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1. HOMOGENEOUS SUPERCONDUCTORS OF THE
SECOND KIND

Depending on their behavior in a magnetic field, all
superconductors are divided into two major groups:
superconductors of the first and second types. In a
sufficiently strong magnetic field type II superconduc-
tors enter a special state which is referred to as the
mixed state or the Shubnikov phase.1 These supercon-
ductors are characterized by two critical magnetic
fields: Hci and HC2. Superconductivity inside a speci-
men is destroyed in magnetic fields with H>HC2. In the
magnetic fields Hcl<H<Hc2 the longitudinal magnetic
field partially penetrates a cylindrical specimen. The
superconducting properties, for example the magnetic
moment, fall off with increasing field strength.

In 1950, Ginzburg and Landau examined the super-
conducting transition as a phase transition of the second
kind and introduced a formal order parameter A which
characterizes this transition. In the case of a phase
transition, a change in the free energy near the transa-
tion temperature may be expanded into a series in
terms of the order parameter2
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where HQ is the external magnetic field, Tc is the su-
perconducting transition temperature, A is the vector
potential, and v= mpa/2ir2 is density of states on the
Fermi surface. The coefficients of expansion A and B
are
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The coefficient C depends on the electron mean free
path in a metal and, in the case of superconductors
with a short mean free path
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The equations for the order parameter A and vector
potential A may be obtained by minimizing Eq. (1) for
the free energy with respect to A* and A.

Analysis of Eq. (1) showed that the behavior of a
superconductor in a magnetic field is determined by a
dimensionless parameter H which represents the ratio
of the depth of penetration of the magnetic field into a
superconductor to the correlation length

(4)

In the case H>l//2", the energy at the boundary be-
tween the superconducting state and normal metal in a
magnetic field becomes negative. Ginzburg and Landau

also obtained an expression for the critical field HC2 at
which a superconducting nucleus first appears, and
found its shape.2 Nearly all pure metals are supercon-
ductors of the first kind with a small value of the
Ginzburg-Landau parameter H. However, addition of
admixtures increases the depth of penetration of the
magnetic field into a superconductor and reduces the
correlation length. As a result, H increases and may
attain values ~100 in alloys. The critical magnetic
field HC2 increases sharply with decreasing electron
mean free path. At present, values of 600 kOe have
been attained. The high values of the critical magnetic
field H& make type II superconductors important for
practical applications.

In 1957, Abrikosov showed that in the Shubnikov
phase the magnetic field penetrates a superconductor in
the form of quantized flux lines.3 Each vortex holds
one magnetic flux quantum. The vortices are repelled
and form a triangular lattice. However, the difference
between quadratic and triangular lattices is only 2%.
This condition plays an important role in the formation
of the vortex structure in superconductors with defects
in the crystal lattice.

The first successful experimental observation of a
vortex lattice by direct methods occurred as late as
1968. To observe the vortex lattice directly Tratlble
and Essamann used the decorative method consisting of
deposition of small iron particles on a superconductor
in a magnetic field.4 Their methodology enabled one to
observe a very clear picture of vortex distribution.
Direct count of the number of vortices showed that each
vortex carries a single quantum of the magnetic flux.

The vortices always repel each other near the transi-
tion temperature. However, at low temperatures in a
narrow range of values of x. close to 1/VT, there exist
regions of attraction between vortices.5 This interest-
ing phenomenon occurs as a result of the nonlocal cou-
pling of the current density with the vector potential.
A weak magnetic field is expelled from such a super-
conductor, although rescreening occurs in it: at a
certain distance from the superconductor surface the
magnetic field is directed in a direction opposite to the
external magnetic field.

The vortex lattice under deformation behaves like an
elastic medium. Its properties are characterized by
three elastic moduli: shear modulus C66, bending
modulus C44 and multiaxial compression modulus CL
= Cu-Cgj. The theory of elasticity applies in the nor-
mal elastic media if the size of a deformed area is
large in comparison with the lattice period. For a
vortex lattice there are physical reasons for which the
Cn and C44 moduli exhibit a strong spatial dispersion
at comparatively small wave vectors.6 This is related
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to the fact that the longwave displacements of the lat-
tice drag the magnetic field along with them and the
elastic energy is determined by the change in the ener-
gy of the magnetic field. However, the latter cannot
change over distances smaller than the effective depth
of penetration 6etf. Therefore, in the case of deforma-
tions of the vortex lattice with wave vectors K greater
than 6"1,, the magnetic field separates from the vortex
lattice. In this case the elastic energy does not in-
crease with an increase in K. As the critical field HC2
is approached, the effective penetration depth 6e(t in-
creases as (H^-H,)'1^ (Hg is an external magnetic
field). The nonlocal effects are, therefore, especially
strong near the critical field H,2. For superconductors
with a small electron mean free path the elastic moduli
near the transition temperature Tc and critical field
Ha are given by6-7
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The coefficient $A depends on the form of the vortex
lattice and, in the case of a triangular lattice, [3A

= 1.1596. The spatial dispersion of the elastic modulus
C36 is small.

2. EFFECT OF INHOMOGEIMEITIES ON A VORTEX
LATTICE

In a conventional solid point defects do not disturb the
long range order. This is not the case for a vortex lat-
tice; the long range order disappears with even weak
inhomogeneities.8 This is associated with the fact that
the energy of interaction between defects and lattice in
a solid is independent of a homogeneous displacement
and is determined by deformation, since the defects in
a solid shift together with the lattice. The vortex lat-
tice does not drag along with itself defects of the crys-
talline structure. Therefore, a displacement of vor-
tices caused by such defects slowly decreases with dis-
tance from a defect. Displacements caused by various
defects accumulate and lead to disappearance of long
range order in the vortex lattice. The size of a region
with short range order is determined by the elastic
moduli and by the force of interaction fpjn between the
vortex lattice and a defect.

The flow of current in ideal type II superconductors
causes a motion of the vortex lattice as a whole and is
accompanied by dissipation of energy. Defects of dif-
ferent kinds—ever present in a superconductor—lead
to the pinning of the vortex lattice. As a result of this,
nondissipative current of a finite density may flow in a
superconductor. The maximum possible value of cur-
rent density at which the vortex lattice does not move
as a whole is called the critical density. The value of
the latter is substantially determined by the force of in-
teraction between a single defect and the vortex lattice.
Moreover, two basically different cases are possible:
strong and weak pinning. In the case of strong pinning,
the critical current density js is proportional to the de-

fect concentration n. However, occurrence of strong
pinning necessarily requires the fulfillment of a rather
rigid criterion9: the magnitude of displacement of the
vortex lattice at a defect site should be of the order of
the range of the pinning forces. The fulfillment of this
criterion makes possible the formation of metastable
states on a defect. The variation of the free energy in
the course of transition from one metastable state to
another thus determines the value of the critical cur-
rent.10 This criterion is very rigid and canrot be ful-
filled for small size defects.7-11

However, in addition to metastable states with
smooth deformation a sharp change in the condition of
the vortex lattice is possible at a defect site of the
structural transition type. The resulting state cannot
be described by the theory of elasticity. There is a
physical reason for the relative facility with which this
transition occurs: the vortex lattice is very loose and
the energy of the triangular and quadratic lattices near
the critical field Ha differs by only 2%. Such a change
in the state occurs even at weak defects with a small
range.12 In contrast with the Labusch deformation in-
stability, for which the interaction sign is unimportant,
a change in the lattice structure near a defect occurs
at a numerically weak interaction only in a case where
the vortices are repelled by the defect. Closer to HC2,
I A|2 falls off as 1-(H0/HC2}. Clearly, a condition for
the occurrence of a structural transition in the case of
repulsion between a vortex and defect may be fulfilled
near H^ even for small-size weak defects.12 The same
sensitivity to the sign of interaction is preserved also
for large-scale defects.10 The fact that the structural
transition becomes easier closer to HC2 permits one to
explain the so-called "peak effect," a sharp rise in the
critical current as HC2 is approached. Moreover, along
the ascending portion of the dependence of jQ on 1 - (H0/
HC2) defect size distribution plays a significant role,
and this function does not exhibit a universal nature.
Progressively closer to HC2 the critical current density
drops off and its dependence on the parameter 1 - (H0/
HC2) follows a universal law which is independent of the
force of interaction between vortices and a defect.12

In the case of defects in the form of small size pores
(a vortex is attracted to a defect) a very similar situa-
tion follows13; however, a condition for the formation
of metastable states becomes, in this case, consider-
ably more rigid.12-13

If metastable states fail to form on a single defect,
an average pinning force appears only as a result of
collective effects when a large volume Vc enters a
metastable state inside which short range order is pre-
served. In the case where the dispersion of elastic
moduli is negligible, the critical current is7

(6)

where a is the vortex lattice period, n is defect con-
centration, /9la is the force of interaction between a de-
fect and the vortex lattice.

In this case, the critical current density is low.
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3. NONLINEAR EFFECTS ASSOCIATED WITH
VORTEX MOTION

No simple generalization of the Ginzburg-Landau
equation to the nonstationary case exists, even near
the transition temperature. The description of the ef-
fect of a variable electromagnetic field on superconduc-
tors requires the use of a more complex system of
equations for the Green's function.14'15 In the case of
slowly-varying fields, these equations may be reduced
in a number of instances to kinetic equations for two
distribution functions and an equation for the order pa-
rameter A. The energy relaxation in the kinetic equa-
tions occurs due to electron-electron or electron-pho-
non collisions. The energy relaxation times are long,
TC of the order of tF/Tz or 92

D/T3, where EF is the
Fermi surface energy and 6D is the Debye temperature.
In view of this, nonlinear effects associated with elec-
tric fields rapidly become significant in superconduc-
tors. They are especially noticeable near the transi-
tion temperature.

The flow of current in ideal type II superconductors
in a magnetic field is accompanied by motion of the
vortex structure as a whole. Moreover, in a weak
electric field the vortex velocity and current density
are proportional to the electric field

j = o E . (7)

The conductivity a in Eq. (7) is a function of temper-
ature, magnetic field strength and electron mean free
path. In a normal metal, a is determined by the total
number of electrons and is independent of the specifics
of their energy distribution. The dependence of con-
ductivity on the electric field intensity in a normal
metal is, therefore, very weak. The same is not true
in superconductors. Significant changes occur in the
conductivity and order parameter A near the transition
temperature in a weak electric field at a time when the
perturbation distribution function varies little. This is
due to the fact that the nonequilibrium correction to the
distribution function for the order parameter A is of
the same magnitude as the terms proportional to
TC-T.

The physical picture of a vortex moving in a mag-
netic field B«HC2 is as follows: normal excitations in-
side a vortex are activated and scatter into a region of
energies greater than A. The generation of new ex-
citations in the vortex center is insignificant. As a
result, the effective pressure of excitations on vortex
walls decreases and the vortex contracts. The con-
ductivity in this case is16

1
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where
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Measurements carried out on films,17 are in a good
quantitative agreement with Eq. (8).

As the magnetic field grows, both cooling of elec-
trons entrained in a vortex and heating of electrons

with energies greater than A become significant. The
heating of electrons and the resultant decrease in Tc

and Ha are the most significant effects in a magnetic
field close to H^.16

The nonequilibrium electron energy distribution
which occurs due to vortex motion leads to emission of
nonequilibrium phonons. The most interesting phenom-
ena occur at a low temperature. The electric field,
rather than temperature, determines the excitation dis-
tribution function in relatively weak fields. The excita-
tions remain within the vortex core as long as the ef-
fective temperature is low compared to the order pa-
rameter A, and a broad spectrum of phonons is gener-
ated with an energy comparable to the energy of non-
equilibrium excitations. In a sufficiently strong elec-
tric field, electrons, having heated up in the vortex
region, attain energies e = A. Subsequently, excita-
tions leave the vortex core and, if the vortex density is
low, further heating strongly abates. Excitations be-
come accumulated with an energy e near A, and as they
recombine phonons are emitted with a frequency near
2A. In a weak magnetic field B« HC2 the width of the
phonon energy distribution is proportional to the small
parameter {B/H&)1 /3.15

Type II superconductors discovered by Shubnikov
have found broad application in science and technology.
Numerous experimental and theoretical papers are de-
voted to investigation of the properties of superconduc-
tors in the mixed state, i.e., the Shubnikov phase. The
structure of the mixed state in ideal superconductors
of the second kind has been fully investigated. The de-
pendence of conductivity on temperature and magnetic
field amplitude has been studied. As a rule, experi-
mental data are in a good agreement with theory.

There is a large body of experimental work that deals
with the critical current and current-voltage charac-
teristics of inhomogeneous superconductors. However,
these data are poorly systematized as a result of the
lack of a comprehensive theory of pinning. To date,
this theory is sufficiently well developed for those
cases in which the lattice deformation may be assumed
elastic. However, in many other cases the theory of
elasticity is, clearly, inapplicable. The investigation
of the structure of a mixed state in this case is in fact
only just beginning.
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