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The importance of every scientific work is determined
in the long run by the role that it played in the develop-
ment of one or another field of physics. From this
point of view the 1930 papers of L. V. Shubnikov and V.
de Haas in which for the first time the oscillating de-
pendence of the resistance on a magnetic field was
found and the first quantum effect in a solid, given later
the name of Shubnikov—-De Haas (Sh-H) effect, was dis-
covered may be completely evaluated only at present.

The Sh-H effect was the first experimentally observed
demonstration of diamagnetic (Landau) quantization of
the energy of electrons in solids? and, as a consequence
of this, of oscillating dependence on a magnetic field of
electron density of states on the Fermi level.

In following years it became clear that the Sh-H effect
is a universal and powerful method for studies of the
energy spectrum of degenerate electronic systems in
metals, semimetals, alloys, and doped semiconductors.
After the discovery of the effect in Bi the oscillation of
magnetoresistance of this substance was studied in de-
tail in the papers of Ref. 3-10. Later the Sh-H effect
was found in zinc, magnesium, beryllium, and niobi-
um,''™™ in intermetallic compounds, alloys, and degen-
erate semiconductors. A™BY and ABY! semiconduc-
tors and also semiconductors with a narrow forbidden
energy gap are especially suitable for its observation.

In recent years the Sh-H effect is being intensively
studied in indium antimonide,'*™!® indium arsenide,'*"*
mercury selenide,?® ¥ bismuth-antimony alloys, alloys
of lead and tin halcogenides,?™* and in other semicon-
ductors and also in semimetals (Bi, Sb, As,graph-
ite). 3972

The Sh-H effect is easily observed at liquid helium
temperatures in perfect monocrystals of practically all
substances which have a degenerate electron system
and a relatively high mobility of current carriers (p
z 10° cm?/V's). Magnetic fields of the order of tens of
kilo-oersteds which may be obtained by superconducting
solenoids or cooled electromagnets with ferromagnetic
cores are usually sufficient for the observation of the
effect. The Shubnikov-de Haas oscillations in a bis-
muth-antimony alloy monocrystal are shown as an ex-
ample in Fig. 1.

Comparative ease of observation together with high
content of information on the electron system param-
eters led to the fact that the Sh-H effect has become one
of the basic methods of studying electron energy spec-
tra and band structure of metals, semimetals and
semiconductors and an important method for the study
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of spectral changes under the influence of a high pres-
sure, strong uniaxial deformations, electric field,
doping, etc.

1. PHYSICAL FOUNDATIONS AND THEORY OF THE
SHUBNIKOV-DE HAAS EFFECT

The quantization of the electron energy in solids un-
der the influence of a magnetic field lies at the founda-
tion of the Sh-H effect. As a result of quantization the
quasicontinuous electronic spectrum is transformed
into a quasidiscrete one (Fig. 2). For electrons with a
quadratic dispersion law the energy € in the magnetic
field H depends upon the quantum numbers » and s and
the projection of quasimomentum P, =(pH)/H on the di-
rection of the field H:

L (1)
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e(n, s, py)=Hho, (n —l-;—) + sh

where n=0,1,2...; s=z1; w,= eH/mcc is the cyclotron
frequency; Wj= eh/ 2mc is effective Bohr magneton;
m,, Mg, m, are the cyclotron, spin and longitudinal ef-
fective masses correspondingly. The separation be-
tween adjacent Landau levels Zw, becomes larger than
the thermal spread (~&7T) of the Fermi boundary in suf-
ficiently strong magnetic fields and at low tempera-
tures. As the magnetic field is increased discrete
Landau levels, going up in energy, cross the Fermi
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FIG. 1. Shubnikov-de Haas oscillations corresponding to
large and small hole sections of the Fermi surface in the
Biy, g3 5bg. g3 sample of p-type with the hole concentration p=5.3
x 10" em 3 in a magnetic field applied along the binary crystal
axis at T=1.9 K. The field marks correspond to the positions
of ILandau levels calculated according to the model of Ref. 63:
ny— for small sections, n,—for large sections.
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FIG. 2. Diagram of the energy levels of electrons (a,b) and
holes (c,d) in a magnetic field.

level. Because the density of states at Landau levels is
very high, whenever some Landau level coincides with
the Fermi boundary the electron concentration on the
Fermi level goes through a maximum producing singu-
larities of all thermodynamic and kinetic coefficients
characterizing a particular substance. Periodic
changes of the density of states whenever Landau levels
coincide with the Fermi boundary as the magnetic field
is increased are the cause of the oscillating character
of the magnetoresistance.

A year after the discovery of the Sh-H effect the os-
cillation of the magnetic susceptibility of bismuth in a
magnetic field called the de Haas-van Alphen effect was
found.*® It was shown that at the same orientation of the
magnetic field the same periodicity of the singularities
is observed in the de Haas—van Alphen effect as in the
Sh-H effect.

Oscillations of the thermoelectric power, Hall effect,
thermal heat capacity, thermal conductivity, quasiclas-
sical absorption coefficient of long wavelength sound
waves and of other thermodynamic and kinetic charac-
teristics of a metal which now have the general name of
quantum oscillation effects were found later. All quan-
tum oscillation effects are observed when the following
conditions are satisfied: w,7>>1, Fw,>kT, €x>Aw,
where 7 is the electron relaxation time and €, is the
Fermi energy.

The general theory of quantum oscillation effects was
developed by L. M. Lifshits with co-workers.*1™¢

It follows from the quantization conditions of Bohr-
Sommerfeld that only orbits with discrete values of the
area S in the quasimomentum space:

Sp =22 1 (ny), (2)

c

where n=0,1,3... and ¥~ 1, are allowed for an electron
in a magnetic field. For a given quantum number 7 the
area of the electron orbit has the same value (2) inde-
pendently of the longitudinal quasimomentum p, = (pH)/
H. This means that allowed states for electrons in the
quasimomentum space are situated on the discrete
tubes cross sections of which by any plane p, = const de-
termine the trajectory of electrons in this plane (a Lan-
dau tube). The shape of the cross section of Landau

519 Sov. Phys. Usp. 256(7), July 1982

’ql"
Smax | S'max
3 N
My B A,
) ‘/Smin WA 2
i e e
FIG. 3. Landau tubes for the Fermi surface of the dumbbell

type in a magnetic field parallel to the principal axis. The
minimum and maximum sections of the surface by the planes
perpendicular to the magnetic field are shown.

tubes is determined by the shape of the cross section of
the corresponding isoenergetic surface (Fig. 3). The
singularities of the density of states on the Fermi level
in 2 magnetic field arise whenever a Landau tube takes
up a position in which it is touching the Fermi surface.
In this case the cross section of the Landau tube by the
plane p, =const is coincident with one of the extremal
sections S, of the Fermi surface (see Fig. 3). Sub-
stituting for S in the equation (2) by S,,,, does not de-
pend on the magnetic field (which is correct in the
quasiclassical range of fields Zw, <<€ to the second or-
der in the small parameter viiw, /€%, where €% is the
Fermi energy at H=0%), it is possible to find the peri-
odicity of singularities of the density of states. They
occur with a constant period A in the reciprocal mag-
netic field equal to

1 _ 1 2nen (3)

Tn: Hy =A(%)= cSextr

which makes possible a direct determination of the area
of the extremal section of the Fermi surface. Equation
(3) is called the Lifshits-Onsager equation.

It was shown by Lifshits,*” that in the case of a convex
Fermi surface the data on the dependence of S,,,. on the
angles which determine the orientation of a magnetic
field in relation to crystallographic axes are sufficient
to reconstruct the surface uniquely. The problem loses
its uniqueness in the case of a complex nonconvex Fer-
mi surface and also in the case of a Fermi surface con-
sisting of several isoenergetic surfaces. In this case,
in order to reconstruct the surface, it is necessary to
use model representations (construction of the Fermi
surface by Harrison’s method in the free electron ap-
proximation,*® calculation by the pseudopotential meth-
od, symmetry considerations, data of other experi-
ments, etc.) together with the data from the measure-
ment of oscillations.

The Shubnikov-de Haas effect was used for the de-
termination of Fermi surfaces of many substances:
practically, of all metals (including transition metals),
of semimetals, and also for the determination of iso-
energetic surfaces of many semiconductors. Compara-
tive ease of observation of the Sh-H effect made its use
possible in the cases when measurements of other os-
cillations were complicated or impossible. This relates
first of all to the measurements at high pressures,
strong uniaxial deformations, strong electric fields,
etc.

We note that the Sh-H effect is a kinetic effect and in
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contrast to oscillations of thermodynamic parameters
in a magnetic field it is connected not only with singu-
larities of the density of states on the Fermi level but
also with singularities in electron scattering which have
the same periodicity. Let us consider this in greater
detail.

The first theory of the magnetoresistance of metals
taking into account the quantization of electron energy
in a magnetic field was developed by Titeika.>* He used
the following expression for the current density for the
calculation of the electrical conductivity:

je=—e 2 Y (Woafo(l—fa)—Wa afle 1—f)],  (4)

™ py, Py

where W, ,.is the electron transition probability from
the state ato the state o' due to the scattering poten-
tial, 7, =7(eE) is the electron distribution function in the
a-state which depends upon the electric field E|| x.

Davydov and Pomeranchuk®? applied the method of
Titeika to the particular substance, bismuth, and stud-
ied oscillations of magnetoresistance. It was shown in
that work that in spite of the fact that the electron ef-
fective mass was anisotropic the probability of a tran-
sition from one stationary state into another state on
scattering by a short range potential was isotropic and
depended only on the electron energy.

Later the method of Titeika was applied by Akhiezer
and Rumer®* to the study of oscillations of resistance of
metals in a quantizing magnetic field and by Klinger®®
and Voronyuk®® to calculations of galvanomagnetic phe-
nomena in semiconductors. A rigorous justification of
the Titeika method was given by Adams and Holstein®’
and by Kubo, Hasegawa, and Hashitsume®® in a some-
what different way. Adams and Holstein developed a
consistent quantum theory of the Sh-H effect using the
quantum equation for the movement of the density ma-
trix.’” This was the development of the kinetic ap-
proach to the study of resistance oscillations in a mag-
netic field. Simultaneously and independently another
approach based on diffusion mechanisms®® was devel-
oped for the study of quantum oscillations of resistance
in the course of elaboration of the theory of the Sh-H
effect which is still the object of theoretical studies.

At present only an approximate theory of the Sh-H ef-
fect is available. It is developed in the most correct
manner for the oscillations of the transverse magneto-
resistance. As calculations show, for a strongly degen-
erate electron gas the transverse conductivity o, for
all electron scattering mechanisms may be represented
as

3 G, o (EF) , (5)
n,n’ ]/e;-—ﬁmc (n. +—;-) l/:F—hmc (n’—}»-%—)

where G,, is a smooth function of the indices n, »n’ and
the argument €, which depends upon the scattering
mechanism. The spin is not taken into account in Eq.
(5). It follows from Eg. (5) that the conductivity in-
creases sharply at €,=w,(n+3)~€p. Analysis shows
that o,, has two types of singularities. The scattering
of electrons between different Landau sublevels causes
the singularities in conductivity of the type (e —€,)™/2

Oxx =
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The contribution to conductivity of the quantum level ¢,
situated near the Fermi level is even more important
because in this case the density of both the final and in-
itial states is high. This contribution gives a noninteg-
rable singularity of the type (e —¢g,)™ which causes log-
arithmic divergence in the conductivity. Adams and
Holstein® calculated both oscillating parts of the trans-
verse conductivity for a quadratic dispersion law:

Oyx = 0y — Oy (6)

where o, contains a singularity of the type (e; —€,)™/2
and ¢,—a singularity of the type (g, —€,)*. The diver-
gence in the conductivity disappears when the finite re-
laxation time T of electrons is taken into account.

The expressions for ¢, and o, for a finite temperature
taking broadening of Landau levels into account are:

] ary 2 (— )" Vr —2fagr cos( 2nrer _i‘.)
ER ! sh (rz) v . hag & 1"
r=

0, _ 3nr hog E {(—1)rr g~ 2T oo s ( 2nrep _:r_)
- — )
=1

T 8 e sh (rz) hoe 2

Oy Sz
2

=

where x = 2112kT/h'w,_, g, is the conductivity in the quasi-
classical limit which has for one type of carriers with
the concentration » the asymptotic behavior in strong
fields g,=e*n/m7w?, where m is the conductivity effec-
tive mass.

If the spin splitting of Landau levels is taken into ac-
count, then an additional factor cos{nrg/2), where g is
the effective g-factor, determining the ratio of the en-
ergy of spin splitting Agg to the magnitude of the cyclo-
tron quantum: g=Ags/%w,, appears in equations (7).

Thus, the Sh-H oscillations make it possible to deter-
mine on the basis of Eqs. (7) the magnitude of the cyclo-
tron mass m,, the relaxation time 7 and the spin split-
ting factor g*® as well as the oscillation period related
to one of extremal sections of the Fermi surface for a
given orientation of the magnetic field. For this pur-
pose the amplitude of oscillations at the same field at
different temperatures are compared to the amplitudes
at different fields but at the same temperature. The g~
factor, as a rule, is determined from the ratio of am-
plitudes of the first and second harmonics of oscilla-
tions related to the same extremal section of the Fermi
surface. It is not difficult to see that amplitudes of the
first and all odd harmonics of oscillations are equal to
zero if the g-factor is equal to (2k+1), where k=0,1,
2,.... The fundamental harmonic has a doubled fre-
quency and the oscillations curve exhibits an apparent
increase by a factor two of the extremal section of the
Fermi surface. This phenomenon is called the spin
damping of oscillations. It is often observed in metals
and semiconductors with a large effective g-factor and
with a strongly anisotropic Fermi surface (for example,
in Bi, Sb, As, their alloys, in graphite, etc.).

The relaxation time 7 in Eqs. (7) may be related to
some effective temperature Ty, =#%/mkT which was intro-
duced for the first time by Dingle® for the characteri-
zation of the Sh-H oscillations. We note that the relax-
ation time 7 determining the broadening of Landau lev-
els can be substantially different from the relaxation
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time of current carriers 7, at #=0. In fact, the mag-
nitudes of 7 and 7, correspond to completely different
conditions under which the current carriers are
scattered. Thus, the relaxation time 7, is the average
for all electrons on the Fermi surface which describes
isotropic scattering of electrons with the Fermi mo-
mentum at H=0. On the other hand, 7 of Egs. (7) de-
scribes the scattering by a Landau level of electrons
which have a very small magnitude of the longitudinal
momentum component p,.

In particular, as was shown by Brown,® the relaxa-
tion times 7, and 7 in the case when scattering by ion-
ized impurities dominates are related by the approxi-
mate relation:

o (5] ®
from which it follows that r and 7, can substantially
differ even by an order of magnitude.

The oscillating parts of the conductivity o, and o,
differ between themselves by the phase shift 7/4 and by
the factor (Fw,/c)'/ 2 If the ratio ¢./%w, is not too
large so that a small number of Landau levels partici-
pates in transport processes the term o, must dominate.
The term o, is substantial at small oscillation ampli-
tudes when a large number of quantum levels partici-
pates in the conduction process. Predominance of o, or
o, can be experimentally discerned first of all by the
phase of oscillations.

Therefore, it is possible to conclude that the oscilla-
tions of the transverse magnetoresistance allow one to
determine with high precision the extremal sections of
the Fermi surface. The spin splitting factor, the Dingle
temperature and the cyclotron masses of current car-
riers can be determined with lower precision.*® 1t is
necessary to keep in mind during a determination of an
extremal section of the Fermi surface using oscillation
effects that the Lifshits-Onsager equation (3) is valid
only in the case when the extremal section does not de-
pend upon the magnetic field and this is equivalent to a
lack of dependence of the Fermi surface on the magnet-
ic field. Indeed, the oscillations of the Fermi energy
in a magnetic field are of the second order in the small
parameter (Aw,/€})!/2% On the approach to the ultra-
quantum region of fields this parameter approaches the
value of one and the change in the Fermi energy be-
comes important. Thus, at small values of quantum
numbers » of the oscillations it is necessary to consid-
er the movement of the Fermi level in a magnetic field
during the determination of the quasiclassical extremal
section S, of the Fermi surface. This effect is most
important when there are present several groups of
current carriers with different cyclotron masses be-
cause the shift of the Fermi level in this case is deter-
mined by the effects of flow of current carriers ina
magnetic field between extrema in the spectrum. 1t is
possible to take the movement of the Fermi level into
account rigorously only by using a particular model of
the electron energy spectrum (see, for example, Ref.
62).

In contrast to magnetoresistance the Hall coefficient
R, does not depend on scattering in the first order of
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the parameter 1/w,r and, therefore, does not experi-
ence oscillations. Oscillations of the Hall effect appear
only in the second order of scattering. Thus, their
amplitudes must be considerably smaller than the am-
plitudes of magnetoresistance oscillations.

Stradling and Artcliffe® while studying oscillations of
the Hall effect in InSb found that the amplitudes of os-
cillations of the nondiagonal component p,, had only 1%
of the amplitude of oscillations of the diagonal compo-
nent p,, and were shifted in phase by 7/4. A similar
relation between amplitudes and phases of oscillations
of p,, and p, was found in n-GaSb and other doped
semiconductors with a simple isoenergetic surface of
electrons or holes.%*'®

Up to now we have considered oscillations of the
transverse magnetoresistance for jL H. Oscillations of
the longitudinal magnetoresistance (jll H) have special
features.

Thus it follows from the classical theory that for
jll H the magnetic field does not influence the magneto-
resistance at all in a metal with an isotropic dispersion
of current carriers. This is connected with the fact
that the movement of current carriers along a magnetic
field is not distorted. Taking the quantization of the
electron motion in a magnetic field into account gives
a nonzero longitudinal magnetoresistance even in the
case of a simple dispersion law and isotropic scatter-
ing®%". A change of the longitudinal magnetoresistance
is caused in a quantizing magnetic field by the depen-
dence on H of the probability of scattering of current
carriers. We shall not consider the complicated prob-
lem of the calculation of the monotonic part of the long-
itudinal magnetic field which is solved at present only
with some simplifying assumptions.®®* From the point
of view of the theory of the Sh-H effect only the oscillat-
ing part of the longitudinal magnetoresistance is of in-
terest. The most important conclusion in this case is
that with the same orientation of the magnetic field with
respect to the crystallographic axes the period of the
Sh-H oscillations does not depend upon the mutual or-
ientation of the current j and the field H. However, the
amplitude of the oscillations in p,, in many cases is not
described by Egs. (1) for o, and o, given above. First
of all, this refers to the temperature dependence of the
oscillation amplitude which, according to Egs. (7), for
k(T +Ty) >Hw, is proportional to the Dingle factor
exp[-k(T + Ty)/Ew,]. Thus, an anomalous dependence of
the oscillation amplitude on 7 at which the amplitude
decreases with decreasing temperature may arise in the
longitudinal magnetoresistance oscillations. Such a de-
pendence was observed, for example, in pure bismuth
in the temperature range (12-1.3)K with the magnetic
field oriented in the basis plane of the crystal.”® The
anomaly is caused by the fact that the largest contribu-
tion to the oscillating part of p,, comes from transitions
between the different Landau subbands which in strong
magnetic fields must be accompanied by large changes
of the longitudinal momentum p, (Fig. 4). Participation
of phonons with large quasimomenta 7#g in order of mag-
nitude equal to the Fermi surface dimensions is neces-
sary to satisfy the momentum conservation law in the

N. B. Brandt and S. M. Chudinov 521



0‘7l y°x ?Jl”’)" / -
=€
\?ﬁ/

]

-5
FIG. 4. Electron transitions between Landau subbands with

different quantum numbers » which are characteristic for the
longitudinal conductivity in a magnetic field with j|| H.

transitions in question. Freezing out of such phonons

at low temperatures decreases the efficiency of scatter-
ing of electrons by phonons which is responsible for the
longitudinal magnetoresistance oscillations and causes
a decrease of the amplitude of oscillations with de-
creasing temperature. Calculations show that the os-
cillating part of the longitudinal magnetoresistance p,,
in the case of electron scattering by phonons with the
wave vector ¢, and frequency w,  is described by the
following expression:

Ezz =const- Vﬁ # ((‘)'thlh + a)u (9)

where

Nqn _ (ehmqn/kT_ 1, z= 2n2kT

hoe "

«a is a constant which takes into account the influence of
scattering within the limits of one Landau subband and
the influence of residual scattering by impurities.

Concluding this section, we note an interesting phe-
nomenon related to the peculiarities of the Sh-H oscil-
lations which are manifested in the appearance of addi-
tional frequencies equal to combinations of the frequen-
cies corresponding to the sections of the Fermi surface.
This phenomenon is observed in semimetals doped with
different impurities and is a specific feature of the Sh-
H effect because it is not observed in oscillations of the
magnetic moment M (de Haas-van Alphen effect) in the
same single crystal. The appearance of combination
frequencies in the Sh-H oscillations was observed in Bi

v T T T
47kO8 7z & FkQe

FIG. 5. Oscillations of the derivative of the magnetoresis-
tance 3p/8H , surface impedance 8Z/8H and magnetic moment
amM/8H in a magnetic field in the Bi—Te alloy.
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FIG. 6. Spectral composition I (w) of the oscillation curves
shown in Fig. 5: (a) 8p/8H, (b) 8Z/8H, (c) aM/aH.

and Bi,., Sb, alloys doped with the donor impurity Te.”*
As an illustration, recordings of oscillations of 8p/6H,
9Z/8H and 8M/8H of a single crystal Bi-Te alloy sam-
ple in a field H parallel to the bisector axis are shown
in Fig. 5 (Z is the surface impedance). For this orien-
tation of H the oscillations contain two frequencies w,
and w, corresponding to the two small sections S, and
S, of the electron Fermi surface. It can be seen that
the curves 3p/8H and 9Z/9H are qualitatively different
from the oscillations of aM/3H. The spectral density
curves I(w) obtained by Fourier analysis of the oscil-
lation curves of Fig. 5 are given in Fig. 6. The two
peaks at the frequencies w, and w, determining the sec-
tions S, and S, are observed on the I(w) curve corre-
sponding to the oscillations of 8M/3H. The harmonic
composition of the oscillations of 8p/9H and 3Z/3H is
much more complicated, and correspounding spectral
curves contain besides the peaks at the frequencies w,
and w, peaks at the frequencies described by the formu-
la w, =nw, +mw,, where m and »n are integers.

The results of Fourier analysis of the oscillations of
8p/8H are given in Table L

In order to explain the appearance of combination
frequencies in the Sh-H effect it is necessary to take
into account the fact that according to Eq. (6) the oscil-
lating part of the transverse conductivity o,, contains
two different contributions ¢, and o,. It was shown by
Lifshits® that at large quantum numbers the dominating
term g, (at n> 1,0, > ¢,) is expressed linearly in terms
of the oscillating part of the derivative of the magnetic
momentum, ¢,~ 8M/8H. This relationship is valid for

TABLE 1.
Ob- : Ob- .
Relative ved |[Relative
served |1 eight of o  ffrer neight of o _
quen- | the maxi- Combination of frequencies || quen- |the maxi{ Combination of frequencies
cies |mum nw, M, ‘cies  {mum Rw, +mw,
wj, rel{ 7(w;) i, rel M (us)
units units [
11 1.00 @y =11 (section S,) 38 0.46 w, -y =38
2 | 062 | 20,=22 % {0725 200y + 103 = 49
27 0.92 w,==27 (section S,) 60 0.30 3w, 0, =60
32 | 0.25 30, =33 72 | 0.14 4oy, =T1
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any shape of the Fermi surface and for any mechanism
of scattering of current carriers.**

The absence of combination frequencies in the de
Haas —van Alphen effect allows one to relate their ap-
pearance to the term o, an analogue of which is absent
in the oscillating component of 84/3H. The contribu-
tion of o, to the Sh-H oscillations increases with in-
creasing magnetic field or with a decrease of quantum
numbers ») and may become very large near the ultra-
quantum field limit, the term o, diverging logarith-
mically if the linewidth I" of the Landau level ap-
proaches zero. Adams and Holstein have shown® that
the oscillation amplitudes of ¢, and g, are connected
with the monotonic y,(€) and oscillating v{e) components
of the electron density of states by the following rela-
tions:

Ty~ vy (€) v (&) VTv (10)

gy~ vE(e) T,

The following mechanism of increasing the amplitude of
the oscillating part of the density of states v(€) is pos-
sible in doped single crystals. At low temperatures
scattering by ionized impurities is the main mechanism
of relaxation in such materials determining the line-
width of the Landau level I"~%/r. Efficiency of this
scattering is determined by the screening radius of im-
purity centers r, which for a degenerate electron sys-
tem is equal to

ro=[ 25 (v (e0) + vem) |, (11)

where »is the dielectric permittivity and v{e;) +v{ey)
is the total density of states at the Fermi level.

According to Eq. (11), the oscillations of the density
of states cause the oscillations of the screening radius
¥p Which in turn leads to oscillations of " and 7. As a
result, the expansion of the term o, [see Eq. (10)] in
terms of the harmonics of basic frequencies w, and w,
will contain combination frequencies nw, +mw, This
effect is less important for the term ¢, because, ac-
cording to (10), o,~ v(e)V0,.

The appearance of combination frequencies in the Sh-
H oscillations indicates that this effect has a strong
nonlinearity due to which a single crystal in a magnetic
field may operate as a frequency mixer. The presence
of combination frequencies allows us to obtain additional
information on the screening radius and on the charac-
ter of the Friedel oscillations of electron density
around charged centers.

2. SHUBNIKOV-de HAAS OSCILLATIONS UNDER
CONDITIONS OF MAGNETIC BREAKDOWN IN
METALS

The cause of oscillations of the magnetoresistance of
a metal related to the nonmonotonic character of change
of the electron density of states at the Fermi level in a
magnetic field was considered earlier.

The other cause of oscillations of magnetoresistance
is magnetic breakdown, i.e., the possibility of a transi-
tion of a conduction electron from one quasiclassical
orbit to another in its motion in a magnetic field. An
interesting phenomenon which has been given the name
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of gigantic magnetic breakdown oscillations of resis-
tance occurs as a result of interband magnetic break-
down.

The detailed analysis of interband magnetic break-
down was made by Blount’>. The breakdown probability
is the main characteristic of the breakdown

w==g-Ho/H, (12)

where Hy={(m_/ek)a*/ey, A is the energy gap between
bands which separates quasiclassical orbits in the
breakdown region. A very interesting situation arises
in the fields H~ H,. The point is that the asymptotic be-
havior of the magnetoresistance p(H) is very sensitive
to the shape of the trajectory of electrons in a magnetic
field. The transition from closed trajectories to open
ones changes p(H) by several orders of magnitude. The
particle-wave dualism of the magnetic breakdown dy -
namics of conduction electrons is manifested in fields
H~ H,. Two approaches to the interpretation of the
magnetic breakdown are possible in this case. In one of
them —the stochastic approach—electrons are consid-
ered as classical particles making stochastic jumps be-
tween orbits with the probability w. In the other ap-
proach the electron is considered as a wave for which
the breakdown region is the semitransparent tunnel
barrier through which the wave passes with the ampli-
tude equal to V. The second type of breakdown is
called coherent. The occurrence of either one of these
two cases in a metal is determined by the number and
character of defects and impurities in the samples un-
der investigation. The coherent magnetic breakdown is
observed in pure perfect single crystals of metals in
strong magnetic fields.

The results obtained on beryllium™™"® may be given as
an example of coherent breakdown. In this metal the
breakdown occurs between the small orbit of the
“cigar” (“needle”) and the large orbit of the “crown”
(“monster”) (Fig. 7). The breakdown is accompanied by
gigantic oscillations of p(H) which are periodic in the
reciprocal of the magnetic field (Fig. 8). Their period
is connected with the extremal area of the small orbit
by the Lifshits-Onsager equation (3).

The narrow layers of trajectories responsible for the
oscillations are determined not only by extremal sec-
tions of the “cigar” but also by narrow partitions in the
“crown” to which the noncentral sections of the “cigar”
correspond. Because of this, modulation of the oscilla-
tion amplitude (beats) with the difference frequency oc-

FIG. 7. Trajectory of electrons in Be (continuous thick line)
in the case of magnetic breakdown between the two parts of the
Fermi surface—the “crown” (“monster”) and the “cigar”
(“needle”) at HIl{ 0001].
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FIG. 8. Magnetic breakdown oscillations of 8p/8H in Be in the
case of breakdown between the “crown” and the “cigar.”

curs over quite a broad range of fields. It is possible
to evaluate from experimental data the magnitude of A
which is equal to ~0.08 eV for beryllium. The value of
H, for beryllium is ~110 kOe.

Experiments made on transition metals of the 5th
group have shown that the breakdown field H, increases
on passing from vanadium to niobium. The magnetic
breakdown in these metals occurs through the gap which
is caused by the spin-orbit interaction. Hence, the
study of magnetic breakdown oscillations of the resis-
tance is a good method for investigating the spin-orbit
interaction in transition metals. Comparison of exper-
imental data with calculations allows one to evaluate the
validity of a chosen theoretical model. Let us note also
that gigantic magnetic breakdown oscillations are used
at present for precise determination of the magnitude
and gradient of 2 magnetic field’*"®.

3. APPLICATIONS OF THE SHUBNIKOV-de HAAS
EFFECT

a) Study of rearrangement of the energy spectrum of
metals under extremal conditions

We shall illustrate the use of the Sh-H effect for
studying the rearrangement of the electron spectrum of
metals on the example of investigating Lifshits topolog-
ical phase transitions’® of the 2.5 order. These transi-
tions are observed in metals, semimetals and doped
semiconductors when the external parameters are al-
tered. The 2.5 order transition is a jumplike change of
the topology of the Fermi surface at some critical val-
ue of an external parameter responsible for the elec-
tron spectrum change. Topological phase transitions
can be observed most simply in substances subjected
to a high pressure or a strong uniaxial elastic defor-
mations. Topological Lifshits transitions accompany -
ing isotropic compression were observed for the {irst
time in the studies of bismuth and its alloys,”” and also
in the studies of cadmium,’® tellurium and its alloys.™
Uniaxial stresses of the lattice changing the crystal
symmetry substantially increase the probability of ob-
servation of the 2.5 order transitions. The topological
phase transitions of bismuth-antimony alloys doped by
donor and acceptor type impurities® % are most strik-
ing and diverse.
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FIG. 9. Position of electron and hole extreme close to the
Fermi level in the Biy g35by, g5 alloy of n-type.

We illustrate these transitions on the example of the
Bi-Sb semiconductor alloy of n-type. The Fermi sur-
face of such an alloy consists of three electron quasiel-
lipsoids situated in the L-points of the Brillouin zone
(centers of the pseudohexagonal faces). The energy
spectrum diagram is shown in Fig. 9.

The change of sections and volumes of electron sur-
faces under uniaxial stress was determined by means
of recording the Sh-H effect at different orientations of
the magnetic field.

The current carrier concentration in a doped semi-
conductor alloy is completely determined by the con-
centration of doping impurities and does not change if
there is no overlapping of separate extrema of the con-
duction and valence bands in the process of the energy
spectrum change. The change of the volumes of sepa-
rate ellipsoids at constant total concentration of current
carriers can occur evidently only at the expense of
other ellipsoids due to the redistribution of current
carriers between extrema. It is convenient to observe
experimentally the change of the extremal section of
those isoenergetic surfaces which grow when electron
transitions occur. Their growth, evidently, must stop
at the moment when complete depopulation occurs of
those extrema in which a decrease of the current car-
rier concentration takes place.

The following types of topological transitions occur in
the semiconducting Bi-Sb alloy of n-type in the case of
a uniaxial compression deformation along the binary
(C,) and the bisector (C,) axes®:

1) In the case of a compression along C, or an exten-
sion along C, the volume of one of the quasiellipsoids
increases and that of the other two decreases. A tran-
sition of the type 3EL~ 1EL at which electrons from
three extrema flow to one extremum takes place at the
critical value of the deformation. The dependence of the
sections of increasing and decreasing isoenergetic sur-
faces is shown in Fig. 10,a.

2) In the case of a compression along C, or an exten-
sion along C, the volume of two quasiellipsoids in-
creases and that of the third ellipsoid decreases. A
transition of the type 3EL~- 2EL as a result of which all
electrons are transfered to two equivalent extrema
takes place at the critical value of the deformation (Fig.
10, b).

The topological transition of the type 3EL +1 Hole
- 2EL + Hole which causes the disappearance of one
electron quasiellipsoid® is observed in the case of uni-
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F1G. 10. Dependence of the extremal sections of the Fermi

surface on the load in the case of deformation along the axes
C, (a) and C | (b) in the Biy, y248bg, 75 alloy of n-type.

axial deformations in pure bismuth in which in the orig-
inal state there are equal numbers of electrons and
holes filling three electron and one hole energy sur-
faces. Electron transitions of the type semiconductor-
metal with formation of isoenergetic surfaces 2EL +1
Hole or 1EL +1 Hole, which cause the appearance of
electrons and holes in equal numbers and the beginning
of the Sh-H oscillations with frequencies corresponding
to the =zections of electron and hole isoenergetic sur-
faces (Fig. 11), take place in the undoped semiconduct-
ing Bi-Sb alloy in the case of a uniaxial deformation
along the C, and C, axes.

b) New possibility of studying the density of states in
doped semiconductors

Recently an interesting possibility was found experi-
mentally of obtaining the energy dependence of the den-
sity of states in the impurity band of a strongly dcped
semiconductor by investigating the Sh-H effect under
pressure. A study was made of gallium antimonide of
the n-type with two types of extrema in the conduction
band situated at the I'- and L -points of the Brillouin
zone and separated by a small energy gap (e, ~ 100
meV). The conduction band structure of GaSb is shown
in Fig, 12. Only the lower I'-extremum which is char-
acterized by a sufficiently small density of states and
by the small value of the effective mass at the bottom of
the band, my.=0.04 m, (m, is the mass of a free elec-

apjon
L E=25kgf
!
], 22
L 18
! =0
O N ST S N T
02 5 %
© ke
FIG. 11. Appearance of the Shubnikov—de Haas oscillation in

the case of HIC, in the semiconducting alloy Bij 4958by 475 for a
uniaxial deformation ¢liC, as a result of the semiconductor-
metal transition. Loads o (in kgf) shown near the correspond-
ing curves, '
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FI1G. 12. Structure of the conduction band of gallium anti-
monide doped by donor impurities. gy and gg are the energies
of splitting of the impurity level from the T and L bands.

tron), is filled at the impurity electron concentration
ne s 10" cm™.

Under the influence of pressure the energy gap &,
between I'- and L-extrema decreases at a rate of 10
meV/kbar, and the bottom of the I'-conduction band ap-
proaches the bottom of the empty L-band.

The Fermi surface of I'-electrons in GaSb is close to
spherical with good accuracy. Therefore, the study of
the Sh-H oscillations due to I'-electrons under pres-
sure is a convenient and precise method of determining
their concentration by using the simple relation

8 3/2
nr = Fiane Se;/m—v (13)

where £ is the Planck constant, and S,,,, is the extrem-
al section which is calculated from the oscillation per-
iod A(1/H) using the Lifshits-Onsager formula (3). The
Sh-H oscillations due to I'-electrons in the GaSb sample
with the original concentration n.=1.35-10'® cm™ at
several values of pressure® are given as an example in
Fig. 13. The experiment shows that the concentration
ny is constant in the region of low pressures and start-
ing from some value of pressure p=p’, which is the
lower the higher the doping level of a semiconductor,

Ay arb. units
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FIG. 13. Sh-H oscillations of the longitudinal magnetoresis-
tance p, of the GaSb sample withnp=1.35- 10! em™ (at p = 0)
for different pressures p equal to (in kbar) 1.0 (1), 3.4 (2),
5.6 (3), and 8.3 (4).

40 A kOe
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ny decreases and becomes equal to zero at p=p,~9
kbar. It follows from the analysis that the decrease of
the concentration n; under pressure occurs due to I'-
and L-levels approaching each other and I'-electrons
flowing to the impurity level spit from the L-band.

The number of transfered electrons n(€’) is deter-
mined by the position of the Fermi level on the energy
scale and by the density of states in the impurity band
F4 ¢L(5):

e

ni(e)= | g, () de, (14)

- 0o

where

e’ =¢ep (p)—[erL (p)—eaL]=55(p)—[erL (0)—l a;;" |p—l-:iL] (15)

(ef is the Fermi energy in the I'-band) (see Fig.12). On
the other hand, it follows from the condition of electri-
cal neutrality that

n; (e') = Ng — N, — nr(g), (16)

where Ny, N, are permanent donor and acceptor concen-
trations in the semiconductor. It follows from Eqs.
(14)-(16) that the density of states g,;(¢’) is

i (e );T_: — 6n;‘e’(a) . (17)

The I'-band with known parameters of the electron
spectrum may be used as a kind of a standard for the
determination of the Fermi level on the energy scale.
Changing the relative positions of I'- and L -extrema by
pressure and controlling ». by the Sh-H oscillations it
is possible to plot by points the density of states in the
L-band. This was done in the paper of Ref. 83. The
dependence of g;; on £ for the GaSb sample with an
original concentration of ['-electrons equal to 2.8 107
cm™ is given in Fig. 14. It was shown that the density
of states at the impurity level may be described with
good accuracy by the following Gaussian curve

B (6) = Hh ooty (18)

and the parameter v, determining the linewidth of the
level, can be found.

The dependence of the density of states in I'- and L-
conduction bands and in the impurity L-band for sam-
ples with original concentration of I'-electrons equal to
2.0-107 and 1.14-10'® cm™ is given in Fig. 15.
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FIG. 14, Density of states in the impurity L -band in the
GaSb sample withnp=2.8- 10" em™ at p=0.
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FIG. 15. Density of states in the conduction band of the GaSb
sample doped by Te. (1) I'-band; (2) L-band (for one L-ex-
tremum); (3) impurity L-band (sample withnr=2-10!7 ecm™ at
p=0); @) impurity L -band (sample withnp=1.14. 10" cm™ at
p=0).

Therefore, due to the fact of coexistence of impurity
states with band states there exists in principle a pos-
sibility of investigating disordered systems by studying
the properties of band electrons to which the experi-
mental methods effectively used in the physics of crys-
talline solids may be applied.

c¢) Study of long duration nonequilibrium processes in
semiconductors

In concluding this section we consider the possibility
of applying the Sh-H effect to the study of long duration
relaxation processes in semiconductors.

Ternary compounds Pb,_, Sn_Te doped by elements of
the third group (In,Ga, Al, Te) are semiconductors in
which long duration relaxation processes are mani-
fested most clearly.®™ In particular, the In dopant in
the Pb,_, Sn, Te alloys with a concentration of about one
atomic percent forms a large capacity impurity level
the position of which in the band spectrum of the semi-
conductor depends on the tin concentration x, on pres-
sure, and on magnetic field.”*® It is established ex-
perimentally that the In impurity level stabilizes the
Fermi level in the alloy. In the case when the impurity
level is situated in the conduction band or in the valence
band the Fermi level in the alloy is coincident with the
impurity level and the equilibrium concentration of free
carriers is completely determined by the position of the
latter.

The most characteristic special feature of Pb,_, Sn, Te
with the In dopant is the possibility of generation by a
magnetic field or by light of a nonequilibrium metallic
state the relaxation time of which is of the order of
hours and tens of hours. The relaxation time depends
exponentially on the temperature so at 7> 20 K the time
7 decreases to values of fractions of a second.* This
property of the Pb,_.Sn,Te alloys with 1 at.% of In
makes possible the production of a long-lived nonequi-
librium state (for example, a state with a large non-
equilibrium electron concentration). Let us consider,
as an example, one of the ways of producing a nonequi-
librium electron concentration in the conduction band
by a magnetic field.
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FIG. 16. Energy diagrams illustrating the formation of a non-
equilibrium metal in a magnetic field (cf. text).

For this purpose by varying the composition and the
pressure the original state of the alloy is chosen in
which the impurity level is situated in the conduction
band close to its bottom. The energy spectrum of the
original state of the alloy at H=0 corresponds to the
section A in the diagram in Fig. 16,a and is shown
schematically in Fig. 16,b. The nonequilibrium elec-
tron concentration is produced by the following cycle.

A strong magnetic field corresponding to the ultra-
quantum region of fields for the original electron con-
centration is switched on at a temperature T2 20 K,
and as a result electrons are set on the one-dimension-
al Landau parabola with quantum numbers »=0,s= ~1.
The density of states in the band grows with the growth
of the magnetic field proportionally to the degree of de-
generacy of electronic states with respect to the longi-
tudinal momentum ~eH/nkc, Due to this and also due to
the fact that the Fermi level is fixed to the impurity
level, a flow starts of electrons from the impurity lev-
el into the band in correspondence with its growing cap-
acity (Fig. 16,c). The flow process occurs rather fast
at T2 20 K and the electron concentration in the band
becomes higher than original concentration (Fig. 16,d).
Then, the magnetic field is kept constant and the crys-
tal is cooled down to liquid helium temperatures at
which the electron flow time from the level into the
band or vice versa increases to several hours. The
magnetic field is switched off after that.

The nonequilibrium electron concentration equal to
the equilibrium concentration in the magnetic field is
“frozen” in the conduction band of the Pb,_,Sn, Te alloy
as a result of this cycle. The Fermi level takes the
nonequilibrium position above the impurity level of In
and the slow process of the reverse flow of electrons
out of the band into the impurity level begins. Nonequi-
librium electrons form the degenerate Fermi gas in the
conduction band which does not differ by its properties
from the electron system of an ordinary metal. The
Pb,.,Sn,Te behaves under these conditions as a single
band metal with the Fermi surface slowly shrinking in
time.

The Sh-H effect allows us to prove experimentally the
existence of such a state with a nonequilibrium electron
concentration. For this purpose it is necessary to re-
cord the Sh-H effect at times separated by equal time

527 Sov. Phys. Usp. 25{7), July 1982

dp/aH

5

\

7
U N SIS SO S S IS RSSO N R
14 & ” A, kOe

FIG. 17. Recordings of the Shubnikov—de Haas oscillations of
8p/ 8H for the Pby Sby g5 + 0.5 at.%. In alloy atp=5.4 kbar,
H | {(100) which correspond to the equilibrium (1, 7) and non-
equilibrium (2-6) states of electrons in the conduction band
(cf. text).

intervals (for example, every 20~30 min). Because the
recording of one oscillation curve takes 2-3 minutes,
the electron concentration in the band during the re-
cording may be considered constant. The curves re-
corded spaced by sufficiently large time intervals differ
in their oscillation periods and show a slow decrease
with time of the electron concentration in the band."

The successive Sh-H oscillations curves due to non-
equilibrium electrons in Pb, ,;Sn, ,;Te alloy with 0.5
at.% of In obtained in Ref. 84 are shown in Fig. 17. The
curves 3-6 are recorded 5, 10, 30, and 60 minutes re-
spectively after the field was switched off at the tem-
perature of 2 K. The curves 1,7 correspond to the
equilibrium state (1-—before the formation of the non-
equilibrium state in a magnetic field, 7—after the “de-
struction” of the nonequilibrium state by heating the
crystal up to ~20 K).

A similar nonequilibrium state may be produced by
excitation of electrons from an impurity level by in-
frared radiation. The electron concentration in the
conduction band at any level of infrared pumping may
also be determined by means of recording the Sh-H os-
cillations.®

Some cases interesting from the authors’ point of
view of using the Sh-H effect for finding and studying
new phenomena in contemporary solid state physics
were considered above. The examples given serve only
as illustrations of wide possibilities for using this ef-
fect under conditions when application of other methods
turns out to be practically difficult or simply impossi-
ble and consequently is not exhaustive. However, they
are, from our point of view, sufficiently convincing il-
lustrations of wide and often unexpected possibilities of
the Sh-H effect which was discovered 50 years ago.

Let us hope that also in future the field of application of
the Sh-H effect will be continually expanding and finding
ever more new applications.
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