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flux of charged particles passing across this discontin-
uity acquires perturbations of the equilibrium density
N0 and of the velocity V0 which are the cause of the en-
ergy flux of induced radiation (absorption) with an av-
erage value different from zero on the right side from
the discontinuity [Eq. (4b) and in a simplified form
Eq. (4c)]. Induced losses per particle in this case are
considerably larger than spontaneous losses for equal
equilibrium fluxes N0V0.

The two approaches to the calculation of these losses —
the summation of transition energy losses of the sepa-
rate charges A#t'rans (in Lagrange variables) and the
calculation of the work of the field on the particle flux
crossing the same boundary between two media (in
Euler variables) give the same result.

4. RECIPROCAL TRANSFORMATION OF REGULAR
WAVES AT A STEP-LIKE NONUNIFORMITY OF A
DIELECTRIC IN THE PRESENCE OF A FLUX OF
CHARGED PARTICLES

The energy flux of the induced transition radiation of
beam particles (4b), determined by the work of the
field on the beam, grows linearly with the coordinate z.
It means that the assumption of the small influence of
the beam on the field (1) on which the derivation of the
formula (4c) is based is justified only at relatively
small distances from the discontinuity limited by the
inequality |-F(2)|«1. It is necessary to reject the meth-
od of the given field in the problem discussed above in
order to describe correctly the interaction of the beam
with the field of the counter- propagating wave in the
whole region z > 0. Therefore, the purpose of this sec-
tion is to obtain an expression for the energy flux of the
transition radiation of the originally unmodulated beam
taking into account the reciprocal influence of the beam
and of the field of the counter- propagating incident
wave as well as of the fields of the waves excited at the
nonuniformity, i.e., to obtain this expression by means
of a self- consistent theory. A self- consistent theory
allows one to reject the assumption of the smallness of
the equilibrium particle flux (W0 — 0), to take into ac-
count, using the wave approach, the high frequency
polarization fields of this flux (collective fields of
bunches formed by beam particles) and to consider the
possibility of the Cherenkov amplification of these fields
in the medium volume. Moreover, the self-consistent
theory allows one to establish limits of applicability of
the approximation of the given (unaltered by the beam)
field of the external wave. This more general approach :
based on a self-consistent description of the dynamics
of interaction of the radiation field with the monoener-
getic flux of charged particles is described below.

In each spatially uniform part of the medium we
represent the solutions of the self-consistent system of
the equations of motion, i.e., the continuity equations
for the beam particles and the Maxwell equations for
the field as a superposition of plane waves of the type

trivial solutions of the system of algebraic equations for
the Ea coefficients which is obtained from the initial
system of equations for each dielectric. In the case
under consideration of an anisotropic dielectric and a
magnetized beam the equation for ka

(7b)

has four solutions (for every fixed k^ ). Two of them
approach the constant k,, = u/Va and describe waves of
the charge density of the beam when the beam density
approaches zero (w| — 0). The other two solutions cor-
respond to quasitransverse waves of the system (modi-
fied by the presence of the beam) which may also exist
in the absence of the beam.

In such a self- consistent approach each of the partial
waves (7a) propagates along the uniform dielectric in-
dependently of the others. Interaction between these
waves can take place only in the presence of a nonuni-
formity at which the nonelastic scattering of these
waves occurs. Such scattering causes a transformation
of the wave approaching the nonuniformity into the
waves receding from this nonuniformity. The deter-
mination of the scattering intensity consists of the cal-
culation of amplitudes of waves receding from the non-
uniformity using the known amplitudes of arriving
waves.20 At low beam currents the charge density
waves can propagate only along the flux of beam par-
ticles.43 Because of this, beam waves in our problem
are incoming in the left semi-infinite dielectric ( z<0)
and outgoing in the right dielectric (z > 0).

Analytical calculations of amplitudes of the proper
waves of the system receding from the discontinuity
are most simple in the limiting case when the left di-
electric (z< 0) is a conductor (|E~ |— °°), the right one
is filled by magnetized plasma Ls* = l, e,T = 1 - (W£A°2)],
and the system parameters in general are such that the
there is no Cherenkov amplification of the slow charge
density wave in the dielectric volume (£„< k* = kL
x Vel/ |e| I) . In this case all proper waves of the system are
propagating (Im£a =0), and their amplitudes are uniquely
determined by the boundary conditions at the end z = 0.
These conditions consist of the requirements that the
tangential component of the total electric field should
become zero (-k"x = 0) and also that there should be no
perturbations of the density and of the speed of the beam
stimulated by high frequency fields (N=N-N0= V = V
- V0 = 0). -A'1 'ne aforementioned quantities can be
easily found knowing one of them from the initial sys-
tem of equations, for example, knowing the amplitude
of the magnetic field H0 of the incident wave:
H v (x, z > 0, t) — //„ oxp ( — iutt + ik±x)

)=^, £aexp[ — l ifca(co) (7a)

The longitudinal wave numbers of these waves fea(w)
are determined from the conditions for the absence of

(7c)
where ka (co) are the solutions of Eq. (7b) which are the
fast charge density wave (« = 1), the slow charge density
wave (a = 2), the direct electromagnetic wave (« = 3) and
the counter-propagating electromagnetic wave (« = 4)
which is an incident wave in this case. The components
Sa4 of the scattering matrix of the counter-propagating
wave (4) at the end of a waveguide where the beam en-
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ters the interaction region that are determined by the
boundary conditions at this end and the corresponding
general expression for the energy flux of reflected
waves are given in Appendix 3.

In the limiting case of low currents of the beam, the
asymptotic forms of these matrices are equal to (c*
=E, , , e^sej

°i-^-. -,-fr^r- **-'-!£-• (80

r = [EH- t.*^)]'1.

The asymptotic expression for the energy flux of the
transition radiation of the beam for low currents is

^p- s i n O , s i n O , } , (9)(1 - cos 0, cos (I,) j- 'Sfinr
1/-- ^

0,= (*„ - ^-y^l

At small distances from the boundary (6, << 1) this ex-
pression coincides with the corresponding result (4b)
obtained by the method of the given field. Hence it fol-
lows that the method of the given field is applicable in
the region of small distances from the boundary, z

2b Vic,, IA«!AJ , where the beam particles
do not participate in the oscillatory movement under
the influence of the Coulomb charge of the beam. At
large distances from the boundary these oscillations
must be taken into account and the self-consistent ap-
proach is necessary for the correct description.

The self- consistent theory proves also that the collec-
tive process of the transformation of the counter-
propagating wave at the nonuniformity of the nonequilib-
rium dielectric with a propagating beam considered by
us is different in principle from the Cherenkov ampli-
fication of charge density waves in the volume of this
dielectric. In order to show this, it is sufficient to
compare the conditions for the volume Cherenkov radi-
ation and for the surface transition radiation in the sys-
tem under consideration. Indeed, it follows from the
self-consistent equation of the spectrum (7b), in the
simplest non-relativistic case (0osi«l) that the
Cherenkov amplification of the slow charge density
wave (1 = 2) takes place in the region V0< V, = u>/kt,

and is absent [(WB - k2V0)
2 > 0] in the region V0> V.. The

result of the transition interaction of the beam with the
field of the counter-propagating wave in the region of
the first maximum of the right sides of Eqs. (4c) and
(9) (z ~ z1 = 4.5L,) is completely different under the
same conditions: the amplification (6P£ >0) is ob-
served for V0 > V..

Thus, the conditions for the volume Cherenkov radia-
tion and the surface transition radiation are incompati-

ble,3 and hence it follows that the induced Cherenkov
interaction between the field and the beam can not be
responsible for the energy flux increase of the counter-
propagating wave given by Eqs. (4b) and (9).

5. CONCLUSION

It follows from the above discussion that the applica-
tion range of the transition radiation is sufficiently
large.41 In particular, this interaction is responsible
for self-excitation of those auto-oscillating sys-
tems20'24'40-41'48 in which the beam both enters and
leaves its interaction region with the electromagnetic
field—the resonator cavity. From the point of view of
the possibility of generation by the beam of high fre-
quency fields by means of transition radiation, this
resonator performs the following most important func-
tions.

a) On the beam entering the cavity its modulation by
the field of the counter-propagating wave is produced
by means of the induced transition interaction, i.e.,
feedback between the beam and the field occurs.

b) At the exit from the resonator an increase in the
field amplitude due to the spontaneous transition radia-
tion of the bunches formed by beam particles occurs
when the feedback is positive,

c) In the volume of the resonator accumulation of en-
ergy of the field occurs as a result of coherent summa-
tion of radiation fields of a large number of passing
bunches of the beam.

These processes lead to self-excitation of oscillations
in autogenerators even in the absence of synchronism
conditions for the beam and the radiation field. The
corresponding increment is proportional to the right
side of Eqs. (4b) and (9). It is necessary to emphasize
especially that the increments of the absolute instabili-
ties caused by the transition interaction depend linearly
on the beam current in the limiting case of low cur-
rents, independently of the conditions for the Cherenkov
synchronism of beam particles in the volume of the
resonator. And only when the dimensions of the system
are comparable with the Cherenkov relaxation length of
the beam in an infinite system these increments are
proportional to the cube root of the beam current.24 In
the presence as well as in the absence of this synchro-
nism, the induced transition interaction of the beam
with the field at the entrance end of the resonator is
necessary for the existence of feedback in auto-oscil-
lating systems.20'24'47 In the absence of this interaction
the induced radiation of beam particles in the volume of
the resonator structure leads only to the spatial growth

3'lt is easy to show that this conclusion is correct also for
the case of an isotropic dielectric in which the Cherenkov
amplification is observed in the region 1 </3§e< 1 +k]yl/u2,
and the surface radiation at /3§E> 1 +k\vl/b?.

^Apparently, the effect of the induced transition absorption
of the regular field by the beam was observed in the "most
pure" form in the experiments on the modulation of the
beam by the field of light waves in thin transparent dielec-
tric films (see Refs. 44, 45).

627 Sov. Phys. Usp. 25(8), Aug. 1982 S. S. Kalmykova 627



(amplification) of the field amplitude of the correspon-
ding charge density wave of the beam.5'

Thus, in addition to the diagnostics of relativistic
charged particles27"32 and to the energy dissipation of
waves with a finite amplitude in a collision-free plas-
ma19'32, the transition radiation provides also collec-
tive energy exchange between charged particles fluxes
and the electromagnetic radiation, which causes the
generation of the transition radiation.

The author is grateful to B. M. Bolotovskii, V. I.
Kurilko, and Ya. B. Fainberg for a discussion of the
results and to V. N. Tsytovich for stimulating critical
remarks on the physical aspects of the problem and on
the text.

APPENDICES

1. Power losses in Lagrange variables

The perturbation of the beam current in Eq. (4) stimu-
lated by the field (1) is determined in Euler variables
from the hydrodynamic equations of motion and con-
tinuity for beam particles which in the case under con-
sideration (magnetized beam) are

dz

iV

(Al.l)

Solving these equations with continuity conditions at
the discontinuity in the dielectric (z = 0) and zero condi-
tions as z — — °° we obtain the expression for the per-
turbation of the density of the current j = q(N0V +
stimulated by the field:

m ° e+ V$

1 —e.\p[ —iA+CfcJ

+ 'Z ( e-j At ((c_) " A+ (ft+) ' A- (fc+) / / '

A± (Ac,) s k, ± *„, J

(A1.2)

from which follows the increment of the field energy
flux (4c).

The motion of beam particles in the Lagrange descrip-
tion is given by the equations

IF'1' -^r=~vL. -L5T"=ir(E+TlvL-HJ)' (A1.3a)

which are characteristics of the Vlasov kinetic equation
(see Ref. 50)

dt dr m \ c ' / 0V \AL.dU)

5)The last statement refers only to autogenerators with ex-
ternal beam injection. Absolute instabilities can develop
without participation of the transition radiation in spatially
periodical fluxes similar to relativistic rings in a magnetic
field.48 The feedback is provided in this case by the corre-
sponding induced magnetic bremsstrahlung absorption of the
beam radiation field in the interaction region.18 •25 •2 6

The trajectories-characteristics differ from each
other by the values of entrance parameters of beam
particles (time of entrance t0, entrance velocities V0,
radial ra and azimuthal 90 coordinates). The combina-
tion of these characteristics describes the beam, with
the number of particles being conserved according to
Eq. (A1.3b) along each characteristic:

d« (<!>„) = J (.!.„) ,!*„,

cl'fo as d V, dJ0r0 dr0 de0; (Al.Sc)

where </($0) is the flux density of beam particles at the
entrance into the interaction region which is a function
of entrance parameters. The density of the beam cur-
rent is uniquely determined by the Lagrange trajectories
of beam partiHps50 (A1.3a)

i(t, 0 ̂  "M "||/("||. r- ' > c l » > "'/ \ "it A'n \ d'l>0/('l'0)6(r— R|J6(V— HL).

(A1.4)
Substitution of this current into the right side of Eq.
(4a) taking into account that in our problem the beam is
monoenergetic and uniform in the cross section plane,

1 Wo) = /.6 (v, - Va), /„ - </,V0F0,

gives us the explicit dependence of the increment of the
radiation energy flux stimulated by the field on the
velocity V0 and the density N0 of beam particles and
also on the time of entrance of these particles into the
interaction volume

6PH=-

(A1.5)

where AL and i^ denote respectively the perturbation of
the Lagrange trajectory of a particle stimulated by the
field:

ilk lfaJa (A- r0) I I I I

-
I I I

TMM ; IMM J c"f 0>'"

(A1.6)
and the corresponding rate (AL =

Integration on the right side of Eq. (A1.5) gives a re-
sult coincident with the result obtained in the hydro-
dynamic approximation [see Eq. (4c)] in the limit of
flat geometry. The main advantage of the kinetic ap-
proach in this case is that the important role of the
boundary in the energy exchange between the beam and
the field is especially clearly seen in this form of
representation of Eq. (4c). In fact, the contribution to
the right side of Eq. (Al.5) different from zero is given
only by those terms in Eq. (Al.6) which are due to the
presence of the boundary. The term on the right side
of Eq. (A 1,6) growing linearly with * and describing the
displacement of a beam particle in relation to its en-
trance phase caused by induced transition interaction
with the wave field (see section 2) gives the main posi-
tive contribution to the flux (4c) — the first term
( A _ ? s i n A _ z) and half of the second term (1 - cos A. z).
The second half of the term proportional to (1 - cosA_z)
in Eq. (4c) originates from the terms on the right side
of Eq. (Al.6) which do not depend on T. The terms in
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Eq. (A1.6) oscillating with the time T and describing os-
cillations of a charge in the fields of direct and counter-
propagating waves in the dielectric volume do not give
any contribution to the expression for the average ener-
gy flux of the induced radiation from the beam par-
ticles.

2. Calculation of losses of an unmodulated beam at a
density discontinuity in an anisotropic dielectric in the
field of a Fresnel E wave

Let an unmodulated beam with equilibrium values of
the density N0 and of the velocity V0 cross the boundary
between two half-spaces of anisotropic dielectrics in
the field of the wave (1). Let us calculate the energy
losses of the beam particles induced by the field
neglecting the influence of proper polarization fields
of the beam on the dispersion and the wave field pattern
in the case of low values of the beam current. The
change of the energy flux through a unit area is given by
Eq. (4b). Inserting the current density 7" from (A1.2)
we obtain

(A2.1)

where F(z) is

. (Ay) s -1 / I I

.. (*«) I e-, A2
f (*-_) "" ej A? (*+)

ros A. ( ty)z — I

A- (*,)

J < ' ^E , (?E \
' I E-j AJ (*_) ft. A? (A-,) E| A! (A-J r B| A_ (AJ /

, fl|;(cos2A+3—1) / 1 L_i • z s i l i a t(A*) =
' 6t 2 ) t+ I A! (A-») A| («O j ' e|| At (A-t) *•

h\ tj I • ^ K . . - A 11- \ \ /?, \ J

(A2.2)

3. Derivation of the scattering matrix and the energy flux
leaving the boundary between an anisotropic dielectric
and a conductor

The wave with the known amplitude ffl°c = H0 exp(- i«f
+ iktz + iki z) is incident on the boundary (z = 0) between
an anisotropic dielectric and a conductor. Emerging
from the conducting half-space is an unmodulated beam
in which the incident wave excites charge density waves
and a reflected wave. Let us determine the amplitudes
of all the waves excited at the dielectric-conductor
boundary and the energy flux leaving this boundary.

We introduce the notation

i ctj o - 1 \ ~r o T *•_!_ M \A»3« J. /

where ka (a = 1, 2, 3; 4 is for the incident wave) satisfy
the dispersion equation (7b). Requiring equality to zero
of the electric field component E, tangent to the surface
of the conductor and of the high frequency perturbations
of the velocity and of the density of the beam at the di-
electric-conductor boundary, we obtain from the sys-
tem of inhomogeneous equations for the coefficients Sat

from which we find

A-,- t.

—

, — k,) e , (k, — A-,) c.;

(A3.2a)

(A3.2b)

(A3.2c)

The energy flux leaving the boundary normalized to
the energy flux of the incident wave can be expressed
through the components of the matrix Sa4 in the fol-
lowing manner:

M ^ S ^ ^ K — < * . - * , > . i

+ 2- (A3.3)

In the limiting case of low currents we find asymptotic
values of the wave numbers

(A3.4a)

(A3.4b)

Substituting Eq. (A3. 4) into Eqs. (A3. 2) and (A3. 3) we
obtain formulas (8) and (9).

*V. L. Ginzburg and I. M. Frank, Zh. Eksp. Teor. FIz. 16, 15
(1946).

2I. M. Frank, Usp. Fiz. Nauk 68, 397 (1959) [Sov. Phys. Usp.
131,702. (I960)].

3A. N. Didenko, V. P. Grigor'ev and Yu. P. Usov, Mochshnye
elektronnye puchki i ikh primenenie (High Energy Electron
Beams and Their Applications) Atomizdat, M. 1977 .̂

4A. A. Rukhadze, L. S. Bogdankevich, S. E. Rosinskii and V.
G. Rukhlin, Fizika sil'notochnykh puchkov (Physics of High
Current Electron Beams) Atomizdat, M. 1980.

5 Proceedings of the Second United Nations International Con-
ference on the Peaceful Uses of Atomic Energy, United
Nations Publication, 1958 Papers presented by Soviet
scientists. (In Russian. Izd. GUIAE, M. 1959, t.l)

6B. B. Kadomtsev, Kollectivnye yavleniya v plazme (Coopera-
tive Phenomena in Plasma) Nauka, M. 1976.

7V. M. Fain and Ya. I. Khanin, Kvantovaya radiofizika (Quan-
tum Electronics) Sov. radio, M. 1965, p. 608 (English
Transl., M. I. T. Press, Cambridge, Mass. 1968; Pergamon
Press, Oxford, 1969).

8W. Heitler, Quantum Theory of Radiation, Clarendon Press,
Oxford, 1954 (Russ. Transl., IIL, M. 1965).

9V. L. Ginzburg, Dokl. Akad. Nauk SSSR 56, 253 (1947).
10A. I. Akhiezer and Ya. B. Fainberg, Dokl. Akad. Nauk SSSR

69, 555 (1949); Zh. Eksp. Teor. Fiz. 21, 1262 (1951).
"V. L. Ginzburg and V. V. Zheleznyakov, Astron. Zh. 35,

694 (1958) [Sov. Astron. 2, 653 (1958)].
12V. L. Ginzburg, Usp. Fiz. Nauk 69, 537 (1959) [Sov. Phys.

Usp. 2,874 (I960)].
13A. V. Gaponov, Zh. Eksp. Teor. Fiz. 39, 326 (1960) [Sov.

Phys. JETP 12, 232 (1961)1.
14Ya. B. Fainberg, At. Energ. 11, 313 (1961).
15A. A. Andronov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 4,

861 (1961).
16V. V. Zheleznyakov, Radioizluchenie solntsa i planet (Radio

Emission of the Sun and Planets) Nauka, M. 1964 (English
Transl., Pergamon Press, Oxford, New York, 1969).

17Ja. B. Fainberg, Czech. Phys. J. 18, 652 (1968).

629 Sov. Phys. Usp. 25(8), Aug. 1982 S. S. Kalmykova 629



18A. V. Gaponov, M. I. Petelin and V. K. Yulpatov, Izv. Vyssh.
Uchebn. Zaved. Radioflz. 10, 1414 (1967) [Sov. Radiophys.
10, 794 (1967)].

19V. P. Tsytovich, Nelineinye effecty v plazme (Nonlinear
Effects in Plasma) Nauka, M. 1967 (English Transl., Plenum
Press, New York, 1970; also An Introduction to the Theory of
Plasma Turbulence, Pergamon Press, Oxford, New York,
1972).

20S. S. Kalmykova, Dokl. Akad. Nauk SSSR 208, 1062 (1973)
[Sov. Phys. Dokl. 18, 149 (1973)1; Zh. Eksp. Teor. Fiz. 65,
2250 (1973) [Sov. Phys. JETP 38, 1124 (1974)].

21V. I. Kurilko, Dokl. Akad. Nauk SSSR 208, 1059 (1973) [Sov.
Phys. Dokl. 18, 132 (1973)].

22M. I. Petelin, Lektsii po elektronike SVCH (3 zimnyaya
shkola-seminar inzhenerov) Lectures on Microwave Elec-
tronics (the third winter school for engineers) Kniga IV, s.
179, Izd. Sarat. Univ., Saratov, 1974.

23M. F. Nezlin, Usp. Fiz. Nauk 120, 481 (1976) [Sov. Phys.
Usp. 19, 946 (1976)].

^S. S. Kalmykova, Zh. Tekh. Fiz. 47, 2211 (1977) [Sov. Phys.
Tech. Phys. 22, 1286 (1977)].

25N. I. Aizatskii and V. I. Kurilko, K voprosu o mekhanizme
Prodol'noineustoichivosti kol'tsevogo electronnogo puchka
(On the mechanism of Longitudinal Instability of a Ring
Electron Beam), preprint KHFTI AN UkrSSR 79-14,
Khar Tcov, 1979.

26A. V. Gaponov and M. I. Petelin, Izv. Akad. Nauk SSSR, Ser.
Fiz. 4,11 (1979).

27J. D. Lawson, Part. Acceler. 10, 73 (1980).
28V. L. Ginsburg, Teoreticheskaya fizika i astrofizika (Theo-

retical Physics and Astrophysics) Nauka, M. 1975.
29I. M. Frank, Usp. Fiz. Nauk 87, 189 (1965) [Sov. Phys. Usp.

8, 729 (1966)].
30F. G. Bass and V. M. Yakovenko, Usp. Fiz. Nauk 86, 189

(1965)].
31B. M. Bolotovskii and G. V. Voskresenskii, Usp. Fiz. Nauk

88, 209 (1966) [Sov. Phys. Usp. 9, 73 (1966)1; 94, 377 (1968)
ISov. Phys. Usp. 11, 143 (1968)].

32G. M. Garibyan, Makroskopicheskaya teoriya perekhodnogo
izlucheniya (Macroscopic Theory of Transition Radiation),
preprint EFI No. 27(73), Erevan, 1973.

33V. L. Ginzburg and V. N. Tsytovich, Sov. Phys. Usp. 126,
553 (1978); Phys. Rept. 49, 1 (1979).

MV. I. Veksler, At. Energ. 2, 427 (1957).
35I. M. Frank, Izv. Akad. Nauk SSSR, Ser. Fiz. 2, 1 (1942).
36L. W. Alvarez, H. Brander, J. W. Franc, et al., Rev. Sci.

Instr. 26, 111 (1955).
3TM. A. Miller, Izv. Vyssh. Uchebn. Zaved. Radioflz. 1, 166

(1958).
38Ya. B. Fainberg and N. A. Khizhnyak, Zh. Eksp. Teor. Fiz.

32, 883 (1957) [Sov. Phys. JETP 5, 720 (1957)].
39K. A. Barsukov and B. M. Bolotovskii, Izv. Vyssh. Uchebn.

Zaved., Radiofiz. 7, 291 (1964).
40J. J. Muller and E. Rostas, Helv, Phys. Acta 13, 435 (1940).
41V. N. Shevchik and D. I. Trubetskov, Analiticheskie metody

rascheta v elektronike (Analytical Calculation Methods in
Microwave Electronics) Sov. radio, M. 1970.

42V. B. Krasovitskii and V. I. Kurilko, Zh. Eksp. Teor. Fiz.
48, 353 (1965) [Sov. Phys. JETP 21, 232 (1965)].

43S. S. Kalmykova, Ukr. Fiz. Zh. 25, 785 (1980).
44H. Schwarz and H. Hora, Appl. Phys. Lett. 15, 349 (1969);

H. Schwarz, ibid., 19, 148 (1971).
45 L. A. Bol'shov, A . M . Dykhne and V. A. Roslyakov, Phys.

Lett. 42A, 259 (1972).
46V. K. Yulpatov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 13,

1784 (1970) [Sov. Radiophys. 13, 1374 (1970)].
47L. S. Bogdankevich, M. V. Kuzelev and A. A. Rukhadze, Fiz.

Plazmy 5, 90 (1979) [Sov. J. Plasma Phys. 5, 51 (1979)]; Usp.
Fiz. Nauk 133, 3 (1981) [Sov. Phys. Usp. 24, 1 (1981)].

48Moshchnye elektronnye i ionnye puchki (bibliograficheskif
ukazatel") [High Power Electron and Ion Beams (bibliographi-
cal index)], preprint, lYaF SO AN SSSR No. 79-159, Novo-
sibirsk, 1979.

49R. Courant and D. Hllbert, Methods of Mathematical Physics,
mterscience Publishers, New York, 1953, 1962 (Russ.
Transl. from German ed., Gostekhizdat, M., L. 1951).

50Yu. L. Klimontovich, Kineticheskaya teoriya neideal'nogo
gaza i neideal'noi plazmy (Kinetic Theory of Nonideal Gas
and Nonideal Plasma) Nauka, M. 1975.

Translated by D. Kirillov

630 Sov. Phys. Usp. 25(8), Aug. 1982 S. S. Kalmykova 630


