
METHODOLOGICAL NOTES

Effects of double passage of waves in randomly
inhomogeneous media

Yu. A. Kravtsov and A. I. Saichev
P. N. Lebedev Physical Institute, Academy of Sciences of the USSR and N. I. Lobachevskff State
University, Gor'kii
Usp. Fiz. Nauk. 137, 501-527 (July 1982)

In this review, the effects stemming from double passage of reflected and backscattered waves through the
same inhomogeneities of the medium, are discussed. The enhancement of phase and intensity fluctuations and
of the average intensity and other effects, characteristic of double passage, are described in detail.
Multichannel coherent effects, arising due to mutual coherence of different waves passing in opposite
directions along identical channels, are investigated. The experimental work on double passage effects is
reviewed. Possible practical applications of these effects are analyzed.
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1. INTRODUCTION

It is well known that when acoustic, electromagnetic
and other waves propagate in real media, a variety of
fluctuation effects, owing to the presence of random in-
homogeneities of the medium, arise.1-2 Recently, it
was determined that qualitatively new fluctuation effects,
originating from the double passage of waves through
the same inhomogeneities, arise with backscattering.

Consider the simplest scheme of a radar experiment,
leading to double passage of waves through a medium
with large scale random inhomogeneities (Fig. 1). At
first glance, it may appear that the fluctuation proper-
ties of the wave, reaching the receiver in a radar ex-
periment (Fig. 1), are analogous to the properties of
the wave passing twice the distance 2L along a straight
path (Fig. 2), since in both cases the wave passes over
a path with identical length 2L in the randomly inhomo-
geneous medium. In reality, however, the paths differ
greatly. The point is that in the radar experiment (Fig.
1), the reflected wave passes through the same inhomo-
geneities of the medium as the incident wave, while
along the direct path (Fig. 2), the wave propagates
through different inhomogeneities. It is the double
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FIG. 1.

passage of the wave through the random inhomogenei-
ties of the medium that gives rise to the specific fluc-
tuation effects.

Some anomalies in the behavior of the reflected wave,
owing to the correlation of inhomogeneities on the for-
ward and reflected wave paths, were first pointed out by
N.G. Denisov.3 Then, N.G. Denisov and L.N. Erukhimov
calculated4* the variance of the phase fluctuations of a
normally incident wave reflected from the ionosphere
(see also Ref. 4b). From these calculations follows the
effect of doubling of the phase variance of a normally
reflected wave compared to the phase variance of a
wave reflected with oblique incidence. Another effect of
double passage is "pure" enhancement of backscatter-
ing, i.e., enhancement of the average intensity of the
backward reflected waves in large-scale randomly in-
homogeneous medium, was discovered by Vinogradov
et aZ. , 1 > > 5 although the existence of specific interference
effects accompanying backscattering was indicated by
Watson7 and De Wolf,8 while a diagrammatic analysis of

FIG. 2.

"With the permission of the authors of Ref. 5, information
on the enhancement of backscattering was also included in
Ref. 6, which was published somewhat earlier than Ref. 5.
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the perturbation series for the backscattered field was
carried out by Yu.N. Barabanenkov.9-10 Later, it was
discovered that the backscattered wave has specific
coherent and other, new (compared to the wave propa-
gating without reflection) properties. This paper re-
views the diverse fluctuation effects of double passage
of waves through the same inhomogeneities.

2. DOUBLING OF THE PHASE VARIANCE ON
BACKWARD REFLECTION OF WAVES IN A MEDIUM
WITH LARGE-SCALE RANDOM INHOMOGENEITIES

a) Phase fluctuations on reflection from a mirror.
Geometric optics approximation

The effect of doubling of the phase variance of the
reflected wave was first discovered by Denisov et al.*
for reflection from an ionospheric layer with a smooth
dielectric permittivity profile. It is most convenient to
explain the nature of this effect and its characteristic
properties for a simple model of reflection of a wave
from a mirror, placed in a randomly inhomogeneous
medium.

Let a plane wave with wavelength \ = 2n/k

"me (P. •'') = exP t ' fc (x ~ Pie)l < 9 < K 1)

be obliquely incident on a randomly inhomogeneous lay-
er 0<x<L, bounded by an ideal mirror (Fig. 3). We
shall assume that the inhomogeneities in the dielectric
permittivity of the medium e = c - c" are small (I £1 « 1)
and large-scale (7E» A), while the path length L is such
that the conditions for applicability of geometric optics
are valid, namely, L A « / j j and smallness of the fluctua-
tions of the average intensity of the wave (x2)~ofi3//e
« 1, which permits neglecting the bending of the rays
of the incident and reflected waves. Since here we are
interested only in the phase fluctuations of the reflected
wave, we shall neglect the fluctuations in its average in-
tensity and we shall write the reflected wave at the
starting plane x = 0 in the form

«tef (P. (l) = "p \ih (21 + 0,0 + (f (p. /.))],

where, ip= k<p is the phase fluctuation and ip(p,L) is the
random part of the eikonal of the reflected wave. In
this case, the fluctuations of the eikonal <f(p,L) equal

L L

<p(P,i)-4~ J B(p,-2ie-i-ez,pa,a:)d:i:-i-4- \ MPi-0*. P2- i)cU.(2.1)
b o

The first term in (2.1) corresponds to fluctuations of
the eikonal of the incident wave on the section of the
path from the beginning of the layer (x = 0) to the mir-
ror (x = L), while the second term corresponds to fluc-
tuations on the return path. Standard calculations of

the variance of the eikonal of the reflected wave give
(see Ref. 1)

o| (0 , L) ~ - [

where

A(s)= \ <e(p,

A (2&x) d (2.2)

(2.3)

We shall compare the scale of the function A(s) to the
scale of the inhomogeneities ?E for single-scale inhomo-
geneities of the medium.

If the angle of incidence 9 exceeds the "correlation
angle" 0*~Z C /2L , then the forward and return rays
pass mostly through different inhomogeneities of the
medium. This permits neglecting the second term in
(2.2) compared to the first term, so that

(2.4)

In this case, the variance of the eikonal of the reflected
wave equals the variance of the eikonal of the wave
passing without reflection through a randomly inhomo-
genous layer with thickness 2L. If, on the other hand,
the angle of incidence equals zero, then, according to
(2.2),

(4(0, L ) = - A ( 0 ) L . (2.5)

Thus, the variance of the eikonal for backscattering is
twice as large as the variance for a direct path with
twice the length 2L:

°«, return (0, L) = 2aJ direct (0, 2L). (2.6)

This doubling of the variance of the phase with back-
scattering, evidently, is due to the double passage of
the wave through the same inhomogeneities. We shall
call the quantity

the enhancement factor of the phase variance. Accord-
ing to (2.4) and (2.5), for normal incidence on a mirror,
i.e. , for 8=0 we have

A', (0) = 2, (2.8)

while for 9» 0*, the enhancement factor equals unity.
The smooth transition from the value Nv = 2 to unity is
shown in Fig. 4.

b) Phase fluctuations taking diffraction effects into
account

If the condition for applicability of geometric optics
Z,A«/J is not satisfied, then in calculating the eikonal
of the reflected wave it is necessary to take diffraction
effects into account. Such a calculation was carried out
in the approximation of the method of smooth perturba-

f* 'i.f/ii

FIG. 3. FIG. 4.
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tions (MSP) in Ref. 11 for a gaussian beam normally in-
cident on a randomly inhomogeneous medium and re-
flected by an ideal mirror in the plane x = L. According
to Ref. 11, the enhancement of phase fluctuations of the
reflected wave remains also when diffraction is includ-
ed. In particular, it follows from Ref. 11 that the en-
hancement factor of the phase variance equals

, (2.9)

where $c(x) is the spectral density of fluctuations in the
dielectric permittivity. For a turbulent medium with a
von Karman spectrum

where Hm= 5.92/Z0, HO= 2ir/L0 (10 is the inner and L0 is
the outer scale of turbulence), it follows from (2.9) that
for extended paths (y?0L/k» 1), the variance of the fluc-
tuations of the eikonal is twice the variance of the
eikonal for oblique incidence (Nv «2). Together with
this, due to the correlation of phases of the incident and
reflected waves, there is an increase in the correlation
length of the phase fluctuations of the reflected wave
compared to the same quantity in the incident wave.

One more result, obtained in the MSP approxima-
tion,12 concerns the enhancement of the fluctuations in
the average intensity and phase of a beam, whose angle
of reflection from an ideal mirror is arbitrary. Ac-
cording to Ref. 12, the enhancement of the fluctuations
in the average intensity disappears when the angle of
incidence exceeds the value 2 V VL . On the other hand,
the enhancement of phase fluctuations remains appreci-
able ( N v ~ 2 ) , even if the angle of incidence equals the
angular size of the external scale of turbulence.

Doubling of the phase variance with double passage
is characteristic also for more complex situations:
with reflection of a spherical wave from a mirror, scat-
tering by a point reflector (see below, Sec. 3) and by a
cylinder,13 and in many other cases.

c) Fluctuations in arrival angles and arrival times of
signals

It is well known that fluctuations in the phase of a
quasimonochromatic pulse are closely related to fluc-
tuations in the time 5t for the reflected pulse to return
in a randomly inhomogeneous medium. In nondisper-
sive media, we have 6t= <p/c. Accordingly, the vari-
ance of the fluctuations in the arrival time of the
sounding pulse o^(0, L) is related to the variance of the
eikonal (2.2) by the simple relation

a? (9, Z,) = - L).

Thus, doubling of the phase fluctuations with double-
passage leads to doubling of the variance of the arrival
time of the signal, which in its turn can increase the
error in determining the distance to the objects being
located.

Analogous results are also valid for the arrival

FIG. 5.

angles of a wave reflected in a randomly inhomogeneous
medium.

3. ENHANCEMENT OF BACKSCATTERING

a) "Pure" enhancement of backscattering: point scatterer
and point emitter

Propagation of a scalar monochromatic wave in a
medium with dielectric permittivity c= 1+ c (E is the
fluctuating part of the dielectric permittivity) is de-
scribed by the Helmholtz equation21

Au (1 + e) u =-. 0. (3.1)

We shall assume that the random inhomogeneities are
weak ( l e I «1), statistically isotropic, and large scale
(lt»\). In addition, we shall temporarily assume that
the inhomogeneities do not change in time (in what fol-
lows, we shall point out the permissible magnitude of
the derivative dc/d(; see subsection g).

Let a point isotropic emitter be located at the point
r= PJ. The emitter can be taken into account by in-
troducing on the right side of Eq. (3.1) the function
(Kr-rj). We shall denote the Green's function of fiq.
(3.1) by G(r1,r). We note the fundamental, for effects
of double passage, reciprocity property of waves

G (r,,r) = G IT, r,). (3.2)

Let us place at the point r= R an isotropic point scat-
terer, which creates the scattered field

u. (r) = fG (r,, R) G (R, r); (3.3)

here, / is the scattering amplitude. We shall be inter-
ested in the scattered field at the conjugate points r= TJ
and r= r(, separated by identical distances from the
scatterer: f^ -RI = IR-rJi = L (Fig. 5). According to
(3.3) and (3.2), these fields are given by

R)G(R , (3.4)

We shall further assume that scattering by a single in-
homogeneity (volume 1%) is small, Z E «L, while the di-
rection of propagation of the multiply scattered wave
along the path of length L remains practically un-
changed. Then, the fluctuations in G^.R) are caused
by inhomogeneities of the medium in a narrow region
around the straight line, connecting the emitter and
scatterer (r l fR), while fluctuations in G(R,r1') arise due
to statistically independent inhomogeneities along the
path (R,r[). For this reason, thefunctions G(rl,R') and
G(R, r/) are statistically independent. The average in-
tensities of the scattered wave at the conjuage points,

2)We note that the scalar approximation in media with large-
scale inhomogeneities is justified also for electromagnetic
waves, whose polarization is practically unchanged along the
propagation path.
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corresponding to them, equal:

/(r, R)-|G(r, R)p.
(3.5)

The enhancement of backscattering "in pure form"5 fol-
lows from the first equality in (3.5) and from a trivial
assertion of the theory of probability, namely, that the
mean-square of a random quantity is always greater
than the square of its average:

rlt R)))-. (3.6)

Keeping in mind the undirected nature of the radiation
and of the scattering, for a statistically isotropic and
large-scale medium, from the law of conservation of
energy flux, we have

</(r,, R)> = < / (R , r()> = /„(£),

where /„( | Tj-r |) = IG^r^r) |2 is the intensity of the
emitter field in a vacuum (2=0) . Substituting the last
equality into the first relation in (3.5) and taking (3.6)
into account, we arrive at a quantitative expression for
the enhancement of backscattering:

(3.7)

where I^rJ = aI0(L) is the intensity of the scattered
wave in a vacuum, while

->1 (3.8)

is the enhancement factor for backscattering in a ran-
domly inhomogeneous medium. This factor exceeds
unity all the more, the greater the fluctuations in the
intensity of the wave incident on the scatterer. A clear
geometric interpretation of the enhancement of the
average backscattering intensity can be given by making
use of the reciprocity theorem, which is valid both for
the fields themselves and for geometric optics rays15:
waves from the emitter to the scatterer and back again
propagate along the same rays (Fig. 6). It is the corre-
lation of fluctuations in the intensity of the incident and
scattered waves, passing through the same inhomoge-
neities, that is responsible for the enhancement of the
average intensity of the wave at the position of the
emitter.

b) Spatial redistribution of the backscattering intensity

For the average intensity of the scattered field at an
arbitrary point r, in analogy to (3.7), we have

</s (r) > = .V (r,, r, R) /„„ (r),

where the quantity

NlT r m (/(H. r , ) / ( B , D)
=

(3.9)

(3.10)

now describes not only the enhancement, but also the
spatial redistribution of the average backscattering in-
tensity. Let the point of observation r be located on a
sphere with center R and radius I r j -RI = L. In this

FIG. 7.

case, N becomes a function of the angle 8 = I Tj-r)/
L: N= N(9,L) (Fig. 7). From the law of conservation
of the energy flux of the scattered wave, it follows that

•| A'(r,, r, R) ds = 4jiL*, (3-11)

where the integration is carried out over the sphere
described above. Since for strict backscattering, the
average intensity is enhanced N(Q,L) >l, then (3.11) is
satisfied only under the condition that the enhancement
at 8 = 0 is accompanied by a decrease in the average
backscattering intensity at angles close to 9 = 0. A s a
result, the scattering indicatrix N(B,L) assumes the
characteristic form shown in Fig. 8. For sufficiently
large 9, when the wave incident on the scatterer and
scattered at an angle 9 passes through different inhomo-
geneities, the intensities /(R, rj and 7(R, r) are statis-
tically mutually independent and N(e,L) = 1.

c) Case of weak fluctuations

If the intensity fluctuations of the wave incident on the
scatterer are sufficiently small, then it is possible to
use the MSP approximation (see, for example, Ref. 16).
In this approximation,

N (9, /.) = 4By. (Oi, L), (3.12)

where jBx(p,L)= (x(r1,L)x(r,L)> is the correlation func-
tion for fluctuations in the average intensity of the
spherical wave and p= Ir-rJ . In a statistically iso-
tropic medium,

5x (P, L) = 2it ] FT. (x, L) J, (xp) dx,
t>

where

(3.13)

In the case of single-scale inhomogeneities of the
medium, the correlation in the fluctuations of the level
disappears for pN~lt- For this reason, the redistribu-
tion cf the average intensity of backscattering occurs in
a cone of angles 9 A ~ Z E / L . In a turbulent medium (outer
scale L0, inner scale L) with La>J^L>la, the correla-

FIG. 6. FIG. 8.
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tion length is determined by the Fresnel scale pN~J\L.
In this case, 9N~ VA/L.

We shall also examine the problem of fluctuations in
the average intensity Xs(r) and phase i/ia(r) of the scat-
tered wave. Their variances in the MSP method equal:

(3.15)oj(6, L) =
a\ (6, L) = 2 , L); (3.16)

here, 2BX(0,L) and 2Bt(0,L) equal the variances of the
average intensity and phase of the scattered wave at the
conjugate point ^'(6 = ir), while the terms 2B^(9L,L)
and 2Bt(9L,L) are related to the double passage of the
wave through the same inhomogeneities. For strict
backscattering (6 = 0), both the variances of the phase
and of the average intensity are doubled compared to the
variances at the conjugate point:

a£ (0, L) = 4BX (0, L), aj, (0, L) = 4B,, (0, L). (3.17)

We note that it is the increase in the fluctuations of the
average intensity in the backward direction that leads to
the increase in the average intensity: the return wave
is both focused (x>0) and defocused (x<0), but on the
whole focusing dominates and, for this reason, (/s)>/ao.

d) Case of saturated fluctuations

The main physical characteristic of a wave in a tur-
bulent medium in the saturation regime is the trans-
verse coherence radius pc(L) of a spherical wave, tra-
versing a path of length L in a turbulent medium. It is
determined from the equation1:

(3.18)

(3.19)

where

D (s) = A (0) - A (*),

while A(s) is given by expression (2.3). The condition of
saturability of the intensity fluctuations of the wave,
traversing a path L, has the form y = L/kp\» 1 (Ref. 17)
and has a simple interpretation. The quantity y equals
the ratio of the mean-square transverse displacement
of the ray ap(L) ~L/kpc to the coherence radius pc:
y~op/pc.

le In other words, saturation of fluctuations
occurs under conditions when the lateral displacement
of the rays exceeds the coherence radius.

In the saturation region, the statistical properties of
the incident wave field are asymptotically Gaus-
sian. 17-19.20 This means that the probability density of
the normalized intensity J= 7(r,R)/0( |r-R|) of the sat-
urated (y» 1) spherical wave asymptotically approaches

W7*, (J) = e-] (J > 0).

Its moments equal

tJm) = m\.

(3.20)

(3.21)

In using the distribution (3.20), it is necessary, how-
ever, to keep in mind the fact that the asymptotic ap-
proach of W(J;L) to (3.20) is not uniform and becomes
worse with increasing J. Physically, this is due to the
presence of caustics and spikes in the intensity related
to them, leading for large J to a slower decrease in the

probability density of the intensity than predicted by
(3.20). In the final analysis, the higher the moment,
i.e., the greater m in (3.21), the more its true value
differs for fixed y from the value (3.21) and the greater
y must be in order to use Eq. (3.21).17-19-20

It follows from (3.21) and (3.8) that if the scatterer is
located in a region of saturated fluctuations of the in-
tensity of the incident wave, then

N =2. (3.22)

We note that in the region of strong fluctuations
(where y ~ l and caustics, which are responsible for the
strong fluctuations,14 begin to appear), the enhancement
factor N may turn out to be somewhat greater than 2.

e) Increase of the higher-order moments of the intensity
on backscattering

The enhancement of the average intensity is accom-
panied by an enhancement of the higher moments of the
intensity. If the fluctuations are weak, then in order to
calculate the moments {/?), it is possible to use MSP.
In this approximation, /=/0exp(2x), where x= X~+ X is
the average magnitude of the amplitude and, in addition,
(x2)so^= -x'. Then, for the amplification factor of the
w-th moment of the intensity JV*"1' = {/^(rj)} x [/^(r^]'1,
we obtain

2m3-mK]. (3.23)

From here follows the rapid increase in W m ) with in-
creasing number rn. The relative fluctuations A/m_s //30,
according to (3.23), equal

/ exp(24o*)-exp(4oj) 20 o>.

A similar result is also valid for saturated fluctuations:
in accordance with (3.21), AM = (J2m>= 2m\ In this
case, A^ //30= /26"(see also Ref. 21).

f) Enhancement of the backscattering in the case of a
phase screen

Let a phase screen, which modulates the passing
wave immediately by a factor exp[z$(p)], where $(p) is
a two-dimensional random field, be present between the
source and the scatterer. If the reflector is located in
the focusing zone, then the enhancement factor N can
be much greater than the limiting value N = 2 for a
medium with volume fluctuations. A rough estimate of
the enhancement factor in this case is given by
JV-lnoJ , oj =<*'>.»-"

g) Condition for the existence of enhancement in
nonstationary media

This reduces to the fact that over the time A? = 2L/c
of propagation of the signal from the source to the scat-
terer and back again, the medium practically does not
have time to change:

(3.24)

here, rc is the characteristic time of the fluctuations in
the dielectric permittivity e. In other words, the re-
flected signal must pass through the same inhomogenei-
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ties as the forward signal. If the change in the parame-
ters of the medium along the propagation path occurs
due to drift of inhomogeneities, then the reversal effect
does not disappear, but is observed at a point displaced
from the observer by a distance 2LvJc, where VL is
the component of the drift velocity transverse to the
beam.

h) Enhancement of backscattering in the case of
extended sources, receivers, and reflectors

Above, we have discussed the enhancement effect in
the simplest scheme of a point source and point scat-
terer. Under real conditions, scatters, emitters, and
receivers have finite dimensions. Taking real factors
into account is very important in order to develop rec-
ommendations for experimental observation and practi-
cal use of double passage effects. We shall examine
some of the relevant problems here.

1) Averaging action of a finite receiver aperture. From
what has been said above, it follows that if the charac-
teristic size of the receiving aperture pa exceeds the
correlation radius pN of the intensity fluctuations of the
backscattered wave, then the receiver will not see the
enhancement of the average backscattering intensity
due to the averaging action of the receiver aperture.5

Thus, the inequality pa<pA, serves as a condition for ob-
serving the enhancement effect. As an example, we
shall examine the limitations on the aperture of an opti-
cal receiver under the conditions of a turbulent atmos-
phere. In the case of small intensity fluctuations of the
incident wave, when the MSP approximation is valid and
p^~/X~L, we have pa< VAX. For laser radiation
(\~ 5 • 10"5 cm) and a path L ~ 1 km, we obtain pl

~ 2 cm. On longer paths L -5-10 km, where the inten-
sity fluctuations of the incident wave are usually already
saturated, the aperture must be less than the spot with
enhanced averaged intensity, whose radius is of the or-
der of the coherence radius of the incident wave pa(L).
Paths with Z,~5-10 km correspond to a coherence radi-
us of p c ~ l cm. For this reason, pa<l cm is necessary.
Presently existing receiving apparatus can detect back-
scattering enhancement in a regime with both weak and
strong intensity fluctuations of the wave incident on
the scatterer.

2) Influence of spreading of wave beams and of direc-
tional properties of scatterers on enhancement of
backscattering. It is evident that if the dimensions of
the scatterer a are much less than the transverse co-
herence radius of the incident wave, a«pc(L), then
near the scatterer the incident wave field ?<lnc(r) can be
assumed to be locally planar and locally coherent.5 In
this case, in the region of Fraunhofer diffraction, the
expression for the average backscattering intensity has
the form

(/, (!•)> = a (q) < /me ( R ) / ( R , r)>, (3.25)

where, as before, 7(R,r) is the intensity of an undirect-
ed spherical wave, /Uc= lwl n < :(R) I 2 is the intensity of the
incident wave near the scatterer, o(q) = |/(q) I 2 is the
scattering cross section, /(q) is the scattering ampli-
tude, q = &(n-m) is the scattering vector, m is the di-

rection of propagation of the incident wave near the
scatterer, while n is the direction toward the point of
observation r from the scattering point R (see Fig. 7).

Let us write (3.25) in a form similar to (3.7):

(r* ( r )> = (I, (r)>«Ar; (3.26)

here, the first factor </3(r)}0= o(q)(/lnc(R)>/0(|R-r|)
represents the average intensity of the scattered field
neglecting the correlation between the incident and scat-
tered fields. This quantity is customarily used in esti-
mates of the power, scattered by bodies in a randomly
inhomogeneous medium. The second factor in (3.26) is
the scattering enhancement factor

Uinc (R)'(R, r))
R=7TT- (3.27)

In contrast to the factor N, studied in Subsection a,
here N characterizes not the absolute (compared to the
vacuum), but the relative enhancement of scattering,
since in the case of narrow beams, the intensity of the
incident wave can decrease due to the spreading of the
beam in a randomly inhomogeneous medium. We shall
return to the case of narrow beams in Subsection m.
Here we note that if the scatterer is located in the
Fraunhofer zone of the emitter and if the directivity
pattern F(m) is so wide that its spreading due to random
inhomogeneities in the medium can be neglected, then it
follows from (3.26) and (3.27) that absolute enhancement
of the average backscattering intensity occurs.5 Actu-
ally, in this case, the wave incident on the scatterer
can be represented in the form wlnc(R) = F(m)G(r1(R).
In this case, the enhancement factor (3.27) coincides
with (3.10), while the quantity

</. (r)>. = a (q) | /•' (m) I 2/0 (\ rt - R | ) /„ f 1 R - r | ) (3.28)

equals the backscattering intensity in a vacuum.
Therefore, in this case, absolute enhancement also
occurs.

3) Restrictions on the dimensions of smooth convex
reflectors. The stringent restriction a« pc on the di-
mensions of the scatterer is greatly weakened if the
scattered field is formed not by the entire scatterer,
but only by a small part of its surface, namely, by the
bright spot.5 Thus, for a smooth sphere with radius
a» A, the size of the bright spot ~/Xa, so that the in-
equality a<p c should be replaced by a much weaker one:
VXa <pc. In this case, if the wavelength X« 5 • 10"3 cm,
while p c ~ l cm, from here, we have a<p 2 /X~2 • 104

cm= 200 m. Thus, the restrictions on the dimensions
of smooth reflectors greatly decrease.

4) Weakening of scattering by extended bodies under
conditions of strong phase fluctuations. If at least one
of the radii of curvature of the body is infinite (disc,
strip, cylinder), while the phase fluctuations are large
((!/?)» 1), then, as established in Ref. 71, enhancement
of backscattering is replaced by weakening, since the
coherent superposition of synchronous fields, scattered
by the elements of the body, breaks down. According
to Ref. 71, the weakening of scattering by a body of
length b occurs when the following three conditions are
satisfied: a) the point of observation is located in the
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geometric optics zone (\L« /j!); b) phase fluctuations
are large; and, c) the coherence radius of the field
lB~lt/JWT is quite small: 1E« \L/b.

i) Enhancement in the case of scattering by a rough
surface and by a collection of discrete inclusions

Backscattering is also enhanced in the case of scat-
tering of a weakly directed spherical wave by a rough
surface. It is necessary that the coherence radius of
the incident wave pc be much greater than the dimen-
sions of the areas (bright spots), forming the effective
scattering indicatrix crs(q) of the surface.5-25 Under
these conditions, the observer sees the surface as a
collection of uncorrelated scatterers (bright spots).
The characteristics of the spatial redistribution of the
average backscattering intensity for the case of a rough
surface are described in Ref. 25. Similar phenomena
also occur with scattering by discrete inclusions,
placed in a large-scale medium.

j) Enhancement of backscattering by small-scale
inhomogeneities in the presence of large inhomogeneities

Let us separate the spatial spectrum of the inhomo-
geneities of the medium into two independent parts:
$E(K) = $,,(x) + *u(x), were v(r) is the large-scale
(x.<y.*), while p.(r) is the small-scale (K>X*) part of
the fluctuations in the dielectric permittivity c= v+ M;
here, **«k is the separation boundary in wave number
space. Wave propagation in such a two-scale medium
is described by the Helmholtz equation (3.1), which can
be solved in the single-scatter ing approximation with
respect to the small-scale component p., if the random
field uv(r), which is affected only by the large inhomo-
geneities v, is taken as the zeroth order approximation.
The statistical independence of both components per-
mits averaging independently with respect to v and pi,
and in so doing, the result within certain limits does
not depend on the cutoff of x*. Such a hybrid approach
was realized in Ref. 26 and led to the following result
for the intensity of the field backscattered to the source:

I r -RI d3R; (3.29)

here, a^(q) = (vk*/2)$u(q) is the Born cross section for
scattering by the small-scale component (q= 2k sine/Z),
/in(,(R) is the intensity of the incident wave, while the en-
hancement factor N(H) is given by expression (3.8).
Enhancement of scattering is manifested in the fact that
the scattering cross section o^ appears in the integrand
in (3.29) with the factor JV(R) > 1, which describes the
effect of large inhomogeneities.

It is important that the single backscattering approx-
imation has a much larger range of applicability within
the scope of the hybrid method than the standard Born
approximation, whose validity is limited by the condi-
tion that the total cross section L} crcdn« 1 be small,
while within the scope of the hybrid method it is only
required that the cross section for the small-scale
component be small: L / <7Hdfi « I.26

We also note that the distribution of the scattering
inhomogeneities over a large volume can significantly

reduce the region near the emitter, where enhancement
of backscattering is manifested. If a is the width of the
directivity pattern of the emitter, then the dimensions
of the enhancement region are ~pN across the main lobe
of the diagram ~pN/a along it (Fig. 9).

k) Enhancement of backscattering as an effect not taken
into account in the theory of radiation transfer

In analyzing the statistical and, in particular, the co-
herent properties of waves multiply scattered in ran-
domly inhomogeneous media, the equation of radiation
transfer (ERT) is often used.27-28 A "statistical-wave"
derivation of ERT is given in Refs. 29 and 30 (see also
Ref. 1) with the help of selective summation of a series
with respect to the scattering multiplicity and its dif-
fraction content is established. A calculation of the
average backscattering intensity within the scope of
ERT, taking into account multiple scattering by large-
scale components of inhomogeneities of the medium and
single scattering by the small-scale components, does
not lead to the enhancement of backscattering.31"33 As a
diagramatic analysis of the applicability of ERT
showed,9-10'34 enhancement of backscattering is not
manifested within the scope of ERT due to the fact that
the ladder approximation of the Bethe-Salpeter equation
used in its derivation neglects the contribution of the
so-called cyclical diagrams. Figure 10 shows schema-
tically the propagation paths of waves from the point r£
to the point r' and from the point r£' to r" in the approx-
imation of double and triple scattering, and the corre-
sponding cyclical diagrams are also presented.

Essentially, ERT is not capable of describing the en-
hancement of backscattering because in the ERT, the
scattered wave intensities are summed incoherently,
while for backscattering, in general, the coherence of
waves passing through the same inhomogeneities cannot
be neglected. Apparently, the specific interference ef-
fects accompanying backscattering were first pointed
out in a paper by Watson.7 Watson noted that the path
(r1 (r2 , . . . , r

B>r i) and the reverse path^.r,,,.. ..TJ,^)
(Fig. 11) give identical, i.e., coherent,fields. This co-
herence is responsible for the enhancement of back-
scattering. A coherent calculation of the average inten-
sity of waves in a small-scale plane-layered medium,

uT-

FIG. 10.
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FIG. 11.

taking into account multiple backscattering, also con-
firms the inapplicability of ERT in describing backscat-
tering (see, for example, Refs. 35-40).

The discussion above might raise the warning that the
ERT cannot generally be used to describe backscatter-
ing. However, as noted above (Subsection j), in the
presence of scattering in a medium with non-one-di-
mensional volume random inhomogeneities, the back-
scattering enhancement effect is almost everywhere
smeared out except for a small region around the emit-
ter. In this sense, three dimensional scattering prob-
lems are qualitatively different from one-dimensional
problems, where the smearing effect is absent. It is
the smearing of the enhancement of backscattering in the
three-dimensional case that leads to the fact that devia-
tions from incoherent superposition of scattered fields,
on which the ERT is based, are usually small.

I) Methods for analyzing double passage

In calculating double-passage effects, methods that
differ in their range of applicability and degree of justi-
fication are used. As long as the intensity fluctuations
of the incident wave are weak, we shall use MSP, which
was widely used in calculating the fluctuations of the
reflected wave field (see, for example, Refs. 5, 11, 12,
26, and 41-44). A detailed calculation of double-pass-
age effects for strong fluctuations was carried out based
on the phase approximation of the Huygens-Kirchhoff
method (PAHKM) and its modifications.s'45'48 However,
the applicability of PAHKM for quantitative calculations
of waves in a turbulent medium is not always sufficient-
ly justified.17-47 A functional method for analyzing the
statistics of waves reflected in a randomly inhomogene-
ous medium was developed in Refs. 38 and 49. Since in
a turbulent atmosphere, the direction of propagation of
the incident wave practically does not change, while
double-passage effects are manifested only in a small
cone of backscattering angles, these effects are reliably
described by the parabolic equation method (PEM). In
this case, as demonstrated in Refs. 50 and 51, the
Markov approximation is applicable in the statistical
analysis of the reflected waves. A series with respect
to the multiplicity of backscattering along the direction
of propagation of the wave is obtained in Ref. 52. It is
shown in Refs. 53 and 54 that the Markov approximation
is valid in the analysis of such series. We note that the
equations of single backscattering52"54 practically coin-
cide with the equations of the hybrid method.26 In Ref.
64, the boundary value problem for backscattering is
reduced to the Cauchy problem, which is more con-
venient for statistical analysis.

m) Description of reflected waves by the parabolic
equation method

Let a wave, given by ua(p) in the emission plane x = 0
(p denotes the transverse coordinates), propagate

along the x axis. We shall place a reflector at the end
of the path with a local coefficient of reflection/(p) on
the underlying surface x= L. Then, the complex ampli-
tude of the reflected wave in the emission plane (x = 0)
according to PEM equals

«. (P) = / <P') "inc (P'. L) G (p, 0. p', L) dp', (3.30)

where uUc(p,x) is the complex amplitude of the incident
wave:

"me (p, •*) =-'- j «o (Po) G (Po, 0, p, .1) dp0.

The Green's function entering here satisfies the Cauchy
problem:

2ik ~ + APG + k% (p, x) G = 0,

G(p0, 0, p, 0) = 6(p-p0). (3.31)

We shall present some exact consequences of (3.30)
and (3.31). For a plane incident wave («0= 1) and sta-
tistically homogeneous e, it follows from (3.30) and
(3.31) that48-50'51

< « • (P)> = <»inc (P, L) U , ( f , L)), (3.32)

where u^p, x) is the incident wave, whose complex
amplitude in the plane x= 0 equals/(p). If the reflector
is an ideal mirror, then/= 1 and we have from (3.32)
(w3(p)) = 6<2

nc(p, L)). For weak intensity fluctuations,
this equality is a result of the enhancement of phase
fluctuations of the reflected wave described in Sec. 2.

The total intensity flux/5(p)= Iw3(p)|2 of the reflected
wave, as follows from (3.30) and (3.31), equals51:

I. (P) dp = \ I / (P) 1" /lnc (P, L) dp. (3.33)

It is evident from here that if the dimension of the re-
flector is less than the intensity correlation radius of
the incident wave, then the fluctuations of the total flux
of the reflected wave reproduce the fluctuations in the
intensity of the incident wave, i.e., the averaging action
of the receiving aperture saturates (see Refs. 55-57).
It is also evident from (3.33) that the average reflected
flux equals the average flux of the wave incident on the
reflector. The latter is a result of the smearing of the
enhancement of the average intensity of the reflected
wave by the receiving aperture, indicated in Subsec. h.
For a plane incident wave and an ideal mirror (w0 = /
= 1), the equality50 {/3(p)) = 1, indicating the absence in
this case, of enhancement of the average reflected wave
intensity, is valid.

Tne expression for the reflected wave in the form
(3.30) is convenient for use of the Markov approxima-
tion.47-50'51 However, due to the correlation of the in-
homogeneities along the paths of the forward and re-
flected waves, the equations for the moment functions
of the reflected waves are more complicated than the
equations for the corresponding moment functions of the
incident waves. Thus, the coherence function of the re-
flected wave rs = (tt3(p,+ p/2)u%(pt — p/2)} in the simplest
case of a plane incident wave and an ideal mirror equals

F8 (p) = \ .l/(p_, 0,0; L |p) dp.,

where M(p.,pi,p.i;L/p) satisfies the equation

(3.34)
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_, pt, p2; 0|p) = 8(p_ —p- (3.35)

The exact solution of this equation is not known. An
asymptotic analysis has shown that for saturated fluc-
tuations in the intensity of the incident wave (y» 1), its
stochastic Green's function G is asymptotically Gaus-
sian.17"20 Therefore, in the regime of saturated fluctua-
tions, the averages of the products of stochastic
Green's functions of the forward waves, entering into
the expression for the moment functions of the reflected
waves, can be separated according to the laws of Gaus-
sian statistics. This significantly simplifies the statis-
tical analysis of the reflected wave.

We shall discuss the special features of the manifes-
tation of the enhancement of the average reflected wave
intensity in the regime of saturated fluctuations using
the example of a beam with radius d, collimated in the
plane x = 0, incident on a plane mirror with radius a in
the plane *= L.45-58 Ifd<pc(L), i.e., if diffraction di-
.vergence of the incident beam exceeds the turbulent
divergence, relative enhancement occurs of the average
reflected wave intensity in a spot with radius pc(L) in
the vicinity of the emitter with enhancement factor
N~2. In addition, for sufficiently small (a<pc(L)) and
sufficiently large (a>of(L)) reflectors, the enhance-
ment effect becomes absolute. For d>pc(L), the en-
hancement effect vanishes. Analogous results are also
valid in more general cases (diverging beams, rough
reflectors, and so on45'58). We note that the behavior of
the reflected wave in the regime of saturated fluctua-
tions is satisfactorily explained by the multichannel co-
herent effects examined in Sec. 4.

n) Enhancement effect on reflection from a rough surface
in the presence of shading

I.M. Fuks discovered an effect analogous to the en-
hancement of the average backscattering intensity in a
randomly inhomogeneous medium59: for small glancing
angles for a wave incident on a rough surface, back-
scattering is weakened by shading of the incident and
scattered rays. For almost all azimuthal scattering
angles, the incident and reflected rays move along dif-
ferent reliefs of the rough surface and their shading is
statistically independent. However, in a narrow sector
of azimuthal backscattering angles, when the incident
and reflected rays pass above the same irregularities,
the correlation of the shading of the incident and re-
flected rays turns out to be significant. Due to this
correlation (if the incident ray was reflected strictly
backwards, then the reflected ray is not shaded), there
is an enhancement of the scattering cross section in a
narrow range of azimuthal angles with maximum en-
hancement factor N~ 2.59

4. MULTICHANNEL COHERENT EFFECTS WITH
BACKSCATTERING

a) Coherent effects, related to multichannel propagation

Let the wave proceed from the source (point rj to
the scatterer (point R) along two paths, which corre-

FIG. 12.

sponds to the total Green's function

G (rlt R) = G, (i,, R) + G., (t,, R). (4.1)

This situation arises, for example, in the presence of
a good reflecting interface boundary (Fig. 12). Accord-
ing to (3.4) and (4.1), the backscattered field is written
in the form

"s (ri) = f(Gl
Jr G2)

2 = / (GJ -+- G,G2 + G2G, + G\) = ult + u,a + u21 + «22.

(4.2)
The terms wu = fG\ and u22 = fG\ correspond to scatter-
ing along paths 11 and 22, while the terms ui2 = fGiG2

and w21=/G2G1 correspond to the crossed propagation
channels 12 and 21 (Fig. 13). According to the recip-
rocity theorem, these cross channels are coherent:
M12 = M21, leading to an enhancement of the correspond-
ing intensity /12i21 = |«12 + u2i 1

2 by a factor of 4 com-
pared to the intensity in a single channel /12= \ui2l

2,
which equals the geometric average of /n = l« n l 2 and

M. (4.3)

The total intensity of the scattered field in the vicin-
ity of the emitter equals

The terms in parenthesis oscillate rapidly as the
source or scatterer is displaced. Having in mind aver-
aging over some region of variation of r^ and R (suffi-
ciently large so that there would be many oscillations
in it), we shall drop these terms, writing

/. = /„ + /„ + 4/l2. (4.5)

This expression exceeds the sum of the intensities

/tacoh = /u + '*>- + 7!2 + /« = /,! + /» + 2/12, (4.6)

corresponding to incoherent superposition of the wave
intensities over all channels. In essence, /lncoh can be
measured at some distance from the emitter, where
channels 12 and 21 already lose coherence (see Subsec-
tion b below). In a randomly inhomogeneous medium,
all quantities in (4.5) and (4.6) must be viewed as aver-
aged over ensembles of inhomogeneities:

(I,) = </!!> + </2 2> + 4 <'»>. tftoCOh) = tfn> ~ <'A2> -I" 2</, , '

(4.7)

FIG. 13.
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In this case, the ratio

A' •-• < / „ > tfincoh)-1 (4.8)

characterizes the enhancement of the average intensity
due to coherent effects with multichannel (in this case,
two channel) propagation. If /n, 712 and I22 are approx-
imately equal, the enhancement factor equals N = 6/4
= 1.5. As the number of channels M increases, the en-
hancement factor N increases approximately as N~2
-l/M.

Indications of the existence of such effects already
existed a long time ago (see, for example, Ref. 60);
however, their importance was recognized only re-
cently.61'62

b) Condition for the existence of coherent effects

It is significant that coherent effects in themselves
have a nonstatistical nature. They can be observed in
an arbitrary smoothly inhomogeneous medium in the
presence of arbitrary (but smooth) interfaces and so on.
It is only necessary that the wave move from the source
to the scatterer along several independent paths (chan-
nels) and that over the propagation time A£~2L/c, the
medium (or its boundary) does not have time to change
appreciably. In the particular case of a variable inter-
face (Fig. la), for the existence of coherent effects, it
is necessary that the difference t'-t" between the times
that the rays 21 and 12 touch the surface be sufficiently
small that over this time no appreciable (with respect to
x/2) path difference b.l~v,(t'-t") cosS would appear be-
tween channels 12 and 21.62

The spatial region for observation of coherent multi-
channel effects is limited by the condition that the
waves, arriving at the point of observation along the in-
tersecting channels, be in phase. When the observation
r and emission ri points are separated, the wave ar-
rives at point r along channels 12' [Fig. 14(a)] and 21'
[Fig. 14(b)]. Coherent superposition disappears when
the difference between paths 12' and 21' equals X/2.

c) Long-range correlation in crossed scattering channels

Another coherent effect, related to multichannel
propagation, can be observed with simultaneous scat-
tering of two waves, emitted by mutually synchronized
(coherent) sources (Fig. 15).63 The scattered field,
evidently, equals

u, (r) = /G (R, r) \G (r,, R) + C (r2, R)l. (4.9)

Being interested in the mutual correlation of the scat-
tered field at points at which the emitters are located,
we shall find the coherence function Ta(ri,rz)
= (M3(ri)w*(r2)>. Assuming that the phase fluctuations of
the emitted waves G are large, while the distance be-

FIG. 14.
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tween the emitters \ri-r2\ is greater than the coher-
ence scales of the waves G, so that (G(r1, R)G*(r2, R)>
= 0, we obtain

I / I I ) /o ( R (4.10)

Thus, there is a strong correlation between the values
of the scattered wave field at the emitter locations
separated by a large distance caused by the fact that the
contribution to the scattered wave at the point r2 from
the wave of an emitter situated at the point rl passes
along the same path rL — R — r2, along which the wave,
emitted from point r2 and scattered at the point R
along the direction to rl( propagates.

d) Coherent effects on reflection from a rough surface

Conditions, under which a wave is scattered strictly
backwards after a double reflection, can appear with
the reflection of waves from a statistically irregular
surface (Fig. 16). This leads to mutual coherence of
waves, scattered in a different sequence by the same
sections of the surface. As a result, an appreciable en-
hancement of the scattering cross section will occur
(calculated per unit area) in a narrow range of back-
scattering angles. Thus, if the irregularities of the
surface are sufficiently steep, then coherent effects
with multiple rereflection must play an important role
in backscattering.

e) Relations between enhancement and multichannel
coherent effects

There is no sharp boundary between these effects.
This can be verified by interpreting the backscattering
enhancement effect from the point of view of the theory
of multiple scattering (see Subsection k in Sec. 3 and
Fig. 11). The difference between the two effects re-
duces, in essence, to the number of coherent scattering
channels: with backscattering in a randomly inhomo-
geneous medium, the number of channels is infinite,
while for multichannel propagation effects, examined
in this section, this number is finite.

Thus, both effects are related to one another in the
samf way that diffraction and interference are related:
in both cases, we are talking about the superposition of
waves, but diffraction involves superposition of an in-
finite number of waves, while interference involves
superposition of a finite number of waves. The arbi-

FIG. 16.
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trariness of the separation of the two effects being
studied becomes especially obvious in those cases when
the infinite number of scattering paths in a randomly
inhomogeneous medium can be reduced to a finite num-
ber of independent channels. We shall examine one
such example.

f) Interpretation of the backscattering enhancement
effect under conditions of saturated fluctuations from the
point of view of multichannel propagation

The value of the enhancement factor N= 2 in the sat-
urated region can be obtained as a result of coherent
effects accompanying propagation of waves along many
channels. Indeed, the condition of saturation ap(L)
» pc(L) (see Subsection 3d) indicates, in ray language,
that the incident wave hits the scatterer approximately
along M~y* rays, where y~orp/pc»l is the multiray
parameter (Fig. 17). The Green's function correspond-
ing to this problem can be represented in a form
analogous to (4.1) only for a large (M» 1) number of
channels:

G(r,, R) = r,, R), (4.11)

here, Am and ipm are the amplitude and phase of the
Green's function of the w-th channel. Assuming that
pairs {Am, i[im} with different numbers are mutually in-
dependent, for M»\, it follows from (4.11) and the
central limit theorem that G(r1,R) is Gaussian and then
we immediately find that N= 2 (see Subsection 3d). We
emphasize that the same results remain in force if
fluctuations in amplitudes are neglected in (4.11) and
only the phases 4>m are assumed to be random and mu-
tually independent.

The interference of backscattered waves vanishes for
9L>pc(L). For this reason, the enhancement effect oc-
curs only in the spot 90~p^L"1). The attenuation for
9>90, ensuring that the conservation law (3.11) is satis-
fied, is described by diagonal terms of the type

<!<&('!. R)l |GS,(r, R)|> = (^«,(r,, K)A'm(i, H)>.

Here, fluctuations in the intensities of the incident and
scattered waves are already important. Their correla-
tion radius is of the order of vp(L). Thus, in the satur-
ation regime, the enhancement effect is distinctly man-
ifested in the sector 9^ pc/L, while the attenuation is
locally small and spread out over a large region
e~i/kPc.

Similar ray considerations lead to the conclusion that
enhancement of backscattering disappears when the
point of observation is separated by a distance ~kpl
from the emitter along a straight line connecting the
emitter and scatterer.

g) Partial reversal of the wave front on reflection in a
randomly inhomogeneous medium

Coherent effects accompanying multichannel propaga-
tion in a regime with saturated fluctuations leads to one
more interesting effect: partial reversal of the wave
front of the incident wave.58-63 We shall discuss it with-
in the scope of the PEM (see Subsection 3m). Let a
beam with radius d> pc in the plane x = 0 and complex
amplitude ua(p) be incident on a reflector at the point
(x= L,p= 0). Then, in the Gaussian approximation for
the Green's function of the incident wave, the coherence
function of the reflected wave in the plane x = 0 is given
by the expression58

where

r,(p+, P ) = l / l 2 - r e x p - ( p p + ) - ^ ( P

r2(p+, p)H/i2«o (P+-T P) "5 (P++T P)

is a function with width ~ap(L) , which describes the
statistical broadening of the beam.

In (4.12), I\ is the coherence function of the reflected
wave with coherence radius ~pc(L), neglecting correla-
tions along the incident and reflected wave paths, while
T2 takes into account double-passage effects. It is evi-
dent from (4.12) that for d>pc(L) there is practically no
enhancement of the average intensity of the reflected
wave(/2«/1). However, multichannel coherent effects
lead, in this case, to the appearance of a small, but
wide base in r2 with coherence radius of the order of
min{d, ap(L)} (Fig. 18) in the coherence function of the
reflected wave. The restriction of the radius of the
base by the initial radius of the beam d is explained by
the fact that only rays, leaving in the plane x = 0 from
the aperture of the incident beam, contribute to coher-
ent multichannel effects.

We emphasize especially that r2 is proportional to
u0(pt-%p)xf$(p++iip), the complex conjugate of
the coherence function of the incident wave. Thus, due
to multichannel coherent effects, the reflected wave
contains a component whose wave front is reversed with
respect to the front of the incident wave.3' We shall
clarify the mechanism of reversal due to coherence ef-
fects for an example similar to that of Subsection 4c.
Let the first source (Fig. 15) emit a wave with phase ^1(

while the second source emits a wave with phase i/>2.

31 The idea of the presence of a weak reversed component in the
reflected wave was first stated by B. Ya. Zel'dovich.

504 Sov. Phys. Usp. 25(7), July 1982 Yu. A. Kravtsov and A. K. Saichev 504



In this case, the coherent components of the scattered
field at the source points equal

u.(r,)-/«<*»<; (r8, R)G(r , , R),
u.(r2) = /e

i+'G(r,, R)G(r 2 , R).

Their phases equal, respectively, i/)2 + tpzi and ^ + $12,
where i/>12 is the phase increment over the path r — R
- r2(;/i12 = i/)21). But, i/)2 + !̂ 21 = </><, - 0i and *i + fe = ^o
~ip2 ($0 = $!+ i/i2+ i/>12). Thus, to within <pa, the phases of
the coherent components of the scattered wave at the
points TJ and r2 equal, respectively, -^ and ->p2, i.e.,
they are reversed with respect to the initial phases of
the emitted waves.

For d > p c ( L ) , the reversed component in the reflected
wave does not give rise to enhancement of the average
intensity of backscattering. However, its high coher-
ence compared to the incoherent part of the reflected
wave permits separating the reversed component with
the help of focusing of the reflected wave. Let the re-
flected wave be incident in the plane x = 0 on a lens,
whose aperture coincides with the aperture of the col-
limated incident beam ua(p). Then, the field at the cen-
ter of the focal plane of the lens is proportional to16

Here, the equations in Subsection 3m and the fact that
the reflector is a point reflector are taken into account.
Correspondingly, the average intensity of the reflected
wave at the center of the focal plane is proportional to
( l ^ l ) = l/l2(/^n c(0,i)>. From here follows, in particu-
lar, the fact that for a plane incident wave (d>oe(L)),
when it is known that there is no enhancement of the
average intensity of the reflected wave in the plane x
= 0, enhancement occurs in "pure form" at the center
of the focal plane of the lens. This enhancement effect
is explained by the presence of a small, but well-
focused reversed component, whose appearance is a
result of the mutual coherence of waves passing in op-
posite directions through the same inhomogeneities.

5. EXPERIMENTAL OBSERVATIONS AND SOME
APPLICATIONS OF DOUBLE PASSAGE EFFECTS

In this section, we shall discuss the known experi-
mental data on double-passage effects, and we shall
point out some possible applications of these effects.
As is evident from the preceding sections, double-pass-
age effects can greatly affect the results of radar
ranging measurements, while the correct interpretation
and taking into account the characteristics of scattering
with double-passage could provide a foundation for new
methods for measuring the characteristics of a scatter-
ing medium, discovery of optimum conditions for
range determination and sounding, and so on.

a) Applications of the doubling effect in ionospheric
measurements of phase variance

The difference between the phase variances for nor-
mally and obliquely reflected waves can be used to mea-
sure the parameters of randomly inhomogeneous media.
We shall demonstrate the possibilities arising here on
the example of reflection of radio waves from the iono-

FIG. 19.

spheric layer. The scheme for a possible experiment,
using the difference between the phase fluctuations for
normal and inclined reflection from the ionospheric
layer, is shown in Fig. 19. An estimate of the scale lt

is the distance y= Ob, for which the phase variance
along the inclined path Oab decreases by a factor of 2
compared to the variances with vertical sounding (path
coc). An experiment on simultaneous vertical and
oblique sounding of the ionosphere70 confirmed reliably
the enhancement effect for phase fluctuations with ver-
tical sounding compared to oblique sounding. Analogous
experiments are possible in optics and acoustics.

We shall point out one more result of the enhance-
ment effect for fluctuations with double passage. Let
the inhomogeneities of the medium drift across the path
along the pi axis with constant velocity V. Then, the
variance of the fluctuations in the eikonal of the reflect-
ed wave, found under the same assumptions as (2.2),
will assume the form

From here it follows that the drift of inhomogeneities
leads to an angular displacement (by an angle $a = V/c)
of the enhancement effect. This angular displacement
can, in principle, be used to determine the velocity of
the medium or the relative velocity of the emitter.

b) Observations of backscattering enhancement in optics

The work described in Ref. 72, which was undertaken
at the suggestion of one of the authors of the present
review, concerned the study of the average intensity of
light reflected backwards in the laboratory in an artifi-
cial randomly inhomogeneous medium (turbulent con-
vective air flow, arising when air is blown through a
heated grating). The measurements were carried out
with a helium-neon laser and a prismatic coupler was
used to reveal the spatial redistribution of the scattered
radiation against the background of the primary laser
beam. The receiving aperture pa = 0.06 mm was much
less than pjv= 1-2 mm. The scatterers consisted of the
following: a convex spherical mirror, whose radius of
curvature satisfied the condition -i\a<pc, (cf. Subsec-
tion 313) a rough surface, namely, a sheet of writing
paper; and, for a control, a flat mirror. The observed
absolute enhancement of the average power of the re-
ceived scattered signal agreed well with theory for the
spherical mirror and the rough surface,5 while en-
hancement was not observed at all in measurements
with the flat mirror. The measurements of the spatial
distribution of the average intensity of the scattered
radiation agreed with the calculation using (3.12). The
enhancement of backscattering under natural conditions
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was studied in Ref. 73 for path lengths L = 650 and 1300
m. A flat scatterer made up of a large number of con-
vex mirrors was used in this work. The investigations
in Ref. 73 revealed the possibility of measuring the pa-
rameters of turbulence from optical measurements of
the scattered radiation. This method of performing the
measurements has important advantages over the usual
scheme involving transmission, when the source and
receiver of the radiation are situated at opposite ends
of the path. Measurements of fluctuations in the inten-
sity of the scattered radiation are reported in Ref. 74,
wherein values (/|)/(/s}

2= 12, in agreement with the
estimates in Subsec. 3d, are noted.

Fluctuations in the intensity and phase of the back-
ward reflected wave in a regime with weak intensity
fluctuations, as well as the averaging action of the re-
ceiving aperture, were studied experimentally in Refs.
56, 57, and 65. It was noted in Ref. 55 that due to the
residual correlation (spatial correlation coefficients
for amplitude and phase fluctuations of the reflected
wave do not vanish when the observation points are far
apart), it is possible to measure the intensity fluctua-
tions of a wave incident on a quite small reflector for
arbitrary dimensions of the receiving aperture. This is
related to the fact that the receiving aperture of the re-
flected wave cannot average the fluctuations in the flux
of the wave incident on the reflector [see also (3.33)].
Saturation of the averaging action of the receiving aper-
ture on the intensity fluctuations of the reflected wave
for small effective dimensions of the reflector permits,
for example, determining the structural characteristic
of turbulence C\ from measurements of the reflected
wave flux without restricting the dimensions of the re-
ceiving aperture. In this sense, the measurement of
the parameters of turbulence from data on fluctuations
in the reflected wave flux may turn out to be preferable
to measurements using direct transmission, for which
the dimensions of the receiving aperture must be
small.55-66

Results of measurements of fluctuations in the inten-
sity of backward reflected laser beams in the regime of
strong fluctuations are presented in Ref. 67. The
starting dimensions of the incident beams d and the ef-
fective dimensions of the reflectors a in Ref. 67 greatly
exceeded the coherence radius of the incident wave, so
that the average intensity of the reflected wave was not
enhanced. However, double passage through the turbu-
lent medium strongly increased the intensity fluctua-
tions of the backward reflected wave compared to the
incident wave, which agrees with the calculations car-
ried out in Ref. 48. The difference between the vari-
ances of the intensity fluctuations of the reflected and
incident waves vanished only for wide incident beams
L/k(P<l and large reflectors L/k<f<l.

It is clear that up to the present time, all possibili-
ties of double passage have by no means been used in
optics. Thus, when receiving backscattered waves,
the quantity C% can be obtained from the measurements
of the average intensity in the focal plane of the lens,
just as this is done in transmission optics.68 The
presence of a component of a partially reversed inci-

dent wave in the reflected wave (see Subsection 4g)
leads to enhancement of the average intensity in the
focal plane. In the simplest case of an incident plane
wave, the enhancement (with factor N~2) occurs in a
spot with size ~pc(L)F/L, independent of the properties
of the reflecting surface.58 By measuring the radius of
this enhancement spot, it is possible, in principle, to
measure pc(L).

c) Influence of backscattering enhancement on the
determination of the electron concentration in the
ionosphere by the incoherent scattering method

In the incoherent scattering method,69 the electron
concentration ne is determined from the magnitude of
the average intensity of the backscattered field. The
appearance of the enhancement factor N in backscatter-
ing due to the passage of the electromagnetic wave
through the randomly inhomogeneous ionosphere could
be the reason for the overestimation of the values of
M«meas ^ a ̂ ac';or °f ^ compared to the true value
n

etrue- This overestimate can turn out to be appreciable
for high layers of the ionosphere (H~ 500-1000 km),
where strong fluctuations of radio waves, passing
through the ionosphere, which plays the role of a
phase screen, can be observed.5

d) Double-passage effects in backward-oblique
sounding of the ionosphere and in other remote-sensing
experiments

The enhancement of the average intensity and of the
intensity fluctuations accompanying backscattering,
compared to scattering sideways, and other character-
istics of double passage must be taken into account in
choosing the conditions for optimal reception of signals
from long-range sounding, in particular, signals from
backward-oblique sounding of the ionosphere in the
short wavelength range (A~ 10-30 m). Thus, separated
reception of sounding signals has some advantages over
coincident reception, since in this case intensity fluc-
tuations decrease and, therefore, the signal is repro-
duced more accurately. If, on the other hand, we are
talking about receiving very weak signals, then coin-
cident reception is preferable, since in this case there
appears the additional possibility of observing the sig-
nal due to strong swings above the average intensity.

e) Multichannel effects with scattering of radio waves in
the ionosphere

Radio waves with frequencies below the critical fre-
quency are reflected from the ionosphere and form a
caustic, in the vicinity of which the multichannel scat-
tering effects, described in Sec. 4, are possible. The
magnitude of the effect, taking into account the
proximity of the caustic, is analyzed in Ref. 61.

f) Multichannel effects in hydroacoustics

Taking into account the coherence of fields in
crossed channels leads to some reevaluation of the
scattering cross section of different inclusions (pri-
marily bubbles), located near the sea surface. The
first indication of enhancement of scattering occurs in
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FIG. 20.

Ref. 60, while a detailed analysis of the problem is
given in Ref. 62, where the transition from coherent to
incoherent superposition with the transition to higher
frequencies or with intensification of wind-driven waves
on the ocean surface is observed. This transition can
be used as an indication for determining the height of
waves.

Multichannel effects can also be important in scat-
tering of sound in underwater sound channels. In the
presence of m rays, passing from the source to the
scatterer (Fig. 20), m forward and m(m - l)/2 crossed
channels are possible, i.e., m(m + l)/2 channels in all.
Analysis of the average intensity with backscattering
could be useful for diagnostics of regular and random
characteristics of the ocean, in particular, the parame-
ters of large scale inhomogeneities of the ocean. The
possibilities of this method of diagnostics increase with
the use of an active transponder as the scatterer.

g) Double-passage effects on reflection of waves from
phase-front reversal mirrors

The adaptive properties of systems that reverse the
phase front (PFR mirrors) are fully revealed in turbu-
lent media: automatic compensation of phase distor-
tions, acquired by the incident wave in the medium, oc-
curs only under conditions when the reflected wave re-
turns precisely through those inhomogeneities through
which the incident wave passed.

The study of the problem of the effectiveness of fo-
cusing the reversed wave on a source under the condi-
tions of a turbulent medium is still in the initial stages.
It was shown in Ref. 75 that if the radius of the PFR
mirror a exceeds the mean-square displacement of the
beam af, then the distortions of the phase front of the
reflected wave are practically completely compensated,
i.e., diffraction spreading, characteristic of a homo-
geneous medium, is realized in the turbulent medium.
In addition, some improvement in the adaptive proper-
ties for a<ap is noted in Ref. 75.

As far as the temporal fluctuations of the medium
are concerned, their effect on the operation of PFR
systems can be neglected, if conditions (3.24), requir-
ing that the parameters of the medium remain practical-
ly constant over the double-passage time, are satisfied.

In conclusion, we are deeply grateful to N.G. Denisov
and A.N. Malakhov for useful discussions, which stimu-
lated this review, as well as to A.S. Gurvich and S.A.
Akhmanov for valuable remarks, made while reading
the manuscript.
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