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The basic concepts of the theory of mass superflows in a superfluid are presented. The stability of such flows
with respect to the creation and growth of linear defects (superfluid vortices), the relationship between
superflows and the existence of long-range order, and the possible occurrence of persistent flows in one- and
two-dimensional systems are discussed. Some analogs of the mass superflows in a superfluid are also
examined: spin superflows in magnetically ordered systems having an easy-plane anisotropy and the current
states of a Bose condensate of electron-hole pairs. The physical meaning of such "flows" is discussed, and a
theory for their stability is derived from the calculated probability for the creation of the linear defects which
are analogs of superfluid vortices. There is a discussion of the applicability of the theory of spin superflows to
several experiments on the magnetic properties of the A phase of superfluid helium-3 and to a possibility
which follows from this theory, that domain walls might be generated in the interior of a sample of an easy-
plane magnetically ordered material and that the motion of these walls might be controlled by fields applied
to the surface of the sample.
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1. INTRODUCTION

The term "superfluidity" is now used to cover a broad
range of phenomena which have been observed in He II
(Rets. 1-4), in the superfluid phases of He3 (Refs. 5-8),
and, in the broader sense of the term, in superconduc-
tors.9'10 One of the most remarkable of these phenome-
na is the nondecaying mass transport in persistent cur-
rents. It was this phenomenon, discovered by Kamer-
lingh Onnes in 1911 for electrons in a metal and by
Kapitsa in 1938 for He II, which gave rise to the terms
"superconductivity" and "superfluidity." One purpose
of the present review is to set forth the present under-
standing of nondecaying currents ("superflows"), pri-
marily for the two superfluids He4 and He3.

A circumstance underlying all superfluid phenomena
is that the complex order parameter ^ = r]eilf, which is
the wave function of the bosons or Cooper pairs of fer-
mions in a single quantum state (a Bose condensate),
emerges as an additional macroscopic variable of the
liquid. The existence of persistent superfluid currents

is a consequence of the special topological properties
of the order parameter's space of definition, which
cause "deformed" states, i.e., states with a spatially
inhomogeneous parameter *, to be metastable. The
superfluid mass flow js = psvs which exists in these
states is proportional to the superfluid velocity vs

= (fi/m)vy. The superfluid density ps is determined by
the modulus TJ of the order parameter *, and it is al-
ways possible to choose a normalization of * such that
p, = mif. In the microscopic theory, however, * is usu-
ally normalized to the density of bosons in a single-
particle state with a definite momentum: n0= |(*) |2. In
this case, the relationship between pB and * becomes
more complicated, especially since long-wave fluctua-
tions of the phase <p may cause the average value of the
order parameter over the volume of the liquid, <*), to
vanish. This occurs in one- and two-dimensional sys-
tems, and at one time this circumstance raised doubt
that such systems could exhibit superfluidity. How-
ever, as we hope to show in this review, on the basis of
the results of many studies, a nonzero superfluid den-
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sity p, may exist even if <*} = 0, since ps must be re-
lated to the modulus of the local value of ^ over the
volume. This local value can be introduced if, despite
phase fluctuations, correlations in the order parameter
are preserved over long if not infinite temporal and
spatial scales. It follows that we are completely justi-
fied in discussing the possibility of a nondecaying mass
or charge transport for systems of any dimensionality.
It is important to define at the outset just what we mean
by "nondecaying" currents, since in reality these cur-
rents do decay but have an anomalously long lifetime.
How are we to distinguish between "anomalously long"
lifetimes and simply "long" lifetimes? In a ring of a
very pure metal in its normal state, for example, an
electric current also decays very slowly; does this
mean that the current does not decay? We believe it is
more reasonable (although not the only possibility) to
adopt the following definition of a nondecaying current:
In the course of the current relaxation, activation bar-
riers which are large in comparison with the thermal
energy kT must be surmounted. These large barriers,
which are proportional to the superfluid density ps, de-
termine the large exponential factor in the expression
for the lifetime of the superfluid current. The long
lifetime of such a current thus results not from the
weakness of the momentum-nonconserving interaction,
as in a very pure metal, but from an unusual suppres-
sion of the effect of this interaction. A goal of the the-
ory and of the present review is to show how and where
such large activation barriers appear.

A substantial part of this review will be a discussion
of the possibility of nondecaying transport (i.e., of
superflows) of physical quantities other than mass and
charge, e.g., angular momentum or spin and the num-
ber of electron-hole pairs or excitons. Another impor-
tant question here is a purely semantic one: Is it ap-
propriate to use the term "nondecaying flow" ("super-
flow") or even simply "flow" in these cases? Keeping
this question in mind, we will strive primarily to show
just what each term stands for, without imposing a def-
inite terminology. Analogs of superfluid states in this
case are metastable states with a deformed field of
some order parameter. Transitions to the ground state
are hindered by activation barriers, as in a superfluid
liquid.

The review is organized as follows: Section 2 deals
with mass superflows in He II and the conditions which
determine the anomalously slow relaxation of these
flows at velocities below the critical velocities. The
discussion in Section 2 is not to be regarded as a re-
view of the theory of critial velocities, since it sets
forth only the basis ideas of this theory; for a more de-
tailed discussion and for a bibliography on the topic the
reader is referred to Chapter 6 in Putterman's book.3

Section 3 deals with spin superflows and the accom-
panying metastable helicoidal structures in magnetical-
ly ordered systems (ferromagnets and antiferromag-
nets). Section 4 deals with some extremely unusual
superfluid properties of the A phase of He3, in which a
nondecaying transport of both mass and spin may occur.
Section 5 deals with electron-hole systems in which a
transition to a coherent state is accompanied by the

formation of charge or spin density waves. Finally,
Section 6 is a discussion of the interrelationship be-
tween superflows and the existence of long-range order.

2. SUPERFLUIDITY OF HELIUM II

a) The Landau criterion and Feynman's theory of critical

If there is to be no dissipation as a superfluid flows
through capillaries, the current state must correspond
to a local minimum of the energy. This statement
means that transitions to nearby states which would be
produced from the original state through the creation of
one or several quasiparticles are unfavorable from the
energy standpoint. This condition reduces to the well-
known Landau criterion,11 according to which the energy
of Bose quasiparticles, e(p)+pvs, in the coordinate sys-
tem moving at the superfluid velocity vs must be posi-
tive [e(p) and p are the energy and momentum of the
quasiparticle in the fluid at rest]. This condition is met
if

f s < "L = e(p)
P

(2.1)

An expression is thus found for the Landau critical ve-
locity t>L.

In addition to the microscopic excitations, however,
there are macroscopic excitations in a moving liquid.
These macroscopic excitations alter the state of the liq-
uid in a rather large volume and cannot be described in
terms of quasiparticles. Such excitations always allow
a reduction of the momentum of the fluid without an in-
crease in its energy, but Landau regarded the creation
of these excitations through a direct transition as an
improbable event. Experimentally, the critical veloci-
ties have turned out to be substantially lower than the
Landau values. In this connection Feyman suggested
that the relaxation of a superflow occurs through the
creation of vortex rings.12 The spectrum of these rings
is of such a nature that e(p)/£ falls off monotonically
with increasing radius (R) of the vortex ring [e(p)//>
~R~ilz]. As the critical velocity, Feynman suggested
the value of e(p)//> at R~ d, where d is the transverse
dimension of the capillary. This approach leads to crit-
ical velocities in better agreement with those observed
experimentally, but the most important point is that the
dependence of the critical velocity on the capillary size
becomes the same as that observed experimentally.3

However, it appears that this satisfactory agreement
with experiment is misleading. In the first place,
Feynman's theory uses the spectrum of vortex rings in
an unbounded fluid, while the effect of the capillary wall
would have to be considered for vortex rings of large
radius. A systematic analysis of this effect shows that
the energy of the vortex ring and thus the critical veloc-
ity fall off to zero toward the capillary wall (see Refs.
13 and 14; why a nonzero critical velocity was derived
in several papers is explained in Ref. 14). The second
objection is that the creation of a large-radius vortex
ring is an extremely unlikely event (as was pointed out
by Vinen15), since this process is actually a macro-
scopic excitation of the sort discarded in Landau's
analysis.
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Despite these difficulties (to which we will return in
Subsection 2c), there is no longer any doubt that the
dissipation at velocities above the critical velocity is in
fact due to vortices. Quantized vortices thus play a key
role in an analysis of the stability of superflows. The
Landau criterion, on the other hand, which is a condi-
tion for the microscopic stability of a superflow, re-
tains its role as a necessary condition which is imposed
on the Bose branches of the spectrum.1'

In deriving his criterion Landau used Galilean invari-
ance, and for systems which are not invariant in the
Galilean sense the condition for the microscopic stabil-
ity of a superflow may take a form different from the
Landau criterion. We will see such a case below when
we discuss a spin flow (Subsection 3d). The electrons
in a crystal lattice are also not a Galilean-invariant
system, generally speaking, and the condition for a
positive quasiparticle spectrum in the current state of
a superconductor with an inhomogeneous order param-
eter A= | A | exp(2ipar//z) is

e ( k ) - . - S o ( k ) - Pi > 0. Ps = ml,,

where £0(k) = V £2+ I A l 2 is the quasiparticle spectrum in
the ground state, ps = 0. Here we have generalized to
the case of an arbitrary spectrum U(k)] of the electrons
in a normal metal the derivation of the relationship be-
tween e and e0 which was given at the end of §1 of Chap-
ter 5 of de Gennes's book9 for the particular spectrum
ij(k) = (fe2/2»!) -tF. This condition yields the usual Lan-
dau criterion in the approximation of nearly free elec-
trons after the substitution 9|(k)/3k = k/w, but this sub-
stitution implies that the quasimomentum k must lie
within the Brillouin zone; we thus cannot add an arbi-
trary reciprocal-lattice vector to it, despite the fact
that spin flip is quite possible during the creation of
quasiparticles. In the opposite case, the Landau cri-

11 It should be noted that the exact energies of the many-particle
system in the excited and ground states of the moving fluid
should be compared in the Landau criterion. In the deter-
mination of the difference between these energies, however,
the theory of a Bose liquid is used, and this theory gives an
approximate description of the transition to the excited state
as the creation of a single quasiparticle. The energy of a
quasiparticle is not determined exactly and is instead dis-
tributed with a certain probability density over a certain
energy interval. One may sometimes encounter the asser-
tion that this interval goes to zero, so that there always
exists some probability for a transition with a change in
momentum without an increase in energy, i.e., that the
Landau criterion always holds. Actually, the interval of
possible quasiparticle energies cannot include low energies—
lower than v^p—if the Landau criterion holds. If the differ-
ence between the exact energy of the excited state with mo-
mentum p and that of the ground state is greater than vjj>,
then the Lehmann expansion for the Green's function G(w,p)
begins with an energy greater than vLp, and the imaginary
part of G(o>,p) vanishes at w<v,p. This assertion is con-
firmed in a paper by lordanskii and Pitaevski*,16 who consid-
ered phonons, for which the velocity vL is the sound velocity,
as the elementary excitations. Everything stated above is
based on the assumption that the average energy of the quasi-
particle is a good approximation of the exact energy of the
many-particle system. If this assumption is wrong, the en-
tire quasiparticle model of a Bose liquid is also wrong.

terion would always be violated upon the choice of a
large reciprocal-lattice vector.

A violation of the Landau criterion for the spectrum
of Bose excitations leads to an instability of the gas of
excitations; in He II this instability is seen as a Bose
condensation of rotons.17 For the Fermi spectrum, how-
ever, a violation of the Landau criterion for a bounded
part of k is not as catastrophic, because the occupation
number of each state is finite. In a superconductor the
critical velocity VL for Fermi quasiparticles is called
the "depairing velocity." Even if the superfluid velocity
slightly exceeds VL, however, the number of quasipar-
ticles rapidly increases, ultimately leading to an insta-
bility (see Sec. 4.4 of Ref. 10). In the A phase of He3

the Landau criterion is violated at zero superfluid ve-
locity, because of the zero gap in the spectrum of
quasiparticles with momentum parallel to the orbital
angular momentum 1. Nevertheless, a mass superflow
in the A phase may be stable at low velocities (see Sub-
section 4a of the present review).

b) Quantized vortices and flow quantization

In a superfluid the phase (p) of the complex order pa-
rameter * is a cyclic variable, defined modulo 2n.
Consequently, the circulation of the superfluid velocity
vs taken around any closed contour can assume only the
quantized values Nh/tn, where N is an integer. This
circumstance gives rise to quantized vortices and to
flow quantization in a closed annular channel. If there
are no vortices, the total superfluid momentum along
the axis of such a channel is

Ti C f

vs d r --- ps — \ V*p dr = -
9 ' S

 771. " (2.2)

where t is a unit vector along the axis of the channel, ps

is the superfluid mass density, and S is the cross-sec-
tional area of the channel. The integration is carried
out over the entire volume of the channel. We are as-
suming that the cross-sectional dimensions are much
smaller than the length of the channel and that the curv-
ature of the channel can be ignore. Strictly speaking,
in the annular geometry we are dealing with a quantiza-
tion of angular momentum rather than of linear momen-
tum.

The momentum of a fluid can take on nonquantized
values only if there are quantized vortices in the fluid.
Let us assume that a vortex with a single quantum of
circulation, h/m, arises in some cross section of an
annular channel; the vortex is assumed to begin and end
at the channel wall (Fig. 1). In order to calculate the
momentum it is necessary to introduce cuts with dis-
continuities of the phase <p so that the phase will be sin-
gle-valued throughout the volume. One such cut, with a

FIG. 1. Phase slippage: the motion of a vortex line across
a cylindrical channel. Sv is the area of the section with a
phase shift of 2w.
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phase discontinuity of 2irN, should be made over the en-
tire cross section of the channel. Another cut, with a
phase discontinuity of 2n, should be bounded by the vor-
tex line and by the channel wall (as shown in Fig. 1; Sv

is the area of this cut). After integration by parts, we
are left with only the contributions of the two cuts in the
expression for the total momentum:

(2.3)

where the sign ± is determined by the sign of the circu-
lation of the vortex. The quantity ±psSvh/m in (2.3)
should be regarded as the momentum of the vortex; it
is the same as the Kelvin momentum of a vortex in
classical hydrodynamics2' (Ref. 18).

It can be seen from (2.3) that as Sv varies from 0 to S
there is a continuous change in the momentum by one
quantum, paSh/m. This change corresponds to motion
of the vortex line across the flow; the line "cuts" the
channel. This motion is none other than the phase slip-
page introduced by Anderson.19

The appearance of a vortex line in a fluid, however,
increases the energy of the fluid. Near the vortex the
velocity of the fluid is va = K/mr, so that the energy of
the vortex in the still fluid is determined by a logarith-
mically divergent integral:

where H is the length of the vortex line. The upper
cutoff parameter R is determined by either the size of
the system or the size of the region outside which the
velocity va begins to fall off more rapidly than l/r.
For a ring vortex, for example, this would be the radi-
us of the ring. The lower cutoff parameter, rc, is
either the coherence length or the radius of the vortex
core. Inside the core, the increase in the kinetic en-
ergy due to the velocity increase begins to be offset by
a decrease in the superfluid density (the square modu-
lus of the order parameter), which drops to zero di-
rectly at the vortex line. The cutoff parameter rc is
determined by equating the kinetic energy density to the
condensation energy density (the condensation energy is
the difference between the energies of the states having
a zero order parameter and the equilibrium value of the
order parameter).

In a moving fluid the energy of a vortex should be de-
termined by the following expression, by virtue of Gal-
ilean invar iance:

(2.5)

where pv = ±psSvh/m is the momentum of the vortex [see
(2.3)].

Equations (2. 3) -(2. 5) can be used to derive the depen-
dence of the free energy on the superfluid momentum in
an annular channel14 [Fig. 2(a)]. The quantized values
of the momentum correspond to minima in this depen-

FIG. 2. Momentum dependence of the free energy in an annu-
lar channel with cross-sectional area S and length L. a—De-
pendence on the superfluid momentum (ma is a tunneling to
the vortex state corresponding to an extremum of the free en-
ergy, while mb is a tunneling to a vortex state corresponding
to a maximum of the transition probability); b—dependence on
the total momentum [parabolas 0, 1, 2, and 3 (dashed curves)
are the free energy F = [(P-PS)

2/2p,,SL\ + (P|/2psSi) of the
subensembles with quantized values of the superfluid momen-
tum Pgm/ftpg<s = 0,1, 2,3); the envelope of the parabolas (the
solid curve) is the total free energy, determined within quan-
tities of order kT\.

dence. To go from one minimum to a neighboring one
with a lower momentum required surmounting an acti-
vation energy barrier. This barrier will be lowest
when the vortex line cutting the channel cross section
upon the transition is a circular arc which runs normal
to the channel wall where it intersects this wall (Fig.
1). This arc turns out to be a semicircle of radius R if
R is much smaller than the radius of curvature of the
wall; in this case, Sv = irRz/2. The top of the barrier
corresponds to the radius R = (h/^Trmvs)ln(h/mvsrc),
and the height of the barrier is

pa / k \ 3 /, h
EA= 32iws \~~ml ( mcsrc

(2.6)

where the average superfluid velocity va = Pa/paSL is
quantized, as is the total momentum Pa, but with a very
small quantum, h/mL, which is inversely proportional
to the length of the channel, L.

According to (2.6) the activation barrier disappears
at a velocity vs~ h/mrc comparable in magnitude to the
Landau critical velocity for the roton-phonon spectrum.

Up to this point we have been discussing the depen-
dence of the free energy on the superfluid momentum.
It is also possible to derive the dependence of the free
energy on the total momentum.2°l21 The derivation
method is clear from Fig. 2(b) (vortex states are ig-
nored). There are minima in this dependence only at
vanishingly low velocities va<(p/2pr) x(h/mL). The
activation barriers between these minima are

=_*!!—el / 1 P" ">Lm
2m*L pa ( 2

(2.6')

2)In the literature there are differences in the definition of the
momentum of a vortex. See Hef. 14 for a discussion of the
problem and a corresponding bibliography.

The disappearance of the activation barriers from the
dependence of the free energy on the total momentum
which occurs at higher velocities, however, has no di-
rect bearing on the problem of the stability of super-
flows, since the unusually long lifetime of superflows
is linked to a relaxation of the superfluid momentum,
rather than of the total momentum.
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c) The lordanskii-Langer-Fisher theory and the quantum
creation of vortices. Ideal and real critical velocities

The probability for a vortex to cross the channel,
overcoming an activation barrier, must determine the
intensity of the phase slippage and, correspondingly,
the relaxation rate of the superfluid mass flow. Al-
though this conclusion is derived most simply from an
analysis of the annular geometry considered in the pre-
ceding subsection, it obviously must remain in force
when the boundary conditions at the end of the channel
are different. Phase slippage is actually a three-di-
mensional process, and no source—whatever its na-
ture— of a change in phase at the ends of the channel
could make a contribution proportional to the length of
the channel.

In order to determine the probability for the transfer
of a momentum quantum of superfluid motion, lordans-
kii22 examined the appearance of vortex rings as the re-
sult of fluctuations and the subsequent growth of these
rings due to their interaction with elementary excita-
tions in the superfluid. This theory was pursued by
Langer and Fisher23 and is now known as the "lordans-
kii-Langer-Fisher theory." A natural result of this
theory is an exponential dependence of the relaxation
rate on the activation barrier:

(2.7)
«"> _ — rs 1 ,-iV'T
<i' - ~' ~~' •

In the lordanskii-Langer-Fisher theory the concept of
a critical velocity becomes quite arbitrary, since now
it is not a well-defined threshold but some velocity at
which the vortex creation rate becomes significant in
comparison with some specified scale. In any case, if
reasonable values are chosen for this scale and for the
coefficient of the exponential function in (2.7) it is pos-
sible to describe successfully the experimental values
of the critical velocities at temperatures near the X
point, where the activation barrier is low. As the tem-
perature is reduced, the lordanskii-Langer-Fisher
critical velocity increases, reaching values compar-
able to the Landau critical velocity. At low tempera-
tures, however, the process which primarily deter-
mines the probability for the creation of vortex rings
should be a direct quantum-mechanical tunneling to a
state with a vortex, rather than a fluctuational growth.
The probability for such a transition increases expo-
nentially rapidly with decreasing velocity, as follows
from Refs. 14 and 24, where the argument of the expo-
nential function in the expression for the tunneling
probability was calculated. For this calculation, Volo-
vik24 used a semiclassical theory, adopting as the Ham-
iltonian the expression for the energy of a vortex half-
ring in an incompressible fluid near a protuberance on
the wall. The transition probability was calculated in a
different way in Ref. 14. The approach of that paper
was based on the model of a slightly nonideal Bose gas
in which the many-particle wave function of the N bo-
sons of the condensate can be written out explicitly:

rect quantum -mechanical transition from the ground
state of the moving fluid to a state with a large vortex
could occur only as the result of an interaction which
disrupts the translational invariance. This interaction
might be written, for example, as the sum of random
potentials V(r() acting on each of the bosons. In this
case the trans ition probability is found to be

" (-F } V, (r)* <P0 (r) d r - ~ j T, (r)* V. (r) dr |"

~(l--£r}~f'~e~r> r -2AT-2| j V,(r)*'P()(r)dr .

(2.9)

It was assumed for this derivation that the condensate
wave functions *0(r) and ^r

1(r) of the initial and final
states differ only in a finite volume, so that the scalar
product

4- fl',(r)»4'0(r)dr

is approximately unity. The actual shape and height of
the potential V(r) affect only the coefficient of the expo-
nential function, which we are not calculating. The
condensate wave function in the final state, ^(r), must
be determined from the condition for a maximum of the
transition probability W (for a minimum of r) under the
supplemental condition that the energy of the final state
must not exceed that of the initial state.14 It turns out
that the probability reaches an extremum for a transi-
tion to a state with a vortex half -ring of radius R which
is resting on the wall; in this *L differs in modulus
from *0 only at the core of the vortex filament, and the
phase difference <p = i\n(<S/*^i^i between *! and *0 satis-
fies the equation

(2.10)

Solving (2.10) (the sine-Gordon equation) we see that
during the transition the change in the phase <p(r) oc-
curs in a plane region of thickness I which is reminis-
cent of a domain wall bounded by the vortex half -ring
and the channel wall. In the limit of a low velocity v,
calculations of logarithmic accuracy yield

_
2mv

(2.11)

f (2.8)

where rf is the radius vector of the i-th boson. A di- ,

These calculations were carried out for T = 0, so that
we have p=ps and v = vt in (2.11). Since *j(r) was not
determined from the extremum of the energy, the tran-
sition does not proceed along the minimum -energy
curve but slightly above it [Fig. 2(a)]. Consequently,
the incompressibility condition diw = 0 does not hold in
the fluid after the transition, and the fluid begins to
contract; the acoustic oscillations which result, how-
ever, undergo relaxation without an activation barrier,
and they do not affect the argument of the exponential
function in the momentum relaxation rate. The argu-
ment of the exponential function in (2.11) is equal in or-
der of magnitude to the number of atoms or to the num-
ber of degrees of freedom in a region of volume ~R2l,
in which there is a significant change in the motion of
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the fluid upon the transition.3' This natural result is
consistent with the ideas of Landau11 and Vinen15: tt is
diffucult to alter the state of a fluid in a large volume
by a quantum transition alone.

The argument of the exponential function in (2.11) re-
mains very large up to velocities near the Landau criti-
cal velocity, at which a transition to a state with a
small vortex half -ring becomes allowed from the ener-
gy standpoint. It thus follows from the lordanskii-
Langer-Fisher theory and from the quantum theory for
vortex creation that the critical velocities should in-
crease with decreasing temperature and should reach
values of the order of the Landau critical velocity. Ex-
perimentally, however, as the temperature is lowered
the critical velocity stops increasing after it reaches
values significantly lower than v L. These values de-
pend on the transverse dimension d of the capillary,
satisfying the following empirical law (see §42 in Ref.
3; d is in centimeters and veT in centimeters per sec-
ond):

These experimental values of the critical velocity at
low temperatures have yet to be fully explained.

Many attempts have been made to resolve this "acti-
vation barrier problem," but they have succeeded in re-
ducing the discrepancy by only a small factor, not by
the order of magnitude which would be required to ex-
plain the experimental data at low temperatures. The
low critical velocities observed experimentally are evi-
dence that the vortices are present in a far larger num-
ber than would follow from the Boltzmann distribution
on which the lordanskii-Langer -Fisher theory is based.
The result is to increase dissipation. It may be that the
vortices arise from vibrations, as suggested by Putter-
man,3 but no quantitative theory has been worked out for
this possibility.

If the unknown mechanism for the creation of vortices
is related in some way to the normal component of the
fluid, then this mechanism should vanish upon the com-
plete disappearance of the normal component, when the
momentum of this component with respect to the super -
fluid part of the fluid, pnSL |vn -v, | (S and L are the
cross -sectional area and the length of the channel),
even at the largest relative velocities, of the order of
the Landau critical velocities, |vn -vs | ~h/mrc, does
not exceed the quantum of superfluid momentum, psSh/
m:

Pn
(2.12)

3)If the compensate wave function *,(r) of the final state were
determined from the condition for an energy extremum, then
the change In the phase <p would satisfy the Laplace equation
A if = 0; i. e., the incompressibility condition would not be
violated. In this case, however, a quantum transition would
lead to a change in the state of the liquid in a. larger volume,
R3 »R2l, and in the argument of the exponential function for
the probability W in (2.11) the larger logarithm would be
raised to the third, rather than the second, power. This is
the result found by Volovik,24 who studied an incompressible
liquid.

Under this condition we may expect a growth of the ob-
served critical velocities.14 The critical velocities for
the flow of He II through apertures in thin diaphragms25

have been measured at parameter values near the re-
gion defined by inequality (2.12). The critical velocities
in these experiments were higher than usual and may be
taken as support of the suggestion in Ref. 14; a serious
test of this suggestion, however, will require a study of
the dependence of the critical velocity on the length or
the temperature in this region.

Because of these discrepancies between theory and
experiment in terms of the critical velocities, two
terms have been adopted for the critical velocities in
the literature: the "intrinsic" ("ideal") critical veloc-
ity, which follows from the theory, and the "extrinsic"
("real") critical velocity, which is observed experi-
mentally. At present, the only way to interpret the ex-
trinsic critical velocities is to work from the theory of
superfluid turbulence derived by Vinen,26 who postulated
the existence of a source which creates vortices (a
source of turbulence) and who formulated equations de-
scribing the evolution of this turbulence. For a biblio-
graphy on this theory and its applications we direct the
reader to one of the recent papers on the subject.27

d) Collective mode and superfluidity

The transition to the superfluid state involves the ap-
pearance of additional hydrodynamic degrees of free-
dom and the appearance of a new collective-vibration
mode. Because of the phase degeneracy of the complex
order parameter (gauge invariance), the new mode is a
gap-free mode (the Goldstone theorem). This Goldstone
mode is second sound for helium II in a large volume
and fourth sound in narrow capillaries or in volumes
filled with a porous material. Second sound is a vibra-
tion of the normal and superfluid parts of the fluid with
respect to each other, while the total momentum of the
fluid is conserved. In fourth sound, the momentum of
the fluid is not conserved; the normal part of the fluid
is at rest because of the interaction with the channel
wall; and only the superfluid part is vibrating. We will
focus on fourth sound here, since we believe that su-
perfluidity is manifested more clearly in this case
(there is no relaxation of the superfluid motion despite
the existence of momentum-nonconserving processes);
furthermore, in our discussion of analogs of superfluid
flows in the following sections of this paper we will
continually run into analogs of fourth sound, but not of
second sound.

Fourth sound, with a velocity u4 = Vpsd/Vdp, is found
from the equations of motion for a pair of canonically
conjugate variables, the density p and the phase y.
These equations of motion follow from the Hamiltonian

Of — f Jr fD f_ *_^ 8 (79)' . P'2 I a-l_jiiL (2 13)

Hamilton's equations are

J±_=J^-J2± divi =_r
dt ft 69 ~ ls f

h 3<p

~m"di

(2.14)

(2.15)
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where p' is the deviation of the total density from equi-
librium, M is the chemical potential, and js = psvs

= ps(K/m)v<p is the superfluid mass flow.

As long as there are no vortices, all possible dissi-
pation mechanisms must make an imaginary contribu-
tion to the frequency which falls off no more slowly than
fe2 in the limit fe— 0 (k is the wave vector). To show
this, we add a dissipation to the equations of motion in
(2.14) and (2.15):

dp __ m bye
at ~ i< 6ip ~
o*cp §&5

'~aT «pT~

(2.16)

8(8<«v6<p) ' (2.17)

where the dissipation function R is a homogeneous func-
tion of second degree of the derivatives 6#f6p and 6#f
6<p and their gradients. In the limit fe— 0, we need re-
tain only the lowest-order gradients. The cross terms
(S#f6p)6$7ocp actually lead to a renormalization of the
dissipationless terms in the equations of motion and
may be omitted. The contribution of (B^Sp)2 to R gives
rise to terms ~p' on the right side of (2.16) (since 6#^
6p~ p') and violates the conservation of the total number
of particles. Therefore, this term must also be omit-
ted. As a result, we are left with the following leading
terms in the dissipation function:

on „ /v-7 °^ \^ < f ^3® ^ ^o 1 o\
2.1\ = flp I V —£• I -j- dm I —j I . \£.LO)

Because of the phase degeneracy, ̂ does not depend on
q>, but only on its gradients, so that we have 6^/'6i^
~ A(£>. At this point it is not difficult to see from Eqs.
(2.16) and (2.17) that the dissipative terms provide an
imaginary increment in the frequency ~fe2. The vanish-
ing of the dissipation in the limit k~0 is a direct con-
sequence of gauge invariance and of the existence of the
phase as a well-defined hydrodynamic variable; in oth-
er words, the vanishing of dissipation is a consequence
of the very properties which give rise to the steady-
state mass superflows.

If, on the other hand, quantized vortices arise in a
fluid, then the phase becomes a multivalued function.
The motion of the vortices across streamlines causes
a "superfluid friction force" in the Euler equation for
the superfluid component, which is found by taking the
gradient of both sides of Eq. (2.15):

^-=-Vn--^-. (2.19)at r TS *

The friction force transforms the fourth sound into a
damped mode at a frequency a>< I/TS. According to the
lordanskii-Langer-Fisher theory, however, the super-
fluid friction force is exceedingly weak at low velocities
va and in the limit r, — 00, in which4' i>a — 0. At any
rate, we can expect the damping of the fourth sound to
be slight until the velocity vs in the sound wave reaches
the critical velocities or perhaps higher values, since
there may not be time for vortex formation over an os-

dilation period at velocities above the critical values.
The existence of superflows thus does in fact mandate
the existence of an undamped long-wave collective
mode.

e) One-dimensional and two-dimensional superfluidity

Superfluid systems of fewer than three dimensions
became the subject of an active discussion after Little29

suggested using one-dimensional organic chains to
search for a high-temperature superconductivity. The
possibility of superfluidity in such systems subsequent-
ly came under doubt, because of the vanishing of long-
range order. These systems will be discussed at the
end of the present subsection and also in Section 6.
What we are interested in at this point is the stability of
superfluid flows upon the transition to one- and two-di-
mensional systems, under the assumption that such
systems can be described by two-velocity hydrodynam-
ics with some finite superfluid density p,(d), where d is
the dimensionality of the space.

The stability of a two-dimensional superflow, like
that of a three-dimensional flow, is determined by an
activation barrier to motion of the vortices across the
flow, but now the vortex lines degenerate to a point.
Determining the energy of a vortex, and minimizing it
in terms of the distance from the vortex to the wall, we
find

ft = ~ (2.20)

4>The same is true of second sound in He n. In a solid, on the
other hand, a lower limit is placed on the frequency interval
in which second sound exists by the finite inverse time for
flip processes.28

where R is that distance from the vortex to the wall at
which the vortex energy is at a maximum and equal to
the height of the activation barrier, tA.

In a one-dimensional system with periodic boundary
conditions, i.e., in a one-dimensional ring, the change
in the phase shift along the length of the system (a jump
in the phase or phase slippage) can occur only upon the
appearance of points at which the order parameter van-
ishes, as was first pointed out by Little.30 As in three
and two dimensions, therefore, the dependence of the
free energy on the superfluid momentum has minima at
quantized values of the momentum, and these minima
are separated by activation barriers (Fig. 2). The
height of a barrier is determined by the energy re-
quired to reduce the modulus of the order parameter to
zero at some point, and in the limit of low velocities vs

the height is given in order of magnitude by

lt"f>a W I O O1 \
£A = » -. {"•"'•IA mV0 '

In contrast with two- and three-dimensional systems,
in which the barrier height is determined by the velocity
fields va in the London region (i.e., where the modulus
of the order parameter is constant; this region contri-
butes a large logarithm to the barrier height), an accu-
rate calculation of the barrier height in the one-dimen-
sional case requires knowing the change in the modulus
of the order parameter over distances of the order of
the coherence length rc from the phase slippage center
(the slip center). Accordingly, these calculations were
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carried out by Langer and Ambegaokar31 only in the re-
gion where the Ginzburg-Landau theory is applicable
(see also Sec. 7.1 in Tinkham's book10). The same ex-
pression for the barrier height can be derived in ana-
logs of the Ginzburg-Landau theory for superfluid sys-
tems: the Ginzburg-Pitaevskii and Gross-Pitaevskfi
theories.

Comparing (2.6), (2.20), and (2.21), we see that the
activation barriers and, correspondingly, the relaxa-
tion time T, [see (2.7) and (2.19)] become infinite in the
limit us — 0 only for three- and two-dimensional sys-
tems, not for one-dimensional systems. This result is
undoubtedly a consequence of the absence of a phase
transition in the one-dimensional system: If the time
Ta, which determines the friction force which is linear
in the velocity, ~vs/rt, is finite at high temperatures,
it cannot become infinite at a nonzero temperature. At
low temperatures, however, it may become exponen-
tially long, and we may speak of "nondecaying" currents
in a restricted sense at least in the sense which we de-
fined for this term in the Introduction.

Equations (2.20) and (2.21) for the activation barriers
are equally valid for genuinely two-dimensional and
one-dimensional systems, which completely lack cer-
tain degrees of freedom in the motion of the particles.
The same is true of three-dimensional systems of the
thin-film or capillary (thin-wire) type, with a thickness
b and a diameter D shorter than the coherence length
rc. In the latter case, we must replace ps(d) by ps6 and
pBffI?2/4 in Eqs. (2.20) and (2.21), respectively.5' What
values should we expect for the activation barriers for
genuinely one-dimensional systems? In the theory of a
Bose liquid, the difference between the total and super-
fluid densities at low temperatures is the normal pho-
non density

Pn=- (2.22)

where c is the sound velocity. In a slightly nonideal
Bose gas with an excitation spectrum c(p)
= Vc2/>2 + (p2/2»w)2, expression (2.22) holds at kT«mc2;
at kT»mc*, the normal mass is pn = kTm/Kc. It follows
that since ps(l)~p(l), i.e., pB«p(l), or kT«p(l)Kc/m
~ p(l)K2/m2re, the argument (tA/kT) of the exponential
function in the expression for the time T, [see (2.7)] is
very large. If we substitute into (2.21) the expression
for the coherence length from the Bardeen -Cooper -
Schrieffer (BCS) theory, rc~hvF/& (A is the supercon-
ducting gap), we find the argument to be t^/kT~

The use of the phonon spectrum to determine the nor-
mal density for a one -dimensional Bose gas, or the use
of the BCS theory for a one -dimensional Fermi gas,

6)Many papers have recently appeared on the theory of the re-
sistive state of thin superconducting wires, in which the cur-
rents (superfluid velocities) are so high that the activation
barrier for their relaxation is either low or completely ab-
sent.32 We believe that there are many questions in this
theory which have not yet been completely clarified, but a
discussion of these questions would go beyond the scope of
the present review. The theory of the resistive state also
links a finite resistance with the formation of slip centers.

requires justification, however, since systems of lim-
ited dimensionality do not have an average order pa-
rameter. In Ref. 20 a justification of this type was con-
structed from the exactly solvable model of Lieb and
Liniger for a one-dimensional Bose gas with a 6-func-
tion repulsive potential between particles.33'34 Lieb
also showed34 that for short excitation pulses the spec-
trum in this model is an acoustic spectrum; with a weak
repulsion, the sound velocity for the spectrum agrees
in magnitude with the sound velocity determined from
the Bogolyubov theory, i.e., from the theory of a self-
consistent field. It is also confirmed that there are en-
ergy minima in the limit T = 0 at the quantized values of
the momentum, as in Fig. 2(a). It was shown in Ref. 20
that an ensemble which includes microstates of the Lieb
model with a given momentum and which lie in the vi-
cinity of one minimum, the main minimum, say, is an
ensemble with a given superfluid velocity vs = 0, and its
free energy density pBfB/2 determines the normal den-
sity pB. The latter, as it turns out, is precisely equal
to the normal phonon density, (2.22), in the limit6' T
-0.

A justification for the use of the phonon spectrum (a
hydrodynamic Hamiltonian) to determine the normal
density at low temperatures was also offered by Bere-
zinskit,35 in a two-dimensional model of plane rotors,
and by Popov,36 for one- and two-dimensional Bose
gases with a weak interaction, through the use of a
path-integral method.

A complete solution of the question of whether nonde-
caying one- and two-dimensional currents exist will re-
quire evaluating the tunneling probability in addition to
the barrier height. In the model of a slightly nonideal
Bose gas, these calculations can be carried out by the
same method as is used in three dimensions (Subsec-
tion 2c). The change in phase upon the transition, $>-,
which satisfies Eq. (2.10), occurs in a region of thick-
ness I which is bounded in the two-dimensional case by
the wall and by the vortex, at a distance R from the
wall. Following the same calculation procedure as in
the three-dimensional case, we find, instead of (2.11),

<2.23)

(2.24)

Corresponding to tunneling in the model of Lieb and
Liniger is the creation of a type II excitation (in the
terminology of Ref. 34) with a low energy but a large
momentum. Although this probability cannot be calcu-
lated directly, it is argued in Ref. 20 that in the ther-
modynamic limit (in which the number of particles be-
comes infinite, JV-«) this probability falls off in the
limit v~0 as [a/(a + p ( l ) / m ) ] N , where a is the recipro-
cal of the length determining the repulsive boson poten-
tial, V(r) = (K2/m)a&(r). For a gas of impenetrable bo-

61 This agreement was established in Ref. 20 only in the limit
of strong repulsion. However, it has been found possible to
prove (2.22) in the Lieb-Liaiger model for an interaction of
arbitrary strength. We hope to publish this proof in the near
future.
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sons, the probability for a transition accompanied by
the loss of a quantum of momentum is thus not small,
but this is a special case in the thermodynamic limit.
From the thermodynamic standpoint, a gas of impene-
trable bosons is indistinguishable from a one-dimen-
sional Fermi gas.33'34 In particular, in the latter case
there are again minima in the momentum dependence of
the energy, and barriers separate these minima.20

These barriers occur because, in the transition of a
fermion from one half of the Fermi boundary to the oth-
er, the momentum can change only by an amount 2/>F

without increasing the energy. The smaller momentum
transfers in a one-dimensional Fermi gas result from
the appearance of a hole inside the one-dimensional
Fermi sphere, with a corresponding increase in the en-
ergy. Any factors which make large momentum trans-
fers ~2pf improbable can suppress the decay of the
mass flow in a one-dimensional Fermi gas. This cir-
cumstance is related in a sense to the Frohlich super-
conductivity in a Peierls dielectric, where transitions
between the two halves of the Fermi boundary are sup-
pressed even further by the appearance of a gap in the
spectrum.

f) Mechanical analog of a superfluid mass flow

In Sec. 3 of this review we will take up the possible
existence of nondecaying flows of spins and electron-
hole pairs, which are analogous to the superfluid mass
flow. Before we go onto that topic we wish to point out
an extremely simple and obvious mechanical analog of
a mass superflow: the flow of momentum or angular
momentum in a deformed solid.

Let us twist a long elastic rod. The twisting angle y
will increase linearly along the rod, reaching values
many times 2ir. If we bend the rod into a ring and con-
nect the ends rigidly, we find a mechanical model for
superflow in a ring channel. The analog of the velocity
here is the strain v</>, which determines the elastic en-
ergy, whose density is ~(v</>)2. The only way to trans-
fer this energy, i.e., to relieve the strain, is through
plastic displacements, which in turn can occur only
when the strain reaches some threshold, which is the
analog of the critical velocity. Plastic displacements
occur through the appearance and motion of disloca-
tions, which are reminiscent in many ways of vortices
in a superfluid. Instead of a mass flow we have a flow
of angular momentum in our twisted rod. If we do not
bend the rod into a ring, but if we fix its ends rigidly,
then the angular momentum flow is manifested in the
effect of the torsional moment on whatever we are us-
ing to fix the ends of the rod. An ideally elastic rod
can transmit a torsional moment over an arbitrary dis-
tance; if the torsional moment performs work, then
energy can also be transported over any distance. In
summary, two concepts which might appear to be at
opposite poles (the "stiffness" of a rod and the "fluid-
ity" of angular momentum) fit together quite nicely in
the same phenomenon. It is pertinent to recall here
that London1 used the concept of the "stiffness" of bo-
son wave function to explain superfluidity.

3. SPIN SUPERFLOWS AND HELICOIDAL
STRUCTURES IN MAGNETICALLY ORDERED
SYSTEMS

a) Helicoidal structure in easy-plane ferromagnets and
antiferromagnets. Stability and magnetic vortices

If the strong anisotropy energy confines the magneti-
zation of a ferromagnet or the magnetization of the sub-
lattices of an antiferromagnet in a definite crystallo-
graphic plane (an easy plane), and if the directional
anisotropy within this plane can be ignored, then the
angle through which the magnetization rotates is the
same sort of cyclic, continuous degeneracy parameter
as the phase of the complex order parameter in helium
IL There are accordingly many analogies between these
systems, as has been pointed out frequently elsewhere.
Halperin and Hohenberg37 studied spin hydrodynamics
by making use of its similarity to the hydrodynamics of
a superfluid. Berezinskii35 worked from the analogy be-
tween a superfluid and the model of plane rotors (i.e.,
the planar magnetically ordered systems mentioned
above) in a study of phase transitions. In this subsec-
tion of the review we will take this analogy even further
and examine the possible existence of metastable heli-
coidal structures in which there is a nondecaying spin
transport" analogous to superfluid mass transport in
He II.

Our analysis can be carried out for both a planar an-
tiferromagnet and a ferromagnet, but in the latter case
we will ignore the long-range dipole-dipole interaction
and the demagnetization fields which this interaction
causes. The state of our planar system is determined
by specifying two canonically conjugate variables: the
angle <f> through which the magnetization has rotated in
the easy plane and the projection m, of the magnetiza-
tion onto the "hard" z axis. The phenomenological
Hamiltonian for the pair of variables (f, mf differs only
in notation from the Hamiltonian in (2.13), for the den-
sity and phase in a superfluid:

m\ \

"STl ' (3.1)

where A is the inhomogeneous-exchange constant, and
X is the magnetic susceptibility along the z axis. Ham-
ilton's equations again yield a gap-free Goldstone mode:
magnons, which constitute an analog of fourth sound in
He II.

We now assume that we have deformed the spin sys-
tem in such a manner that as we move along the sample
the magnetization rotates in the easy plane through
some (generally large) number of rotations. The mag-
netization at the ends of the sample is held in a certain
direction, and there is no precession in the plane (mt

= 0). This structure will be metastable, for the same
reason as for the state with a mass superflow in He II
or for the defomed state in a twisted rod.39'40 How can
we remove one turn of the spiral traced out by the mag-
netization? As in He II, the cross section of the sam-
ple must be "cut" by the motion of a singular line,

71 If the helicoidal structure corresponds to a ground state,31

there is no spin flux.
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along which the angle <p is not determined, but around
which the angle <p changes by 2if. This line may be
called a "magnetic vortex." The entire procedure of
Subsection 2c for calculating the activation energy bar-
rier opposing the motion of vortices across a sample
can be repeated here. The final result for the barrier
height is

\2
) (3.2)

The only differences from the He II case are in the defi-
nition of the radius rc of the core of the magnetic vor-
tex. In He n the increase in the energy due to the in-
crease in v<f at the core of a vortex is offset by a de-
crease in the modulus of the order parameter, to zero.
In a magnetic vortex this increase can be offset by an
excursion of the magnetization out of the easy plane,
since the constant A in (3.1) is proportional to the
square of the projection of the magnetization onto the
easy plane. Correspondingly, rc is determined by
equating the inhomogeneous-exchange energy A(v<p)2

~A/rz
a to the energy EA of the anisotropy which confines

the magnetization to the easy plane; we find39'40

rc = /lf. (3.3)

It can be seen from (3.2) that the activation barrier can
be quite high, with correspondingly long times for tran-
sitions to the ground state.

If the ground state also corresponds to some helicoi-
dal structure,38 then our "deformed" state differs from
the ground state in that the spiral has a different pitch;
the strain v<f> determines the difference between the
wave vectors of the two spirals.

b) Spin nonconservation and lifting of the angular
degeneracy: fixing of the angle. Stability of helicoidal
structures

The existence both of helicoidal structures, and of
undamped super-fluid mass flows, is intimately related
to the degeneracy of the ground state in terms of angle
(or phase), which is in turn a consequence of the con-
servation law for the quantity which is the canonical
conjugate of the angle (or phase). In He n, this would
be the number of atoms, while in a planar ferromagnet
or antiferromagnet this would be the spin projection
onto the hard axis. However, while this conservation
law is exact in the former case, in the latter the spin
is not an exact integral of motion, and there always
exists an energy anisotropy (although it is usually
slight) in the easy plane, which lifts the degeneracy in
terms of the angle <p. A similar phenomenon in an ex-
citonic dielectric (more on this in Sec. 5) has been la-
beled "phase fixing" by Guseinov and Keldysh.41 Be-
cause of this phase (or angle) fixing, a gap appears in
the collective Goldstone mode, and the mode may cease
to be a Goldstone mode. For magnons this gap corre-
sponds to the frequency of the homogeneous magnetic
resonance. The Hamiltonian of the system for the pair
of canonical variables <p, m, can be written as follows
for the case in which there is an anistropy in the easy
plane with an energy density £$:

(3.4)

where n is the order of the symmetry axis, which is the
z (hard) axis. The equations of motion (Hamilton's
equations) are the Landau-Lifshitz equations42 in cylin-
drical coordinates. After we add dissipative terms we
find [cf. Eqs. (2.14)-(2.17)]

i am (3.5)
T~aT= -Mq + ggsin *T + -^- .

-1 '- - " 1—3

1 3cp m . . . ,-, (3 fi\

where y is the gyromagnetic ratio. The wavy under-
scoring shows terms which give rise to processes
which violate spin conservation. The dissipation func-
tion R may now include a term ~(&H/6mz)

2 [cf. (2.18)
for He n]. As a result, a term corresponding to longi-
tudinal Bloch relaxation, mjT^, appears in (3.5). A
dissipative term appears in Eq. (3.6) because of the
contribution (av/2)(5H/Q<p)2 to the dissipation func-
tion R, but now, because of the lifting of the degeneracy
with respect to the angle cp, this dissipative term in-
cludes, in addition to A<p, a term which depends ex-
plicitly on <p (with the wavy underscoring). This term
is an analog of the relaxation mechanism proposed by
Leggett and Takagi43 for the longitudinal magnetization
in the superfluid phases of He3 (Section 4).

A steady-state helicoidal structure (wz=0) corre-
sponds to the solutions of the^ine-Gordon equation,

where

(3.7)

(3.8)

For one-dimensional problems, in which the angle <p
varies along only one coordinate, say the x axis, Eq.
(3.7) becomes the equation of a physical pendulum if we
replace the distance x by t and the angle <f by <p/n.
This nonlinear equation has two types of solutions. The
solutions of the first type are oscillations of the pendu-
lum around its equilibrium position and are of no inter-
est here. The solutions of the second type correspond
to a rotation of the pendulum, with the angle <p increas-
ing monotonically over time. The solutions of this type
are parameterized by the average "rotation velocity"
(v<p), which determines the period of the motion—in
our case, the spatial period of the helicoidal structure,
x'.

(3.9)

At low average gradients, the structure is a periodic
chain of domain walls of width ~l, which separate do-
mains with different easy directions within the easy
plane. With increasing average gradient (v<?> the den-
sity of these domain walls increases, and they begin to
overlap; at |(v<p) | » l/l(x «l), the anisotropy which
fixes the angle in the plane contributes only small in-
crements, which oscillate over space, to the constant
component of the gradient v#>. In this region we may
speak in terms of a "depinning" of the phase or the an-
gle <p by the large inhomogeneous-exchange energy, and
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the stability of the structure is determined by the acti-
vation barrier tA, found without consideration of the
anisotropy in the easy plane [Eq. (3.2)].

At small values of | (v<p) | » 1/t the relaxation
of the helicoidal structure to the ground state reduces
to the elimination of the domain walls from the volume
of the sample. This may occur through a continuous
contraction of the area of a domain wall; for this to
happen, the walls must acquire a boundary which does
not coincide with a boundary of the sample. A magnetic
vortex is such a boundary. Since the angle changes by
2nIn in each domain wall, and since the angle <p must
change by 2ir as we go around a vortex, then n domain
•walls should terminate at a magnetic vortex. The areas
of these walls should simultaneously contract. This
process is illustrated in Fig. 3 for the case « = 4. The
magnetic vortices are a generalization of Bloch lines,
which separate subdomains in domain walls.44

In a region in which a helicoidal structure breaks up
into isolated domain walls, the activation barrier for
the motion of vortices across the sample becomes in-
dependent of the average gradient (v<f>). This barrier
can be calculated by analogy with the calculation of the
energy of the vortex state to which the tunneling from a
homogeneous state with a mass superflow occurs (see
Subsection 2c and Refs. 14, 39, and 40). The result is

I n - (3.10)

Using (3.3) and (3.8), which relate the lengths / and rc

to the anisotropy energy densities E9 and EA, and using
a qualitative estimate of the inhomogeneous-exchange
constant, A~ J/a (a is the lattice constant, and J is the
exchange energy per cell of the crystal lattice), we find

(3.11)

Accordingly, although the anisotropy E# which fixes
the rotation angle in the plane does in fact reduce the
stability of the helicoidal structure, the activation bar-
rier tA may be very large, because of the condition EA

»Ef, which holds for many easy-plane ferromagnets
and antiferromagnets.

c) Unattenuated spin flows and ways to produce them

Up to this point we have described metastable heli-
coidal structures, representing them as certain elastic
deformations of the original spin systems, but avoiding

saying anything about a spin flow. Evidence that the
"elastic deformation" v<p is proportional to a spin flow
is the continuity equation for the spin projection m, in
(3.5). According to this equation the spin flow is

5H .„ (3.12)

FIG. 3. Annihilation of domain walls in the case n = 4. Solid
lines—90° domain walls; the point M—magnetic vortex (the
numbers are the angles through which the magnetization is ro-
tated); dashed lines—cut with a jump of 2f in the angle.

Such a spin flow could exist only in an ordered spin sys-
tem below the Curie or Neel point.

In addition to the unattenuated spin flow there is the
possibility of a spin transport through an attenuated
spin-diffusion flow Dym,. To separate a spin flow into
unattenuated and attenuated components is analogous to
separating a mass flow in a superfluid into super-fluid
and normal components or a momentum flow in a solid
elastic and viscous components.

In a purely steady-state helicoidal structure, there is
no precession of the magnetization, we have mt = Q, and
there is no dissipation of any sort. Such a structure can
exist without an external agent only in an annular geom-
etry (a long sample is bent into a ring, and the wave
vector of the helicoidal structure is directed along the
resulting circle). At first glance it is difficult to see
that the flow js does in fact transport spin under these
conditions. If spin transport is to be detectable, some-
thing must vary over time. If, for example, we rapidly
cut through a ring in which a spin flux js is circulating
then we should note an increase and a decrease in the
magnetization m, on each side of the cut.

In an open geometry, in a sample of finite length, it
will be necessary to continuously pump spin across a
boundary of the sample in order to maintain a helicoidal
structure and an unattenuated spin flow. One possibility
for injecting spin is to pass a current of spin-polarized
electrons.40 The presence of an angle -focus ing anisot-
ropy in a plane imposes the requirement that the spin
pump be strong enough to achieve phase (or angle) de-
pinning in the volume. If, on the other hand, the spin
flux js = yAw created by the pump is smaller than the
spin flux at the center of an isolated domain wall
(^/2/nfA/l), then the effect of the pump may be only a
partial penetration of a domain wall into the sample
near the boundary at which the pumping is carried out,
while the entire volume remains unperturbed. (See ref.
40 for details). The method of using a spin pump to
produce unattenuated flows may be called incoherent,
since in this case the effect on the medium is achieved
by changing the density of the spin, rather than the
phase (or angle).

We might note that in the case of spin pumping in a
sample of finite length a strictly steady-state helicoidal
structure is impossible in principle; there is always
some sort of precession in spin space, and we have mt

*0. Indeed, a solution of Eqs. (3.5), (3.6) in the volume
for the steady state (Subsection 3b), in which there is
no Bloch relaxation ml/Tl = 0), shows that if there is a
spin flux at one end of the sample because of the pump
there must necessarily be a spin flux at the other end
also. At that other end, however, the flux must vanish
if that end borders on a vacuum, or it must transform
into a diffusive flow if it borders on a paramagnetic
medium. If we are to maintain a diffusive flow we must
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have a nonequilibrium magnetization: mt*§. Then we
must have m,* 0, and the time-dependent equations in
(3.5) and (3.6) must be solved with the boundary condi-
tions. Let us assume that at one end of the sample (x
= 0) there is spin pumping, and the spin flow is js(0)
= j H . Domain walls must accordingly form here, and
they must move toward the other end of the sample, x
= L. If the pump is intense enoudh to satisfy jn/yA
~ \v<p I » 1/X then the density of domain walls will be
high, the spin flow will be essentially uniform, and the
anisotropy in the plane can be ignored. A solution for
this case8' was derived in Ref. 40; the result for a
boundary w ith a vacuum is

J.M-Ul—r). », = -^. (3.13)

The magnetization mt~ fflf/bm, must also remain con-
stant in the volume of the sample, just as the chemical
potential M = 6#^6p is constant in the steady state of a
superfluid. H this condition is not met, the magnetiza-
tion will precess at different rates at different points,
and there will be an unbounded increase in the deforma-
tion in the spin system ("acceleration" of the spin flow,

The appearance of a nonequilibrium spin density far
from the site of the pumping is evidence of a real spin
transport by an unattenuated flow. A linear law for the
decay of the spin flow, on the one hand, and a constant
nonequilibrium magnetization throughout the sample
volume, on the other, radically distinguish an experi-
ment with spin pumping in a planar ferromagnet or
antiferromagnet from a corresponding experiment with
a paramagnet, in which the only spin-transport mech-
anism is diffusion, and in which the spin flow and the
magnetization decay exponentially with distance from
the site of the spin pumping.

tt follows from Eqs. (3.5) and (3.6) that the energy
flux associated with the flow js,

= -=«-).. (3.14)

is also different from zero only in the case m,*Q.
Bloch relaxation occurs in this case, and energy must
be supplied in order to compensate for the loss due to
this relaxation.

There is also the possibility of a coherent method for
producing a helicoidal structure (this was proposed by
Aronov in 1978): One end of the sample is placed in a
strong magnetic field, and rotation of this field can ro-
tate the magnetization in a plane. Because of the stiff-
ness of the spin system, this rotation is transmitted to
the spins throughout the volume, which is not subjected
to the direct effect of the magnetic field. This method
for producing an unattenuated spin flow has no analog in
the superfluidity of a liquid, since in the latter case
there is no field linked to an order parameter. On the
other hand, we can clearly see an analogy with the

8>The more general problem of the motion of domain walls of
arbitrary density has been solved for the A phase of He3,
but without boundary conditions (see the end of Subsection 4b).
A detailed study has also been made of the dynamics of iso-
lated domain walls.44

twisting of an elastic rod, especially since there is a
flow of angular momentum in both cases.

We thus see that these metastable helicoidal struc-
tures are, on the one hand, deformed states of a sys-
tem of ordered spins, while on the other they are states
with a spin flow (or an angular momentum flow). This
flow might be called a spin "superflow" by analogy with
mass superflow, but there is also another possible
name, which highlights the analogy with the angular
momentum flux in a solid: "elastic" or "stiff" spin
flow. Regardless of the words we use, and regardless
of whether we refer to the anomalously low attenuation
of the spin flow over space and time as a "superprop-
erty," the effect in question is a real, observable spin
transport.

The absence of a rigorous spin-conservation law and
the consequent fixing of the phase (or the rotation angle
in the easy plane) are important circumstances, which
distinguish the unattenuated transport of spin from the
superfluid transport of mass. This distinction, how-
ever, is not as radical as it might seem at first glance.
It is possible to devise an experimental arrangement
with a superfluid liquid in which there is something
similar to phase fixing.9' Let us assume, for example,
that a thin film of He II is flowing over a plate which
separates the film from some helium which is at rest.
If we fabricate some narrow apertures in this plate and
arrange conditions such that the helium in the resulting
channels always has the lowest kinetic energy compati-
ble with the phases at the two ends of the channels, then
the expression for the energy of the film will acquire a
term which depends explicitly on the phase, with a per-
iod of 2ir. The periodic change in the velocity of the
film along the flow direction which results from this
term is a consequence of the flow of helium into and out
of the channels.

d) Superflows and topology of the order-parameter
degeneracy space

We have seen that the cyclic nature of the phase (or
the rotation angle) plays a decisive role for the exis-
tence of unattenuated transport of both mass and spin.
This property is a consequence of the topology of the
degeneracy space of the order parameter, which is
usually called "R space." Research on the topology of
this space has expanded considerably in recent years in
connection with research on liquid crystals and super-
fluid He3 (see Refs. 45-48). This R space is the set of
all values of the order parameter which correspond to
the ground state. To go from the R space to a more
general space of possible values of the order parameter
involves an increase in the energy, and under ordinary
conditions this occurs only in small regions of the real
space (at the core of a vortex, for example). For He II
and for an easy-plane ferromagnet of antiferromagnet,
R space is a circle on a complex plane and on the easy
plane, respectively (the customary designation is SJ.
The most convenient way to illustrate the relationship

"This possibility was pointed out to the author by lordanskii
(1976).
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between the topology of R space and the existence of
metastable structures is to consider a closed geom-
etry: the medium filling a ring. We consider all possi-
ble mappings of the contour around the entire ring in
the real space onto R space. These mappings, which
are contours in R space, may be assigned to various
homotopic classes. All the contours which belong to a
given class are homotopically equivalent; i.e., they can
be transformed into each other through a continuous
deformation. The set of these classes forms the funda-
mental group ffj. For He II and for easy-plane ferro-
magnets and antiferromagnets, the group ir1 is iso-
morphic to the group of integers (the group Z). These
integers show the number of times the contour runs
around the circle Sl( which is the R space in this case.
If this number is not zero, the contour can be trans-
formed into a point corresponding to a uniform order
parameter in the ring only if, during the transforma-
tion, the order parameter in some part of the real
space leaves R space (leaves the circle S^, and this
would unavoidably mean a large energy of the interme-
diate states, i.e., an activation barrier for the transi-
tion to the ground state.

These arguments show how topological analysis can
be used to generate predictions regarding the stability
of inhomogeneous structures. The role played by this
analysis here is reminiscent of the role played by
group-theory analysis in optics; the latter cannot tell
us the actual transition probabilities but it can indicate
which probabilities should be small. It should also be
noted that topological analysis generates quite reliable
predictions of the stability of structures, but the ab-
sence of stability in the topological sense does not nec-
essarily mean that the given structure is in fact un-
stable. There may be some energy barriers of nontop-
ological origin47 which prevent deformation of the con-
tour within R space. In particular, such nontopological
barriers could exist in the superfluid A phase of He3

(see Subsection 4a).

For an isotropic ferromagnet or antiferromagnet the
degeneracy space R is a surface: a three-dimensional
sphere (usually designated S2). Any contour on such a
sphere can be shrunk to a point; i.e., the fundamental
group iri for the space S2 is trivial, including only a
single element. The topology thus indicates that a heli-
coidal structure in an isotropic ferromagnet or antifer-
romagnet may be unstable. H, for example, the mag-
netization is gradually brought out of the plane in which
it is rotating in the original helicoidal structure, the
energy will decrease monotonically.

At the time at which the magnetization everywhere
becomes directed perpendicular to the original plane
the state becomes uniform. This process corresponds
to the contraction to a point of a contour which runs
many times around the spere S2 in the equatorial plane.

To conclude this section we will examine the condi-
tion for the microscopic stability of a helicoidal struc-
ture—an analog of the Landau criterion. For this pur-
pose we must consider the spectrum of excitations
(magnons) in the helicoidal structure. While the super-
flow makes a correction to the spectrum which is linear

in the velocity vs = (K/m)v<p (e — e+pvs), the unatten-
uated spin flow makes a correction to the magnon spec-
trum which is quadratic in v<p. This can be seen most
simply in the case of a ferromagnet. Here the inhomo-
geneous -exchange constant A in Hamiltonian (3.4) is
porportional to the square of the magnetization projec-
tion onto the easy plane: A~m2

i = mz-mI. A nonlinear
increment -(v<f>)2 thus appears in the inverse suscepti-
bility 1/x; this increment may make the square of the
magnon frequency negative, which would mean an in-
stability. For an isotropic ferromagnet the inverse
susceptibility 1/x is zero, and the helicoidal structure
is unstable at any v^>.

When there is an anisotropy which singles out an easy
plane, the condition for microscopic stability is vio-
lated at those values of v<P at which the activation bar-
rier to the motion of the magnetic vortices vanishes.

4. SUPERFLUIDITY OF THE A PHASE OF He3

a) Mass super-flows

Important progress toward an understanding of super -
fludity followed the experimental discovery of the su-
perfluid phases of He3, which stimulated further devel-
opment of the theory. This topic is now the subject of
a fair number of comprehensive reviews,5"8 so here we
will simply review certain properties of the superfluid
A phase which are required for understanding the dis-
cussion below. The reason we have selected the A
phase for discussion instead of the other well-known
superfluid phase, the B phase, is that the superfluid
properties of the B phase differ only slightly from those
of He II. In contrast, the properties of the A phase are
genuinely unique, and by studying these properties we
can get a view of superfluidity in a new light.

The Cooper pairs of He3 atoms which form below Tc

are in a triplet state (the resultant spin is 1). The or-
bital angular momentum of the pair must therefore be
odd, and it is assumed to be 1. The wave functions for
a unit angular momentum, either a spin or an orbital
angular momentum, have three components, so that the
order parameter has 3 x 3 = 9 complex components Aai

(a, i = l,2,3; a and i are the spin and orbital indices).
The free energy in the superfluid state depends on all
possible invariants which can be constructed from these
components and their gradients. For the discussion be-
low we will need only that part of the free energy which
depends on the gradients. It includes three invariants
(spin-orbit coupling is being ignored):

(4.1)

In the A phase the order matrix is the direct product
of two vectors:

' ^«' = (An + .'A,,) <*„. (4.2)

The pair of orthogonal vectors A^ A2 determines the or-
bital part of the wave function. The orbital vector 1 = A!
X A 2 gives the direction of the orbital angular momen-
tum of the Cooper pair. The real vector d in spin space
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determines the direction along which the projection of
the spin of the pair is precisely zero. For any other di-
rection, the spin projection is zero on the average.10'

As is easily shown, the phase <p of the gauge trans-
formation in the A phase is equal to one of the param-
eters of the rotation group for a reference system of
three vectors (AH A2, l) , specifically, the angle of ro-
tation around 1. Since the three-dimensional rotation
group is not commutative, this rotation angle cannot be
determined unambiguously throughout the space. Only
infinitesimally small changes of the phase <p are well-
determined, so that, as in the He II case, we may in-

troduce a superfluid velocity v, = -=—• -^-. In the pres-
ftYft or

sent case, however, the quantity

6r fir jjr-o

is not the gradient of a single-valued scalar function,
so that in general we have rotv, *0 (rot = curl). Here m
is the mass of the He3 atom.

The density of the mass superflow in the A phase is
determined in the usual way. If d= const, then

SWgrad

(4.3)
or

+ (AT, + A',) -A- (I rot I) 1 - K, -A- rot 1. (4.4)

We see that in the A phase the superfluid density (the
coefficient of the proportionality between js and v4) is
not a scalar but a tensor, and it depends on the orienta-
tion of 1 with respect to v,. In the Ginz burg -Landau
theory, in the weak-coupling approximation, we have
Kl=K2 = K3>0, and the energy is at a minimum when 1
is parallel to vs. The existence of a dependence of the
total superfluid mass Ms = J ps dr on the orientation of 1
requires to be approached cautiously in the case of a
Galilean transformation.11' H, for example, we pro-
duce a texture which is inhomogeneous with respect to
1 and which has an energy e and a momentum p in a still
liquid in the ground state, then upon a transformation
to another coordinate system which is moving with a
velocity v0 the energy of the texture will transform by
a law which differs from that for the transformation of
the energy of excitations in He II [see (2.5)]:

10)A more accurate analysis shows that the orbital angular mo-
mentum of the rotation of a Cooper pair induces a slight
electron orbital magnetic momentum49 and also a slight nu-
clear spin momentum50 along the direction of the orbital
angular moment 1. In the A phase there is accordingly a
very weak spontaneous magnetization, which has been ob-
served experimentally.51 In most cases, however, this mag-
netization may be ignored.

*" Here we mean a Galilean transformation of not the entire
liquid but only of its superfluid part, i. e., the transformation
v, —v, + V0, vn—•VB. The relative velocity vs - VB is assumed
to be small before and after the transformation, and the ef-
fects which are nonlinear in vs — VB are assumed to be unim-
portant. The assumption vn= 0 is adopted in the equations of
this section of the review.

(4.5)

where &MS is the difference between the total super-
fluid mass for the texture and that for the original
ground state of the liquid.

The absence of a well-defined phase of the order pa-
rameter in the A phase leads to a remarkable result:
States with mass superflows are not topologically stable
in large volumes.52 Let us see how this conclusion fol-
lows from the topology of the degeneracy space (R
space) of the order parameter. We will ignore the spin
degrees of freedom (the vector d), as we are complete-
ly justified in doing in two limiting cases: those in
which the gradient energy is much larger than or much
smaller than the dipole-dipole energy, which depends
on the angle between d and 1. In the former case we
may ignore the spin-orbit coupling and treat the orbital
part of the wave function independently of its spin part.
In the latter case, the "dipole-locked" case, the di-
pole-dipole interaction causes the vector d to follow the
vector I everywhere, remaining parallel to it, so that
the order parameter is determined completely by a
specification of the position of the reference system
(AK AZJ!)- In both cases the mass superflow is deter-
mined from (4.3) or (4.4), but the free-energy constants
are different, since in the dipole-locked case the gradi-
ents of the vector d contribute to the energy, while in
the first case the vector d may be assumed constant.

The R space here is the same as the projection space,
P3, which is the space of the parameters of the three-
dimensional rotation group.8 This space is a sphere of
radius TT. A vector connecting any point on the sphere
with the center of the sphere specifies the direction of
the rotation axis, while the length of the vector speci-
fies the angle of the rotation around this axis. Obvi-
ously, rotations through IT and -TT around oppositely di-
rected axes are identical, so that diametrically opposed
points on the surface of the sphere are equivalent. Let
us again consider the current states in a ring which
correspond to a rotation of the reference system (AD
A2,1) around 1 in going around the ring through an angle
2irN (N is any integer). The mapping of one rotation of
the reference system onto R space is the diameter of a
sphere, which coincides with the axis parallel to the
vector 1. This is a closed contour, since the ends of
the diameter are equivalent. Furthermore, N rotations
around 1 in real space correspond to an JV-fold traver-
sal of the same diameter. It turns out that all contours
with even JV" are homotopically equivalent to a contour
with N=0, i.e., to a homogeneous state without a cur-
rent, while all contours with odd N are equivalent to
the contour with N= 1. The fundamental group irl thus
consists of only two elements.46 Figure 4 shows how
the N= 2 contour is contracted by a continuous defor-
mation to the point corresponding to the homogeneous
state. The only topologically stable current state with
one quantum, N=l, corresponds to a vanishingly low
superfluid velocity in a large channel. In contrast,
states with a macroscopic number of quanta become
topologically stable only as a consequence of a magne-
tic field and the effect of boundaries which alter the
topology of the R space.8'48
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FIG. 4. A continuous deformation in R space for the ,4 phase
which transforms the contour for the current state in a ring
with JV = 2 (two quanta of the circulation) into a point which is
the mapping of the ground state.6

However, before we conclude that mass superflows
are unstable in large volumes of the A phase without a
magnetic field, we must check to see whether activation
barriers of nontopological origin arise, as a result of
an increase in the energy during a continuous deforma-
tion of the contour inside the R space. By analyzing the
stability of current states, Bhattacharyya, Ho, and
Mermin53 showed that nontopological barriers do arise
in the dipole-locked case.12' If barriers are present,
however, their order of magnitude is determined from
dimensionality considerations. Barriers result from an
increase in the gradient energy in (4.1), which does not
contain any scale lengths, and the sole scale length of
this problem is h/mvf. Accordingly, approximate
heights of the nontopological barriers are found from
expressions (2.6), (2.20), and (2.21) for topological
barriers in He II by replacing the coherence length rc

(the size of the vortex core) by the length h/mv3:

3 dimensions: F.\ ~ -^-) ^r~ >

2 dimensions: E.\ ~ I — I i'si

1 dimension:

(4.6)

where the superfluid densities ps for the three-, two-,
and one-dimensional cases are of the order of the larg-
est of the constants KlfK2,K3 in (4.1).

The reason for the increase in the gradient energy
upon the loss of one quantum of the flow is a deviation
from a parallel arrangement of 1 and va. The barrier
tA thus becomes higher with increasing VB in the one-
dimensional case. In two and three dimensions, in con-
trast, the growth of the gradient energy can be slowed
by restricting to a length h/mv3 the size of the region
which is inhomogeneous in terms of 1 and in which
rotva*0. This length might be called the core of a
"nonsingular" vortex. In the intermediate state corre-
sponding to the largest energy (the top of the barrier),
however, the size of this core is of the same order of
magnitude as the size of the "London region" in the
field of the vortex, in which rotvs = 0. Consequently, a
large logarithm does not appear in (4.6), as it does in
(2.20) and (2.6).

When the superfluid velocity reaches values greater
than h/m^ (£„ is the dipole length, £d~ lO^m), the
gradient energy becomes larger than the dipole-dipole
energy, and the dipole-locked situation becomes unfav-
orable from the energy standpoint.54 A disruption of the

coupling of the vectors d and I causes the nontopological
activation barriers to disappear. At velocities va>h/
m 5d, homogeneous mass superflows in the A phase are
thus unstable.13'

b) Unattenuated spin flows

If there is an energy which keeps the spin vector d in
the easy plane (e.g., the energy of interaction with a
magnetic field), then the spatial rotation of d within this
plane implies a transport of the spin magnetization
which is longitudinal with respect to the magnetic field.
The resulting spin "superflow" may be described at the
microscopic level as consisting of two oppositely di-
rected superflows of Cooper pairs with spin projections
+1 and -1 onto the direction of the magnetic field. This
flow is therefore sometimes called a "magnetic coun-
tercurrent." It was first studied theoretically by
Vuorio.55 In interpreting their experiments on the longi-
tudinal magnetic relaxation in the A phase, Corruccini
and Osheroff56 suggested that the extremely important
shortening of the relaxation time below the point of the
transition to the superfluid state results from a rapid
transport of spin by the superflow from the interior to
the wall, where the spin undergoes its ultimate relaxa-
tion with magnetic impurities. The decrease in the
magnetization in the volume occurs linearly, and this
result can be explained in the same way as the flow of
superfluid helium films at a constant velocity: The
gradient of the magnetization "accelerates" the spin
superflow until a strong dissipation mechanism comes
into play and stops the growth of the spin flow.55'56

The dipole-dipole interaction, which puts the vectors
d and 1 in a parallel orientation, lifts the energy degen-
eracy in terms of the angle between d and 1. In certain
cases, the changes in the direction of 1 can be ignored;
one case is that in which 1 is fixed by a boundary effect,
and another is that in which the vector d but not 1 is
twisted during the formation of an inhomogeneous state.
The latter case may occur in experiments on longitudi-
nal relaxation. In such a case the dipole-dipole inter-
action plays the same role as that which is played by
the magnetic anisotropy in the easy plane for planar
ferromagnets and antiferromagnets. It renders a weak
spin superflow very nonuniform: The texture is broken
up into isolated domain walls or d-solitons.57 The anal-
ysis of the stability of spin superflows for planar ferro-
magnets and antiferromagnets (Sec. 3) can also be ap-
plied to the A phase; the expressions for the activation
barriers will differ from (3.2) and (3.10) only in the no-
tation. The spin superflows turn out to be stable if the
energy keeping d in the plane (the interaction with the
magnetic field) exceeds the dipole-dipole energy which
is opposing the free rotation of d in the plane. This
condition requires fields #>30 G (Ref. 58). This con-
clusion is confirmed by the experiments of Sager et
a/.59 As they reduced the magnetic field, they ob-
served, in the field interval 30-85 G, a transition from

121 They showed that the current state is a minimum of the en-
ergy, rather than a saddle point.

13)Helicoidal textures with a spatial rotation of the vector 1,
in which there may be a nondecaying mass transport, may,
however, be stable (see Ref. 54 and the references cited
there).

423 Sov. Phys. Usp. 25(6), June 1982 . B. Sonin 423



Corruccini-Osheroff relaxation (a linear decrease in
the magnetization) to a different type of relaxation (a
linear decrease in thesquareof the manetization), which
follows from the theory of Leggett and Takagi,43 who
studied uniform relaxation in a volume.

Proof that large supercritical spin flows arise in a
volume during longitudinal relaxation might be the ob-
servation of spin turbulence: a large number of mag-
netic vortices near which the vector d departs from the
plane perpendicular to the field H. A turbulence of this
sort has been used in several papers59'60 to explain a
nonmonotonic relaxation, in which the magnetization
may increase during short time intervals in the course
of relaxation.14'

The propagation of solitons (domain walls) over sub-
stantial distances has recently been detected experi-
mentally in the A phase, and the propagation velocity
has been measured.62 These experiments confirm the
possibility of an unattenuated spin transport, since each
moving soliton carriers a spin. In Ref. 63, equations
similar to (3.5)-(3.6), which were reduced to a time-
dependent sine-Gordon equation with dissipative terms
after the elimination of m,, were used to derive a hy-
drodynamic theory which described the motion of soli-
tons in terms of their density and velocity. Comparison
of this theory with the experiment of Ref. 62 on soliton
propagation showed that spin turbulence might play a
major role in that experiment.

5. UNATTENUATED FLOWS AND METASTABLE
STRUCTURES IN ELECTRON-HOLE SYSTEMS

a) Preliminary comments

The problem of the Bose condensation and superfluid-
ity of electron-hole pairs or excitons has been the sub-
ject of discussion for a rather long time now.84"66 It has
been suggested that an exciton concentration sufficient
for Bose condensation could be produced by optical
pumping. If the exciton lifetime is long enough, the re-
sulting state may be treated approximately as an equi-
librium state. At high exciton concentrations, how-
ever, what usually happens instead of a Bose condensa-
tion is the onset of a condensation into electron-hole
drops.67 Nevertheless, there are indications in the lit-
erature that Bose condensation of excitons or biexcitons
has been achieved experimentally.68 The Bose conden-
sation of excitons, however, can also occur at equilib-
rium, in a semiconductor with a gap width smaller than
the exciton binding energy or in a semimetal with over-
lapping valence and conduction bands.69"72 The state
which arises is called an "exciton dielectric" or "ex-
citon phase."15'

U) However, another explanation has also been offered for this
effect,61 on the basis of the Leggett-Takagi exchange mecha-
nism for relaxation.

151 The model proposed by Lomer73 to explain spin-density
waves in chromium is also essentially an exciton-phase model.
Chromium, however, does not become a dielectric, since
there are parts of the Fermi surface which do not participate
in electron-hole pairing.

The superfluidity of an exciton dielectric was first
discussed by Kozlov and Maksimov.74 They suggested
that it would take the form of "thermal superconductiv-
ity," but they worked from an incorrect (as was shown
later75) expression for the energy flux. A nonzero en-
ergy flux can exist in an exciton phase only under non-
equilibrium conditions (Subsection 5c). In the He II
case, thermal superconductivity is usually understood
as entropy transport without a temperature gradient.

Like second sound, the latter is possible only if mo-
mentum is conserved. Accordingly, thermal super-
conductivity is impossible not only in an exciton phase
but also in a superconductor, because of impurities.
The "superproperties" of the exciton phase must there-
fore be manifested in some other way. To see just what
these superproperties are and to see whether it is
meaningful to label them as such, we must examine two
important questions: 1) the role of interband transi-
tions, which lift the phase degeneracy and rule out
states with a uniform flow of electron-hole pairs41; 2)
just which real physical quantity is carried by the su-
perflow in a Bose-condensed electron-hole system, and
whether this superflow can be observed.

The question of the physical meaning and observabil-
ity of a superflow of electron-hole pairs has a simple
answer (theoretically, at least) for two-dimensional
systems with spatially separated electrons and holes:
two films with free electrons in one and holes in the
other, separated by a dielectric layer. Kogan and Tav-
ger76 pointed out that the transport of bound, neutral
electron-hole pairs in such systems might be accom-
panied by the flow of nondecaying electric current if the
two films are connected in a series circuit (see Fig. 5,
which is taken from Ref. 76).

The theory for such systems was developed further in
Refs. 77-80, but the problem of fixing the phase re-
mains an urgent one for systems with spatially sepa-
rated electrons and holes.

In the preceding sections we have seen that super-
properties are phenomena which occur over long tem-
poral and spatial scales, so we have used phenomeno-
logical equations everywhere: the hydrodynamic equa-
tions, the Landau-Lifshitz equations, and the Leggett -
Takagi equations.

In this sense, the present section is a deviation from
this rule, since here we are talking in terms of a
microscopic model: the model of an exciton dielectric.
In making this exception we are, on the one hand, pay-
ing tribute to established tradition, thereby facilitating
a discussion of the work which has been done on this
subject.

v K)
r

FIG. 5. Flow of an electric current in the case of motion of
bound electron-hole pairs.6 The electrons and holes are in
two films, which are separated by an insulating layer.
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On the other hand, the conditions under which the
model of an exciton dielectric is applicable overlap
considerably with the conditions under which super-
properties exist. However, this overlap by no means
rules out the possibility that these superproperties may
also hold for some other model of the dielectric.
Furthermore, it is possible to describe the phenomenon
in phenomenological terms, without resorting to such
concepts of the microscopic theory as an electron-hole
pair. We will return to this question in Subsection 5d.

b) Physical meaning of the order parameter of an exciton
state. Phase fixing

The order parameter in an exciton state can be
written as a 2 x 2 matrix Aa6, which, on the one hand,
is the wave function of the electron-hole pair (a and ;3
are the spin indices of the electron and the hole), while
on the other it determines the amplitude of the charge-
or spin-density waves which arise in the exciton state:72

<6p; = He {A* (r)}, (5.1)
(t-a: -Re {aa SAo f i (]>(r)}, (5.2)

where the Fourier expansion for 3>(r) may include both
the wave vectors of the original reciprocal lattice and
vectors which are or are not commensurable with them.
The components of the vector a are the Pauli matrices.
The singlet pairing Ao S= 5aS Aexp(i<p) leads to charge-
density waves ((6p)*0, (6<r) = 0). In the case of triplet
pairing, Aaa is a zero-trace matrix whose components
can be expressed in terms of the three-dimensional
vector d:

'IT/")'"• (5.3)

The vector d is the polarization vector of the spin-den-
sity wave which arises upon triplet pairing. The model
of a triplet exciton state is actually the model of band
antiferromagnetism, and the vector d is equivalent to
the antiferromagnetic vector of a Heisenberg antiferro-
magnet.

The overall phase of the order parameter, <^ (the ex-
citon phase in the terminology of Refs. 39 and 40) de-
termines the displacement of the charge-density and
spin-density waves with respect to the basic lattice.16'
The free energy depends on such displacements only if
interband transitions are taken into account.

In the exciton state, equations of motion must exist
for a pair of canonical variables, the exciton phase y>
and the electron-hole pair density weh; in the triplet
state, there must also be equations of motion for the
vector d and for the magnetization (the Landau-Lifshitz
equations). These (phenomenological) equations can be
written in a form which incorporates both the theoreti-
cal requirements of symmetry and the conservation
laws. In order to find the theoretical values of the coef-
ficients in these equations, however, it is necessary to
derive them from some specific theoretical model.
Such a derivation has been carried out for an exciton

dielectric, for a low -density exciton gas, and for sys-
tems with spatially separated electrons and holes17'
(Refs. 39, 40, 79, and 81-83). Because of the interband
transitions, a term which depends on the exciton phase
<p, i.e., which fixes the phase, appears in the free en-
ergy. For interactions which are invariant with respect
to spin flip, the phase fixing can be described by

(5.4)£<p (q>) = dr [ (r) + a2AaS (r) Apct (r) . . . + c.c.]

Here we are assuming that the order parameter AffiB(r)
chosen in (5.1)-(5.3) is constant for the ground state; a
perturbation of the ground state may cause this param-
eter to vary over space, over scale distances greater
than the wavelength of the structure which appears as
a result of the phase transition.

Terms of first order in AoS appear in expansion (5.4)
only if the electron and hole extrema lie at the same
point in k space. A phase transition involving a disrup-
tion of the symmetry does not occur, however; the only
possibility is a diffuse transition between regions with
small and large values of A. Accordingly, upon a phase
transition accompanied by a violation of translational
symmetry (the appearance of new wave vectors of the
structure, which do not belong to the original recipro-
cal lattice) or a violation of the point -group symmetry,
expansion (5.4) cannot begin with terms of first order
A (Volkov and Kopaev, 1978). In antiferromagnetic
chromium the extrema are separated in k space by half
the reciprocal -lattice vector,84 and the expansion be-
gins with terms of order A2, regardless of whether a
structure commensurable or incommensurable with the
basic lattice appears. The coefficient a2 is determined
by flip processes in this case.40

c) Unattenuated flows and deformation of charge and spin
density waves

The gradients of the exciton phase, v<^, determine
the flows of electron-hole pairs, while gradients of the
vector d determine the spin flows. If, for example, d
rotates in the xy plane, then it can be seen from (5.3)
that the changes which occur in the phases of off -diag-
onal elements of the order-parameter matrix are oppo-
site in sign. These elements may be interpreted as the
order parameters for electron-hole pairs whose z spin
projections are +1 and — 1. A spatial rotation of d thus
corresponds to a counterflow of pairs with oppositely
directed spins, so that there is spin transport.13' In

161 Each harmonic of the spin-density and charge-density waves
is shifted by an amount </>/k. There are also changes in
other electron parameters, e. g., the dipole moment.

17)We will use this opportunity to point out that Klyuchnik and
Lozovik's assertion (see their notes in Refs. 82 and 83)
that in Ref. 401 erroneously compared an equation for the
rotation angle of the magnetization (the vector d) with an equa-
tion derived for the exciton phase (the phase of the condensate
in Refs. 82 and 83) is based on a misunderstanding. If these
papers are read carefully, expecially (Russian) page 2108
in Ref. 40, the reader will see that the equations found by
Klyuchnik and Lozovik for the exciton dielectric are actually
the same as those in Refs. 39 and 40. The only discrepan-
cies are in the terminology: Klyuchnik and Lozovik object
to the use of the term" superproperty " (see subsection 5d).

18>Here there is an analogy with spin transport in the A phase
of He3 (see Refs. 39 and 85 and subsection 4b of the present
review).
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contrast, the electrons in a Heisenberg antiferromagnet
are localized, and spin transport is not accompanied by
transitions of electrons from one site to another.
These differences in the microscopic nature of magne-
tism and in the spin-transport mechanism, however,
should have absolutely no effect on the form of the phe-
nomenological equations which describe the motion in
spin space (the Landau-Lifshitz equations). For this
reason, all the conditions for the existence of, and
methods for the generation of, spin flows which are at-
tenuated only slightly over space and time ("super-
flows") which were derived in Sec. 3 from these equa-
tions can be extended entirely to the triplet exciton
state, i.e., to a band antiferromagnetic.

A study of the stability of structures with spatial
gradients of the exciton phase <p is also basically the
same as the study of structures with a spatial rotation
of the magnetization. The equations of motion for the
pair of canonical variables y, neh (the exciton phase
and the density of electron-hole pairs) differ from those
for the pair <p, m, (the angle through which the spins
are rotated around the z axis and the « projection of the
spin density) [m, must be replaced by weh in Eqs. (3.5)
and (3.6)], and they also differ in the physical meaning
of the coefficients in the equations. Instead of a mag-
netic anisotropy [the terms £*sin«^ in Eqs. (3.5) and
(3.6)] we would now have the phase-fixing energy (5.4).
The number n, which gives the order of the symmetry
of the anisotropy in the plane, must now correspond to
the power of A at which the expansion in A in (5.4) be-
gins. In the equation for 8nell/9J, the term correspond-
ing to the Bloch relaxation in (3.5), m,/T^, will de-
scribe actual interband transitions which do not depend
on the phase, in contrast with the virtual transitions,
which fix the phase. We will not repeat the entire anal-
ysis of Sec. 3; we will simply examine the basic results
of this analysis for states which are inhomogeneous in
terms of exciton phase.

1) Phase fixing leads to a gap in the collective-oscil-
lation spectrum and rules out the existence of homogen-
eous stationary states with an electron-hole pair flow41

jeb~V<p~, there may, however, be inhomogeneous states
with a periodically varying flow jth (Refs. 79, 81, and
86). If the "kinetic energy" of the flow (the deformation
energy ~v<?2) is much smaller than the phase-fixing en-
ergy, then such states are a periodic chain of solitons
(domain walls), which separate domains of a fixed con-
stant phase if.

2) The relaxation of a "deformation" v<p can occur
only in the case of motion of vortices across the flow,
jth~V<(>. This will require surmounting an activation
barrier of topological origin, determined by the same
expressions as for a spin superflow, (3.2) and (3.10).
The size of the vortex core, rc, which appears in the
logarithm in these expressions is equal to the coher-
ence length in this particular case, since the order pa-
rameter must vanish on a vortex line if the phase is to
change by 2ir when this line is circumvented.

3) Sufficiently high activation barriers exist in the
case |(v<?>| <1/V0 if the condensation energy (or pair-
ing energy) is much larger than the phase-fixing ener-

gy; in other words, the distance I over which the phase
is fixed [see the sine-Gordon equation in (3.7)] must be
far larger than the coherence length rc.

The stability of those deformed structures in the ex-
citon state which transport the flow of electron-hole
pairs should be manifested in experiments on the injec-
tion of electron-hole pairs. Experiments of this type
have been proposed for observing an exciton Bose con-
densation (see Refs. 87 and 65). It was suggested in
Ref. 39 that an electric current be used to inject elec-
tron-hole pairs. Because of the difference between the
conductivities of the conduction and valence bands and
also the difference between the probabilities for an
electron to reach the two bands at the contact, a non-
equilibrium concentration of electron-hole pairs arises
near the contact. If the injection exceeds a certain
threshold determined by the phase-fixing energy, the
unattenuated flow of electron-hole pairs rapidly dis-
tributes the injected pairs over the entire volume, so
that the density of pairs turns out to be constant, while
the superflow decays linearly along the length of the
sample (see the corresponding problem involving spin
injection in Subsection 3c).

As usual, the energy flow associated with the super-
flow is proportional to the chemical potential (J.eh=
6neh of the electron-hole pairs:

Q = Hell Jell- (5.5)

At a total equilibrium, iueh=0, no energy is transported.
During the injection of pairs into a sample of finite
length, however, the condition Heh*0 always holds, al-
though the values of /ieh in the exciton dielectric in this
case are small, of the order of the reciprocal of the
sample's length (again we refer the reader to Subsec-
tion 3c, where, there is a more detailed explanation of
the same phenomenon for the case of spins). On the
other hand, when excitons are pumped into a semicon-
ductor with a large energy gap £„, there is a rapid ro-
tation of the order parameter in the complex plane, at
a rate d<p/dt~ Meh~£h. The phase-fixing energy thus
vanishes on the average; the phase is not fixed; and the
superflow transports a large energy.66-72

d) Does an exciton dielectric differ from an ordinary
dielectric?

The electron-hole pair flow jeh, which is proportional
to the "deformation" v<p, is attenuated rapidly in space
and time, and it exists only below the phase-transition
point. It may thus be called a "superflow" quite legiti-
mately, and the unattenuated transport itself (i.e., the
transport with a very low dissipation) may be called a
"superproperty." Other terms could of course be used
and in fact might be more appropriate. A more inter-
esting question, however, is this: Are the "superprop-
erties" (or whatever they are called) something which
fundamentally distinguish an exciton dielectric from an
ordinary dielectric? The impulse is to say no,41 since
superproperties are phenomena which occur at the
macroscopic level, where the various particular details
of the theoretical models at the microscopic level
would not seem to be important. One such detail is the
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very concept of a "hole" or that of an "electron-hole
pair." In contrast with spin magnetization, for which
there is a clear operator expression, which applies to
any medium, the number of holes or pairs is an ap-
proximate concept, meaningful only in the particular
basis chosen for the electron wave functions. We would
therefore like to describe "superproperties" without
resorting to the concept of a "hole," and at this point we
wish to show that this can be done.

Actually, a collective mode associated with a change
in the density of electron-hole pairs is none other than
an optical mode corresponding to the motion of some
electron subsystem with respect to the rest of the crys-
tal. As we have already mentioned, the exciton phase
determines the displacement of the spin-density and
charge-density waves with respect to the crystal. The
deformation V</P then determines (as in an elastic solid)
the stresses (the momentum flux) in the subsystem
which we have singled out, and these stresses appear
in the model of an exciton dielectric as a flux of elec-
tron-hole pairs.19' Such stresses are attenuated only
slightly over space and time if the coupling of the par-
ticular subsystem with the rest of the crystal is suffi-
ciently weak. This conclusion means that the optical
mode must be very soft, and the part of the energy
which depends on the displacement (the phase-fixing en-
ergy) must be quite small in comparison with the elas-
tic strain energy near the threshold for the apperance
of plastic phenomena (the motion of vortices or dislo-
cations). The condition for the existence of a soft mode
in the model of an exciton dielectric reduces to the con-
dition that the energy of the interband transitions must
be small. On the other hand, this condition requires
that the model of an exciton dielectric be of general ap-
plicability, and for this reason the model of an exciton
dielectric occupies a special position with respect to
other models for the dielectric state. On the other
hand, there are no fundamental distinctions between an
exciton dielectric and an ordinary dielectric. It may be
suggested that there are other physical reasons for the
appearance in a dielectric (and not only in a dielectric)
of a soft, slowly damped optical mode, which would al-
low us to introduce a new phenomenological parameter
in the hydrodynamic description. If the space in which
this new parameter is defined has the appropriate top-
ology, then the metastable states discussed in this re-
view are completely feasible.

6. SUPERFLUIDITY CRITERION AND LONG-RANGE
ORDER

Ever since superconductivity and superfluidity were
discovered there has been an unceasing effort to identi-
fy some key property of a condensed system which de-
termines whether it will exhibit superfluid properties.
When London1'88 revealed the relationship between su-
perfluidity and Bose condensation, he took us a long way

* Since a change in phase leads not only to shifts (see foot-
note16'), flows of other physical quantities may also arise.
Just which physical quantities will be singled out will be de-
termined by a more detailed analysis of the particular type
of exciton pairing.

toward an understanding of the superfluidity of He IL
Bose condensation automatically implies the appearance
of an off-diagonal long-range order (ODLRO) in the
one-particle density matrix,89'90

p (T, r') = <t (r)-»i|) (r ' )> -» <t (r)*> (i|) (r ' )> =^0, | r - r' | ->• oo;

(6.1)

here *(r) and *(r)* are the boson annihilation and crea-
tion operators. In a superfluid Fermi liquid, an
ODLRO arises in the two-particle density matrix.

Yang91 has suggested that ODLRO might be considered
a necessary and sufficient condition for superfluidity.
Yang understood superfluidity (or superconductivity) to
be the quantization of flux in a ring. According to Yang,
the flux quantization results from a periodic repetition of
minima in the dependence of the free energy on the total
current. Actually, as we saw in Subsection 2b, flux
quantization and the associated very slow attenuation of
supercurrents result from minima in the dependence of
the free energy on the superfluid current, not on the
total current. In contrast, the barriers separating the
minima in the dependence of the free energy on the total
current vanish even at temperatures and superfluid ve-
locities so low that quantization must definitely occur
[see Eq. (2.6') and also the paper by Eggington and Leg-
gett92]. It followed immediately from Yang's concept
that superfluidity would be impossible in one-dimen-
sional and two-dimensional systems, since in these
cases the long-wave phase fluctuations destroy the
ODLRO. This was pointed out by Rice,93 and a rigorous
proof of the vanishing of ODLRO was offered by Hohen-
berg,94 who worked from Bogolyubov's 1/k2 theorem.95

We saw in Subsections 2c and 2e, however, that super-
fluidity is disrupted not by the phase fluctuations but by
the fluctuations of the modulus of the order parameter,
which give rise to regions with a zero modulus: vortex
lines or phase-slippage centers. The absence of an
ODLRO thus does not necessarily mean that there is no
quantization and that there are no nondecaying currents.
Another argument in favor of this conclusion is the fact
that the ODLRO vanishes not only in systems with fewer
than three dimensions but also in three-dimensional
systems which have dimensions which are greatly dif-
ferent indifferent directions,20-96"98 e.g., systems in
which the length of the object, L, exceeds S\|ps/m,
where S is the cross-sectional area of the object, and
XB is the thermal de Broglie wavelength. In such elon-
gated objects the energy barriers separating the mini-
ma on the total-current dependence of the free energy
become vanishingly low [see (2.6')], while the eA bar-
riers in the dependence of the energy on the superfluid
current do not depend on the shape of the three-dimen-
sional object, provided that all the dimensions are
greater than the coherence length. If the spanning of
the entire length of the sample by the ODLRO were a
necessary condition for superfluidity, this would mean
that there would be no superfluidity in very long capil-
laries or in films. This is not what we observe experi-
mentally, however, although experiments have been
carried out with very long helium films99'100 and very
long thin superconductors,101 with a length greater than
that over which the ODLRO extends. Eggington and
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Leggett92 have also suggested some special experiments
which would confirm that superfluidity is not sup-
pressed with increasing length of a channel.

A generalized ODLRO has been proposed,102 in which
the requirement on the long-range order is relaxed:
Although distance over which the off-diagonal correla-
tions in the density matrix in (6.1) extend tends toward
infinity in the thermodynamic limit, it may do so more
slowly than the length of the system. This means that
the Bose condensation does not proceed to a single
quantum-mechanical level but to a group of levels, in a
small region in momentum space with a width inversely
proportional to the smallest dimension of the system.20'
When this definition is adopted, the ODLRO and Bose
condensation exist in a three-dimensional system of
any shape with macroscopic dimensions in all direc-
tions, but again they do not occur in one- and two-di-
mensional systems. Consequently, a generalized
ODLRO would also be an overly stringent necessary
condition for the existence of nondecaying currents.

Berezinskii35 has suggested an even weaker require-
ment as a necessary condition for superfluidity: Al-
though the correlations do not extend an infinite dis-
tance, they must fall off in a power-law manner (in con-
trast with the exponential decrease in normal systems).
This approach allows a two-dimensional superfluidity,21'
but a one-dimensional superfluidity is still ruled out. H
we work from the argument that a phase transition is
required for the appearance of superfluidity, then this
condition would be completely justified. However, the
existence of only slightly attenuated currents (i.e., a
superfluidity in the sense in which we are using this
term) is not directly related to the occurrence of a
phase transition, as we mentioned in Subsection 2e, al-
though the absence of a phase transition in one-dimen-
sional systems does have definite consequences for a
one-dimensional superfluidity (or, perhaps, a "quasi-
superfluidity" if we wish to speak more cautiously).

In summary, the requirement that the long-range or-
der extend over infinite distances (in the form of corre-
lations which do not decay or which decay in a power-
law manner) is overly stringent from the standpoint of
the broader interpretation of a "nondecaying current"
which we have adopted in this review. Undoubtedly,
however, even in this interpretation the pronounced
stiffness of the order parameter which gives rise to the
stability of the "nondecaying currents" necessarily
means that the scale distance over which the correla-
tions propagate is quite large. What should this scale
distance be in a one-dimensional system? As the scale
dimension for the decrease in the correlations we
should choose a distance which determines an exponen-
tial decay of the correlations and is \~pa(l)h

2/mkT
[see, for example, Ref. 93 or Eq. (A.5) in Ref. 20,

where A = ̂ 57- and ps(l) = paLyL,]. The condition for the

20) London88 understood Bose condensation In this generalized
sense.

2)>A power-law decay of the correlations in a two-dimensional
system was established by Rice93 in a study of fluctuations in
the Ginzburg-Landau theory.

stability of a one-dimensional superflow, cA/feT»l [see
(2.7) and (2.21)], thus reduces to the condition that the
length A must be greater than the coherence length rc.
The ODLRO is subject to criticism not only as a neces-
sary condition for superfluidity but also as a sufficient
condition. In addition to the trivial example of an ideal
Bose gas, in which there is an ODLRO but no superflu-
idity, we might mention systems which have interac-
tions which fix the superfluid phase. Phase fixing, by
introducing a gap in the Goldstone mode, eliminates the
destructive effect of longwave phase fluctuations on the
long-range order. A strong phase fixing, however,
makes the superflow unstable. Another example is the
A phase of He3, if its parameters are such that there
are no nontopological activation barriers for the relax-
ation of mass superflows (Subsection 4a). In both these
cases, the superflows are unstable with respect to the
creation of vortices (of nonsingular vortices in the case
of the A phase).

However, the definition of "superfluidity" as the pos-
sible existence of nondecaying currents, which we have
adopted throughout this review, has its own disadvan-
tages. The superfluid A phase of He3 may not be a su-
perfluid at all. It is also unclear, for example, how we
are to deal with He II in broad channels, where—for
reasons which are not at all clear at present—the criti-
cal velocities for the nondecaying currents are vanish-
ingly small, although all the other superfluid proper-
ties are present. There are accordingly adherents to a
different definition of the term "superfluidity." Putter-
man,3 for example, suggests identifying superfluidity
with Bose condensation. In this approach the problem
of the relationship between the ODLRO and superfluidity
is resolved at once. ODLRO is superfluidity. Accord-
ingly, in Putterman's interpretation an ideal Bose gas
is a superfluid. At present, therefore, we do not have
a firmly established agreement on the meaning of the
term "superfluidity," and this term is used in two
meanings: 1) in a thermodynamic meaning—the system
undergoes a phase transition accompanied by a change
in the law by which the off-diagonal elements of the
density matrix decay, although nondecaying currents
may not exist below the transition point—and 2) in a
kinetic meaning—nondecaying currents with finite criti-
cal velocities exist. Historically, the term "superflu-
idity" arose in the second of these meanings, and it is
the second which is preferred from the semantic stand-
point.

While nondecaying flows of charge and mass are as-
sociated with the extension of off-diagonal long-range
order in the density matrix over large (although not
necessarily infinite) scale dimensions, the nondecaying
transport of other physical quantities is related to other
types of long-range order. Spin superflows, for exam-
ple, are related to a long-range order in the spin cor-
relations. For nondecaying transport of electron-hole
pairs, the long-range order must appear in the two-
particle density matrix for the electron-hole pair,103

not that for a pair of electrons, as in superconductors.
For this reason, Kohn and Sherrington's assertion104

that the Bose condensation of an electron-hole system
does not lead to the appearance of a superfluidity, on
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the basis that there is no ODLRO in the two-electron
density matrix in this case, is correct only if "super-
fluidity" means a nondecaying transport of mass and
charge. As was shown in Sec. 5, however, there may
be "superproperties" of a different type in such sys-
tems.

7. CONCLUSION

We will briefly point out some conclusions which can
be drawn from this analysis and which would be perti-
nent to experiment. It has been shown that the present
theoretical understanding of the nature of nondecaying
currents does not rule out the possibility that they will
exist, to some extent or other, in systems of fewer
than three dimensions. Such systems have been widely
discussed and continue to be discussed in connection
with attempts to find high-temperature superconductiv-
ity,105 It is, of course, a long way from the conclusion
that one- or two-dimensional superconductivity is pos-
sible in principle to specific indications of where and
how to seek it. The role of the analysis above is re-
stricted to the assertion that such searches are com-
pletely justified and reasonable.

Also justified and reasonable would be a search for
analogs of nondecaying mass and charge flows, i.e.,
"superflows," of other physical quantities, in particu-
lar, spin. There are some weighty pieces of experi-
mental evidence for the existence of spin superflows in
superfluid He3 (Subsection 4b). To detect this phenom-
enon in an ordinary magnetically ordered system would
undoubtedly be a feasible experiment right now, and it
would furnish a new possibility for the transmission of
a signal over a large distance without damping, e.g.,
controlling the motion of domain walls by a field applied
far from these walls.
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Gurevich, S. V. lordanskii, Yu. V. Kopaev, G. E. Pikus,
L. P. Pitaevskil, B. Z. Spivak, and A. A. Sobyanin for
some useful comments regarding the contents of this
review.

'F. London, Superfluids, Wiley, New York, Vol. 1, 1950;
Vol. 2, 1954.

2I. M. Khalatnikov, Teoriya sverkhtekuchesti (Theory of
Superfluidity), Nauka, Moscow, 1971.

3S. J. Putterman, Superfluid Hydrodynamics, Elsevier, New
York, 1974 (Russ. transl. Mir, Moscow, 1978).

4V. L. Ginzburg, Usp. Fiz. Nauk 120, 153 (1976) [Sov. Phys.
Usp. 19, 773 (1976)1.

5A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
6W. F. Brinkman and M. C. Cross, in: Progress in Low

Temperature Physics (ed. D. F. Brewer), Vol. 7A, North-
Holland, Amsterdam, 1978, p. 105.

7P. Wolfle, Rep. Prog. Phys. 42, 269 (1979).
8N. D. Mermin, in: Quantum Liquids (ed. J. Ruvalds and

T. Regge), North-Holland, Amsterdam, 1978, p. 195.
9P. G. de Gennes, Superconductivity of Metals and Alloys,

Benjamin, New York, 1966 (Russ. transl. Mir, Moscow,
1968).

10M. Tinkham, Introduction to Superconductivity, McGraw-
Hill, New York, 1975 (Russ. transl. Atomizdat, Moscow,
1980).

"L. D. Landau, Zh. Eksp. Teor. Fiz. 11, 592 (1941); So-
branie trudov (Collected Works), Vol. 1, Nauka, Moscow,
1969, p. 352.

12R. P. Feynman, in: Progress in Low Temperature Physics
(ed. C. J. Gorter), Vol. 1, North-Holland, Amsterdam,
1955, p. 36.

13J. C. Finemanand C. E. Chase, Phys. Rev. 129, 1 (1963).
I4E. B. Sonin, Zh. Eksp. Teor. Fiz. 64, 970 (1973) [Sov.

Phys. JETP37, 494 (1973)1.
15W. F. Vinen, in: Progress in Low Temperature Physics

(ed. C. J. Gorter), Vol. 3, North-Holland, Amsterdam,
1961, p. 1.

16S. V. lordanskii and L. P. Pitaevskrf, Zh. Eksp. Teor. Fiz.
76, 769 (1979) [Sov. Phys. JETP 49, 386 (1979)1.

I7S. V. lordanskii and L. P. Pitaevskii, Usp. Fiz. Nauk 131,
293 (1980) [Sov. Phys. Usp. 23, 317 (1980)1.

18H. Lamb, Hydrodynamics, Cambridge University Press,
1930 (Russ. Transl. Gostekhlzdat, Moscow, 1947).

19P. W. Anderson, in: Quantum Fluids (ed. D. F. Brewer),
North-Holland, Amsterdam, 1966, p. 146.

20E. B. Sonin, Zh. Eksp. Teor. Fiz. 59, 1416 (1970) [Sov.
Phys. JETP 32, 773 (1970)1.

21F. Bloch, Phys. Rev. A 7, 2187 (1973); 10, 716 (1974);
F. A. Blood. Jr., Phys. Rev. A 10, 714 (1974).

22S. V. lordanskii, Zh. Eksp. Teor. Fiz. 48, 708 (1965) [Sov.
Phys. JETP 21, 467 (1965)].

23J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19, 560
(1967).

24G. £. Volovik, Pis'ma Zh. Eksp. Teor. Fiz. 15, 116 (1972)
[JETP Lett. 15, 81 (1972)1.

25J. P. Hulin, C. Laroche, A. Libchaber, and B. Perin, Phys.
Rev. A 5, 1830 (1972).

26W. F. Vinen, Proc. R. Soc. 242, 493 (1957).
27K. W. Schwartz and C. W. Smith, Phys. Lett. A 82, 251

(1981).
28V. L. Gurevich, Kinetika fononnykh sistem (Kinetics of Pho-

non Systems), Nauka, Moscow, 1980, 817.
29W. A. Little, Phys. Rev. A 134, 1416 (1964).
3(>W. A. Little, Phys. Rev. A 156, 396 (1967).
31J. S. Langer and V. Ambegaokar, Phys. Rev. A 164, 498

(1967).
32T. J. Rieger, D. J. Scalapino, and J. E. Mercereau, Phys.

Rev. B 6, 1734 (1972); W. J. Scocpol, M. R. Beasley, and
M. Tinkham, J. Low Temp. Phys. 16, 145 (1974); V. P.
Galaiftco, Zh. Eksp. Teor. Fiz. 66, 379 (1974) [Sov. Phys.
JETP 39, 181 (1974)1; B. I. Ivlev, N. B. Kopnin, and L. A.
Maslova, Zh. Eksp. Teor. Fiz. 78, 1963 (1980) [Sov. Phys.
JETP 51, 986 (1980)1; I. O. Kulik, Solid State Commun. 35,
383 (1980).

33E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
34E. H. Lieb, Phys. Rev. 130, 1616 (1963).
35V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1971)

[Sov. Phys. JETP 34, 610(1971)1.
36V. N. Popov, Teor. Mat. Fiz. 11, 354 (1972).
37B. I. Halperin and P. C. Hohenberg, Phys. Rev. 188, 898

(1969).
MI. E. Dzyaloshinskif, Zh. Eksp. Teor. Fiz. 46, 1420 (1964)

[Sov. Phys. JETP 19, 960 (1964)1; 47, 336, 992 (1964) [Sov.
Phys. JETP 20, 223 (1965)1.

39E. B. Sonin, Solid State Commun. 25, 253 (1978).
40E. B. Sonin, Zh. Eksp. Teor. Fiz. 74, 2097 (1978) [Sov.

Phys. JETP 47, 1091 (1978)1.
41R. R. Gusemov and L. V. Keldysh, Zh. Eksp. Teor. Fiz.

63, 2255 (1972) [Sov. Phys. JETP 36, 1193 (1973».
42L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8,

153 (1935); L. D. Landau, Sobranie trudov (Collected Works),
Vol. 1, Nauka, Moscow, 1969, p. 128.

43A. J. Leggett and S. Takagi, Ann. Phys. (Paris) 106, 79
(1977).

44A. Hubert, Theory of Domain Walls in Ordered Systems
(Russ. Transl. Mir, Moscow, 1977); A. P. Malozemoff and

429 Sov. Phys. Usp. 25(6), June 1982 £. B. Sonin 429



J. C. Slonczewskl, Magnetic Domain Walls in Bubble Ma-
terials. Applied Solid State Science, Supplement I (1979)
(Russ. Transl. Mir, Moscow, 1982).

45G. Toulouse and M. Kleman, J. Phys. (Paris) Lett. 37,
L-149 (1976).

46G. E. Volovikand V. P. Mineev, Pis'ma Zh. Eksp. Teor.
Fiz. 24, 605 (1976) [JETP Lett. 24, 561 (1976)1; Zh. Eksp.
Teor. Fiz. 72, 2256 (1977) [Sov. Phys. JETP 45, 1186
(1977)1.

47V. P. Mineev, Topologicheski ustolchivye neodnorodnye
sostoyaniya v uporyadochennykh sistemakh ("Topological
stable inhomogeneous states in ordered systems"), Preprint
L. D. Landau Institute of Theoretical Physics, Chernogo-
lovka, 1980; V. P. Mineev, in: Soviet Scientific Beviews.
Sec. A: Physics Reviews (ed. I. M. Khalatnikov), Vol. 2,
Harvard Academic Publ., 1980, p. 173.

48G. E. Volovik and V. P. Mineev, Fizika i topologiya (Physics
and Topology), Znanie, Moscow, 1980.

49A. J. Leggett, Nature 270, 585 (1977).
50E. B. Sonin, Pis'ma Zh. Eksp. Teor. Fiz. 27, 703 (1978)

[JETP Lett. 27, 665 (1978)1.
51D. N. Paulson and J. C. Wheatley, Phys. Rev. Lett. 40, 557

(1978).
52P. W. Anderson and G. Toulouse, Phys. Rev. Lett. 38, 508

(1977).
53P. Bhattacharyya, T.-L. Ho, and N. D. Mermin, Phys.

Rev. Lett. 39, 1290 (1977).
54A. L. Fetter and M. R. Williams, Phys. Rev. B 23, 2186

(1981).
55M. Vuorio, J. Phys. C 7, L5 (1974); 9, L267 (1976).
56L. R. Corruccini, D. D. Osheroff, D. M. Lee, and R. C.

Richardson, Phys. Rev. Lett. 34, 564 (1975).
57K. Maki, J. Phys. (Paris) C C6, 1450 (1978).
58E. B. Sonin, Pis'ma Zh. Eksp. Teor. Fiz. 30, 697 (1979)

[JETP Lett. 30, 662 (1979)1.
MR. E. Sager, R. L. Kleinberg, P. A. Warkentin, and J. C.

Wheatley, J. Low Temp. Phys. 32, 263 (1978).
60R. A. Webb, Phys. Lett. A67, 197 (1978).
61I. A. Fomin, Zh. Eksp. Teor. Fiz. 77, 279 (1979) [Sov.

Phys. JETP 44, 416 (1979)1.
KT. J. Bartolac, C. M. Gould, and H. M. Bozler, Phys. Rev.

Lett. 46, 126 (1981).
ME. B. Sonin, Phys. Lett. A86, 113 (1981).
64S. A. Moskalenko, Fiz. Tverd. Tela (Leningrad) 4, 276

(1962) [Sov. Phys. Solid State 4, 199 (1962)1; J. M. Blatt,
K. W. Boer, and W. Brandt, Phys. Rev. 126, 1691 (1962).

65S. A. Moskalenko, Boze-eTnshteinovskaya kondensatsiya
eksitonov i bieksitonov (Bose-Einstein Condensation of Exci-
tons and Biexcitons), Kishinev, 1970.

66L. V. Keldysh, in: Problemy teoreticheskoi fiziki: Sb.
Pamyati I. E. Tamma (Collection of Problems in Theoretical
Physics Dedicated to I. E. Tamm), Nauka, Moscow, 1972,
p. 433.

67L. V. Keldysh, Usp. Fiz. Nauk 100, 514 (1970).
MI. Kh. Akopyan, E. P. Gross, and B. S. Razbirin, Pis'ma

Zh. Eksp. Teor. Fiz. 12, 366 (1970) [JETP Lett. 12, 251
(1970)); E. Hanamura and H. Haug. Phys. Rep. 33, 209
(1977); D Hulin, A. Mysyrowicz, and C. Benottala Guil-
laume, Phys. Rev. Lett. 45, 1970 (1981).

69L. V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela (Lenin-
grad) 6, 2791 (1964) [Sov. Phys. Solid State 6, 2219 (1964)1.

TOJ. Des Cloizeaux, J. Phys. Chem. Solids 26, 259 (1965).
71Yu. V. Kopaev, in: Tr. FIAN SSSR (Proceedings of the

Lebedev Physics Institute), Vol. 86, 1975, p. 3.
reB. I. Halperin and T. M. Rice, Solid State Phys. 21, 115

(1968).
raW. M. Lomer, Proc. R. Soc. London 80, 489 (1962).
MA. N. KozlovandL. A. Maksimov, Zh. Eksp. Teor. Fiz.

49, 1284 (1965) [Sov. Phys. JETP 22, 889 (1966)1.

75J. Zittartz, Phys. Rev. 165, 612 (1968).
7eV. G. KoganandB. A. Tavger, in: Fizika elektronno-

dyrochnykh perekhodov i poluprovodnikovykh priborov
(Physics of Electron-Hole Transitions and Semiconductor
Devices) (ed. S. M. Ryvkin and Yu. V. Shmartsev), Nauka,
Leningr. otd., Leningrad, 1969, p. 35.

77Yu. E. Lozovikand V. I. Yudson, Pis'ma Zh. Eksp. Teor.
Fiz. 22, 556 (1975) [JETP Lett. 22, 274 (1975)1; Zh. Eksp.
Teor. Fiz. 71, 738 (1976) [Sov. Phys. JETP 44, 389 (1976)1.

^S. I. Shevchenko, Fiz. Nizk. Temp. 2, 505 (1976) [Sov. J.
Low Temp. Phys. 2, 251 (1976)1 I. O. Kulik and S. I. Shev-
chenko, Fiz. Nizk. Temp. 2, 1405 (1977) [Sov. J. Low Temp.
Phys. 2, 687 (1976)1; Solid State Commun. 21, 409 (1977).

raS. I. Shevchenko, Fiz. Nizk. Temp. 3, 1405 (1977) [Sov. J.
Low Temp. Phys. 3, 675 (1977)1.

80D. Yoshioka and H. Fukuyama, J. Phys. Soc. Jpn. 45, 137
(1978); 47, 327 (1978).

81E. B. Sonin, Pis'ma Zh. Eksp. Teor. Fiz. 25, 95 (1977)
[JETP Lett. 25, 84 (1977)1.

82A. V. Klyuchnik and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz.
76, 676 (1979) [Sov. Phys. JETP 49, 335 (1979)1.

MYu. E. Lozovik and A. V. Klyuchnik, J. Low Temp. Phys.
38, 781 (1980).

84A. Arrott, in: Magnetism (ed. C. T. Rado and H. Suhl),
Vol. 2B, Academic, New York, 1966, p. 296.

85E. W. Fenton, J. Phys. F 8, 689 (1978).
86Yu. E. Lozovik and V. N. Yudson, Pis'ma Zh. Eksp. Teor.

Fiz. 25, 18 (1977) [JETP Lett. 25, 14 (1977).
*7S. A. Moskalenko, Fiz. Tverd Tela (Leningrad) 4, 276

(1962) [Sov. Phys. Solid State 4, 199 (1962)1; V. A. Gergel',
R. F. Kazarinov, and R. A. Suris, Zh. Eksp. Teor. Fiz.
54, 298 (1968) [Sov. Phys. JETP 27, 159 (1968)1.

88F. London, Phys. Rev. 54, 947 (1938).
89V. L. Ginzburg and L. D. Lnadau, Zh. Eksp. Teor. Fiz.

20, 1064 (1950); L. D. Landau, Sobranie trudov (Collected
Works), Vol. 2, Nauka, Moscow, 1964, p. 126.

90O. Penrose, Philos. Mag. 42, 1373 (1951); O. Penrose and
L. Onsager, Phys. Rev. 104, 576 (1956).

"C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
92M. A. Eggington and A. J. Leggett, Collect. Phenom. 2, 81

(1975).
MT. M. Rice, Phys. Rev. A 140, 1889 (1965).
MP. C. Hohenberg, Phys. Rev. 158, 383 (1967).
95N. N. Bogolyubov, Kvazisrednie v zadachakh statisticheskoi

mekhaniki CQuasiaverages in problems in statistical me-
chanics"), Preprint, Joint Institute for Nuclear Research,
Dubna, 1963; Izbrannye trudy (Selected Works), Vol. 3,
Naukova dumka, Kiev, 1971, p. 174.

MD. Krueger, Phys. Rev. 172, 211 (1968).
97E. B. Sonin, Zh. Eksp. Teor. Fiz. 56, 963 (1969) [Sov.

Phys. JETP 29, 520(1969)].
MR. M. Ziff, G. E. Uhlenbeck, and M. Kac, Phys. Rep. 32,

171 (1977).
99H. J. Verbeck, E. van Spronsen, H. Mars, H. van Beelen,

R. de Bruyn Ouboter, and K. W. Taconis, Physica (Utrecht)
73, 621 (1974).

100A. Hartoogand H. van Beelen, Physica (Utrecht) Ser. B + C
103, 263 (1981).

101V. N. Bogomolov, Usp. Fiz. Nauk 124, 171 (1978) [Sov.
Phys. Usp. 21, 77 (1978)1.

102M. D. Girardieau, J. Math. Phys. 6, 1083 (1965); 10, 993
(1969); G. Carmi, J. Math. Phys. 9, 174 (1968).

103E. Hanamura and H. Haug, Solid State Commun. 15, 1567
(1974).

104W. KohnandD. Sherrington, Rev. Mod. Phys. 42, 1(1970).
105V. L. Ginzburg and D. A. Kirzhnits (editors), Problema

vysokotemperaturnol sverkhprovodimosti (The Problem of
High-Temperature Superconductivity), Nauka, Moscow, 1977.

Translated by Dave Parsons

430 Sov. Phys. Usp. 25(6), June 1982 . B. Sonin 430


