Radiative lifetimes of excited states of atoms

Ya. F. Verolaïnen and A. Ya. Nikolaich

A. A. Zhdanov Leningrad State University Usp. Fiz. Nauk 137, 305-338 (June 1982)

A review of experimental and theoretical studies of radiative lifetimes of excited states of the hydrogen atom, of atoms of alkali metals, and atoms of the copper subgroup is presented. A complete compilation of all published values of radiative lifetimes of all excited states with a critical analysis for every atom is given. The regularities in the variation of radiative lifetimes in spectral series of excited states are brought out and constants of the power-law dependences on the effective principal quantum number are determined. A correlation between the behavior of lifetimes and the effective orbital parameter is established and it is proposed to use this correlation for the determination of the application limits of the power-law constants for evaluation of lifetimes of uninvestigated states. On the basis of a critical analysis of published sources, of the regularities in the variation of lifetimes and of a statistical treatment of values available in the literature, a table of recommended values of radiative lifetimes of excited states of all atoms of the first group is compiled.

PACS numbers: 31.50. + w, 32.70.Fw

CONTENTS

1.	Introduction	431 432
2. 3	Review of experimental and theoretical values of lifetimes of excited states of atoms of the	402
5.	a) Hydrogen. b) Alkali metals (subgroup of Li I). 1) ² P-states; 2) Levels not connected	433
4. 5.	with the ground state by optical transitions; 3) Autoionization states. c) Copper, silver, gold. Regularities in the radiative lifetimes of excited states of atoms of the 1st group	439
	group	443
6.	Conclusion	444
7.	References	445

I. INTRODUCTION

Development of fundamental and applied studies in fields of quantum electronics, plasma physics, physics of upper levels of the atmosphere and quantum chemistry requires knowledge of values of radiation atomic constants: average lifetimes of excited states (τ_k) , probabilities of spontaneous transitions (A_{ik}) , oscillator strengths (f_{ki}) .

The interest in the determination of radiative lifetimes connected with the necessity of the knowledge of absolute transition probabilities and also connected with needs of the physics of elementary processes with participation of excited states of atoms and ions led to the development of new effective methods of measurement of τ_{b} such as the delayed coincidence technique and the beam-foil technique and to the improvement of old classical Hanle and phase shift methods. On the other hand, the development of fast computers contributed to the development and application to specific atomic systems of theoretical methods of determination of radiative lifetimes. However, due to the approximate nature of calculations of atomic structures guantum mechanical methods do not always allow one to calculate radiative lifetimes of excited states with high accuracy. Especially it applies to heavy atoms which have complex electronic shells. It is necessary to note also that theoretical methods do not have reliable internal criteria of the accuracy of calculations. But

neither are experimental methods free from sources of accidental and systematic errors. Therefore, it seems necessary for a determination of the most reliable value of the radiative lifetime to compare results obtained by different experimental as well as theoretical methods.

As a result of intense development and application of different methods of determination of radiative lifetimes in the last fifteen years (Fig. 1) vast information on τ_k of excited states of atoms and ions has been accumulated. However, completeness and reliability of the data for different atoms and different excited states

FIG. 1. Distribution of papers on determination of lifetimes of excited states of atoms according to years.

are not equal. There are atomic states which are studied in dozens of works (lower excited states of mercury, neon, helium) and there are atoms excited state lifetimes of which are almost not studied (subgroups of copper, fluorine, scandium, titanium, etc.). On the other hand, investigations made by different methods and at different times very often give data on lifetime which differ significantly. Information on radiative lifetimes is published in dozens of different journals, conference reports, preprints, etc., often hardly accessible and left out of sight of most of "consumers." However, at present there exists no complete review of all articles on determination of τ_{b} which would systematically discuss all excited states of atoms of all groups of the periodic system. Existing reviews are devoted to particular atoms and states which are of most interest for applications. Only for atoms of the group of lanthanides is there a complete compilation of values of radiative lifetimes published before 1978.1-2 A review of experimental results on determination of lifetimes of some excited states of several atoms of the third and fourth periods (NaI, MgI, AlI, FeI, NiI, ZnI) is given in Ref. 3. A complete compilation of all experimental and theoretical values of τ_{b} of the helium atom obtained before 1975 is published in Ref. 4. Lifetimes of autoionization states of helium are considered in Ref. 5.

Existing reviews on transition probabilities A_{ik} and oscillator strengths f_{ik}^{6-6} are more systematic and complete. However, the reviews of Refs. 6-8 do not allow one to determine the required values of τ_{k} with sufficient precision due to several causes. First, they do not always have data on all possible transitions from the given excited state which are necessary for the calculation of the radiative lifetime. Second, the reviews of Refs. 6-8 are somewhat outdated: the review of Ref. 6 devoted to transition probabilities of the first ten elements includes work up to 1963, the review of Ref. 7 on the elements from 11 to 20 goes up to 1969 and the review of Ref. 8 of the transition probabilities and oscillator strengths of 70 elements was published in 1968. Because of this the main body of results contained in these reviews were obtained by imperfect, from the present-day point of view, methods which had hidden sources of possible systematic errors. As was mentioned many times in the literature, especially strong contradictions are observed between the data obtained by contemporary methods and the data of Ref. 8. For example, recent measurements of τ_k of excited states of FeI and CoI by the method of time resolved analysis with selective laser excitation⁹ gave results which differ by a factor of 3 to 20 from the values obtained from the data of Ref. 8.

Because of the aspects mentioned above it seems to us timely and necessary to write a review of all the data on radiative lifetimes of excited states of atoms with the aim: first, to make clear what has been done already and what is still necessary to do; second, to find general regularities relating lifetimes of levels of an atom and of analogous levels of atoms of the subgroup of the periodic system; third, on the basis of an analysis and a corresponding statistical study of available data, an analysis of experimental conditions at which the data were obtained, and trends in the variation of τ_k to obtain the most probable values of radiative lifetimes which can be recommended for use. Realizing that writing a review on all atoms is difficult and time consuming we decided to write our review on groups of the periodic system of elements. Such a solution, first, hastens the publication of each separate finished part, and second, a review of work devoted to similar atoms is made easier due to generality of the experimental approach and due to common aspects of the variation of τ_k in atoms with analogous system of levels.

The present review is devoted to radiative lifetimes of excited states of atoms of the first group of the periodic system of elements. The material reviewed goes up to June 1981.

2. THEORETICAL RELATIONS

The radiative lifetime of an excited state of an atom τ_k is the time interval during which the number of atoms N_k in the excited state k is decreased due to spontaneous transitions to 1/e of its original value (e = 2.71828). The spontaneous transition of an atom from the state k to the lower state i with the emission of a photon is characterized by the atomic constant—the transition probability A_{ki} . The notion of the transition probability was introduced for the first time by Einstein¹⁰ who considered radiative decay as analogous to the process of radioactive decay. The number of spontaneous transitions per unit time for N_k atoms is $N_k A_{ki}$. And the rate of the spontaneous decay of N_k atoms from the state k to all lower states i is

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = -N_k \sum_i A_{ki}.$$
 (1)

From this, by definition, the radiative lifetime $\boldsymbol{\tau}_{k}$ is introduced as

$$\tau_k = \frac{1}{\sum_{i} A_{ki}}.$$
 (2)

In the case when there is only one transition from the state k to the ground state i (resonance transition) the lifetime τ_k is uniquely related to the oscillator strength f_{ik} and to the line strength S_{ki} :

$$\tau_k = 1.499 \cdot 10^{-16} \lambda^2 \frac{q_k}{q_i} \frac{1}{f_{ik}} , \qquad (3)$$

$$_{k} = 4.935 \cdot 10^{-19} g_{k} \lambda^{3} \frac{1}{s_{kl}}$$
, (4)

where q_k and q_i are statistical weights of upper and lower states and λ is the transition wavelength in angströms.

Radiative lifetimes of excited states of atoms usually are in the range of $10^{-6}-10^{-9}$ s with the exception of metastable states which can have lifetimes of the order of seconds and more and autoionization states lifetimes of which can be $\ll 10^{-9}$ s.

The relations (1), (2) are valid in the absence of absorption, stimulated emission, collision effects etc. In the experimental measurements of τ_k all these effects can be present to some extent. Therefore, in analyzing experimental results it is important to pay attention to

3. REVIEW OF EXPERIMENTAL AND THEORETICAL VALUES OF LIFETIMES OF EXCITED STATES OF ATOMS OF THE FIRST GROUP

Here we do not pursue the aim of giving a detailed review of all existing work on the determination of τ_k of atoms of the 1st group and the methods which were used. This would take too much space and, besides that, there are many good critical reviews of the methods of radiative lifetime measurements in the literature. Therefore, we give only a complete compilation of all the experimental and theoretical results known at present with a brief comment on every atom, the cases of considerable deviation between the data obtained in different papers being considered in greater detail.

All experimental and theoretical methods of determination of $\tau_{\mathbf{k}}$ known at present were used in studies of τ_k of atoms of the 1st group. In the literature there are several general reviews of experimental methods^{11,12} and also some detailed reviews of the particular most effective methods such as the delayed coincidence technique (DC),13 the beam-foil (beam-gas) method (BF, BG),¹⁴ the Hanle or level crossing method (H, LC),^{15,16} the phase shift technique (PS),¹⁷ and excited beams (EB). Theoretical methods (T) are considered in Ref. 18, 19. In some papers the methods of electron-optical chronography (EOC), optical double resonance (ODR) and direct oscilloscopic methods (O) were used. In the tables after the abbreviated names of the methods the letter L is added in some cases which means that the work is done by laser excitation of the state being studied.

a) Hydrogen

It is logical to begin the review of the radiative lifetimes of excited states of atoms of the 1st group with the hydrogen atom (H) as an atom with one valence electron.

The first studies of lifetimes of excited states of the hydrogen atom were done by Wien.²⁰ He studied the decay of the H_a , H_g and H_r spectral lines emitted by the beam of excited hydrogen atoms moving in vacuum ("canal rays"). However, the imperfect experimental technique (vacuum of 10^{-3} Torr, beam nonuniform in atom velocities, indirect method of measurement of atom velocity, photographic method of registration) did not allow him to obtain reliable results.

The first work in which theoretical values of radiative lifetimes of excited states of the hydrogen atom were given is the monograph by $Bethe^{21}$ devoted to the theory of one- and two-electron atoms. All later experimental measurements²²⁻²⁸ and calculations²⁹ only confirmed the values of the lifetimes given in Ref. 21 (Table I).

TABLE I.	Radiative	lifetimes	of	excited	states	of	the	hydrogen
atoms.								

State	Lifetime,	Method	Reference	State	Lifetime,	Mathad	Deference
	ns			State	ns	Method	Kererence
35	160	Т	21	5 d	69,5	т	29
35	135(14)	BF	22	6 d	126	Ť	21
35	160	BG	23	6 d	119	Т	29
35	148(11)	BF	24	7 d	187	Т	29
33	159	T	29	84	277	T	29
45	186/27)		92	90	394	T	29
48	230(17)	BF	24	10 u	719	÷	39
15	227		29	11 u 49 d	023	1 T	20
58	360	l î	21	4 f	73	Ť	21
58	378(38)	BF	24	41	72.5	Ť	29
58	352	T	29	5 E	140	Ť	21
65	570	T	21	5 f	140	Ť	29
2.5	534	T	29	6 f	243	т	21
12	782	T	29	61	240	Т	29
9.5	1103	1 	23	71	378	T	29
105	2000	1 +	28	81	559	T	29
11.8	2610	1 T	29	40 f	1079	T	29
12.5	3334	Î Î	28	11 1	1 426	1 Å	29
2 P	1.6	i i	21	12 f	1 849	1 Å	29
212	1.600(4)	BG	25	5g	235	Ť	21
2.12	1.60(1)	BF	26	5 g	235	ÎÎ	29
2 p	1.592(25)	BF	27	6 g	405	Ť	21
2 P	1.6	Т	29	63	403	Ť	2.9
31	5.4	T	21	7 g	635	Т	39
20	5.4	BG	24	8 g	938	Т	25
3 n	5 5(2)	BG	25	98	1 328	I T	26
30	5.4(18)	DF	28	10 g	1 810	T	25
30	5.8(3)	BF	24	12 0	3 000	1	29
3 P	5.2	T	20	128 6 b	610		41
-4 P	12.4	Ť	21	бĥ	608	Γ.	29
4 P	14.6(25)	BF	22	7 h	960	ÎÎ	29
-i p	11.25(78)	BF	28	8 h	1 425	Ī	29
4 P	12.4(6)	BF	24	9 h	2 017	T	25
4 P	12.1	T	29	10 h	2 750	T	29
50	24	J PC	21	lih	3 634	Т	29
5 0	21.0(00)	BF	21	12 h	4 699	T	29
5 ก	23.8		29		1 350	L T	29
6 P	41	r i	21	91	2 000	1	29
6 P	40.7	Î	29	101	3 879		20
7 p	64.4	Ť	25	111	5118	ł ń	29
SP	95.6	Т	29	12 i	6612	1 Ť	29
9.0	130	Т	29	8 k	2 083	Ť	28
10 p	186	Т	29	9 k	3813	Т	29
11 p 19 p	241	l T	29	10 k	5 211	Т	29
30	15.6	1	21	11 k	6 890	T	29
3 d	16 1(6)	DE		12 K	8 894	T	29
3 d	15.6	BG	28	1 91	4 909		29
3 d	15.8(6)	BF	24	101	8 042	T	29
3 d	15.5	T	29	121	11 596	Ť	
4 d	36.5	Ť	21	10 m	8 4 19	T	2.9
4 d	37.7(55)	BF	22	11 m	11 179	Ť	29
4 d	36.9(15)	BF	24	12 m	14 432	Ť	29
1 4 d	36	Т	29	11 n	13 684	Ť	29
50	60 8/70	T	21	12 n	17 772	· T	28
Ju	09.8(10)	BF	24	12 0	21 310	Т	29
			1		l		1

In the Table I (and all following tables) designations of excited states are given without multiplicity and fine structure indices (with the exception of some states of heavy atoms for which there exist results of measurements of separate components of the fine structure). The values of lifetimes are given in ns (10^{-9} s) and the error of measurement in the last digits of the result is given in brackets. Therefore, the notation 1.600(4) means (1.6 ± 0.004) $\cdot 10^{-9}$ s. In the third column the abbreviated name of the method which was used to obtain the result is given and in the fourth column—the cited source from the list of references.

The most complete work at present is that in Ref. 29 made by the method of numerical Coulomb approximation. The comparison of the data of Ref. 29 with the data of previous theoretical and experimental work shows good agreement (see Table I). It is necessary to note the high accuracy of the values of lifetimes of the hydrogen atom levels calculated by Bethe²¹ in 1933, which is confirmed by the results of all later work.

b) Alkali metals (Lil subgroup)

The earliest measurements of radiation atomic constants of alkali metals were associated with measurements of relative and absolute oscillator strengths. The work of Rozhdestvenskii,³⁰ Prokof'ev,³¹ Filippov,³² Kvater,³³ and Penkin³⁴ carried out using the method of D. S. Rozhdestvenskii hooks at the Leningrad university has become classical by now and gave important information on the transition probabilities for the main series of spectral lines as well as on the ratios of transition probabilities of separate components of the doublets which was useful for subsequent direct measurements of radiative lifetimes.

It is convenient to separate the review of the work on the determination of radiative lifetimes of excited states of atoms of alkali metals into two parts: the ²P-states and the states not connected by direct optical transition with the ground state, because the articles concerned with each of these groups of levels have excitation and registration methods with common features.

1. ²P-states

The majority of papers on the determination of lifetimes of excited states of alkali metal atoms is devoted to the ²P-states. This is explained not only by the practical needs but also by the fact that the methods based on optical excitation (LC, ODR, PS) are most easily applied to the levels connected with the ground state. In studies of lifetimes of the ²P-states different experimental methods were used, measurements being made in vapor filled cells as well as in atomic beams. To reduce the effect of light trapping to a minimum measurements were made at very low vapor pressure and the dependence of τ_k on pressure was measured in the majority of cases. The pressure effects were investigated especially carefully in the study of ²P-states in Refs. 36, 51. The results of experimental and theoretical studies of ²P-states for the lithium subgroup are given in Table II.

Lithium. Considerably fewer papers in comparison with other alkali metals are devoted to the study of lifetimes of P-states of the lithium and potassium atoms. This is explained, apparently, by the low intensity of spectral lines and by the chemical activity of these elements. The results of Ref. 36 give larger values of τ_k of LiI than other experimental data. This can, apparently, be explained by an insufficiently precise taking into account of the velocity losses of ions of the beam in the gas target in which nitrogen and neon at a pressure of 10^{-3} Torr were used. A similar overestimate of the values in Ref. 36 is observed for the S- and D-levels of LiI (Table IV) indicating a systematic error common to all levels caused by imprecision in determination of the velocity of the ion beam.

Sodium. Approximately a third of all papers on lifetimes of excited states of alkali metals is related to studies of the P-state of sodium atoms. The 3P-state was studied in 27 papers^{19, 23-68, 158} by all the experimental and theoretical methods known at present. Many researchers tested new installations and new methods

State	Lifetime, ns	Method	Reference	State	Lifetime, ns	Method	Reference
2P 2P 2P 2P 2P 2P 2P 2P 2P 3P 3P 3P 3P 3P 3P 3P 5P 5P 6P 7P 7P 7P	Lithiun 31,9(19) 27.2(4) 25(1) 26,2(10) 27(3) 27.3 26,17 27.9(10) 235(12) 182(6) 216 223,3 479(24) 403 446,2 863.5(432) 628 863.5(432) 628 1359 1528 2476	n (Li I), BG LC BF BF DL BG LC T T BG T T BG T T T T T T	30 37 89 39 19 19 11 36 42 29 18 29 18 36 29 18 36 29 18 30 29 18 59 16 59 16 59 16 59 16 59 16 59 16 59 16 59 20 16 59 50 50 50 50 50 50 50 50 50 50 50 50 50	5P 5P 5P 6P 6P 6P 6P 7P 7P 7P 7P 7P 7P 7P 7P 7P 7P 7P 7P 7P	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DCL T T DCL T T T DCL T T T T T T T T T T T T T T T T T T T	-65 29 186 66 68 29 155 66 65 66 66 66 66 66 66 66 66 66 66 6
3P 3P 3P 3P 3P 3P 3P 3P 3P 3P 3P 3P 3P 3	Sodium 15.9(4) 15.9(4) 15.9(4) 15.9(4) 16.3(5) 14.0(2) 16.1(3) 16.1(7) 16.2 16.1(10) 16.1(10) 16.6(2) 16.6(3) 15.9(4) 16.6(5) 16.6(5) 16.6(5) 16.6(5) 16.6(5) 16.6(5) 16.6(5) 16.6(5) 16.6(5) 16.6(5) 16.6(5) 16.5((Na I) PS LC PS LC PS LC PS LC PS LC PS LC LC PS LC LC LC PS LC LC LC LC LC LC LC LC LC LC	43 31 48 46 49 51 52 53 54 55 56 56 56	4P _{3/2} 4P _{3/2} 4P _{3/2} 4P _{3/2} 4P _{1/2} 4P _{1/2} 4P _{1/2} 4P _{1/2} 4P _{1/2} 5P _{3/2} 5P _{3/2} 5P _{3/2} 5P _{3/2} 6P _{3/2}	Potassur 26.0(5) 28(2) 27.6(8) 27.6(8) 27.8(8) 27.3(3) 20.6 140.8(10) 120(4) 133(3) 121 310(15) 299 572 957 Pabidum	H (KI) LC PSC H DC H LC LC LC LC T T T	70 91 48 72 166 72 19 70 167 29 70 71 73 29 73 29 29 29 29 29
3P 3P 3P 3P 3P ^{3/2} 3P ^{1/2} 3P ^{1/2} 3P 4P 4P ⁴ 4P ⁴ 4P ⁴ 4P	15.6 17.2 17.3 10.1 16.0 16.4 16.1 16.1 16.4 16.1 16.0 16.4 16.0 16.4 16.0 16.4 16.0 16.4 16.1 16.2 16.3 16.4 16.1 16.3 16.4 16.1 16.3 16.4 16.3 16.4 16.3 16.5 18.17 17.3 10.1 16.5 18.17 17.3 10.1 16.5 18.17 17.3 10.1 16.5 18.17 17.3 10.1 16.5 18.17 17.3 10.1 16.5 17.3 17.3 10.1 16.5 17.3 17.3 10.1 16.5 17.3 17.3 17.3 16.5 17.3 1	BF BF DC DC BF H T T LC LC LC DCL T T T T	60 61 62 63 64 65 29 158 66 67 58 66 67 58 68 29 158 66 56	5P3/2 5P3/2 5P3/2 5P3/2 5P3/2 5P3/2 5P1/2 5P1/2 5P1/2 5P1/2 5P1/2 6P3/2 6P3/2 6P3/2 6P3/2	Kubdum 28.2(9) 27.0(5) 27.1(14) 25.5(5) 25.8(8) 27.0(5) 26.0(18) 30(3) 28.5(11) 29.4(7) 26.5 100 114(6) 118(4) 109(7)	LC PS LC LC LC LC LC LC LC LC LC LC LC LC	71 16 75 76 77 76 77 76 76 76 76 80 80 81 5× 79
6P a/s 6P a/s 6P a/s 6P a/s 6P a/s 6P a/s 6P a/s 6P a/s 7P a/s 7P a/s 7P a/s 7P a/s 8P a/s 10P 11P 12P a/s 14P 13P 14P 13P 14P 14P 14P 14P 14P 14P 14P 14	Rubidium (R 111(3) 112(8) 97(3) 131(5) 114(13) 99.3 240(20) 233(10) 221 400(80) 400(1300) 8410 10200 23500 24500 400(1300) 8410 10200 2450 2450 2450 250(2) 25	tb D LC LC LC LC LC LC LC LC LC LC	T6 85 T9 29 81 29 29 29 29 29 29 29 29 29 29 29 29 29	6P33/2 6P33/2 6P23/2 6P23/2 6P23/2 6P23/2 6P23/2 6P23/2 6P23/2 7P23/2 7P23/2 7P23/2 7P23/2 7P23/2 7P23/2 7P23/2 7P23/2 7P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 8P23/2 9 9P23/2	$\begin{array}{c} 29.7(2)\\ 30.8(15)\\ 32.7(15)\\ 31(1)\\ 34\\ 35.0(15)\\ 30.7\\ 160\\ 118\\ 122(2)\\ 118\\ 122(2)\\ 118\\ 122(2)\\ 118\\ 135(1)\\ 135(1)\\ 135(1)\\ 135(1)\\ 135(1)\\ 135(3)$	LC PS LC LC LC LC LC DC LC DCL DCL	50 91 36 92 93 93 94 93 94 95 63 89 90 52 90 52 90 52 90 52 90 52 90 52 90 52 90 52 90 52 90 52 90 53 90 53 90 53 90 90 90 53 90 90 90 90 90 90 90 90 90 90 90 90 90

TABLE III. Radiative lifetimes of the ²P states of Na I.

		Theory		F								
	Ref. 158	Ref. 29	Ref. 66	1.7	cperment							
State	Variational Hartree-Fok method ¹⁵⁸	Numerical Coulomb Coulomb approxima- approxima- tion tion SMEOP		$\frac{158-66}{60}$, %	$\frac{1}{n}\sum_{i=1}^{n}\tau_{i}$	Number of papers						
	1977	1977	1980		1962-1977							
3P 4P 5P 6P 7P	3P 18.17 16.5 4P 116.5 102 5P 402.9 342 6P 991.7 837 7P 2073 1676		17 100 330 770 1500	9 16 22 29 38	16.06 103.3 345 890 1450	25 3 1 1 1						
Note.	Note. SME OPsemiempirical method based on the effective orbital parameters.											

using the value of the lifetime of this level as the standard. The results of all experimental work⁴³⁻⁶⁸ agree within experimental errors. The results of three theoretical determinations^{29, 66, 158} differ and are larger than the average value of all the experimental results (Table III).

As can be seen from Table III, the theoretical results obtained by the method of the Coulomb approximation^{29,66} are close to the experimental values while the variation method¹⁵⁸ gives values which deviate from the experimental data, the deviation increasing as the principal quantum number increases. The mean value obtained from 25 experimental determinations of τ_{k} of the 3Pstate of NaI must be considered as one of the most reliable values of the lifetime of an excited state of an atom. Such a good agreement of experimental results obtained in the period from 1962 to 1978 at different laboratories allows one to conclude that all the presentday experimental methods of determination of radiative lifetimes of excited states, in principle, do not have sources of large systematic errors. The difference between some results for levels with large principal quantum numbers can be explained by accidental errors or by uncontrolled experimental conditions. Thus, experimentally measured values of $\tau_{\rm s}$ of 17P and 18P states of NaI (see Table II) are three times smaller than the calculated theoretically values⁶⁹ (48.4 and 58.4 μs correspondingly). Such disagreement was explained by the authors of Ref. 69 by the influence on the lifetimes of upper excited states of the thermal radiation corresponding to room temperature. The thermal radiation field causes the stimulated emission from the excited state under investigation of transitions with $h\nu \ll kT$ which leads to a redistribution of the population and a decrease of the measured lifetime τ^* in relation to the theoretically calculated value of τ_k at T = 0 K. The experimentally observed τ^* is related to τ_k by⁶⁹

$$\frac{1}{\tau^{\bullet}} = \frac{1}{\tau_{k}} + \frac{1}{\tau_{k}^{T}}.$$
(5)

The addition $\tau_k^{\rm T}$ corresponding to the influence of the thermal radiation is connected with the transition probability A_{ki} by the relation

$$\frac{1}{\tau^{\tau}} = \sum_{i} A_{ki}^{*}(\tilde{n}), \tag{6}$$

where

FIG. 2. Plots of the dependence of the radiative lifetime on the effective principal quantum number $\tau(n^+)$ and of the effective orbital parameter on the energy q(E). EC—experimental values corrected for the thermal radiation effect, T—values calculated theoretically.

$$A_{ki}^{\bullet} = A_{ki} \quad \text{for } k > i, A_{ki}^{\bullet} = g_i A_{ki} / g_k \quad \text{for } k < i; \quad \overline{n} = (\exp^{hv/kT} - 1)^{-1}.$$

The estimates of τ_k^{T} for 17P-and 18P-states of NaI made by the authors of Ref. 69 gave values of 22.7 and 25.6 μ s respectively. The determined values of τ_{b}^{T} and the observed values of τ^* (Table II) allow one to determine the experimental values of τ_b corrected for the effect of thermal radiation which were equal to 23 and 30 μ s correspondingly, i.e., closer to the theoretical values, but the disagreement was still present. The plots of the dependences of τ_k on the effective principal quantum number n^* and of the effective orbital parameter q on the state energy E are given in Fig. 2. Such dependences help in the analysis of the regularities in the variation of radiative lifetimes in the spectral series (see section 4 for more details). It can be seen from the plot of $\tau_k(n^*)$ for NaI that the theoretically calculated values of τ_k for the 17P- and 18P-states correspond to the extrapolated values of τ_k for the lower states while τ_{b}^{exp} and τ_{b}^{n} are beyond the extrapolation limits which indicates the possible presence of one more effect⁶⁹ causing a decrease of the measured lifetime. The presence of hidden sources of systematic errors in some experimental and theoretical papers is indicated by the shift of plots with respect to each other in Fig. 2 which can be especially well seen in the case of LiI and RbL

Rubidium. P-states are studied most completely in rubidium (up to n = 18). Large doublet splitting made it possible to measure τ_k directly using the weak doublet

components. The lifetimes of $(5, 6)P_{3/2}$ -states were ~10% shorter than τ_k of (5, 6)P_{1/2}-states. The results of the theoretical calculation of Ref. 29 are closer to τ_{k} of P_{3/2}-states. The large (up to 40%) systematic deviation of the results of experimental determination of τ_k of the (12, 14, 17, 22)P_{3/2}-states⁸⁷ from the results of the theoretical calculations by the method of the Coulomb approximation⁸⁶ is noticeable. The DC method with laser excitation of atoms in a cell filled with vapor was used in the work of Ref. 87. Radiative lifetimes were obtained by extrapolation to zero pressure of the dependence of the effective lifetimes on the rubidium vapor pressure, with the influence of the polarization of radiation, the departure of excited atoms from the observation volume, the linewidth of the laser radiation and the power of the exciting pulse being taken into account. The authors of Ref. 87 comparing their results with the data obtained from the values of oscillator strengths¹⁰⁴ and noting considerable disagreement suppose that more accurate calculations taking into account spin-orbit interaction will give results which are in better agreement with experiment. However, in our opinion the underestimated values of lifetimes⁸⁷ could result from a rapid redistribution of the population of high Rydberg states caused by the thermal radiation field.⁶⁹ The conjecture concerning the underestimated values of experimental data⁸⁷ is supported by the good agreement of the theoretical calculation data⁸⁶ with the extrapolation of all experimental and theoretical lifetime values for the lower (5-9)P-states of RbI (Figs. 4, 5), and the validity of the extrapolation to n = 12-22 is supported by the plot of the dependence of q on E (see Section 4).

Cesium. Experimental studies of τ_k of P-states of CsI were carried out using all the basic present-day methods and, as in the case of 3P NaI, the results obtained by all methods are in good agreement. The difference between τ_k of $P_{3/2}$ and τ_k of $P_{1/2}$ of CsI is substantially larger than for RbI and attains values of 15-20% (τ_k of $P_{1/2} > \tau_k$ of $P_{3/2}$). The results of a theoretical calculation²⁹ are closer to the values of τ_k of $P_{3/2}$.

2. Levels not connected with the ground state by optical transitions

In contrast to ²P-state the lifetimes of the ²S-, ²D-and ²F-excited states of alkali metal atoms were practically not studied until recently. Before 1975 there were three experimental papers on lithium and three papers on cesium which were devoted to average lifetimes of levels not connected optically with the ground state. Two papers dealt with sodium and one with rubidium. This was caused by the fact that classical methods (ODR, PS, H) based on optical excitation were not applicable to levels not connected with the ground state and only after the development of new methods (DC, BF) and especially after appearance of frequency tuned lasers the number of papers on τ_b of S-, D- and Fstates began to increase. However, many levels have not been sufficiently well studied as yet. Results of experimental and theoretical studies of radiative lifetimes of excited states not connected with the ground state by optical transitions are given in Table IV.

Lithium. Noticeable (up to 20%) disagreement between the data³⁶ on τ_k of ²S- and ²D-levels of LiI and other experimental^{106,107} and theoretical^{29,158} data is caused, evidently, by the same methodological difficulties characteristic of the BG method which were discussed above [see lithium, section b), 1)].

Sodium. The ²S- and ²F-states of NaI are sufficiently well studied experimentally by the delayed coincidence technique with the stepwise excitation of the studied level by two synchronized lasers with tunable wavelength.^{108,109,111,112} One of the lasers excited sodium atoms from the ground 3S- into the 3P-state and the second laser, synchronized with the first by common pumping, excited atoms from the 3P-states into the studied S-, D- or F-states. In these papers for the first time all the advantages of pulsed pumping by two synchronized lasers allowing one to excite selectively practically any level were demonstrated. It eliminates the influence of

TABLE IV. Radiative lifetimes of S-, D-, F-, G-, H-, and Istates of alkali metal atoms.

State	Lifetime, ns	Method	Refer- ence	State	Lifetime, ns	Method	Refer- ence
	Lithium (Li D			1 50	00.57		15.0
26	1.95 5/42)	. BC	1 35	55	80.07		66
35	30.3	T	29	65	152	1 1	29
35	30.6	ÎÎ	158	6S	152.4	Ť	158
4S	55.8(28)	BG	36	6S	160	Т	66
4S	48(2)	BF	38	7S	269(10)	DCL	108
4S	56.6	L T	29	75	276(14)	DCL	109
4S	56.47		128	75	263		258
35	(113(6)	BU	29	13	202.43		66
23 58	103	1 1	158	85	393(20)	DCL.	108
65	190(10)	BG	36	85	465(40)	DCL	109
őŠ	173	T	29	8S	422	Ť	29
6 S	173.3	T	158	8S	418.5	T	158
78	(220(12)	BG	36	8S	450	T	66
78	273	T	29	95	618	DCL	100
75	272.4		158	95	113(76)		29
30	403.7		36	05	690	l †	66
3D	14.0(7)	BE	38	105	1024(49)	DCL	109
3D	16.7(10)	ő	105	105	913	Т	25
3D	14.60(13)	BGL	106	108	1000	Т	66
3D	14.7	Т	29	10S	900	T	66
3D	14.86) T	158	1115	1270(130)	DCL	109
3D	14.5(7)	DCL	101	115	1263		66
4D	39.2(20)	BG	38	115	1400	1 +	86
40	42 3(15)		105	125	1690	Ť	29
4D	33.4	Ť	29	128	1900	Т	66
4D	34.14	Ī	158	138	2270(170)	DCL	109
4D	31(1)	DCL	107	135	2300	T	68
5D	72.0(36)	BG	36	135	2180		
5D	156(2)	BF	35	30	19.9	\ \	158
5D	63.7		158	3D	20,40	ΙŤ	66
6D	406(5)	BG	36	4D	53.5(30)	DCL	108
6D	108	T	29	4D	51.3	0	210
6D	111.1	Т	158	4D	57	DCL	112
7D	139.5(70)	BG	36	4D	52.4	T	29
7D	170		29	4D 4D	54.81		86
70	169.7		158	5D	120(14)	nci	109
60 4F	72 6		29	5D	108	T	29
4F	72.46	Ť	158	5D	113.5	Ť	158
5F	140	Ť	29	5D	110	Т	66
5F	140.2	Т	158	6D	176(10)	DCL	108
6F	239	T	29	6D	206(24)	DCL	40
61	240.4	1	190	40	191	+ .	158
56	3/0	1	29	60	200	τ	66
66	403	τ I	29	7D	279(15)	DCL	108
ΫĞ	636	τl	29	7D	324(32)	DCL	109
-	o. #		ļ	7D	308	T	29
	Socium (Na I)	_		70	320.0	T	66
4S	39.5	T J	29	8D	449(50)	DCL	108
45	39.87		66 6	80	502(39)	DCL	109
40 55	71(5)	DCL.	108	8D	463	τ	29
55	80.3	Ť	19	8D	492.7	Т	158
		- 1					1

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	State	Lifetime, ns	Method	Refer- ence	State	Lifetime, ns	Method	Refer- enece
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8D	490	т	66	75	160	T	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9D	643(47)	DCL	108	85	269	ÎŤ	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9D	720(67)	DCL	109	9S	423	Т	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	665	Т	29	3D	41.6	Т	114
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9D	710	T	66	$3D_{s/2}$	42(3)	DCL	111
	10D	971(35)	DCL	109	3D _{3/2}	42(3)	DCL	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	915	T	61	4D 5D	284		29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	920		86	6D	1066	Ť	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	1218	Ť	19	7D	1416	Ť	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11D	1300	Ť	66	4F	62.9	Т	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12D	1650(150)	DCL	109	5F	114	Т	29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12D	1572	T	29	6F	187	T	29
	12D	1590	T	109	71	287	T	29
	13D	2120(400)	DCL	88	5G 6C	233	T	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13D	2020		20	76	624	Ť	20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4F	72.22	Ť i	158				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4F	71	Ť	G 6		Dubidium (DL I	`	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 F	137	Т	29		Rublaium (RD I	, 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5F	132.9	Т	158	65	51.5	1	115
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5F	140	T	66	75	95(9)		113
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OF SF	234	Ť	158	15	97 7	T	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01 6F	230.0	+	66	85	169(10)	DC DC	115
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7F	367	ŕ	29	85	153(8)	DCL	116
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7F	376.1	Ť	158	88	178	Т	29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 F	370	Т	હના	95	288(15)	DC	118
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8F	558.2	T	158	95	258(13);	DCL	29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8F	540	T	66	95	245/50	DCT .	161
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91	1020	Ť	66	105	471	T	19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13F	2270(400)		112	105	427	l Ť	86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13F	2260	T	56	115	628	Т	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14F	2640(450)	DCL	112	125	887	T	161
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14F	2810	Т	bé	125	770(150)	DCL	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15F	3540(500)	DCL	412	135	1210	1 T	86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13F 5C	3540	T T	29	145	1260(250)	DCL	161
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	235	Ť	64	155	2070	T	86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6G	402	Ť	29	16.5	2620	T	BC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	402	Ť	66	165	2190(500)	DCL	101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7G	634	Т	29	17.5	3260		141
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7G	633	Ţ	66	185	4000	T	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	1390	1	66	185	3300(700)	DCL	161
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δH	608	τ.	ថថ	195	4850	Т	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7H	960	Ť	66	20.5	5810	T	86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8H	1420	Т	66	215	6880	T	86
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9H	2020	r	60	225	8080	1 +	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10H	2750	1	6.6	24	10900	ΪŤ	86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŝi	2000	1 1	66	258	12500	Т	88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 1	2840	Ť	66	268	14200	T	86
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	101	3880	т	6.4	278	16200	T	80 80
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	111	5130	T	64	285	18300		29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					40./.	94(6)	DCL	114
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Potassium (K	D		4D3/2	86(6)	DCL	111
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	46.4	Т	29	5Da/2, 3/2	240	LC	117
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68	68(9)	LC	113	3D3 2, 5/2	242(23)	DC	118
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.5	87.8	Т	29	5D _{2/2}	205(40)	LC T	84
0D3/2 201(12) DC 420 200 11000 1	5D 6D (206	n n n	115	26F	10200	ŕ	86
	0D _{3/2}	204(12)	<i>b</i> C		2			

TABLE IV. (Continued).

cascade transitions on the decay curve of the excited level thereby excluding possible error in the determination of radiative lifetimes due to nonuniqueness of decomposing of multiexponential decay curve into exponential components. The results obtained by the CDL method^{108,109,111,112} agree within experimental error with the data of theoretical calculations^{26,66,86,158} for lower as well as for upper levels thereby demonstrating the advantages and great possibilities of the DCL method.

Potassium. The lifetimes of nonresonance excited states of KI were studied only in one theoretical paper²⁹ using the method of numerical Coulomb approximation. There are only single experimental papers^{113,114} for each of the 6S- and 3D-states, the data¹¹⁴ being in good agreement with the theory²⁹ and the result¹¹³ for τ_k of the 6S-state being in noticeable disagreement with the theoretical calculations.

Rubidium. The DCL method was widely used in the studies of lifetimes of the ${}^{2}S$ -, ${}^{2}D$ - and ${}^{2}F$ -states of

flations for for	mental data from theo.				
s thereby demonstrating	for the higher $(n > 8)$ S-				
lities of the DCL onresonance excited one theoretical paper ²⁹	the observed lifetime is fect of "superemission" strong laser excitation of distortion of the decay c laser pumping was incre				
oulomb approximation. htal papers ^{113,114} for	studies of S-states of ce				
he data ¹¹⁴ being in good the result ¹¹³ for τ_k of disagreement with the	<i>Cesium.</i> Analysis of e values of lifetimes of th (Table IV) shows that, a perimental results obtai				
as widely used in the	methods are in good agr				
· · · · · · ·					

State	Lifetime, ns	Method	Refer- ence	State	Lifetime, ns	Method	Refer- ence
6D _{3/2}	285(16)	DCL	116	27F	12800	Т	86
6D	295	T	29	28F	14300	T T	86
7D _{3/2}	370(28)	DC	115	5G 6C	232	T	86
7D ^{3/2}	386	T	29	7G	617	Ť	80
8D _{8/2}	515(30)	DCL	116		Continent (Co. I)		' I
8D	532	T	29		Cesauni (CSI)		
9D 10D	565(120) 1070	DCL	86	75	57.3 404	T	120
100	720(120)	DCL	161	8S	101(4)	DC	121
11D	1410	T	86	8 S	96(14)	LC	113
11D	975(200)	DCL	161	8S	87(9)	DCL	122
120	1250(300)		141	82	106		29
13D	2330	T	86	95	196(13)	DC	121
13D	1400(300)	DCL	161	95	231(35)	LC	113
14D	2910	T	\$6	95	167(3)	DCL	99
15D 45D	3010		161	95	160(8)	DCL	29
16D	4400	T	56	105	260(12)	DCL	116
17D	5300	T	86	10S	270(5)	DCL	80
18D	6320	T	80	105	319	T	29
18D	7470	DCL	86	115	343(22)	DCL	89
20D	8750	Ť	94	iiš	498	T	29
21 D	10200	Т	84	128	545(30)	DCL	116
22D	11700	T	86	125	571(15)	DCL	99
23D 24D	13500	T T	80	135	754(35)		1 20
24D	17400	Ť	80	6D./.	64(2)		92
26D	19700	Ť	56	6Ds/2	60.7(25)	DCL	121
27D	22100	T	86	6D	69.9	T	29
280	24800		29	6D_1/2	60 0(25)		121
5F	101	Ť	28	7D _{3/2}	92.5(15)	DC	92
6F	165	Т	29	$7D_{5/2}$	88(9)	DCL	122
7F	253	T	26	7Da/-	98(3)	DC	121
9F 10F	680(400)	DCL	119	7D3/2	103		29
11F	900(140)	DCL	119	8D./.	152(3)	DCL	88
11F	904	Т	36	8D3/2	154(5)	DCL	181
12F	1170	T	86	8D	161	T	29
13F	1470	T	80	9D ₃ /2	218(4)		99
14F	1830	Ť	8ú	9D	245	T	29
15F	1960(290)	DCL	119	$10D_{3'2}$	311(6)	DCL	90
15F	2240		84	11D _{3/2}	428(12)	DCL	99
10F	2960(440)	DCL	119	13D ₃ /2	741(22)		89
17F	3250	T	86	14D _{1/2}	980(30)	DCL	99
18F	3850	Т	80	4F	44.9	T	29
19F 40F	4000(800)	DCL	86	56	76.8		101
20F	5260	Ť	86	6F	124		29
21F	6700(1700)	DCL	119	6F7/2	149(8)	DCL	121
21F	6080	T	86	7F-/2	238(10)	DCL	121
22F 23F	7970	T	86	7F	229(15)	DCL	39
24F	9040	Ť	86	8F./.	336(22)	DCL	124
9F-/-	473(30)	DCL	124	14F 7/2	1625(35)	DCL	126
10F 7/2	646(35)	DCL	124	15F7/2	1950(40)	DCL	126
11F 7/2	846(40)	DCL	124	10F _{7/2}	2340(50)	T	39
12F.	1060(25)	DCL	136	6G	389	Ť	29
13F /2	1320(35)	DCL	126				
				1		ł	

RbL. The analysis of the results obtained by this method shows that, whereas for the F-states and the lower S- and D-states the DCL-data^{114,115,119} agree within experimental errors with the experimental data obtained by other methods^{113,115} and with the theoretical calculations,^{29,86} a systematic deviation (up to 35%) of experimental data¹⁶¹ from theoretical values^{29,86} is observed for the higher (n > 8) S- and D-states. The decrease of the observed lifetime is caused, apparently, by the effect of "superemission" taking place in the case of strong laser excitation of the state being studied. A distortion of the decay curve as the power of exciting laser pumping was increased was first observed in the studies of S-states of cesium.¹²²

Cesium. Analysis of experimental and theoretical values of lifetimes of the ${}^{2}S_{-}$, ${}^{2}D_{-}$ and ${}^{2}F_{-}$ states of CsI (Table IV) shows that, as in the case of RbI, the experimental results obtained by the DC^{92,121} and LC^{113,118} methods are in good agreement with calculated values²⁹ within the limits of experimental error while the re-

sults of the DCL method^{99,116,122,124} for the S- and Dlevels give 15-30% lower values than corresponding data of other methods and of theoretical calculations. The value of τ_k of $9D_{5/2}$ obtained in Ref. 125 is an obvious mistake which follows from comparison with the data of other work and also from an analysis of the dependence q(E) for nD- series of CsI (see Section 4).

In the studies of lifetimes of the S-state of CsI¹²² it was found that the experimentally observed decay time of the excited state after the end of the excitation pulse depends upon the intensity of the laser pulse. When the laser beam was focused inside the volume of the cesium vapor the decay curve became shorter and, vice versa, on defocusing the decay time approached the radiative lifetime of the state being studied. The decrease of the observed lifetime in the DCL method, apparently, is caused by the appearance of collective spontaneous emission (superemission) from the state being studied which caused the appearance of the additional "fast" exponent and the distortion of the decay curve.¹²⁷ The region of the fast decay appears after the time t_0 :¹²⁷

 $t_{\rm D} \sim \frac{8\pi}{N t \lambda^2 A} , \qquad (7)$

where N is the concentration of the excited atoms, l is the length of the excitation volume, λ is the wavelength of the transition studied, A is the transition probability.

The amplitude of the "fast" exponent is proportional to the square of the concentration of the atoms excited to the studied level.¹²⁷ The degree of distortion of the decay curve depends on many factors and, primarily, on the concentration of the excited atoms, i.e., on the power of the exciting pulse. To exclude the influence of the effects connected with high power pumping on the values of lifetimes of excited states obtained by DCL method it is, apparently, necessary to study each time the dependence of the observed lifetime on the power of the exciting laser pulse; however, in the work on the determination of lifetimes of S-, D-, and F-states of CsI and RbI carried out by the DCL method such dependences are not given. The difference in the data on $\tau_{\rm b}$ of RbI and CsI obtained by the DCL method and the data obtained by other experimental methods and by theoretical calculations show that the application of so precise and universal method as the DCL method requires great care and, as in other experimental methods, careful taking into account of all experimental conditions.

3. Autoionization states

The study of autoionization states of atoms and ions is one of important problems of present-day atomic physics. The data on autoionization states are of great significance for the development of an understanding of the intraatomic processes taking place when several electrons are excited. Moreover, the constants of autoionization states are also of practical importance beca because the existing experimental and theoretical studies show the significant role played by these states in processes with participation of excited atoms and ions, in particular, in the processes using selective photoionization of atoms by laser radiation, which are used for detection of single atoms and for isotope separation.

TABLE V.	Radiative	lifetimes	of	autoionization	states	of
alkali metal	atoms.					

State	Lifetime, ns	Method	Ref- erence	State	Lifetime, ns	Method	Ref- erence
Littl 1s 2s 3s 4S 1s 2s 3s 4S 1s 2s 3s 4S 1s 2s 4s 4S 1s 2s 4s 4S 1s 2s 2p 4P _b /r 1s 2s 3D 4P 1s 2s 3d 4D 1s 2s 3d 4D 1s 2s 3d 4D 1s 2s 3d 4D 1s 2s 4d 4D 1s 2p 3s 4P ₀ 1s 2p 3p 4P ₁ 1s 2p 3p 4P ₁	$\begin{array}{c} & \text{itim} (\text{Li I}) \\ 9.7(7) \\ 6.72(2) \\ 7.7(10) \\ 15.4(5) \\ 5800(1200) \\ 460(1200) \\ 460(1200) \\ 140(70) \\ 140(70) \\ 140(70) \\ 140(70) \\ 300(30) \\ 500 \\ 4.5(4) \\ 5.3(12) \\ 4.15(4) \\ 4.3(1) \\ 5.3(12) \\ 4.15(4) \\ 4.3(1) \\ 5.9(10) \\ 9.6(6) \\ 60.6 \\ (23) \\ 11.8(2) \\ 12.4(5) \\ 60.6 \\ (23) \\ 11.8(2) \\ 12.4(5) \\ 6.4(3) \\ 5.8(7) \\ 7(2) \\ 6.5(3) \\ 5.76(5) \\ 2.9(3) \end{array}$	BF BF BF BF BF BF BF BF BF BF BF BF BF B	129 108 169 128 128 128 120 170 170 170 170 170 170 170 170 170 17	15 2p 3p 4P 15 2p 3p 4P 15 2p 4p 4P 15 2p 4p 4P 15 2p 4p 4P 15 2p 3d 4D 15 2p 4d 4D 15 2	0.8(3) 30(3) 7.1(30) 3.5(10) 42(4) 2.3(4) 3.0(8) 4.47(6) 1.5(4) 2.3(5) 1.41(15) 2.3(10) 2.3(5) 1.45(10) 0.24(10) 0.24(10) 0.063(50) 0.177 0.063(50) 0.015(10) 0.054 0.00075(10) 10.00075(10	BF BF BF BF BF BF BF BF BF BF T BF T BF	169 170 134 169 130 130 130 149 169 169 169 169 133 131 133 133 133 133 135 135 135 135
			Î		10000(20000)	1 20	

The studies of lifetimes of autoionization states are only at a beginning stage; there are very few data on τ_k of particular states and there are no systematic studies. However, we found it useful to give in Table V experimental and theoretical values available at present of lifetimes of autoionization states of alkali metal atoms.

c) Copper, silver, gold

The studies of lifetimes of excited states of atoms of the copper subgroup (CuI, AgI, AuI) in contrast to those of alkali metal atoms did not attract sufficient attention until recently. Before 1975 there were only a few experimental investigations made by level crossing and phase shift methods in which the authors studied lifetimes of the resonant ²P-levels. This can be explained by known difficulties in obtaining atomic vapors of these elements and by the lack of demand for the radiation constants of excited states of these atoms. However, rapid development of quantum electronics and thermonuclear studies during recent years required data on oscillator strengths, transition probabilities and lifetimes of the atoms of Ib-subgroup and, first of all, of the atoms and ions of the isoelectronic series of CuL This caused the recent appearance of theoretical¹⁴⁰ and experimental^{139,171,172} work in which, besides $\tau_{\rm b}$ of resonance states, lifetimes of higher excited states of CuI were studied. All results available at present in the literature of direct determination of τ_k of CuI, AgI and AuI are given in Table I.

An analysis of Table IV shows that the lifetimes of the atoms of the copper subgroup have not been studied in sufficient detail. A sufficient amount of noncontradictory data is available only for the $4p^2P_{3/2}$ -level of CuI; the experimental data for other levels of CuI^{139,145,164,171} differ between themselves and disagree with the data of the theoretical calculations.¹⁴⁰ Especially strong contradiction is between the experimental^{139,164} and theoretical¹⁴⁰ data on τ_k of the 6P_i and 7P_j states. In the

State	Lifetime, ns	Method	Ref- erence	State	Lifetime, ns	Method	Ref- erence
Co	opper (Cu I)			4p ² P ²	5.97	Т	140
3d10 5s2 S1/2	21.0(42)	EOC	139	4n ² P ²	7.0(9)	DC	174
$5s^2 S_{1/2}$	23.5	Т	140	$5n^2 P^2$	38.8	Т	140
6s ² S _{1/2}	86.0(71)	EOC	139	5p ² P (1/2	12(2)	DE	145
65 ² S ₁ /2	52.8	1 m	171	5p2 D	34(5)	FOC	139
$\frac{05^2 S_1/2}{78^2 S_1/2}$	49.3(25)	T	110	5-1 D	30 0	T	140
7s ² S./a	86.1(83)	DC	171	op ² P _{3/2}	00.0		171
8s ² S _{1/2}	181	Т	110	op- P3/3	27.9(42)		
$9s^2 S_{1/2}$	306	Т	140	6p ² P _{1/2}	185	T	140
4p ² P ³ _{1/2}	7.1(6)	EOC	139	6p ² P _{1/2}	23(5)	DC	164
$4p^2 P_{1/2}^{\circ}$	6.11	Т	140	6p ² P _{3/2}	19.1(30)	EOC	139
4p ² P [*] _{1/2}	7.0(9)	DC	174	6p² P °	353	Т	110
4p ² P _{3/2}	7.0(2)	LC	141	6p ² P [*] _{3/2}	6.2(6)	DC	161
4p ² 1'3/2	7.2(3)	PS	242	7p ² P _{1/2}	338	T	140
$4\mathbf{p}^2 \mathbf{P}^2$	7.4(7)	BF	1:3	7p ² P ⁴ /2	5.8(6)	DC	161
4p ² P ³ /2	7.24(15)	10	144	7n2 Para	118	T	110
$4n^2 P^{3/2}$	7.6(7)	PS	143	7n2 Para	17.0(45)	DC	164
$4n^{2}P^{2}$	7.2(10)	FOC	139	8n2 P. (2	165	Т	140
49 1 3/2	1.2(10)			op*1 1/2	320(40)	10	144
8p ² P ^o _{3/2}	220	T	110	4p 1 3/2	320(10)	1 ic	111
9p ² P _{1/2}	343	T	140	4p'+ D_3/2	376(28)	DC	171
9p ² P ³ _{3/2}	407	Т	140	40'2 F	424(10)	DC	171
4d2 D5/12 3/2	11(2)	BF	155	4d' + Fala	377(28)	DC	171
4d2 D3/2	66.2(34)	EOC	239	4d'2 Ga/2	61(9)	DC	171
4d ² D _{3/2}	12.2	T	140	4d' G5/2	4.8(6)	BF	115
40 ² D _{3/2}	14.5(6)	L ECC	130	4d'1 G7/2	97.9(57)	DC	171
4d ² D ₅ /2	43.0(42)	T	140	4d G _{9/2}	98.9(38)	DC	••••
4d ² D.	14.2(13)	DC	171	Silv	er (Agl)		
5d2 D, 2	54.8(51)	EOC	139	1			
5d2 D3/2	26.8	T	140	5p ² P _{3/2}	6.3(6)	LC	117
5d2 D3/2	30.9(17)	DC	129	5p ² P _{3/2}	6.5(6)	DC	113
5d2 1)-7-	97.4	T	140	5p ² P _{3/2}	7.3(4)		171
5d ² D ₅	29.8(27)	DC	171	$5p^2 P_1/2$	7.5(7)	1 DC	174
6d2 1)3/2	51.1	T	140	78 ² 5.7	41.5(32)	DC	175
6d2 D5/2	71.5(91)	EOC	1:19	Ss2 S1/2	139(13)	DČ	175
6d ² D _{5/2}	52.7	T	140	5d= D3/2	12.9(8)	DC	173
Dd 105/2	aa. 6(3a)		140	5d° D _{5/2}	13.4(12)	DC	175
7.12 1) 3 2	87.0		119	50 ² D _{3/2}	30.2(33)		173
8d2 1)	137	1 r	140	. 7d2 D.v.	60.6(43)		175
8d ² D _{5/2}	137	l r	149	8d2 D3/1	106(7)	DC	175
4f ² F _{5/2}	70 2	T	110	5p" 123/2	3.0(2)	DC	175
412 12/2	70.4	Т	149	6-' 'D3/2	5.1(9)	DC	175
5f2 F3/2	136	T	110	5p' 107/2	3.9(10)	DC	175
5f2 F 7/2	136	Т	110				
3d* 4p' 2 Para	10.7(4)	LC	111	Go	ld (Au I)		
4p'= 1'2.	13 2(6)	DC	171	5d10 6n2 P	4.6	LC	1 150
4p'= Dava	19(2)	LC	114	5d10 6p2 P./.	4.6(3)	LC	151
4p'2 Dava	20.0(23)	DC	171	5d10 6p2 P1/2	7 4(7)	DC	174
401 800	318(16)	ODP	116	5d10 6p2 P3/2	5 6(8)	DC	174
3/2)	e.)

TABLE VI. Radiative lifetimes of excited states of Cu I, Ag I, and Au I.

method of the numerical Coulomb approximation used in Ref. 140 the applicability of the single-configuration approximation to the studied states was assumed. The single-configuration approximation can be too crude in the case of perturbed states. As is known,¹⁷² the series of the terms $3d^{10}np^2P_j^0$ of CuI is perturbed, the states 6P,, 7P, and 8P,, for which strong disagreement between theoretical and experimental values of τ_{b} is observed (see Table VI), being especially strongly pertrubed. It is known¹⁶⁰ that for the one-electron approximation to be applicable it is necessary that the orbital parameter q should vary monotonically with an increase of the excitation energy. The dependence $q(n^*)$ for the $n^2 P_i^0$ -series of CuI is given in Fig. 3 (the plot 3). The strongly expressed nonmonotonic character of this dependence indicates the presence of a considerable perturbation of $6^2 P_j$, $7^2 P_j$ and $8^2 P_j$ states. For strongly perturbed states 6²P, and 7²P, the oneelectron approximation is not valid and the method of the Coulomb approximation for the calculation of τ_{*} is not applicable. This can explain the strong disagreement between experimental and theoretical values of $\tau_{\rm b}$ of these states. The states 4²P, and 5²P, are also

FIG. 3. Plots of the dependences of the radiative lifetime τ and of the effective orbital parameter q on the effective principal quantum number n^* for the $n^2 p_j$ states of Cu I.

perturbed, however their perturbation is weak and the single-configuration approximation satisfactorily describes them and, therefore, the theoretical results¹⁴⁰ for these states differ but little (in comparison with 6^2P_j and 7^2P_j) from the experimental data (see Table VI).

As is known,^{153,156} the dependences $\tau_k(n^*)$ and q(E) correlate between themselves both in the case of those series where the one-electron approximation is applicable as well as in the case of perturbed states. Here in the case of strong perturbation a correlation in the dependences $\tau_k^{exp}(n^*)$ and $q(n^*)$ for the $3d^{10}np^2P_j^0$ states of CuI is also observed (see Fig. 3, plots 2 and 3). Note that the dependence $\tau_k^{theor}(n^*)$ does not correlate with the dependence $q(n^*)$ which is one more indication that the calculated data¹⁴⁰ for n^2P_j -states of CuI are not correct.

An analysis of the values of τ_k for the nD_j -states of CuI using the dependences $\Delta n(n^*)$ allows us to conclude (see Section 4, Fig. 7) that the experimental data¹³⁹ have accidental errors which is also supported by the good agreement of the recent experimental results with the theoretical results¹⁴⁰ for the same states.

Data on τ_k of the upper excited states of AgI and AuI are absent in the literature. Because of this and because of the wide spread of the data from different determinations of τ_k of CuI it seems necessary to carry out new experimental and theoretical studies of lifetimes of excited states of atoms and ions of the copper subgroup.

4. REGULARITIES IN THE RADIATIVE LIFETIMES OF EXCITED STATES OF ATOMS OF THE FIRST GROUP

Regularities in the radiative lifetimes of excited states of a single spectral series (here and subsequently a spectral series is understood to be a set of excited states with the same orbital and spin angular momenta) of atoms and ions heavier than hydrogen have recently attracted considerable attention of researchers who carry out calculations or experimental studies of lifetimes.^{66, 153-156} The regularities in the variation of lifetimes of excited states as a function of the principal and azimuthal quantum numbers that have been determined and also the regularities in the variation of τ_k of analogous states of atoms of the same subgroup and of ions of isoelectronic series allow us to understand better the physics of excited states. Moreover, the constants of power-law dependences $\tau_k(n^*)$ for particular spectral series together with dependences q(E)allow us to evaluate reliably lifetimes of states which for some reason have remained unstudied.^{153,156}

The power-law dependence of the variation of radiative lifetimes of excited states of the hydrogen atom follows from quantum mechanics. As was shown by H. Bethe as early as in 1933 in the first edition of the monograph of Ref. 152 the radiative lifetimes of excited states of the hydrogen atom increase with an increase of the principal quantum number in the case when the azimuthal quantum number l is constant as well as in the case of averaging over l. At constant l for hydrogen we have

$$\tau_{n,l} \sim n^3, \tag{7}$$

and the average lifetime of the n-th state is

$$\tau_n = \left(\sum_l \frac{2l+1}{n^5} \frac{1}{\tau_{n,l}}\right)^{-1} \sim n^{4,5}.$$
 (8)

In 1975 it was shown simultaneously and independently in three articles¹⁵³⁻¹⁵⁵ that for some series of heavy atoms (Ne I, Hg I, and Na I) the power-law variation of lifetime with n is also valid:

$$t_h = \tau_0 n^{\alpha}, \tag{9}$$

where τ_0 and α are constants for a given series, the index α being able to attain the value of six.¹⁵⁴ It was shown later^{155,156} that a greater number of series of heavy atoms have dependences

$$\tau_k = \tau_0 n^{*\alpha}, \tag{10}$$

where n^* is the effective quantum number, α is close, though not equal, to 3 (see Table VIII). This is reasonable because the dependence on n^* is more "hydrogen-like." The constants τ_0 and α were determined for a large number of series of heavy atoms.¹⁵⁶ However, for the hydrogen atom the dependences (8) and (9) are still not determined (the constants τ_0 are not determined and it is not shown how closely is $\alpha = 3$). Moreover, in order to understand the regularities in radiative lifetimes of complex atoms it is necessary to determine all the laws governing radiative lifetimes in the simplest hydrogen atom.

Using all the data available in the literature on the experimental and theoretical determination of radiative lifetimes of excited states of the hydrogen atom, we plotted the dependences of lifetimes on the principal quantum number for all the series (Fig. 4) and analyzed their behavior by the least square fit method in order to determine τ_0 and α . The analysis of the data has shown that in contradiction to the notion established in the literature^{152,157} that the radiative lifetimes of all the series of the hydrogen atom vary as n^3 , the S-series has a different dependence (see Fig. 4). The lifetimes of the levels of the S-series vary with the principal quantum

FIG. 4. Plot of the dependence of the radiative lifetimes τ on the principal quantum number n of excited states of the hydrogen atom.

number according to complex curve with a varying slope coefficient α (from 1.42 for n = 3, 4 to 2.81 for n = 11, 12).

The lifetimes of the S-states of the hydrogen atom behave as the lifetimes of complex atoms.^{152,156} The "perturbation" influences S-states up to n = 12 while other excited states of the hydrogen atom with the quantum number *l* not equal to 0 are not influenced by the "perturbation." The perturbation of the series of excited states in complex atoms is caused by the interaction of the electron in the excited level with the field of electrons of the atomic shell. This type of perturbation is absent in hydrogen, therefore, the nature of the "anomalous" behavior of lifetimes of the S-states is apparently a manifestation of the specific features of the interaction of an S-electron with a nucleus.

All other series of the hydrogen atom follow the power dependence (9) with constants τ_0 and α given in Table VII (at a confidence level of 0.95).

In testing the relation (8) by the substitution of the data on τ_k from Refs. 21-29 it was found that the power index is equal to 4.50 (5) only for $n \ge 9$, for n from 3 to 8 the power index is changing from 4.15 for n = 5 to 4.75 for n = 3.

TABLE VII. Values of the constants τ_0 and α for the spectral series of the hydrogen atom.

Series	р	đ	t		g	h	
τ _{ns}	0.209(1)	0.627(2)	1.235(1)		2.068(1) 3.113(1)	
α	2.948(8)	2.932(6)	2.941(2)		2.942(1) 2.945(1)	
Series	1	k	k		1	m	
τ _{ns}	4.372(5)	5.766(5.766(18)		212(14)	9.313(82)	
α	2.946(2)	2.954(2.954(6)		168(6)	2.956(11)	

The dependence (10) can be used by means of an extrapolation for the evaluation of lifetimes of levels which are not present in the literature.^{66, 153, 156} However, for the validity of extrapolation it is necessary to have a criterion of the validity of the dependence (10) in the region of the levels of interest. As has been shown in Ref. 160 the power dependence is valid for all the series of the hydrogen atom except S-series, therefore, it is possible to suppose that for series of other atoms and ions for which the one-electron approximation is applicable the relation (10) is valid. As was shown in Ref. 160, the behavior of the effective orbital parameter q as a function of the state energy E is the criterion for the applicability of the one-electron approximation. The parameter q is related to the state energy E by the relation¹⁶⁰

$$q = Z^* \sqrt{\frac{2}{|E|}} - 2p - 1, \tag{11}$$

where Z^* is the effective charge which is equal to one for the neutral atom, E is the experimental value of the energy of the given state in atomic units, p is the radial quantum number.

For the validity of the one-electron approximation (i.e., for the series to be "hydrogen-like") the orbital parameter for a given series must increase linearly with increasing n, if there are electrons with the same orbital angular momentum in the atomic shell, or decrease linearly, if there are no such electrons.¹⁵³ As was shown in Ref. 156, there exists a correlation between the behavior of q and τ_{μ} . In the case where oneelectron approximation is valid a power-law dependence for the lifetimes is observed and vice versa. The existence of such a correlation provides the possibility of using the dependence of q on E for a justification of the extrapolation of the power-law dependence of τ_{h} on n^{*} to levels which cannot be studied experimentally at present and for evaluation of the values of τ_k of these levels. Such evaluation obtained by the extrapolation of the dependence $\tau_{k}(n^{*})$ plotted using reliable data on $\tau_{\rm b}$ for the lower states well studied by different methods can be in many cases more reliable than single experimental and theoretical determinations (see, for example, Fig. 2).

To illustrate the correlation of the dependences $\tau_{k}(n^{*})$ and q(E) in the spectral series of atoms of the 1st group and to obtain the values of the parameters of the dependences $\tau_{b}(n^{*})$ (constants α and τ_{0}) in order to use them for evaluation of lifetimes of states that have not been studied we used all the data on τ_{b} for series of excited states to plot $1 g\tau_{k}$ and $1gn^{*}$ similar to the plots in Figs. 2, 5, 6. The dependences of q on E for corresponding series were also plotted there. Analysis of the plotted dependences showed that for all studied series of atoms of the 1st group a correlation between the plots of $\tau(n^*)$ and q(E) was present. Where the plot q(E) showed the existence of a "hydrogen-like" series of states, the power-law dependence (10) for τ_k was observed and vice versa (see Figs. 2, 5, 6). The dependences $\tau_k(n^*)$ for "hydrogen-like" series were approximated by the power-law dependence (10) using the least square fit

FIG. 5. Plots of the dependences $\tau(n^*)$ and q(E) for the F states of Na I and Cs I and for the P states of Rb I.

method, and the constants α and $\tau_{\rm o}$ given in Table VIII were determined.

The values of the lifetimes of the lower S-states of alkali metal atoms published in the literature do not follow the power-law dependence (10). The constants α and τ_0 for NaI given in Table VIII were obtained from

FIG. 6. Plots of the dependences $\tau(n^*)$ and q(E) for the D states of Na I, K I, and Rb I.

TABLE VIII. Values of the constants α and τ_0 for the spectral series of alkali metal atoms.

Atom	Constants	S	Р	D	P	G
LiI	α τ, ns			2.96(11) 0.74(16)	2.94(3) 1.22(5)	2.95(9) 2.00(8)
Nd1	α r,ns	2.89(3) 1.80(7)		3.06(8) 0,94(4)	2,93(7) 1,20(4)	2.94(4) 2.05(8)
KI	α τ, ns		3.06(4) 3.47(11)		2.70(5) 1.48(5)	2.92(7) 2.09(4)
RbI	α τ, ns	2.95 1.44	3.03(9) 2.57(7)		2.86(7) 0.97(6)	2.90(6) 2.15(8)
CsI	α τ, ns	2.60(11) 3.11(13)	3, 13(6) 2, 47(5)		2.76(4) 1.01(6)	2.85(4) 2.33(6)

the experimental and theoretical values of lifetimes of the S-states beginning from n = 7. The plot of the dependence of τ_k on n^* for RbI is represented by the smooth curve with a changing slope and only for τ_k^{theor} beginning from n = 20 does the power-law dependence with $\alpha = 2.95$ and $\tau_0 = 1.44$ hold. For the S-states of CsI the constants α and τ_0 were obtained from the experimental values of τ_k beginning from n = 8.

The power-law dependence on n^* is observed for the experimental and theoretical values of τ_{b} of the P-states of Lil (see Fig. 2) available in the literature, but the results of different articles give dependences with substantially different τ_0 and $\alpha [\alpha_{\text{theor}} = 2.12(9), \alpha_{\text{exp}} = 2.75(6)].$ The value $\alpha = 2.75$ seems to us to be preferable for the series for which the one-electron approximation is valid, however new theoretical and experimental studies of τ_k of this series are needed to obtain more precise values of the constants. For $\tau_{\rm b}$ of the P-states of Na I a power-law dependence is not observed even for high values of *n* (see Fig. 2). The constants τ_0 and α for K I were obtained using experimental and theoretical values of τ_{μ} , and for Rb I and Cs I only theoretical values of τ_k were used. The experimental results, especially for CsI, have a very large spread. The data⁸⁷ for the (12, 14, 17, 22)P-states of Rb I (see Fig. 5), apparently, have a systematic error caused by the influence of thermal radiation on the higher levels.

The plots of dependences of τ_k on n^* for the D states of alkali metal atoms are surprisingly different (see Fig. 6). The power-law dependences (10) are observed only for Li I and Na I, the constants given in Table VIII being obtained from theoretical results for LiI and from experimental and theoretical results for Na I. The dependence (10) is especially well followed for the Dstates of Na I (see Fig. 6). The lifetimes of the D states of K I, Rb I, Cs I change in dependence on n^* according to complex curves showing the presence of a strong perturbation.

The radiative lifetimes of the F and G states of all the atoms of the Li I subgroup exhibit a power-law dependence on the effective principal quantum number. For Rb I and Cs I the dependence (10) is observed beginning from the 5F and 6F states respectively, and for Li I, K I and Na I all the F and G states follow powerlaw dependences, the F states of Na I following a powerlaw dependence especially well (see Fig. 5). The constants α and τ_0 of the F series of Rb I are obtained from the theoretical values of τ_k . The constants for the G series of Cs I were obtained from the experimental values of τ_k for the $F_{\tau/2}$ states. The constants α and τ_0 for the G states given in Table VIII were obtained from the theoretical values of τ_k .

The power-law dependences (10) are not valid for the S series of Li I and K I, P series of Na I, D series of K I, Rb I, Cs I. The dependences q(E) for the same series show the existence of a perturbation of these series and a deviation from "hydrogen-likeness."

As is known,^{172,173} the S and P electrons are bound much more strongly in all alkali metal atoms than in a hydrogen atom (strongly penetrating orbits), and the bond strength decreases from Li to Cs. Therefore, the power-law dependences for τ_k in the S and P series are observed only for the upper states and for heavy atoms. For D electrons the bond strength increases from Li to Cs and the effect of penetrating orbits disturbs the "hydrogen-likeness" of the D series of K, Rb and Cs. Therefore, the power-law dependence $\tau_k(n^*)$ for the D states is observed only for Li I and Na I.

The F and G electrons in all alkali metal atoms are bound practically in the same manner as in a hydrogen atom and lifetimes τ_k for these states follow quite well the power-law dependence (10) with the power index α close to that of hydrogen.

An analysis of the q(E) dependences of all the series of alkali metal atoms has shown that the dependences $\tau(n^*)$ must have peculiarities for particular values of n (τ_{b} of these states must go off the plot of $\tau_{b}(n^{*})$, provided that the data of Ref. 159 on the energies of the states are correct). Such peculiarities should be observed for the following states: 10S, 11P, 11D of Li I; 13S, 14D, 11F of Na I; 13S of K I; 17D of Rb I. Unfortunately, data on τ_{b} exist only for 13S of Na I and 17D of Rb I. For τ_k of 13S of Na I the peculiarity (τ_k is less than the value determined from the extrapolation) is observed for the theoretically obtained value of τ_k .⁶⁶ The calculated⁸⁷ value of τ_k of 17D of Rb I does not give a noticable peculiarity on the plot (see Fig. 6), which indicates, probably, insufficient sensitivity of the method used to specific properties of particular states.

The possibility of deviation from a power-law dependence (10) for particular states requires the use of the constants given in Table VIII for evaluations of τ_k of unstudied states only in conjunction with dependences (11) for the same states.

For atoms of the Cu I subgroup the laws of the variation of τ_k can be seen only for the S, P and D states of copper. The dependences of τ_k on n^* plotted by us for these series are shown in Fig. 3 and Fig. 7. The dependences $\tau_k(n^*)$ for the P_j series of CuI were discussed above. The plots of dependences $\tau_k(n^*)$ for the S and D series of Cu I are given in Fig. 7. Plot 3 constructed according to the data of Ref. 139 is characteristic for the perturbed series (see Fig. 3) while the data of other theoretical¹⁴⁰ and experimental^{145,171} studies are well approximated by a linear dependence

FIG. 7. Plots of the dependences of the radiative lifetime τ and quantum defect Δn on the effective principal quantum number for S and D states of Cu I.

(plot 2). It is known¹⁶² that the plot of the dependence of the quantum defect Δn on the principal quantum number for a perturbed series must have a nonmonotonic character. The plots of $\Delta n(n^*)$ for S and D series of CuI (plots 4 and 5) which do not have extrema are shown in Fig. 7. The plots of $\Delta n(n^*)$ are characteristic for unperturbed series for which the plots of $\tau_k(n^*)$ must resemble the plots 1 and 2. This is observed for all available data on τ_k except the data of Ref. 139 which are apparently incorrect. The plots in Fig. 7 show that the dependences $\Delta n(n^*)$ may be used for proving the correctness of the extrapolation of the dependence (10).

In the monograph of Ref. 152 it is noted that lifetimes of all sublevels nl of the quantum state n in the hydrogen atom (excluding the S state) vary smoothly with the orbital quantum numbers of these levels. In fact, it can be seen from Fig. 4 that at fixed n the lifetime of levels with different l grows with increase of l according to some well defined law. It was found from an analysis of the variation of radiative lifetimes of excited states of the hydrogen atom that radiative lifetimes τ_k are inversely proportional to the energy differences ΔE between neighboring states:

$$\tau_{n,l} = A \ (\Delta E)^{-\beta},\tag{12}$$

where A and β are characteristic constants for the series of excited states with the same *n*.

The plots of dependences of lifetimes τ_k of excited states on the energy difference ΔE (cm⁻¹) between neighboring states¹⁵⁹ are presented in Fig. 8. For the series given in Fig. 8 the constant β has the following values: 1.0 (plot 1), 1.12 (plots 2, 3), 0.92 (plot 4), 0.89 (plot 5). The plots 4 and 5 in Fig. 8 show that the relation (12) is valid not only for the hydrogen atom, but also for sodium and copper atoms. It should be noted that the relation (12) together with dependences q(E) and $\Delta n(n)$ may also be used to estimate lifetimes of states that have not been investigated.

5. TABLE OF RECOMMENDED VALUES OF RADIATIVE LIFETIMES OF EXCITED STATES OF ATOMS OF THE FIRST GROUP

The values of lifetimes of excited states of atoms obtained by different methods, as can be seen from the tables given above, very often differ from each other;

FIG. 8. Plots of the dependences of the radiative lifetime τ on the energy difference between levels ΔE for the atoms of hydrogen, sodium (D states) and copper (S states).

sometimes these differences are very substantial and may be of the order of the lifetime itself and even larger (CuI). This can be explained by the difficulty of experimental determination of lifetimes of particular states as well as by incomplete consideration of the experimental conditions, especially, when new experimental methods are used. Therefore, together with a complete systematization of the data on τ_k existing in the literature at present, we carried out a critical analysis of them, in order to recommend the most reliable data to facilitate their practical use.

The values τ^{rec} given in Table IX were calculated according to

$$\tau^{\text{rec}} = \frac{1}{n} \sum_{i=1}^{n} \tau_i, \tag{13}$$

where n is the number of articles taken into consideration. Papers were not considered if their results differed from the mean value by more than 2σ (σ is the mean square deviation). Experimental results without a statement of the probable error and earlier work of the same authors were also not considered. Another criterion for the rejection of the results of some articles, in addition to the mean square deviation, was their inconsistence with the dependence (10) obtained from the data of other papers the validity of which was supported by the dependence q(E) (see Section 4). All other experimental and theoretical results were considered to be equally precise and distributed according to the normal distribution law about the real value. It should be noted that consideration of experimental and theoretical values together is possible only for hydrogen and the light alkali metal atoms (Li, Na, K) where splitting into fine structure components is small. As analysis of the summary tables of τ_{s} has shown, theoretical and experimental values of radiative lifetimes of excited states of these atoms agree within experi-

Atom	State	Lifetime, ns	Error	Atom	State	Lifetime, ns	Error
н	3s 4s 5s 6s - 1 2p 3p 4p 5p 6p - 12	156.7 229.1 363.3 2s see Table I 1.59 5.51 12.2 23.8 2p see Table I	B B C A A B A		7P 3D 4D 5D 6D 7D 8D 9D 10D 11D 12D	1542 20.4 53.9 110.5 197.7 319.6 481.9 698 946.5 1254 1604	C A C C B C B C B C
Lil	3d 4d 5d − 12d, f 3s 4s 5s 6s 7s 8s 2s	$\begin{vmatrix} 15.6 \\ 36.4 \\ 69.7 \end{vmatrix}$, g, h see Tail $\begin{vmatrix} 30 \\ 56.2 \\ 103 \\ 173 \\ 272 \\ 405 \end{vmatrix}$	A B A ble I B		13D 4F 5F 6F 7F 8F 9F 10F 12F 13F 14F 15F	2070 71.6 136.6 234.2 371 549 760 1030 1741 2265 2725 3540	B C B
LiI	3P 3D	26.9 224 14.7			5G - 90	see Table IV	·
	4D 5D 6D 7D 8D 4F - 7F 8F	33.5 64 108.3 169 251 see Table IV 551	C C	Nal Kl	10G 11G 12G 4P 4P _{3/2} 4P _{1/2} 5P 5P _{3/2}	1785 2362 3051 26.9 27.2 26.7 128.7 131.2	A C C
	10F 11F	1062 1406			6P - 8	P see Table II	
NaI	12F 5G - 7G 8G 9G 10G 11G 12G 4s 5s	1816 see Table IV 922 1306 1782 2361 3052 38.7 80.2	CA	RbI	9P 10P 11P 12P 7s 8s 9s 10s 11s 12s	1511 2241 5333 6960 94.5 166 273 449 628 887 887	С
	65 75 85 95 105 115 125 135	154.8 267.6 430.1 662 937.6 1261 1795 2250	C A C B C		$5P_{1/2} = 6P_{3/3} = 6P_{1/2} = 7P_{3/2} = 8P - 28$	29.3 111.5 122 236 P see Table II	C A
	3P 4P 5P 6P	16.2 99 354.9 863	A C C		5D 6D ₃ /2 7D ₃ /2 8D ₃ /2	249 289 379 515	
Csl	4F - 12F see Table IV 8s 100.3 C				8s ² S _{1/2} , 9s ² 4p ² P ²	51/2 see Table VI	
	98 108 115 6Pp/a 6Pp/a 7P1/2 7P1/2 8Pg/a 8P1/2 9P/a 8P1/2 9P/a 8P1/2 9P/a 8D4/a 7D5/a 7D5/a 8D4/a	189,2 283 283 417 30.2 34 135 157.2 294,6 318 502 575 62 58 90 94 153)	Č A A A		- + 1/2 4p ² P ₃ /2 5p ² P ₁ /2 5p ² P ₃ /2 6p ³ P ₁ /2 6p ³ P ₁ /2 6p ³ P ₁ /2 7p ³ P ₃ /2 4d ² D ₃ /2 4d ² D ₃ /2 5d ³ D ₃ /2 6d ³ D	7 38.8 33.5 23 6.2 5,8 17 13 13 13 28 28 52 54 54 54 54 54 54	В
$9D_{3/3} - 14D_{3/2}$ see Table IV 5F _{7/2} - 13F _{7/3} see Table IV			3d9	4p' ² D _{3/2}	20		
Cul 3d10	$5s^2S_{1/2}$ $6s^2S_{1/2}$ $7s^2S_{1/2}$	22 50 93		AgI	4p' 4P [°] _{3/2} 4p' 4D _{8/2} 4d ¹⁰ 5p ² P _{3/2}	319 368 6.7	

TABLE IX. Recommended values of radiative lifetimes of excited states of the atoms of the 1st group.

mental error excluding erroneous data of some papers. In the case of RbI and CsI the difference between the experimental values of τ_k of the fine structure components is noticeable and these values differ from the theoretical values. The theoretical values, as a rule, are given for the center of gravity of the state and, as the compiled tables show, are close to the experimental τ_k values for states with a larger statistical weight. For RbI and CsI we give recommended values of τ_k for the fine structure components and in the case when there are no experimental data we give theoretical values for the center of gravity of the state.

Besides the values of several measurements of τ_k averaged according to Eq. (13), there are included in Table IX the results of single measurements, which correspond to the dependence (10) plotted from the averaged τ_k of other states of the series and the evaluations of τ_k of unstudied states also obtained from the dependence (10). The results of single measurements and estimates of τ_k whose reliability is confirmed by the plot of the dependence q(E) (see Section 4) are included in the table.

We were not able to distribute the data of the individual papers according to their statistical weights because due to difficulties of analyzing the experimental conditions of every paper it was impossible to introduce an objective scale of weights corresponding to dates or methods. The introduction of statistical weights according to the stated probable error was not legitimate because the difference between results was often considerably larger than the stated errors which indicated that the stated errors did not correspond to the real precision of the results.

The errors of the recommended values given in Table IX were calculated using the Student coefficient $t_{\alpha,n-1}$ for the confidence level $\alpha = 0.95^{163}$:

$$\Delta \tau^{\rm rec} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\tau^{\rm rec} - \tau_i)^2 t_{\alpha, n-1}}.$$
 (14)

The error of recommended values calculated according to Eq. (14) is given in percent and is designated by letters: A(<5%), B(<10%), C(<30%). For economy of space the recommended values of individual papers are not given in Table IX (references to the previous tables). The predicted values are estimates and are given without an indicated error.

Table IX does not include results of single measurements of τ_k if no states of a given series have several values of τ_k determined by different methods. Also, predicted values of τ_k of the states for which there are no data on energies in Ref. 159 are not included in the table.

6. CONCLUSION

The present level of fundamental and applied studies requires knowledge of the values of atomic constants including radiative lifetimes with a precision of 5-10%.¹⁶⁵ If one is to consider as real a value which is in agreement with results obtained by different experimental and theoretical methods, one should admit that the problem of the determination of real values of radiative lifetimes of excited states of atoms of the 1st group with the precision and completeness required at present is far from being solved. It should be noted that the situation is satisfactory for lifetimes of excited states of the hydrogen atom and the lower (up to n = 10) states of alkali metal atoms (except LiI and KI). The data on radiative lifetimes of upper states of alkali metal atoms and of all excited states (except resonance states) of the copper subgroup atoms are either not available or contradictory. The lifetimes of autoionization states have been studied in fact only for LiI.

New more precise data for lower states are also necessary which would allow one to determine and to make more accurate the constants of the power-law dependences (10) and, therefore, to evaluate the lifetimes of upper states with better precision. Reliable data on τ_k of the excited states for which the behavior of the quantum defect predicts "peculiarity" in the dependence $\tau_k(n^*)$ are very important. The stable interest in the determination of radiative lifetimes of excited states of atoms and ions observed in many countries enables one to hope that necessary data will be obtained in the very near future.

- ¹N. P. Penkin and V. A. Komarovskil, J. Quantit. Spectr. and Rad. Transfer 16, 217 (1976).
- ²N. P. Penkin, in: 6th Intern. Conference on Atomic Physics, Proceedings, Riga, 1978, p. 33.
- ³M. E. M. Head, C. E. Head and T. N. Lawrence, Beam-Foil Spectroscopy, ed. I. A. Sellin and D. J. Pegg, Plenum Press, New York and London, 1976, v. 1, p. 147.
- ⁴R. T. Thompson and R. G. Fowler, J. Quantit. Spectr. and Rad. Transfer 15, 1017 (1975).
- ⁵W. Shearer-Izumi, Atom. Data and Nucl. Data Tables 20, 531 (1977).
- ⁶W. L. Wiese, M. W. Smith and B. M. Glennon, Atomic Transition Probabilities, NSRDS-NBS 4, v. 1, NBS (US), 1966.
- ⁷W. L. Wiese, M. W. Smith and B. M. Miles, NSRDS-NBS 22, v. 2, NBS (US), 1969.
- ⁸C. H. Corliss and W. R. Bozman, Experimental Transition Probabilities and Oscillator Strengths of 70 Elements, Washington, US Govt. Print. Off., 1962 (Russ. Transl., Mir, M. 1968).
- ⁹H. Figger, J. Heldt, K. Siomos and H. Walther, Astron. and Astrophys. 43, 389 (1975).
- ¹⁰A. Einstein, Verh. Deutsch. Phys. Ges. 1916, p. 318.
- ¹¹A. Corney, Adv. Electron. and Electron. Phys. Academic Press, New York and London, 1970, v. **29**, p. 115.
- ¹²R. E. Imhof and F. H. Read, Rept. Progr. Phys. 40, 2 (1977).
- ¹³A. L. Osherovich and Ya. F. Verolainen, in: Problemy atmosfernoi optiki (Problems of Atmospheric Optics) Izd. Leningr. Univ., L. 1979, p. 80.
- ¹⁴H. G. Berry, Rept. Progr. Phys. 40, 155 (1977).
- ¹⁵M. P. Chaika, in: Interferntsiya vyrozhdennykh atomnykh sostoyanii (Interference of Degenerate Atomic States) Izd. Leningr. Univ., L. 1975, s. 64.
- ¹⁶L. N. Novikov, G. V. Skrotskil and G. I. Solomakho, Usp.
- Fiz. Nauk 113, 596 (1974) [Sov. Phys. Usp. 17, 542 (1975)]. ¹⁷L. Armstrong Jr. and S. Feneuille, J. Phys., B 8, 546 (1975).
- ¹⁸R. J. S. Crossley, Adv. Atom. and Mol. Phys. 5, 237 (1969).
- ¹⁹P. F. Gruzdev, in: Fizika vakuumnogo ul'trafioleta (Physics of Vacuum Ultraviolet) Naukova dumka, K. 1974, p. 76.
- ²⁰W. Wien, Ann. d. Phys. **60**, 39 (1919); 16 (1921); **23**, 32 (1924); **83**, 1 (1927).
- ²¹H. Bethe, in: Handbuch der Physik, 2te Aufl., 1933, Bd. 24, s. 444.
- ²²A. S. Goodman and D. J. Donahue, Phys. Rev. 141, 1 (1965).
- ²³R. H. Hughes, H. R. Dowson and B. M. Doughty, J. Opt.
 Soc. Am. 56, 830 (1966).
 ²⁴D. Sobilamentary W. Soblerbeck, D. W. W. J. W. T. T. W. Sobilamentary W. Soblerbeck, D. W. W. J. W. T. T. W. Sobilari, S. W. W. Soblerbeck, D. W. W. J. W. Soblerbeck, D. W. W. J. W. Soblerbeck, D. W. Soblerbeck, D. W. Soblerbeck, D. W. Soblerbeck, D. W. W. Soblerbeck, D. W
- ²⁴D. Schürmann, W. Schlagheck, P. H. Heckmann, H. H. Bukow and H. Buttlar, Zs. Phys. 246, 239 (1971).

- ²⁵W. S. Bickel and A. S. Goodman, Phys. Rev. 148, 1 (1966).
 ²⁶E. L. Chupp, L. W. Dotchin, and D. J. Pegg, *ibid.* 175, 44 (1968).
- ²⁷H. H. Bukow, H. Buttlar, D. Haas, P. H. Heckmann, M. Holl, W. Schlagheck, D. Schürmann, R. Tielert and
- R. Woodruff, Nucl. Instr. and Meth. 110, 89 (1973).
- ²⁸R. C. Etherton, L. M. Beyer, W. E. Maddox and L. B. Bridwell, Phys. Rev. A 2, 2177 (1970).
- ²⁹A. Lingard and S. E. Nielsen, Atom. Data and Nucl. Data Tables, **19**, 534 (1977).
- ³⁰D. S. Rozhdestvenskiĭ, Prostye sootnosheniya v spektrakh shchelochnykh metallov (Simple Relationships in Alkali Metal Spectra), Pg. 1915.
- ³¹V. K. Prokof'ev, Zh. Eksp. Teor. Fiz. 1, 1231 (1931); 4, 359 (1934).
- ³²A. N. Filippov, Zh. Eksp. Teor. Fiz. 3, 520 (1933).
- ³³G. S. Kvater, Zh. Eksp. Teor. Fiz. **12**, 374 (1942); Vestn. Leningr. Univ. #2, 135 (1947). G. S. Kvater and T. G. Meister, *ibid.* #9, 137 (1952).
- ³⁴Yu. I. Ostrovskiĭ and N. P. Penkin, Opt. Spektrosk. 11, 3 (1961) [Opt. Spectrosc. (USSR) 10, 3 (1961)]. M. A. Mazing and N. P. Penkin, *ibid.* 21, 749 (1966) [Opt. Spectrosc. (USSR) 21, 408 (1966)].
- ³⁵A. L. Mashinskil and M. P. Chalka, *ibid.* **28**, 1093 (1970) [Opt. Spectrosc. (USSR) **28**, 589 (1970)].
- ³⁶J. P. Buchet and A. Denis, Comptes Rendus, **265B**, 471 (1967).
- ³⁷K. C. Brog, T. G. Eck, and H. Wieder, Phys. Rev. 153, 91 (1967).
- ³⁸W. S. Bickel, I. Martinson, L. Lundin, R. Buchta, J. Bro-
- mander and I. Bergström, J. Opt. Soc. Am. 59, 830 (1969).
- ³⁹T. Andersen, K. A. Jessen, and G. Sorensen, Phys. Lett., Ser. A **29**, 384 (1969).
- ⁴⁰N. V. Karlov, Pis'ma Zh. Tekh. Fiz. 3, 716 (1977) [Sov. Tech. Phys. Lett. 3, 291 (1977)].
- ⁴¹J. Heldt and G. Leuchs, Zs. Phys., Ser. A 291, 11 (1979).
- ⁴²R. C. Isler, S. Marcus, and R. Novick, Phys. Rev. 187, 76 (1969).
- ⁴³W. Demtröder, Zs. Phys. 166, 42 (1962).
- ⁴⁴N. Agarbiganu, N. Kukurezyanu, N. Popesku and V. Vasiliu, Opt. Spektrosk. 14, 18 (1963) [Opt. Spectrosc. (USSR) 14, 8 (1963)].
- ⁴⁵E. Hulpke, E. Paul, and W. Paul, Zs. Phys. 177, 257 (1964).
- ⁴⁶G. Markova and M. Chaika, Opt. Spektrosk. 17, 319 (1964) [Opt. Spectrosc. (USSR) 17, 170 (1964)].
- ⁴⁷F. Karstensen, Zs. Phys. 187, 165 (1965).
- ⁴⁸J. K. Link, J. Opt. Soc. Am. **56**, 1195 (1966).
- ⁴⁹H. Ackermann, Zs. Phys. **194**, 253 (1966).
- ⁵⁰P. T. Cunningham and J. K. Link, J. Opt. Soc. Am. 57, 1000 (1967).
- ⁵¹B. Kibble, G. Copley and L. Krause, Phys. Rev. 153, 9 (1967).
- ⁵²R. J. Wolff and S. P. Davis, J. Opt. Soc. Am. 58, 490 (1968).
- ⁵³E. E. Habib, B. P. Kibble and G. Copley, Appl. Opt. 7, 673 (1968).
- ⁵⁴D. Schönberner and D. Zimmerman, Zs. Phys. **216**, 172 (1968).
- ⁵⁵M. Baumann, Zs. Naturforsch. 24a, 1049 (1969).
- ⁵⁶C. Bästlein, G. Baumgartner and B. Brosa, Zs. Phys. **218**, 319 (1969).
- ⁵⁷A. L. Mashinskiĭ, Opt. Spektrosk. 28, 3 (1970) [Opt. Spectrosc. (USSR) 28, 3 (1970)].
- ⁵⁸R. W. Schmeider, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1216 (1970).
- ⁵⁹S. T. Tudorache, Rev. Rom. Phys. 15, 269 (1970).
- ⁶⁰J. Bromander, H. G. Berry and R. Buchta, Nucl. Instr. and Meth. **90**, 55 (1970).
- ⁶¹T. Andersen, J. Desesquelles, K. A. Jessen, and G. Sorensen, J. Opt. Soc. Am. **60**, 1199 (1970).
- ⁶²L. E. Brus, J. Chem. Phys. 52, 1716 (1970).

- ⁶³T. A. Erdmann, H. Figger, and H. Walther, Opt. Comm. 6, 166 (1972).
- ⁶⁴H. Harde, Beam-Foil Spectroscopy, ed. I. A. Seelin and D. J. Pegg, Plenum Press, New York and London, 1976,
- v. 2, p. 859.
- ⁶⁵A. L. Burgmans, Phys. Lett., Ser. A 60, 453 (1977).
- ⁶⁶P. F. Gruzdev and N. V. Afanas'eva, Opt. Spektrosk. **49**, 625 (1980) [Opt. Spectrosc. (USSR) **49**, 341 (1980)].
- ⁶⁷H. Kruger and K. Scheffler, J. Phys. et Radium 19, 854 (1958).
- ⁶⁸T. F. Gallagher, S. A. Edelstein, and R. M. Hill, Phys. Rev. A 14, 2360 (1976).
- ⁶⁹T. F. Gallagher and W. E. Cooke, Phys. Rev. Lett. 42, 835 (1979).
- ⁷⁰R. W. Schmieder, A. Lurio and W. Happer, Phys. Rev. **173**, 76 (1968).
- ⁷¹J. Ney, Zs. Phys. **223**, 126 (1969).
- ⁷²G. Copley and L. Krause, Can. J. Phys. 47, 533 (1969).
- ⁷³S. Svanberg, Phys. Scr. 4, 275 (1971).
- ⁷⁴H. A. Schussler, Zs. Phys. 182, 289 (1965).
- ⁷⁵J. D. Feichtner, J. H. Gallagher and M. Mizushima, Phys. Rev. 164, 44 (1967).
- ⁷⁶G. Belin and S. Svanberg, Phys. Scr. 4, 269 (1971).
- ¹⁷A. Gallagher and E. Lewis, Phys. Rev. A 10, 231 (1974).
- ⁷⁸A. Lupascu, J. Popescu, and S. Tudorache, Rev. Rom. Phys. **22**, 923 (1977).
- ⁷⁹E. L. Al'tman and S. A. Kazantsev, Opt. Spektrosk. 28, 805 (1970) [Opt. Spectrosc. (USSR) 28, 432 (1970)].
- ⁸⁰U. Meyer-Berkhout, Zs. Phys. 141, 185 (1955).
- ⁸¹H. Bucka, B. Grosswendt, and H. Schüssler, *ibid.* 194, 193 (1966).
- ⁸²D. Feiertag and G. Putlitz, Zs. Phys. **261**, 1 (1973).
- ⁸³V. N. Grigor'eva, Vestnik Leningr. Univ. #16, 44 (1973).
 ⁸⁴H. Bucka, G. Putlitz, and R. Rabold, Zs. Phys. 213, 101 (1968).
- ⁸⁵G. Putlitz and K. V. Venkataramu, *ibid.* 209, 470 (1968).
- ⁸⁶F. Gounand, J. de Phys. 40, 457 (1979).
- ⁸⁷F. Gounand, P. R. Fournier, J. Cuvellier and J. Berlande, Phys. Lett., Ser. A 59, 23 (1976).
- ⁸⁸G. Markova, G. Khvostenko, and M. Chaika, Opt. Spektrosk. 23, 835 (1967) [Opt. Spectrosc. (USSR) 23, 456 (1967)].
- ⁸⁹P. Violino, Can. J. Phys. 47, 2095 (1969).
- ⁹⁰S. Svanberg and S. Rydberg, Zs. Phys. 227, 216 (1969).
- ⁹¹J. N. Dodd, E. Enemark, and A. Gallagher, J. Chem. Phys. 50, 4838 (1969).
- ⁹²P. Zimmerman, T. W. Ducas, M. G. Littman, and D. Kleppner, Opt. Comm. **12**, 198 (1974).
- ⁹³A. Gallagher, Phys. Rev. 157, 68 (1967).
- ⁹⁴K. Althoff, Zs. Phys. 141, 33 (1955).
- ⁹⁵H. Bucka, H. Kopfermann, and E. W. Otten, Ann. d. Phys. 4, 39 (1959).
- ⁹⁶S. Rydberg and S. Svanberg, Phys. Scr. 5, 209 (1972).
- ⁹⁷P. Pace and J. Atkinson, Can. J. Phys. 53, 937 (1975).
- ⁹⁸J. Marek and K. Niemax, J. Phys. Ser. B 9, L483 (1976).
- ⁹⁹J. S. Deech, R. Luypaert, L. Pendrill, and G. Series, J. Phys., Ser. B 10, L137 (1977).
- ¹⁰⁰M. Gustavson, H. Lundberg, and S. Svanberg, Phys. Lett., Ser. A 64, 289 (1977).
- ¹⁰¹H. Bucka and G. Oppen, Ann. d. Phys. 10, 119 (1962).
- ¹⁰²E. L. Al'tman, Opt. Spektrosk. 28, 1029 (1970) [Opt. Spectrosc. (USSR) 28, 556 (1970)].
- ¹⁰³E. A. Sieradzan, W. Jastrebski, and J. Krasinski, Opt. Comm. 28, 73 (1979).
- ¹⁰⁴E. M. Anderson and V. A. Zilitis, Opt. Spektrosk. 16, 382 (1964) [Opt. Spectrosc. 16, 211 (1964)].
- ¹⁰⁵F. Karstensen and J. Schramm, J. Opt. Soc. Am. 57, 654 (1967).
- ¹⁰⁶D. Schulze-Hagenest, H. Harde, W. Brand, and W. Demtröder, Zs. Phys., Ser. A 282, 149 (1977).
- ¹⁰⁷J. Heldt and G. Leuchs, *ibid.* 291, 11 (1979).
- ¹⁰⁸D. Kaiser, Phys. Lett., Ser. A 51, 375 (1975).
- ¹⁰⁹T. F. Gallagher, S. A. Edelstein, and R. M. Hill, Phys.

- Rev. A 11, 1504 (1975).
- ¹¹⁰F. Karstensen, J. Schramm, and W. Baylis, Zs. Phys. **195**, 370 (1966).
- ⁽¹¹W. Gornik, D. Kaiser, W. Lange, J. Luther, H. Radloff, and H. Schulz, Appl. Phys. 1, 285 (1973).
- ¹¹²T. F. Gallagher, W. E. Cooke, and S. A. Edelstein, Phys. Rev. A 17, 904 (1978).
- ¹¹³B. R. Bulos, R. Cupta, and W. Happer, J. Opt. Soc. Am. 66, 426 (1976).
- ¹¹⁴U. Teppner and P. Zimmerman, Astron. and Astrophys. 64, 215 (1978).
- ¹¹⁵A. Ya. Nikolaich and A. L. Osherovich, Vestnik Leningr. Univ. #10, 44 (1976).
- ¹¹⁶H. Lundberg and S. Svanberg, Phys. Lett., Ser. A 56, 31 (1976).
- ¹¹⁷R. Cupta, S. Chang, C. Tai, and W. Happer, Phys. Rev. Lett. 29, 695 (1972).
- ¹¹⁸C. Tai, W. Happer, and R. Cupta, Phys. Rev. A 12, 736 (1975).
- ¹¹⁹M. Hugon, F. Gounand, and P. R. Fournier, J. Phys. Ser. B 11, L605 (1978).
- ¹²⁰O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961).
- ¹²¹A. L. Osherovich, Ya. F. Verolainen, and A. Ya. Nikolaich, Vestnik Leningr. Univ. #16, 42 (1976).
- ¹²²J. Marek, Phys. Lett., Ser. A 60, 190 (1977).
- ¹²³G. Alessandretti and F. Chiarini, Opt. Comm. 20, 289 (1977).
- ¹²⁴J. Marek and M. Ryschka, Phys. Lett., Ser. A 74, 51 (1979).
- ¹²⁵J. Archambault, J. Descoubes, M. Priou, A. Omont, and J. Pêbay-Peyroula, J. Phys. et Radium 21, 677 (1959).
- ¹²⁶H. Lundberg and S. Svanberg, Zs. Phys., Ser. A **290**, 127 (1979).
- ¹²⁷F. Gounand, M. Hugon, P. R. Fournier, and J. Berlande, J. Phys., Ser. B 12, 547 (1979).
- ¹²⁸M. Levitt, R. Novick, and P. D. Feldman, Phys. Rev. A 3, 130 (1971).
- ¹²⁹W. S. Bickel, I. Bergström, R. Buckta, L. Lundin, and I. Martinson, Phys. Rev. **178**, 118 (1969).
- ¹³⁰F. Gaillard, M. Caillard, J. Desesquelles, and M. Dufay, Comptes Rendus 269, 420 (1969).
- ¹³¹J. P. Buchet, A. Denis, J. Desesquelles, and M. Dufay, Phys. Lett., Ser. A 28, 529 (1969).
- ¹³²J. Martinson, Nucl. Instr. and Meth. 90, 81 (1971).
- ¹³³H. G. Berry, E. H. Pinnington, and J. L. Subtil, J. Opt. Soc. Am. **62**, 767 (1972).
- ¹³⁴J. Fox and A. Dalgarno, Phys. Rev. A 16, 283 (1977).
- ¹³⁵J. P. Buchet, M. C. Buchet-Poulizac, H. G. Barry, and G. W. F. Drake, Phys. Rev. A 7, 922 (1973).
- ¹³⁶C. A. Nicolaides and D. R. Beck, Phys. Rev. 17, 2116 (1978).
- ¹³⁷H. G. Berry, J. Desesquelles, and M. Dufay, Phys. Lett. Ser. A **36**, 237 (1971).
- ¹³⁸ P. Feldman and R. Novick, Phys. Rev. Lett. 11, 278 (1963).
- ¹³⁹Yu. I. Malakhov, Opt. Spektrosk. 44, 214 (1978) [Opt. Spectrosc. 44, 125 (1978)].
- ¹⁴⁰A. Lindgord, L. J. Curtis, I. Martinson, and S. E. Nielsen, Phys. Scr. 21, 47 (1980).
- ¹⁴¹J. Ney, Zs. Phys. 196, 53 (1966).
- ¹⁴²P. T. Cunningham and J. K. Link, J. Opt. Soc. Am. 57, 1000 (1967).
- ¹⁴³T. Andersen, K. A. Jessen, and G. Sorensen, Nucl. Instr. and Meth. 90, 35 (1970).
- ¹⁴⁴H. Krellmann, E. Siefart, and E. Weihreter, J. Phys. Ser. B 8, 2608 (1975).
- ¹⁴⁵L. J. Curtis, B. Engman, and I. Martinson, Phys. Scr. 13, 109 (1976).
- ¹⁴⁶J. Kowalski and G. Putlitz, Zs. Phys. 208, 459 (1968).
- ¹⁴⁷H. Bucka, D. Einfeld, J. Ney, and J. Wilken, Zs. Naturforsch. 26, 1016 (1971).

- ¹⁴⁸J. Klose, Astrophys. J. 198, 229 (1975).
- ¹⁴⁹K. P. Selter and H. J. Kunze, *ibid.* 221, 713 (1978).
- ¹⁵⁰H. Bucka and J. Ney, Zs. Phys. 194, 208 (1966).
- ¹⁵¹D. Einfeld, J. Ney, and J. Wilken, Zs. Naturforsch. 26, 668 (1971).
- ¹⁵²H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Academic Press, New York, 1957 (Russ. Transl., Fizmatgiz, M. 1960).
- ¹⁵³ P. F. Gruzdev and N. V. Afanas'eva, Opt. Spektrosk. 38, 378 (1975); 45, 631 (1978) [Opt. Spectrosc. 38, 211 (1975); 45, 611 (1978)].
- ¹⁵⁴A. L. Osherovich, E. N. Borisov, M. L. Burshtein, and
- Ya. F. Verolainen, *ibid.* **39**, 820 (1975) [*ibid.* **39**, 466 (1975)]. ¹⁵⁵T. E. Gallagher, S. A. Edelstein, and R. M. Hill, Phys.
- Rev. A 11, 1504 (1975). ¹⁵⁶A. L. Osherovich, Ya. F. Verolainen, V. I. Privalov, and S. A. Pul'kin, Dokl. Akad. Nauk SSSR 248, 614 (1979) [Sov. Phys. Dokl. 24, 775 (1979)].
- ¹⁵⁷T. F. Gallagher, S. A. Edelstein, and R. M. Hill, Phys. Rev. A 15, 1945 (1977).
- ¹⁵⁸E. Biemont, Physica, Ser. C 85, 393 (1977).
- ¹⁵⁹C. E. Moore, in: Atomic Energy Levels, US Department of Commerce, NBS, 1979.
- ¹⁶⁰P. F. Gruzdev and A. P. Sherstyuk, Opt. Spektrosk. 40, 617 (1976) [Opt. Spectrosc. (USSR) 40, 353 (1976)].
- ¹⁶¹F. Gounand, M. Hugon, and P. R. Fournier, J. de Phys. **41**, 119 (1980).
- ¹⁶²S. E. Frish, Opticheskie spektry atomov (Optical Spectra of Atoms), Fizmatgiz, M. 1963, s. 217..

- ¹⁶³D. E. Hudson, Statistics for Physicists [sic] (Russ. Transl. Mir, M. 1967).
- ¹⁶⁴Ya F. Verolainen, G. L. Plekhotkina and V. I. Privalov, Opt. Spektrosk, 53 (1982) (in print).
- ¹⁶⁵M. D. Havey, L. C. Balling and J. J. Wright, Phys. Rev. A 15, 2332 (1977).
- ¹⁶⁶E. L. Lewis, C. S. Wheeler, and A. D. Wilson, J. Phys., Ser. B 10, 2619 (1977).
- ¹⁶⁷D. Zimmermann, Zs. Phys., Ser. A 275, 5 (1975).
- ¹⁶⁸C. F. Bunge and A. V. Bunge, Phys. Rev. Ser. A 17, 822 (1978).
- ¹⁶⁹S. Mannervik, Phys. Scr. 22, 575 (1980).
- ¹⁷⁰C. F. Bunge, J. Phys. B 14, 1 (1981).
- ¹⁷A. L. Osherovich, G. L. Plekhotkina, and V. R. Obidin, Opt. Spektrosk. 50, 1046 (1981) [Opt. Spectrosc. 50, 576 (1981)].
- ¹⁷²I. I. Sobel'man, Vvedenie v teoriyu atomnykh spektrov (Introduction to the Theory of Atomic Spectra), Fizmatgiz, M. 1962 (English Transl., Pergamon Press, Oxford, New York, 1972).
- ¹⁷³M. A. El'yachevich, Atomnaya i molekulyarnaya spektroskopiya (Atomic and Molecular Spectroscopy), Fizmatgiz, M. 1962.
- ¹⁷⁴N. N. Bezuglov, V. N. Gorshkov, A. L. Osherovich, and G. L. Plekhotkina, Dep. VINITI, #838, 81, Feb. 23, 1981.
- ¹⁷⁵G. L. Plekhotkina, Opt. Spektrosk. 51, 194 (1981) [Opt.
 Spectrosc. 51, 106 (1981)].

Translated by D. Kirillov

.

÷. .