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are discussed. The Jahn-Teller effect in these insulators causes structural phase transitions, lowers the lattice
symmetry, and gives rise to an orbital ordering. Various interactions responsible for these effects are
discussed: the electron-lattice, quadrupole-quadrupole, and exchange interactions. The mutual effects of the
orbital ordering and the magnetic properties of corresponding compounds are discussed. The exchange
interaction in the cases of twofold and threefold orbital degeneracy is discussed. The effect of a magnetic field
on the orbital and magnetic structure and the temperature dependence of the exchange interaction are
studied. The properties of several representative compounds containing Jahn-Teller ions are discussed.

PACS numbers: 71.70.Gm, 71.70.Ej, 75.30.Et

CONTENTS
LLIRtroduction . ..ottt et i e i i e e 231
2. Jahn—Tellerions in crystals . ... .....iiout it eriii it iiier e iinnnerasannnnses 232
3. The Jahn—Teller effect for isolated centers and the cooperative Jahn—Teller
1233 1 2 P 233
a) The Jahn—Teller effect for an isolated center b) The interaction of
Jahn—Teller ions in concentrated systems
4. The exchange interaction in Jahn—Tellersystems . .......... . ... it iiiiiaii..n, 237
a) Superexchange and the Hubbard model b) Superexchange in the case of orbital
degeneracy c) Superexchange ordering of orbitals in some specific materials
5. lons with a threefold orbital degeneracy (fo ions) . ........ ... ... ... il 240
6. Structural phase transitions in materials having an orbital degeneracy ...................... 243
a)Ferrodistortion ordering (crystals with the spinel structure) b) Antiferrodistortion
ordering (crystals with the perovskite structure) c) Phases with a tripling of the
period and incommensurable structures
7. Temperature dependence of the magnetic properties of Jahn—Teller systems ................ 246
a) Change in the orbital structure and the exchange interaction b) Suppression of
the exchange interaction by the Jahn—Teller effect
8. Effect of a magnetic field on Jahn—Tellersystems . .............. ... .. v, 248
9. Methods for studying orbital ordering ............ ... .. .. . il 251
10. Some other theoretical questions ............ .. ... i i i, 252
11.ConcluSION ... vttt e e ittt 254
References .. ... ... . i i i e e e e 254

1. INTRODUCTION

At first glance, the two phenomena in the title of this
review do not seem to have all that much in common.
The “Jahn-Teller effect” is the name applied to several
phenomena which occur in systems which have a degen-
erate electronic state. This degeneracy makes the
symmetric configuration of atoms unstable, gives rise
to a specific and strong electron-vibrational (vibron)
interaction, causes structural phase transitions in sev-
eral cases which lower the symmetry of the crystal,
etc. Magnetism, on the other hand, deals primarily
with the properties which result from the electron
spins, and although the lattice is important in several
effects it is usually not a decisive factor.

It nevertheless turns out that there is a large and dis-
tinctive class of magnetic materials in which the Jahn-
Teller effect plays an extremely important role, large-
ly determining not only the structural properties but
also the magnetic properties. In turn, the exchange
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interaction, of obvious importance to magnetism, may
substantially affect the lattice in such systems, induc-
ing structural transitions. The intimate relationship
between the structural and magnetic properties distin-
guishes this class of materials and makes it particu-
larly interesting. These questions are the subject of
this review.

Specifically, this review will deal with materials in
which the ground state of the magnetic ions in the sym-
metric configuration has an orbital degeneracy in addi-
tion to the Kramers (spin) degeneracy. This is by no
means an exotic situation: A simple analysis shows
that the materials of this class may outnumber ordi-
nary, “classical” magnetic materials within the larger
class of magnetic insulators.

For the most part, the review will deal with the prop-
erties of transition metal compounds. Many rare earth
compounds exhibit similar effects, but they are mani-
fested in different ways because of the strong spin-or-
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TABLE I. Some examples of ordinary and Jahn—-Teller mag-

netic materials.

Crystal structure Magnetic structure
Perovakites
| Ordinary: KNiF, . Cubic (the magnetic ions Two-sublattice antiferro-
fonp a simple cubic magnet with antiparalle!
lattice) spins of nearest neighbors
(of the G type)2
JT: KCuF, With tetragonal distortions F agnetic planes coupled
(c/a‘ < 1); doubling of the antiferromagnetically (of the
period in the basis plane A type).? KCuF, is an ex-
KCeF With orthorhombic distor- ample of a quasi~one-dimen-
STty tions sional antiferromagnet (the ex-
LaMnO, The same (transition to the is mugchTugers t;l’:ﬂxmihtz‘ m’
cubic phase at T = 900 K) basis plane)

Stratified compounds with a square lattice of ions (“two-di jonal .

perovskites™)

Ordinary: K, NiF, Two-dimensional perovskite | Quasi-two-dimensional

(perovskite-like square lattice | antiferromagnet
in a layer)

JT K‘)C‘I-Fé‘ Distorted two-di i Quasi-two-di jonal fer-
RbyCrl, perovskites with a doubling agnets (weak fer
(CaHeny NHy)sCuCly | of the period in the layer or antiferromagnetic interac-

tion between layers)
Spinels
Ordinary: NiFe,O, Cubic Neel spin configura-
JT: CuFe,0; Tetragonal, c/a = 1.06; trans- tion
ition to a cubic phase at The same
Te=633K
MnyO¢ Tetragonal, ¢/a=1.16, Yafet—Kittel configuration
Te=1143K {a more complicated spin
structure is possible). The
magnetic structures are sig-
nificantly related to an ex-
change between jons in
tetrahedral (A) and octa-
hedral (B) sites and have no
special properfies for spinels
with eg fons.
Rutiles
Ordinary: NiF, Tetragonal (magnetic ions Two-sublattice antiferromag-
forming a volume-centered | net with antiparallel spins of
lattice) nearest neighbors
. With manoclinic distor-

JT: 2
CrF, tions The same
CrCl, With orthorhombic distor- | Antiferromagnet with alter-

tions nating (110) ferromagnetic
planes
CuF, With monoclinic distortions | Magnetic lattice is doubled
in comparison with the
crystal lattice
Garnets
Ordinary: Ca,Fe,Ge,0,, | Cubic (Fe** ions in octa- Two-sublattice antiferro-
hedral surroundings form a magnet with antiparallel
bec lattice) spins of nearest neighbors
JT: Ca,Mn,Ge,0,, With tetragonal distortions, | Complex noncollinear struc-
(Mn®” Jahn—Teller ion) ¢/a=1.003; transition to the | ture with moments lying on
cublc phase at T, = 400 K a cone whose axis is the ¢
(Ref. 85) axis™

*The experimental data are taken primarily from Refs. 2—4.

bit interaction. The properties of rare earth com-
pounds exhibiting a Jahn-Teller effect are discussed in
detail in the review by Gehring and Gehring.!

Compounds which contain ions having an orbital de-

generacy (“Jahn-Teller ions”) are found among magne-
tic insulators of essentially all classes. Their proper-
ties are significantly different from those of the corre-
sponding materials containing “ordinary” ions: Their
crystal structur-. s distorted; they frequently exhibit
structural phase transitions; the magnetic structure is
also more complicated in most cases; and they fre-
quently exhibit an anomalously pronounced magnetic
anisotropy and magnetostriction. Some representative
compounds are listed in Table I, where their properties
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are compared with those of ordinary magnetic mater-
ials.

We first notice that the symmetry is typically lower
for materials containing Jahn-Teller ions, and struc-
tural transitions occur. Such effects, which occur in
concentrated Jahn-Teller systems, result from an
interaction between the Jahn-Teller ions and are col-
lectively referred to as the “cooperative Jahn-Teller
effect.” The transitions which result from the coopera-
tive effect are unique among the many and varied struc-
tural transitions which occur in solids, for the following
reason: These transitions seem to constitute essential-
ly the only case in which the elementary, microscopic
nature of the transition is known precisely (another case
might be transitions involving the excitation of space-
charge waves). In the case of the cooperative effect it
is possible, with knowledge of nothing more than the
chemical composition of the crystal (i.e., the nature of
the ions in it), to unambiguously predict a structural
transition in the crystal which lowers the symmetry.
For most transitions of other types, e.g., for ferro-
electrics, such predictions are not possible at present.

It is also clear from Table I (which gives a far from
exhaustive list of Jahn-Teller magnetic materials),
that in nearly all cases the Jahn-Teller systems have
unusual magnetic properties in addition to their lower
crystal symmetry. Perhaps the clearest example is the
compound KCuF,, in which the magnetic properties are
definitely of a quasi-one-dimensional nature, while the
crystal lattice remains nearly cubic. Another interest-
ing observation is that ferromagnetic ordering occurs
more frequently in compounds containing Jahn-Teller
ions (compare K,CuF, and K,NiF,, for example). Our
purpose in this review will be to explain these and other
distinctive features of these materials.

2. JAHN--TELLER IONS IN CRYSTALS

To describe the state of an electron in a d level (I=2)
in a transition metal ion we need to specify, in addition
to the spin, the orbital quantum number: = -2,-1,
...,+2. Ina solid, the fivefold-degenerate d level is
split by the crystal field, but the orbital degeneracy is
not lifted completely in the crystal symmetry is suffi-
ciently high. In a field of cubic symmetry (for example,
in octahedral surroundings, Fig. 1a), the one-electron
d level splits into a threefold-degenerate level (t,;) and
a two-fold-degenerate level (e,) [in tetrahedral sur-
roundings (Fig. 1b) there is an inversion of terms, and
the e, levels lie below t,,J. In a multielectron ion these
levels are systematically filled by electrons with paral-
lel spins in accordance with Hund's rule; it is obvious,
however, that orbital degeneracy may remain.!’ If the

Dwe will use the single-electron model everywhere in this re-
view, and we will not switch to the complete systematics of
many-electron terms which is customarily used. Although
this approach is not always completely rigorous, it does yield
a clear qualitative interpretation of these phenomena, and in
a study of the Jahn-Teller effect it is very convenient: Know-
ing nothing more than the number of d electrons in the ion we
are frequently in a position not simply to analyze the stability
of the original symmetric configuration but also to predict
the type of distortion in several cases.
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FIG. 1.
surroundings; b—in tetrahedral surroundings.

Splitting of the d level of an fon. a—In octahedral

spin-orbit interaction is ignored, for example, only the
ions with d®, d°, and d® configurations would have a non-
degenerate state in an octahedron; all other ions would
have an orbital degeneracy (twofold if there is a single
electron or hole in an e, level or threefold if there are
one or two electrons or holes in a t,, level). It has been
established (see Ref. 5, for example) that the orbital
angular momentum is completely frozen for e, levels:
The e, states have real wave functions dgz.,2.,2 (we will
use the designation d,. below) and d,2_,2, which corre-
spond to the states |2*=0) and (1,/V2)( |1*=+2)+][1*=-2)).
For them, the spin-orbit interaction is inconsequential.
The corresponding ions with the configurations (in octa-
hedral surroundings) d* (Cr®, Mn*) and d° (Cu*,Ag®)
or (in tetrahedral surroundings) d* (T1**,V**) and d°
(Fe®,Ni**) are usually called “Jahn-Teller ions” (in the
narrow sense of the term). Many anomalous properties
are also exhibited by compounds containing these ions:
structural phase transitions and a lowering of the lat-
tice symmetry, nontrivial magnetic structures, an ex-
change with an anomalous temperature dependence, etc.
(Table I). In contrast, the spin-orbit interaction may
lift the degeneracy for ions in which the t,_ shell is par-
tially filled (the wave functions of this shell are d,,, d,,,
d,.; alternatively, they may be characterized by an ef-
fective angular momentum /.., =1 with the eigenfunctions
[1£=0)=d,,, |I*= £1)=(F1/Y2) X(d,, +id,,)]. Again, how-
ever, these ions and the corresponding magnetic ma-
terials retain many anomalous properties, which are
ultimately due to this partial filling of the initial t,,
states. In the first place, several magnetic compounds
of this type also undergo structural transitions of a
purely Jahn-Teller nature, with the result that the
spin-~orbit interaction again becomes ineffective. Even
if the spin—orbit interaction is predominant, however,
these materials exhibit several unusual properties: The
magnetic ordering is frequently accompanied by signifi-
cant lattice distortions; they exhibit a giant magneto-
striction (one or two orders of magnitude stronger than
the ordinary magnetostriction); the magnetic anisotropy
is extremely strong; etc. Among the materials of this
type are compounds which contain such important ions
as Fe® and Co* (there are many others). Below, we
will focus on Jahn-Teller systems with a twofold de-
generacy; because of the special nature of systems with
t;, electrons, we will consider these systems separate-
ly in Section 5 (we will also be touching briefly on cer-
tain aspects of t,, systems in the following sections).

The difference in the roles played by the spin-orbit
interaction—the difference which is responsible for the
difference between the properties of t,, and e, ions—
also causes differences between transition metal com-
pounds and rare earth compounds. In rare earth com-

233 Sov. Phys. Usp. 25(4), April 1982

r4 r4

z

dyy2 g2 g2(@z2) dpt_y2 dzy

FIG. 2. Distribution of the electron density for the «
e.(d,2, d,2.,2) and t,, (d,, d_,, d,,) orbitals. The d,, and d,,
orbitals have the same shape as the d_, orbital, with an
appropriate change in axes.

pounds the exceedingly strong LS coupling keeps the or-
bital and spin states of an ion interrelated in all sit-
uations, and the only good quantum number is the total
angular momentum J. Correspondingly, the magnetic
ordering in these compounds is usually accompanied by
a lattice distortion (there are exceptional cases), or the
magnetic ordering and the orbital (Jahn-Teller) order-
ing turn out to be mutually exclusive.® In compounds of
transition metals, in contrast, especially those with a
twofold degeneracy {(e,), these transitions occur at dif-
ferent temperatures, and the relationship between the
magnetic ordering and the orbital ordering is more
complicated.

The specific form of the wave functions of the e, and
t,, electrons, given above, may also help explain the
very nature of the level splitting by a crystal field. The
electron density distribution in these wave functions is
shown in Fig. 2. It is obvious from simple electrostatic
considerations that the repulsion of the electron cloud
from the negatively charged ligand ions in octahedral
surroundings is stronger for the e, orbitals (which are
pointed directly at these ions), and for this reason the
energy of the e, levels is higher than that of the t, lev-
els in this case. In tetrahedral surroundings we find
the opposite situation. 1t is also clear that if the ideal
cubic symmetry is preserved (in the absence of octa-
hedral distortions) the e, levels themselves and also the
t,, levels will have identical energies. This qualitative
picture will be helpful below.

3. THE JAHN-TELLER EFFECT FOR ISOLATED
CENTERS AND THE COOPERATIVE JAHN-TELLER
EFFECT

A fairly extensive literature has been built up on the
various aspects of the interaction of electrons with the
lattice in the case of a level degeneracy (see, for ex-
ample, Refs. 1, 5, and 7-10). The history of this -
question actually begins with the papers in Ref. 11, In
these papers a theorem is proved according to which
any configuration of atoms or ions (except a linear
chain) in which there is a degenerate electron ground
state is unstable with respect to deformations which
lower the symmetry of the configuration (the degener-
acy here is understood to be a degeneracy other than
the Kramers degeneracy). It is clear from no more
than the formulation of this theorem that the interaction
of electrons with ion vibrations in Jahn-Teller systems
should have some pecularities. The entire range of
phenomena which result from the degeneracy of the
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ground term are referred to as the “Jahn-Teller ef-
fect.” In this section of the review we will give only a
simplified qualitative description of the Jahn-Teller ef-
fect; all the details can be found in the cited literature.

a) The Jahn-Teller effect for an isolated center. We
first consider the Jahn-Teller effect for an isolated
center, e.g., a Jahn-Teller impurity in a crystal. We
assume that the ground state is twofold-degenerate in
the symmetric phase. The lowering of the symmetry,
characterized by a deformation &, causes a splitting of
the electronic levels which is linear in 5, while the de-
crease in elastic energy is ~6°. Asa result, the sym-
metric configuration is always unstable, and there is a
lifting of the degeneracy, accompanied by a lowering of
the symmetry. As we will see below, the physical rea-
son for these events is an interaction between the elec-
trons of the degenerate level and the deformation of the
surroundings or, equivalently, an interaction with the
vibrations of the ligands surrounding the given ion. In
the simplest case the energy of the system may be writ-
ten as

E (8) =58 % g8, (1)

where the parameter § is a measure of the deformation,
C is the elastic modulus, g is the constant of the inter-
action of the electronic subsystem with the deformation
8, and the second term in (1) describes the change in
the energy of the electronic levels. The equilibrium
configuration is found by minimizing (1); it corresponds
to 8,=+g/C.

What does the wave function of the system look like?
If there are no distortions, the wave function in the
adiabatic approximation can be written as the product of
an electronic wave function ¥, ,(r) (a superposition of
two degenerate states) and a nuclear wave function ¢(R):
®;, (R, r)=@(R)Y, ,(r). The nuclear wave function de-
scribes the state of the surrounding ions with the equi-
librium position corresponding to the symmetric config-
uration (6=0), with small oscillations about this equi-
librium position.

The electron-lattice interaction lifts the degeneracy,
and the new equilibrium position corresponds to a de-
formation 5,=xg/C. At the position 5, the lower level
is level 1, say, while in position 6. the lower level is
level 2. Corresponding to the different electronic wave
functions ¢, and ¥, are different nuclear wave functions,
¢, and ¢,, with the equilibrium positions 6,:

@, (R, 1) = ¢ (R) ¥ (1), Oy (R, 1) = ¢, (R) P, (r); (2)

here &, and &, are the wave functions of two equivalent

FIG. 3. Schematic deformation dependence of the energy for
the case of twofold degeneracy. Here E;; is the lowering of
the energy due to the Jahn-Teller effect.
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FIG. 4. Displacements of anions: a—corresponding to the
filled d 2 orbital; b—corresponding to the filled d x2-y2 Orbital
(the @, vibrational mode); c—the @, vibrational mode (which
stabilizes a certain superposition of the d .2 and d,».,2 orbitals).

ground states of the system, with corresponding ener-
gies

Eyr— 5 (8.0 F gbp=~£ . (3)

The wave functions &, and &, are called “vibron func-
tions.” Figure 3 shows the 6 dependence of the energy
for these two types of deformations; the energy minima
correspond to the functions &, and &,, and the excited
states ¢,¥, and ¢,¥, correspond to the energy E‘, indi-
cated in this figure.?’

As a specific example we consider the case of ions for
which there is a single electron in the e, level and which
are in octahedral surroundings. The charge distribu-
tion corresponding to the degenerate orbitals d,,2 2,2
(d,2) and d,2.,2 is shown schematically in Fig. 4; the cir-
cles here represent negatively charged ligands (O* or
F" ions, for example). Figure 4 helps explain the na-
ture of the Jahn-Teller distortions: If the d,; orbital is
filled, conditions will favor a stretching of the octahed-
ron along the z axis because of Coulomb repulsion (as
indicated by the arrows in Fig. 4). The deformation
corresponding to the orbital d,. .2, in contrast, tends to
flatten the octahedron. These two possibilities are
equivalent in the harmonic approximation, as was found
above. When the anharmonicity of the lattice is taken
into account, one possibility may prove preferred; just
which will depend on the parameters. Experiments
show that the stretching (c/a>1) is usually preferred
(specifically, for the Cu®*, Cr*, and Mn* ions).

In a real cubic crystal there is yet another sort of
latitude: Even if we know that the octahedron will be
stretched, the particular axis along which the stretch-
ing occurs may be any of the three crystal axes, x, y,
z. Experimentally, it is observed that this random or-
ientation does in fact occur for impurities. For each
impurity, the orientation is determined primarily by
the local stresses which are always present in real

Y'strictly speaking, the Jahn-Teller effect does not imply a
lifting of the degeneracy for an isolated center. It corre-
sponds rather to simply an instability of the symmetric state.
As is clear from Eq. (3) and Fig. 3, the deformations 6, are
equivalent, and the twofold degeneracy is preserved, but for
new electronic-vibrational (vibron) states, rather than for
purely electronic states. Thermal and quantum transitions
can occur between the states &; and ®,; these transitions are
the essence of the so-called dynamic Jahn~Teller effect (more
on this below).
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FIG. 5. Description of the Jahn-Teller distortion and of the
orbital ordering in the plane of the variables 7%, 7% or of the
variables Q,, @;. The angle 6 characterizes an arbitrary linear
superposition of e, orbitals. The orbitals d,2, d,2, and d,
and, correspondingly, octahedra stretched along the 2z, x, and
y axes correspond to the angles 8 =0, (2r/3), (47/3). The or-
bitals d 2..2,d2.,2,d 2.2 and the correspondingly compressed
octahedra correspond to the angles v, - /3, +r/3. For the
case of a hole orbital (for example, for the Cu?* ion in octa-
hedral surroundings) the signs of the deformations are oppo-
site to that of the electronic deformation. In other words, the
angle 6 in the @,, @, plane is replaced by v~ 4.

crystals.®’ The axes of the deformed octahedra can be
oriented by a uniaxial external pressure.

In a mathematical description of the e, levels, some
fictitious spin or pseudospin 7=1/2 may be associated
with the two wave functions d,z and d,z.,2, in sucha
manner that the wave function d,2 corresponds to the
value 77=1/2, while d,2.,» corresponds to 7¢= -1/2. An
arbitrary superposition of wave functions is then char-
acterized by the angle @ in the (7%, 7*) plane (Fig. 5).
The Hamiltonian of the interaction of the electrons with
the vibrations may be written'®

Hipy = —g (Qsv + Q,1%). (4)

Here @, is the coordinate of the normal vibration mode
indicated by the arrows in Figs. 4a and 4b, while @,
corresponds to another vibrational mode, which may
also lift the degeneracy; it is shown in Fig. 4c. The
ion vibrations in the mode @, are of the form 22% —x?
—y%, while those in the @, mode are of the form x? - y%
The total Hamiltonian for an e, center which is inter-
acting with the vibrations is

1= £ (03 03 — £ (05T + Qu7™) + H anharm - (5)

If the anharmonic terms are ignored, the ground state
is degenerate in the angle 8, and the energy surface, in
contrast with that in Fig. 3, has the axisymmetric
(“sombrero”) form in Fig. 6. When the anharmonicity
is taken into account [it generates terms ~ cos 36 in the
Hamiltonian in (5)], the preferred states become, for
example, the three states d,, d,2, d,2, which correspond
to the angles 0, +27/3 (Ref. 13). Tunneling and thermal
transitions can occur from one minimum to another
(there may be a reorientation of the long axes of the
octahedron). If there is a high probability for such
transitions, we may speak of a “dynamic” Jahn-Teller
effect, while if they go slowly, i.e., if the system is
“frozen” in one state, then we are dealing with a “sta.

VAt a sufficiently high impurity concentration there may even
be a state of a““Jahn-Teller glass,” in which (by analogy with
spin glasses) the axes of the octahedra are oriented in a ran-
dom manner, but the reorientation of each octahedron leads
to changes in the system as a whole.!?
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FIG. 6. The energy surface for the e, terms which are inter-
acting with twofold~degenerate E, vibrations. Anharmonic
effects produce a“ripple” (three minima) at the bottom of the
‘“channel.”

tic” Jahn-Teller effect.?’ In the static case, a defor-
mation of the lattice can be observed near the center;
in the dynamic case, the deformations are averaged
out, and the picture remains spherically symmetric.

In the latter case, however, the wave function of the
system is of a vibron nature, leading to several impor-
tant consequences, primarily a decrease in many of the
matrix elements (the appearance of so-called Ham sup-
pression factors®).

If, for example, some operator (the angular momen-
tum operator L, say) has nonvanishing off-diagonal
matrix elements which in the ab§ence of a Jahn-Teller
effect would be of the form (&, |L|&,)= (¥, Ii (900 | 90
=, |L |¥,), now, according to (2), the different elec-
tronic wave functions ¢, correspond to different nuclear
wave functions ¢, (different equilibrium positions); i.e.,

@ L Dy = 1 L[ pu, (6)
where (for i #j)
u=(q; (R) | 9, (R)) = 2EIT/? 4,

and E;; is the energy lowering caused by the Jahn-Tel-
ler effect. In particular, the appearance of the sup-
pression factors u reduces the multiplet splitting of the
terms caused by the spin-orbit interaction: LS-—-xLS.

In addition to weakening the spin-orbit interaction,
the Jahn-Teller effect causes other changes in the mag-
netic properties of the ions. For example, it may give
rise to an important anisotropy of the g-factors (for
Cu*, for example, we usually find g, ~ 2.4 and g, = 2.08).

It should be emphasized that for isolated centers the
difference between the static and dynamic Jahn-Teller
effects is not a fundamental one: A given system with a
characteristic transition time 7~%/w may exhibit the
characteristics of a dynamic Jahn-Teller effect in cer-
tain experiments, where there is an averaging over
long time intervals (in NMR, for example), while it
may exhibit the characteristics of a static effect in oth-
er experiments, where the scale time is short (optical
absorption, for example). In the discussion below, of
concentrated systems, we will be dealing primarily
with the static case.

b) The interaction of Jakn-Teller ions in concentrated
systems. Let us consider in more detail the Jahn-Tel-
ler effect in materials which have a high concentration

YGenerally speaking, the terminology has not yet been finally
established here; these terms are sometimes applied to
slightly different situations.
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FIG. 7. “Antiferro”’ orbital ordering due to an interaction of
Jahn-Teller ions with the lattice. The displacement of the
cation (the common vertex of the two octahedra) indicated by
the arrow stabilizes the d,2 and d, 2.2 orbitals, respectively,
at the neighboring centers.

of Jahn-Teller ions; some examples of such compounds
were given in the Introduction. It is easy to see that in
this case the Jahn-Teller distortions and the corre-
sponding filling of the orbitals of different centers are
not independent: An interaction between them arises
and makes these distortions cooperative, leading to
phase transitions. We should point out here that the
cooperative Jahn-Teller effect can be characterized
from several points of view. First, there is a lowering
of the symmetry, and there is a distortion of the lat-
tice, accompanied by a simultaneous ordering of orbi-
tals. Finally, the Jahn~Teller effect and the filling of
one of the orbitals are accompanied by a change in the
space-~charge distribution—more precisely, by the ap-
pearance of a quadrupole moment at the center.

We may distinquish among three types of interactions
between Jahn-Teller ions, which may be called “elec-
tronic-vibrational,” “quadrupole,” and “exchange”
interactions.

The electronic-vibrational interaction results from
the deformation of the surroundings of a given ion. The
deformations caused by different cations in the crystal
interact with each other. In the simplest case (Fig. 7),
an ion lying halfway between two Jahn-Teller ions be -
longs to the surroundings of both of these ions simul-
taneously, and its displacement due to the Jahn-Teller
effect at cation 1 thus implies some deformation of the
surroundings of cation 2; this deformation leads to a
corresponding filling of orbitals (in the case in Fig. 7,
the d,. orbital will be filled at center 1 and the d,. . or-
bital will be filled at center 2). It may be said that ina
crystal the vibrations which are important for the Jahn-
Teller effect transform from local vibrations into pho-
nons, which propagate throughout the crystal and carry
the interaction between Jahn-Teller ions.

For a description of this interaction it is convenient
to use the pseudospin representation which was intro-
duced above for a discussion of isolated centers. Ina
crystal we find,'* instead of (5},

H= E h—‘:h‘ (P:;Pkr!‘m'uqn)— T‘ﬁ_ E elkR, (gyn)qkl'[;“" g(:,)qkﬂ;)
k,» k, 3§ : ,

— 3 (g € 4 80T €) + 5 (€2 + (€ |
H
(7)

here w,, is the frequency of a phonon with wave vector
k and polarization s, q,, and p,, are the corresponding
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coordinate and momentum, and 1, is the pseudospin of
the j-th center. The term corresponding to the interac-
tion with a homogeneous deformation € (phonons with -
k=0) has been singled out explicitly in (7); this term is
characterized by the constant g,. It turns out to be ex-
tremely useful to single out this term in several cases,
e.g., in a study of the behavior of the elastic moduli
(Section 9).

Phonons can be eliminated from Hamiltonian (7), and
as a result we find an interaction directly between
pseudospins (between Jahn-Teller states). We will not
reproduce the corresponding derivation here!'?; it is
quite simple, but it leans heavily on the particular fea-
tures of the given system (on the lattice structure, the
nature of the degenerate electronic levels, and the na-
ture of the phonons with which these levels are interact-
ing). The resulting Hamiltonian may be written sche-
matically in a form which is similar to that of the Heis-
enberg (or Ising) Hamiltonian for pseudospins,

H= 2 (s +J e, @)
.

where the “exchange” constants are expressed in terms
of the parameters of Hamiltonian (7) by

292 *2) ()
. (E}E) Bus Bk ik(R;-Rp (9)

K, s Ops
with a corresponding expression®’ for J7,.

In other cases, in which only a single nondegenerate
vibrational mode is coupled with Jahn-Teller levels,
the effective Hamiltonian which is found may contain
only the 7* components; i.e., it may correspond to the
Ising interaction. This is the situation, for example, in
the orthovanadates of rare earth metals,’ MeVOQ,.

Another form of the interaction, which can also lead
to an orbital ordering, is the direct quadrupole—quad-
rupole interaction. We have already mentioned that the
Jahn-Teller effect is accompanied by the appearance of
a quadrupole moment, because of the d electrons. The
interaction of the quadrupole moments is described in
the standard way,

Dyg D 2 2
Hqu=%§4—ﬂ—L——a—(-,:7). (10)

We know that the quadrupole moment of an atom or
ion can be expressed in terms of its orbital angular mo-
mentum, '

Dep= i Balit Ll 1), (11)

_ 3
8= 3L @L—1)

In the case of e, orbitals (for which the matrix ele-
ments of the orbital angular momentum are zero) it
turns out that the quadrupole moment can be expressed
it terms of the same pseudospins® 1, so that the inter-
action (10) takes a form similar to that of (8). In the
case of the t,, orbitals, in contrast, an effective orbital
angular momentum l,,,=1 (we will omit the “eff” below)

S)strictly speaking, since the operators 7 and ™ do not com-
mute the transformation from Hamliltonian (7) to the pseudo-
spin Hamiltonian (8) is not exact. In this case the phonons
are not completely separated, and there are several special
consequences! (see also Section 7).
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appears in (10), and the interaction (10) can be ex-
pressed in terms of the product of invariants of the type
(12-2/3),(2-12), etc.”!* On the other hand, the inter-
action for the t,; orbitals and the interaction induced by
phonons can also be expressed in terms of these invari-
ants, but with different constants.'®

Let us examine these pseudospin Hamiltonians.
First, we note that they are anisotropic: In general,
the terms 775 and 7j7] enter with different constants.
There may also be terms of the form 7{7j. More inter-
esting, however, is that while the form of the interac-
tion Hamiltonian (e.g., S,S,+AS{S}) in ordinary spin sys-
tems is the same for any adjacent pairs of spins, in the
present case the very form of the interaction strongly
depends on the mutual positions of the centers. For ex-
ample, while the electron-lattice interaction is of the
form r{rj for a pair of spins arranged along the z axis,
this interaction takes the following form for the same
pair of spins if arranged along the x axis:

(et ) (e ).

The interaction between orbitals is thus anisotropic
even to the extent that its very form depends on the ra-
dius vector which connects the given pair. The reason
for this circumstance can easily be explained in quali-
tative terms. For example, while the d,; orbitals
(which correspond to 7*) overlap markedly for a pair
arranged along the z axis and give rise to a strong in-
teraction, the corresponding role for a pair arranged
along the x axis is played by the d . orbitals, which are
characterized in the (7%, 7%) plane by the angle 6=27/3.
They correspond to the combination {-7%/2+ vV 37%/2).

We thus see that when the exchange of phonons and the
quadrupole interaction are taken into account the sys-
tem comes to be described by a pseudospin Hamiltonian
which is of the form of an anisotropic Heisenberg Ham-
iltonian. The interaction may turn out to be either
ferromagnetic or antiferromagnetic. For example, if
long-wave acoustic phonons are predominant in an in-
teraction which is caused by lattice vibrations, or even
if simply a uniform deformation {specified by the con-
stant g, in (7)] is predominant, we find a “ferromagne-
tic” Hamiltonian. H, on the other hand, an interaction
through optical modes is stronger, we {ind an “antifer-
romagnetic” Hamiltonian. Correspondingly, the orbi-
tal (and quadrupole) ordering may turn out to be either
“ferro” or “antiferro.” As we will see below, there
are also some more complicated situations: “skewed

FIG. 8.
formations and orbital ordering are favored.
ions; 2—anions; arrows—possible displacements of the anions
during Jahn-Teller ordering {(cf. Fig. 13).

The perovskite structure, in which‘antiferro” de-
1—Jahn-Teller
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g

e

‘

FIG. 9. The spinel structure, in which‘ferro”’ deformations
are favored., The notation is the same as in Fig. 8. Shown
here is the part of the unit cell which contains Jahn-Teller ions
in octahedra (B) sites.

antiferromagnetism” (KCuF,, MnF,; Refs. 13 and 16),
structures with a tripled period (CsCuCl,; Ref. 17), and
incommensurable structures [K,PbCu(NQ,),; Ref. 18].

In order to derive a specific explanation for the type
of ordering from first principles it is necessary to
know the phonon characteristics of the crystal; this
problem runs into considerable difficulties. The gen-
eral tendencies, on the other hand, can be seen from
some crude, qualitative arguments. For example, ina
perovskite lattice, in which the octahedra surrounding
the Jahn—Teller ions have a common vertex (Fig. 8),
we would naturally expect an “antiferro” ordering (cf.
Fig. 7). In a spinel lattice, in contrast, we would ex-
pect on the basis of purely geometric considerations
that a stretching of the octahedron near the ion A, for
example, would be accompanied by a similar stretching
near all the cations (Fig. 9), which would lead to a tet-
ragonal distortion of the “ferro” type. A d,. orbital
would be filled at each site.

Up to this point we have been talking about two types
of interactions which are of essentially the same nature
and which are caused by a direct Coulomb interaction
(either by a direct quadrupole interaction or through
anions). In Jahn-Teller systems, however, there is
also an exchange interaction, which also leads to an or-
dering of orbitals.!® Furthermore, this interaction may
make the governing contribution to the ordering energy.
In contrast with the direct interactions, which do not
depend on the spin and which are expressed exclusively
in terms of pseudospins (the spins can come into play
only as a result of spin-orbit coupling), the exchange
interaction also depends on the spins, and it leads sim-
ultaneously to an orbital degeneracy and a spin degen-
eracy.

4. THE EXCHANGE INTERACTION IN JAHN~TELLER
SYSTEMS

a) Superexchange and the Hubbard model. Before de-
scribing the exchange interaction in the degenerate case
we shall briefly review some basic concepts regarding
exchange in magnetic insulators which we shall draw on
in the discussion below.

The primary mechanism for the exchange interaction
in transition metal compounds, where the direct over-
lap of d orbitals of adjacent ions is slight, is indirect
Kramers —Anderson exchange, or “superexchange,” as
it is more commonly called.?* The essence of this
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FIG. 10. Scheme for superexchange in the nondegenerate case.

Shown here is the energy increase due to virtual transitions of
an electron to a neighboring center. An antiparallel orienta-
tion of the spins is seen to be preferred from the energy stand-
point.

effect is that the overlap is an overlap not of the atomic
d wave functions but of their superposition with the s
and p wave functions of the ligands. Figure 10 shows
the essential features of superexchange for the case of
a single electron in a nondegenerate level. The two
most important factors are (1) the energy increase
which results from virtual transitions of electrons from
center to center and which is determined by the effec-
tive transition integral ¢, and (2) the Coulomb repulsion
of electrons at a common center, U. The usual relation
between these parameters in magnetic insulators is ¢

<« lU. We see that in case a) hops of electrons are for-
bidden by the Pauli principle, while in case b) they are
allowed, and there is an energy increase of -2t%/U,
which corresponds to a preferred antiferromagnetic
state. The effective exchange Hamiltonian is of the
Heisenberg form,

H heis = '2[_;1 2 Slsl' (12)
{4, 1}
where (i, 7 indicates a summation over nearest neigh-
bors. In oxides, we find #~0.1-0.3 eV in practice, and
U is of the order of the ionization energy, reduced for
screening effects (i.e., ~5 eV). We thus have a well-
defined perturbation theory in the parameter ¢/U < 0.1.

The approach to the superexchange problem which
we have just outlined was proposed by Anderson, and it
is analogous to that used in constructing the Hubbard
model.?* The Hubbard model is used to describe the be-
havior of materials having narrow band gaps and is
based on the existence of a strong intraatomic interac-
tion of electrons. In the original formulation of Ref. 24,
the crystal was assumed to have a fixed lattice, and the
d electrons were approximated by strongly coupled non-
degenerate s states.

In the Hubbard model, the most important of the vari-
ous types of electron-electron interactions is taken into
account; the Coulomb repulsion of electrons at a com-
mon center. The corresponding Hamiltonian is

Hyuoo = Hi+ Hy=t 2 a?ua}u—f‘%z Riolyi_gy Mo =aiollig; (13)
i, 4.0 i, o

where ajo is the operator which creates an electron with

a spin o in a state with a Wannier function centered at

the i~-th atom, H, describes the ordinary band energy,

and H, describes the Coulomb repulsion of the elec-

trons,

Let us examine the properties of the Hubbard model
in the case in which there is a single electron at the
center, and we have U>f. The H, ground state is a
state with localized electrons (there is one electron at
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a) ' b)
FIG. 11. Various possible types of overlay of e, orbitals at
neighboring centers. a—the overlap of single filled orbitals,
which leads to a strong antiferromagnetic exchange interaction;
b-—the overlap of filled orbitals is zero. A filled orbital and
an empty orbital (dashed line) overlap, and the exchange is
accordingly ferromagnetic.

each of the N centers) which is 2¥-fold degenerate in the
spins. The degeneracy is lifted in second-order pertur-
bation theory, and the corresponding energy increase is
determined by the effective Hamiltonian

Hop = Hy g o= = Y Glototiortio, (14)
Qualitatively, the picture is the same as that in Fig. 10,
and the ground state is antiferromagnetic. H the elec-
tron operators are expressed in terms of the spin op-
erators by the standard expressions,

ahan=ni; = +8% alay=Si=5 +is!, 15

1 - :
alyay =ni; =~ —8i, ahay=8;=57—iSi,

2

the effective Hamiltonian in (14) can be put in the Heis-
enberg form in (12). The Anderson picture of superex-
change is thus described completely by the Hubbard
model in the limit ¢t < U.

For real materials it is necessary to consider the
presence of other levels and the particular symmetry
of the corresponding wave functions [this symmetry de-
termines the magnitude of the overlap integral ¢ in Eqgs.
(13) and (14)]. There may be a situation in which orbi-
tals containing single electrons overlap strongly for ad-
jacent ions [Fig.11(a)]; inthis case the exchange is anti-
ferromagnetic and is described accurately by (12).
However, there may also be cases of a zero overlap of
filled orbitals (Fig. 11b) but a large overlap of a filled
orbital at one center with a vacant orbital at an adjacent
center. In order to lift the spin degeneracy in this case
it is necessary to consider the intraatomic exchange in-
teraction J,,5,S, (here the subscripts 1 and 2 designate
the orbital at one ion, and J,>0), which leads to
Hund’s rule (configurations with parallel spins are pre-
ferred). In this case the spin degeneracy is lifted in the
next order of perturbation theory, and it is of a ferro-
magnetic nature [Figs. 12(c) and 12(d)], with an exchange
integral J~ (£2/U)J,/U (in practice, J;~0.5-1 eV<U).

These arguments explain the empirical Goodenough—

_ 4
— & 4

2¢? - ut
aL=—% aE =5

=1

T 7

AE=0

~

4+

N~

7

)

a) b} c) d)

FIG. 12. Superexchange in the case of twofold-degenerate
orbitals. Shown here is the energy increase if only diagonal
transitions are possible (¢ =ty +,;,=0). Intraatomic (Hund)
exchange is also taken into account.
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Kanamori-Anderson rules which were established ear-
lier.? The general features of these rules may be sum-
marized as follows:

1) I half of the filled orbitals overlap at adjacent
centers, the exchange is antiferromagnetic and com-
paratively strong,

2) If a vacant orbital and a filled orbital overlap, the
exchange is ferromagnetic and weaker (by a factor J,/
U, i.e., by nearly an order of magnitude).

These rules are significantly more detailed in their
complete formulation (see Refs. 2, 21, and 23, for ex-
ample). For example, the particular values of the an-
gles in the cation-anion-cation trio in which the ex-
change occurs turn out to be important. For our pur-
poses, however, it will be sufficient to use these sim-
pler versions of the rules, whose origin was explained
above.

b) Superexchange in the case of orbital degeneracy.
Up to this point we have been talking about a nondegen-
erate ground state, in which case we know precisely
which states are filled and which are vacant. The sit-
uation changes significantly when we consider an orbital
degeneracy. In this case the Goodenough~Kanamori-~
Anderson rules no longer tell us the nature of the ex-
change; the matnitude and even the sign of the exchange
interaction are not determined, and they depend on the
filling of the orbitals. Antiferromagnetism in the non-
degenerate case was a consequence of the Pauli princi-
ple, but if each atom has, say, two states of identical
energy then the restrictions imposed by the Pauli prin-
ciple are generally removed. Even in this case, how-
ever, it can be shown that the same exchange mechan-
ism lifts the degeneracy, simultaneously causing an or-
dering of both the spins and the orbitals,'® % % as can
be seen clearly from Fig. 12. Comparison of the ener-
gies of the four possible configurations shows that when
we take intraatomic exchange into account (a conse-
quence of this exchange is Hund’s rule) in the simple
model in which an electron may undergo only diagonal
transitions (¢,, =£,,,¢,,=0), configuration d) turns out to
be the most favorable. Specifically, the order is ferro-
magnetic in terms of the spin but antiferrmagnetic (i.e.,
there is an alternation of states 1 and 2) in terms of the
filling of orbitals.

The degenerate case can be described mathematically
by the same pseudospin operators 7 which were intro-
duced in the study of the Jahn-Teller effect, if we be-
gin from the Hubbard model as generalized to the de-
generate case:

H-=Ho+H,y, H - (1_};: t??j a‘i’au“mm
' (16)
Hy= 1 SU aﬂn,wn,ﬁa (1—615600)

)

'—7 2 Jup (@iacino-aipe G0 + a?acaiaollraa'amn')o

azxf
Here a and B designate the orbitals, and the summation
runs over all indices (unless otherwise specified). We
have also incorporated the intraatomic (Hund) exchange
here [the last term in (16)].

Again, as in the nondegenerate case, by lifting the
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degeneracy (4¥-fold here) in second-order perturbation
theory, and transforming to the spin and pseudospin op~
erators S and 7 by rules analogous to (15) [a} .a, ,
=(1/2)£7%,a} ,a,,=1*; Ref. 19], we find an effective
Hamiltonian which depends on the two types of spin
variables S and 7. In the simplest case, corresponding
to Fig. 12, this Hamiltonian is

H= Y (J8,8,+ Ty x,+47,8,8tx), (17)
(i, 3
where
20 J 2t J
J=Fr (1=gt) == 1+

The absence of terms of the type St from (17) corre-
sponds to the absence of a spin-orbit interaction, which
is present in the case of the e, orbitals.

¢) Superexchange ordering of orbitals in some spe-
cific materials. In real materials we must ta.ke into
account the fact that the transition integrals t s depend
on the nature of the orbitals o and B8 and also on the
mutual arrangement of the centers i and j, since the
electron density distribution is not spherically sym-
metric. A detailed derivation of the exchange interac-
tion for the case of the e, terms can be found in Refs.
19 and 29, and one for the t;, terms can be found in Ref.
14,

When the actual relation between transition integrals
is taken into account (see Ref. 30, for example), the
Hamiltonian becomes highly anisotropic in terms of the
7 variables (Ref. 19). As an example, the Hamiltonian
for perovskites (with e, ions at the sites of a simple
cubic lattice) is

Hop = o {sss,[nz .1_-;z+:(1__"ui)]
(- iy
+2[1z1:z( )—1:;:'}—}—;]—2 2 {2S,S, ['r".‘l:;(i +-JT")

Gy,

—2) 2V (1 + ) ¥ 2V 3y
+3(1+ 2 )t"r"]—r > [t’rl(i—}- )
_21§j;2l/§(1+7)1§t=j; 2V3T‘+3(1+—‘r'r‘]}.

(18)
Here G,j),,, ., denotes a summation over the nearest
neighbors which are arranged along the corresponding
axis, and £=10D¢/6 (10Dq is the distance between the
e, and t, levels in the cubic field). It has been as-
sumed for simplicity in (18) that the Coulomb repulsion
does not depend on the particular orbital (U,,=U,,=U,,
=0).

Because of the complicated nature of (18), the ground
state for this Hamiltonian may not be that which would
follow from Fig. 12. For example, for a simple cubic
lattice of ions having a single electron or hole in a two-
fold-degenerate e, level we would find the orbital struc-
ture shown in Fig. 13. This structure is characteristic
of perovskites in which the Cu®* ions form a simple
cubic lattice (KCuF,, for example). The struc-
ture corresponding to the ground state consists of (001)
planes which are ferromagnetic in terms of the spin;
the spins in adjacent planes are in opposite directions.
The ordering of the orbitals characteristically has an
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FIG. 13. Orbital ordering in a perovskite of the KCuF; type
caused by the superexchange mechanism.!® a, b—Two equiva-
lent types of ordering; both are actually observed' in KCuF;.

alternation of d,z.,. and d,z.,. states [this type of order-
ing corresponds to a skewed r-antiferromagnetism with
an alternation of +7/3 sites in the (1%, 7*) or (Q,,Q,)
plane; Fig. 5]. There may be two types of ordering,
which are equivalent (which correspond to the same en-
ergy), as shown in Fig. 13. In practice, KCuF, crys-
tals of both types occur during growth,'® and crystals of
this sort frequently contain stacking faults.® This type
of filling of the orbitals leads to a strong antiferromag-
netic interaction along the z axis (half of the filled or-
bitals overlap strongly) and a relatively weak ferro-
magnetic interaction in the (x,y) plane. I is for this
reason that the KCuF, crystal, with a nearly cubic
structure, behaves as if it were a quasi-one-dimen-
sional magnetic material.’® It should be noted that the
orbital structure for perovskites with Mn® and Cr®
ions (such ions have a single electron in an e, level and
three in a t,, level) differs slightly from that shown in
Fig. 13 (angles 8 of approximately 7/2 alternate).
Eremin and Kalinenkov®? have shown that an interaction
between the electrons in the e, and t,, levels can give
rise to a structure of this type in the same model.

The structure in Fig. 13 was found by considering only
the exchange interaction; in this case, the exchange
interaction by itself gives a correct description of both
the orbital and magnetic orderings. If, on the other
hand, we know the orbital structure (a structure
caused, for example, by direct interactions) from inde-
pendent considerations, then by substituting the corre-
sponding average values (r) into the resulting Hamilton-
ian of the type (18) we find the effective spin Hamilton-
ian. This sort of analysis, for two-dimensional ferro-
magnets of the type K,CuF,, for example, has revealed
that the orbital structure which had been proposed pre-
viously®® for these ferromagnets (and which has in fact
been identified in monographs®3® as the single case in
which the Cu® ion is surrounded by a flattened, rather
than stretched, octahedron) is incompatible with the
ferromagnetism observed in K,CuF,. An alternative
structure proposed in Ref. 34 on the basis of theoretical
arguments, which has alternating octahedra which are
stretched out along the x and y axes, was subsequently
confirmed experimentally by different methods.*"¥ It
may therefore be stated, in particular, that in all
known cases, without exception, the Jahn—-Teller ion
Cu? in octahedral surroundings causes a deformation
of the stretching type (the d, ., hole orbital is stabi-
lized).

The exchange mechanism for the ordering of orbitals
thus acts along with the direct mechanisms (the Jahn—
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Teller and quadrupole mechanisms), and in some cases
it is capable of giving the correct orbital structure by
itself. In this mechanism, the change in the lattice
structure (the structural transition) is a secondary ef-
fect; here we may speak in terms of a “Jahn-~Teller
ordering without a Jahn-Teller interaction.” Actually,
of course, all three mechanisms act jointly, and it is
quite difficult to determine just which will be predomi-
nant in each specific case. Some help may be obtained
by studying pairs of Jahn-Teller impurity ions,* for
which the different mechanisms give rise to different
types of ground states. Direct ultrasonic methods may
also be useful; they may be able to distinguish the ef-
fect of an interaction with a homogeneous deformation
from the background of all other interactions (see Ref.
40 and Section 9 below). In general, however, the
question remains open.

The tendency toward an “antiferro” orbital ordering,
which was illustrated above for a model (Fig. 12) and
also for the real case of KCuF, (Fig. 13) (and which is
important, in particular, if neighboring octahedra have
a common vertex), is responsible for the appearance
of a ferromagnetic exchange interaction for certain

‘pairs of ions. This circumstance explains the effec-

tiveness of Jahn-Teller ions for the appearance of
ferromagnetism. A related effect {(mentioned earlier)
is the frequent appearance of ferromagnetic ordering in
Jahn-Teller magnetic materials (Table I). Further-
more, it is apparently not by chance that the long
search for ferromagnetism due to double exchange in
magnetic insulators with impurities has yielded only
two cases in which this mechanism is believed to op-
erate, La,. .Ca ,MnO, and Mn,_ LiSe (Ref. 2), and in
both these materials we find the Jahn—Teller ion Mn®*,
The peculiar properties of this ion probably play an im-
portant role in the ferromagnetism of these systems.

We will point out again that the exchange interaction
described in this section, which occurs in Jahn-Teller
magnetic materials and which is of the form of (17) and
(18), incorporates spin and orbital variables simultan-
eously. As a result, there is an unusual interaction be-
tween these two subsystems, and there is also the pos-
sibility that, say, the magnetic field will affect the or-
bital structure, etc. These questions will be discussed
below, but we will first consider how the situation
changes in the case of a threefold generacy (t,, ions).

5. IONSWITH A THREEFOLD ORBITAL
DEGENERACY {(t;, IONS)

A rather large number of ions have a partially filled
t,, level in a symmetric configuration. In octahedral
surroundings, these are ions in the states d'(Ti**,V*),
d¥Ti*, v*,Cr"),d% Fe?*),d"(Co*). States in tetrahedral
surroundings are also common. As mentioned in Sec-
tion 2, these states may be characterized by an effec-
tive angular momentum {=1, and for them the spin-or-
bit interaction is in principle important. It is easy to
see that the degeneracy can be lifted in two ways in this
case, by a spin-orbit mechanism and by a Jahn-Teller
mechanism. In a sense, these two mechanisms are
mutually exclusive; the situation here is similar to that
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FIG. 14. Two types of splitting of the t,; one-electron level.
a—Lifting of degeneracy “in the Jahn-Teller channel.” c¢/a<1.
The d,, orbital ({1¥=0)) is stabilized; b—lifting of degeneracy
due to the spin-orbit interaction. ¢/a>1. The deformation
stabilizes the twofold-degenerate state d,,, d,, or 11*= +1).
This state is then split by the spin-orbit interaction.
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for certain rare earth ions, e.g., Tm* in TmVOQ, (Ref.
6).

Let us examine the case of a single electron ina t,,
level (d' ion or a d° ion, which is equivalent); the anal-
ysis for a single hole (d* or d") is analogous. When an
octahedron near such an ion is compressed, the ty lev-
el splits as shown in Fig. 14(a). A nondegenerate level
with a d,, wave function (which corresponds to |I*=0))
moves downward, by an energy E;;, while two other
levels, with d,, and d,, wave functions (or |I*=z1)) re-
main degenerate and move upward by an energy AE
=E;1/2. Such a deformation is favorable from the
standpoint of the Jahn-Teller energy, but in this case
the ground state does not have an angular momentum
(1*=0), and the spin-orbit interaction in it is corre-
spondingly ineffective: (*=0|xIS|I*=0)=0.

We now assume that a tetragonal deformation of the
other sign, corresponding to a stretching of the octa-
hedron, has occurred. In this case there is an inver-
sion of terms [Fig. 14(b)], and the lowest term turns out
to be the doublet |I*=x1). We see that the energy of the
term also decreases (this is an energy increase due to
the Jahn-Teller effect), but the decrease is half that in
the first case, and from the standpoint of the Jahn-Tel-
ler effect compressions (c/a<1) are more favorable.

In return, the ground state now has an unfrozen orbital
angular momentum, and this state is split further by the
the spin-orbit interaction, with an additional energy in-
crease AS [the spin is parallel or antiparallel to the or-
bital angular momentum, depending on the sign of A;

the spin becomes oriented along the deformation (z) ax-
is; i.e., a spin anisotropy arises].

It is thus obvious that in the ordered phase the Jahn-
Teller and spin-orbit interaction mechanisms stabilize
deformations of opposite types (for one t,, electron,
c/a<1 orc/a>1, respectively). The result depends on
the relationship between the energy of the Jahn-Teller
stabilization, E;;, and the energy of the spin-orbit in-
teraction, A (S). Generally speaking, these energies
are comparable in magnitude in crystals of 3d ele-
ments, and in practice transitions are observed by both
the Jahn-Teller and spin-orbit mechanisms.

A Jahn~Teller transition (if this is the dominant in-
teraction) is a purely structural transition, and the
magnetic ordering occurs at some other (lower) tem-
perature. This is the situation in the spinels NiCr,0O,
(Ref. 42), NiRh,Q,, and CuRhb,0, (Ref. 43) [the Ni* and
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Cu* ions in these spinels are in tetrahedral surround-
ings (A sites) and have a threefold orbital degeneracy].
On the other hand, the transitions determined by the
spin-orbit increase in the energy occur simultaneously
with the magnetic ordering. It is simple to see that if
the spins become ordered, along the z axis, for exam-
ple, then the Is interaction will automatically stabilize
the orbitals )l‘=i1>, and the corresponding lattice de-
formation will occur (and, vice versa, if the corre-
sponding ordering of orbitals occurred first, there
would be a simultaneous spin ordering). In this case,
therefore, the lattice deformation occurs at the Curie
point (or at the Néel point) and has the external mani-
festations of simply a magnetostrictive effect. We wish
to emphasize, however, that this deformation differs
in nature from magnetostriction, say for nondegenerate
ions such as Ni®* or Fe*; here the deformation is due
to the initial degeneracy in a symmetric configuration.
The corresponding deformations are roughly an order
of magnitude greater than in the nondegenerate case,
The nature of the deformations (the direction of the
symmetry axes of the low-temperature phase) is unam-
biguously related to the spin ordering direction. In
Co0 and KCoF,, for example, where the spins are di-
rected along the [001] axis at T< 7, a tetragonal de-
formation with c/a<1 occurs (the Co?* ion with the d*
configuration has a single hole in a t,, shell; according
to the arguments above, in this case the Jahn-Teller
effect would stabilize the hole orbital |d, )= |I*=0) in
the case c/a>1 and the orbital |l'=11) in the case of a
compression, ¢/a<1). Inthe compound FeO, in con-
trast, the spins are directed along the [111] axis in the
ordered phase; correspondingly, a trigonal distortion
of the lattice occurs in this crystal at T<Ty. (For the
ty levels, in contrast with e, the splitting of terms oc-
curs not only in an interaction with the E_ vibrations
corresponding to a tetragonal or orthorhombic distor-
tion but also in an interaction with the trigonal vibra-
tions T,,; it is easy to see that the quantization axis for
the angular momentum in these cases is in fact the [111]
direction.®)

It is also clear from a comparison of the energy in-
creases that the spin-orbit interaction becomes prog-
ressively more effective as the spin S of the corre-
sponding ion increases. In general, this tendency is
confirmed by experiment: For the Fe® ion (S=2) and
for the Co® ion (S=3/2) in octahedral surroundings, the

8)We might add that the Jahn-Teller interaction is itself prob-
ably the reason why the spins in CoO or KCoF; are oriented
along the [100] axis, while those in FeO and KFeF; are along
the {111] axis. The interaction constants for the interaction of
t,; electrons with E; and Ty, vibrationsare generally different.
There are corresponding differences in the energy increase
due to the Jahn-Teller effect in the cases of tetragonal and
trigonal deformations (even when the deformation has the
“spin-orbit” sign). Accordingly, if, for the Co’* ion, for
example, the interaction with the E; mode is stronger, a
tetragonal distortion will be preferred, and the spins will
accordingly be directed along the [001] axis. For the Fe?*
ion the situation is apparently the opposite, so that the easy
axis is the [111] axis. Fort,, ions, therefore, the Jahn-
Teller interaction apparently determines not only the magni-
tude but also the sign of the anisotropy constants.
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spin-orbit interaction is more frequently the governing
interaction, while for the Cu® ion (S=1/2) and the Ni**
ion (§=1) in tetrahedral surroundings the ordering is
usually a Jahn-Teller ordering.

Let us examine in slightly more detail how the discus-
sion of Sections 3 and 4 would be modified for t,, elec-
trons. The threefold-degenerate t,, electrons interact
with the E_ vibrations (the @, and @, modes) and the T,,
vibrations (vibrations of the type xy, yz, and xz). The
corresponding electron operators, which replace the
pseudospin operators 7, are constructed from the orbi-
tal angular momentum /=1: The combinations (1*)?
-(P’)* and (1)* - 2/3 interact with the E_ vibrations,
while the combinations (I*1¥ + I°1%), (I*I* + I*1%), (1*1Y + 1°1%)
interact with the T,, vibrations. These combinations
embody corresponding representations of the symmetry
group of the crystal; they are actually the same as the
corresponding components of the quadrupole~-moment
tensor.

Eliminating phonons, we again find a direct interac-
tion between the electronic states of different ions,
which may be described schematically by

#rr = 3 [I5{{ = ][ W =5 |+ - - ey
FITUY F B (G + ) + .. .}J,

(19)
The direct quadrupole ~quadrupole interaction is of the
same form.

Although the problem of the ordering of interacting
quadrupoles is not fundamentally different from the di-
pole-ordering problem, the technical details are much
more complicated: There may be many different types
of ordering, and extensive calculations are usually re-
quired to choose among the various possibilities. The
choice is frequently ambiguous. Some results along
this line are reported in Refs. 14 and 45-47. An ex-
tremely closely related problem is that of so-called
biquadratic exchange.*®*® For the most part, the work
on this problem has been limited so far to an examina-
tion of very simple models with (spatially) isotropic ex-
change and with simple types of ordering. In reality,
however, the situation is not always this simple: In ad-
dition to the simple “ferro” ordering, which is ob-
served in the spinel NiCr,0, or CuRh,0,, for exam-
ple,***3 cases arise in which the orbital ordering is
quite complicated. In the compound CaCu,Ti,0,;, for
example (which would be described better as
Ca,,,Cuy,,TiO,, to show that this compound is an ordi-
nary perovskite in which one-fourth of the ions are at

FIG. 15, Orbital structure of the substitutional perovskite
CaCu, T1i,0;, with the t,, lons Cu®* in tetrahedral surroundings.’’
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FIG. 16. Phase diagram of the system Ni Cu,_ Cr,0, (Ref. 15),
Points—experimental data; curves—theoretical.

tetragonal sites—these are the nonmagnetic Ca®* ions —
and three-fourths are Cu® ions with a single hole in a
t, level), the ordering shown in Fig. 15 is observed®:
There are three types of Cu® ions, at which the orbi-
tals d,,, d,,, and d,,, respectively, are filled.

There is also an interesting situation in the mixed
crystals of the types Ni,.Cu,_ Cr,0, and Ni,Fe,_ Cr,O,
(Refs. 15, 51, and 52). At x=0 these crystals have a
tetragonal symmetry with ¢/a<1 because of the Jahn-
Teller effect at Cu® and Fe® ions at A sites. At the
other end (x =1) the symmetry is again tetragonal, but
in this case we have c¢/a>1. At intermediate concen-
trations there is an orthorhombic phase (Fig. 16),
which may be thought of as caused by two simultaneous
deformations: a tetragonal stretching along the z axis
and a compression along the perpendicular axis, The
qualitative reason for this result is as follows: If we
place a Jahn-Teller impurity ion with a ground state
corresponding to a flattened octahedron (a flat disk) in
a NiCr,0O, crystal with ¢/a>1 (with a structure as if
constructed from stretched small cylinders), this im-
purity will naturally assume a position with its short
axis perpendicular to the z axis of the matrix. Ata
finite concentration of such centers, their axes will
also become ordered at a certain temperature, leading
to the formation of an orthorhombic phase. A theory
derived for this phenomenon by Kataoka and Kanamori'®
gives a good description of the experimental situation.”’

The exchange interaction in magnetic materials with
tzg electrons can also be put in a form corresponding to
(19), by replacing the pseudospins T by combinations of
the type [(19)2 - 2/3], [(1*)2 = (1)?], and (I*I” + I°1%), etc.®
For a perovskite crystal, for example, we find the fol-
lowing for a pair of ions arranged along the 2z axis,
when we take into account the specific form of the t,,

functions'*:
) ox =g | (288, N @+ BE + 10D — (P (@2 = @)
(LA B G+ B — (0D 0D ] 5
(20)
(here we have omitted terms which result from intra-
atomic exchange, J,).

DA gimilar situation is encountered in the case of spin ordering.
For example, in mixed crystals containing ions with differeat
types of anisotropies, an intermediate phase is observed in
which the two types of spin orbiting coexist (see Ref. 53 re-
garding a study of Co,_ Fe,Cly).
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Analysis of the orbital and magnetic ordering on the
basis of the corresponding Hamiltonian for crystals
with a cubic magnetic lattice shows that (as for the di-
rect Jahn-Teller interaction) there may be some rather
complicated structures, which are frequently degener-
ate in the lowest-order approximations. It is not pos-
sible to identify unambiguously the type of joint orbital
and spin ordering here, but the general qualitative con-
clusion is the same as for the case of e, ions: Ina cu-
bic lattice there is a tendency toward an “antiferromag-
netic” ordering of orbitals (in gualitative accordance
with the situation in CaCu,Ti,0,,).

Nevertheless, even though an unambiguous conclusion
regarding the orbital structure has not yet been reached
in this approach, it may prove extremely useful for
analyzing magnetic ordering: K, on the basis of inde-
pendent considerations, we know the type of structural
ordering, we can then find an effective spin Hamilton-
ian. A study of this type carried out for CaCu,TiO,, by
Lacroix®® has yielded a description of the rather com-
plex magnetic structure observed in this compound (this
is apparently the case, but the single-ion anisotropy
was handled incorrectly in Ref. 50). The exchange
interaction of a pair of ions is given in this case by the
two following expressions.’® First, if the same orbi-

tal, m, is filled at the ions i and j, the exchange inter-
action is given by
2 mm)? e
Jy=— (lu‘i +U=(ti]i.m) DI HPE (21)
m’st=m

where U, is the repulsion of the electrons in one orbi-
tal, U, is that in different orbitals, and J, is the Hund
intraatomic exchange. K, on the other hand, different
orbitals are filled at the corresponding ions, the ex-
change integral is

20y

Tu=——;, Uz(Uz—'-’H)( 2 G A ). (2

mT¥m

Actually, the same expressions apply to the case of e,
electrons.

In writing out the expression for the exchange inter-
action in the (7, s) basis above [see (19) and (20)], we
separated the spin and orbital variables. This approach
is convenient when the initial state is degenerate, and
when we are interested in the orbital ordering itself in
addition to the spin ordering. When spin-orbit coupling
is taken into account, especially if the nature of the de-
formation (i.e., the symmetry of the low-temperature
phase) is already known, another approach can be tak-
en. A transformation can be made to operators repre-
senting the total angular momentum, projected onto the
lowest-lying multiplet (in particular, this is the pro-
cedure which is always used in the case of the rare
earths). In this case we can introduce an effective spin
S (for a Co* ion in an octahedron, for example, S=1/2)
and write the exchange interaction in terms of it. In
general, this interaction is anisotropic and also con-
tains invariants of higher orders.**°” This is, in fact,
the physical origin of the biquadratic exchange which
we mentioned earlier.

As we also mentioned earlier, the basic distinction
between the t, and e, ions lies in the important role
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played by the spin-orbit interaction in the former case.
Aside from the fact that the spin-orbit interaction may
impose its own type of orbital ordering, which differs
from that caused by the Jahn-Teller effect and which
occurs at the same time as the magnetic ordering, it
strongly affects the magnetic anisotropy and the mag-
netostriction, K spin-orbit coupling is dominant, and
the crystal is, say, a tetragonal crystal at a tempera-
ture below Ty, the spins are parallel to the angular
momentum 1, i.e., directed along the deformation axis.
To turn the spins away from this direction will require
either breaking the spin—orbit coupling (i.e., an energy
lowering ~AS) or reorienting the deformation axis. Each
of these processes requires a substantial expenditure of
energy, and, as a result, the magnetic anisotropy of
these materials is high (a particularly well-known ex-
ample is the Co* ion).

However, even in those cases in which the Jahn-Tel-
ler interaction is “overpowering” and the ordering pro-
ceeds by that route, we can expect a significant anisot-
ropy. In this case the ground state is an orbital singlet,
and the magnetic anisotropy results from an admixture
of excited states in which the angular momentum is not
frozen. The standard approach® here is to use a per-
turbation theory in A/a (X is the spin-orbit interaction
constant, and A is the distance to the nearest excited
levels); this approach yields a single-ion-anisotropy
term

Duv:_;‘zz(nlL"IO)(OIL"ln) (23)

"oV
S DyS*S”, L

e v n=0
in the spin Hamiltonian, where the summation runs
over the intermediate states |n) with energies E,.

Ordinarily we would have E - E,=10Dg=1 eV, but in
the case of systems with t,, electrons and with a Jahn-
Teller orbital ordering the excxted states are |l‘— +1)
states, which are separated from the ]l‘ 0) ground
state by an amount E . <<10Dq. Correspondingly, the
constants of the single-ion anisotropy for these mater-
ials should be much larger than those for nondegenerate
ions. (In real systems with 3d ions we have E;;~), so
that it is not legitimate to use a perturbation theory in
A; the complete secular equation must be solved in the
basis of t,, states. For an estimate, however, this ap-
proach shows that the anisotropy in t,, systems with a
Jahn-~Teller ordering is generally comparable in mag-
nitude to that in the case of IS ordering.)

Similar arguments show that the magnetostriction
constants are also large in this case. A lattice defor-
mation strougly affects the orbital state of the t,, ions,
and because of the spin-orbit interaction this effect is
transferred to the spin subsystem. For ions of the Co®*
type this situation is quite familiar experimentally. We
may thus say that the pronounced anisotropy and mag-
netostriction of transition metal ions with t,, electrons
actually stem from the orbital degeneracy.

6. STRUCTURAL PHASE TRANSITIONS IN
MATERIALS HAVING AN ORBITAL DEGENERACY

The discussion above has dealt primarily with the
forms taken by the orbital (Jahn-Teller) and exchange
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interactions in Jahn-Teller magnetic materials and
with the particular ground-state structures to which
these interactions lead.

As the temperature is raised, the orbital ordering
changes and may disappear. A transition to a disor-
dered phase is simultaneously a structural phase tran-
sition to a phase with a higher symmetry, in which the
orbital degeneracy is not lifted. In several materials
(e.g., KCuF,) such transitions do not occur. Apparent-
ly, the Jahn-Teller interaction in such materials is so
strong that the lattice is distorted over the entire tem-
perature range in which there is a crystalline phase.

In other cases, these transitions are in fact observed;
they may be either first-order or second-order transi-
tions, and they sometimes involve intermediate phases
(in particular, phases with incommensurable struc-
tures).

The structural phase transitions which result from
the cooperative Jahn-Teller effect are the subject of an
extensive independent literature, including several re-
views.!*®5%%5% We will accordingly just skim over these
questions lightly, singling out some points which are
important to the primary subject of this review (the in-
terrelationship between the Jahn—Teller effect and the
magnetic properties) and noting some new results which
we find particularly clear-cut and pertinent.

The cooperative Jahn-Teller transitions are conven-
iently described in pseudospin terms: Both the direct
Jahn-Teller interaction, (8), and the exchange interac-
tion, (18), give rise, in pseudospin terms, to an effec-
tive Hamiltonian of the Ising or Heisenberg type (in
some cases, in an external field). The statistical prop-
erties of such systems have been studied thoroughly and
can be used directly to describe the orbital degeneracy
in Jahn-Teller systems. Some different cases arise
here, and we will consider them in the subsections
which follow.

a) Ferrvodistortion ordering (crystals with the spinel
structure). In crystals having the spinel structure and
containing Jahn-Teller ions the orbital ordering is usu-
ally “ferromagnetic”: The crystals become tetragonal
without any change in the unit cell. The best-known ex-
amples are the manganese ferrite spinels, for which we
usually find a ratio ¢/a=1.10-1.15 (Ref. 2). 1t can be
shown that the transition in this case, with the anhar-
monicity taken into account, is a first-order transi-
tion'? (for t,, ions, this is also true in the harmonic
case). Figure 17 compares the theoretical and experi-

@/a)/(c/0y
7.0

2.5+

g 0.5 w/r
FIG. 17. Temperature dependence of the Jahn-Teller defor-
mation c¢/a in spinels. Points—experimental data® for
CuFe,Oy; curves—theoretical,'? for various values of the anis-
otropy constants.
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mental temperature dependences of the ratio ¢/a for
the ferrite CuFe,0, (Refs. 13 and 58).

In ferrite spinels with e, ions the orbital (structural)
ordering usually occurs at temperatures higher than
that at which the magnetic ordering occurs; for Mn,0,,
for example, we have T;;=1443 K and Ty =43 K (Ref.
59). In contrast, in spinels containing t,, ions there
may be different situations, as discussed in Section 5:
In some cases the spin-orbit interaction causes orbital
ordering to occur along with magnetic ordering, and
there are also materials in which the structural transi-
tion due to the cooperative Jahn-Teller effect occurs
at a higher temperature. The system NiCr Fe, O, has
some interesting properties® In the concentration
range x=1.2-1.8 in this system, in a phase which is al-
ready ordered in S, a further lowering of the tempera-
ture apparently causes an additional lowering of the lat-
tice symmetry, accompanied by a change in the spin
configuration.

b) Antiferrodistortion ordering (crystals with the
perovskite structure). More peculiar from the stand-
point of the orbital structure is the sitvation in perov-
skites with e, ions (KCuF;, KCrF,, LaMnO,, MnF,, etc.).
They have an “antiferro” orbital ordering (the reasons
for this ordering were discussed in a qualitative way in
Section 4). In terms of the pseudospins 7 this type of
ordering corresponds to a skewed rather than ordinary
antiferromagnetism (the situation is quite rare for or-
dinary spins). In KCuF, at T=0, for example, there is-
an alternation of states with angles of the order of +60°
[in the (7%, 7*) plane; see Fig. 13] (Ref. 16). The corre-
sponding angles in MnF, are 97° (Ref. 13).

In principle, this skewed antiferromagnetism could
result directly from a Hamiltonian of the type in (8) or
(18) which is bilinear in 7. As we have already men-
tioned, the corresponding exchange with respectto 7 is
highly anisotropic and may give rise to a structure of
this sort. A direct calculation'® with the exchange
Hamiltonian in (18) does in fact predict a structure for
KCuF, which corresponds precisely to the experimental
structure (Fig. 13).

Another factor which skews the pseudospins is a local
anistropy. Anharmonic effects give rise to terms of
the type g7° cos39 in the Hamiltonian (more precisely,
in the free energy). As a result, local minima appear
in the energy, depending on the sign of g, at the angles
6=0, +27/3 or xn/3,7. An antiferromagnetic interac-
tion in 7 combined with an anisotropy can lead to the
observed structures; for example, the skewed struc-
ture for MnF, (angles 9= x97°) may be thought of as the
result of a competition between an interaction between
centers (which would give rise to angles 8 of, for ex-
ample, +90°) and an anisotropy (which would give rise
to, say, +120°).

In this case we see an interesting effect as the tem-
perature is raised: The structure changes in a way
which corresponds to a “straightening” of the skewed
7-sublattices, and the angles 8 approach +7/2. A phase
transition in the cubic modification can go as a second-
order transition from a purely “antiferromagnetic”
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structure, despite the nominal presence of the cubic
invariant g7° cos36 in the free energy. For a two-sub-
lattice structure of the type observed in MnF; and
KCuF,, the free energy may be written as

F = A1* 4+ A’1® cos 26 — c1® cos 30 -+ B4, (24)

[7 is the orbital order parameter of the sublattice, and
9 is the angle in the (7%, 7%) plane]. The parameter A’
here is proportional to the interaction of Jahn-Teller
centers, while ¢ is proportional to the local anisotropy
constant.

Minimization of (24) with respect to the angle 6 yields
the temperature dependence of 6. At values of 6 near
7/2, 8=(n/2) - ¢, we find ¢= ~(3c/4A’)r. Substituting
this expression back into (24), we finally find

Fe(a—Ayv (B—2 S ) (25)

In other words, for a two-sublattice structure with an
alternation of # and -6 the cubic term in the free ener-
gy disappears, but the coefficient of the fourth-degree
term is renormalized. I B —(27¢%/8A’)>0, the phase
transition is a second-order transition, and at the tran-
sition point the angles are 8=217/2. A corresponding
problem has been studied by Kanamori,'* who concluded
that the transition is always a second-order transition
in perovskites containing Jahn-Teller ions. It can be
seen, however, that with a sufficiently strong anisot-
ropy (a large value of ¢?/A’) the transition may remain
a first-order transition.®’ In the case of a ferrodistor-
tion (in the preceding subsection) there is no cancella-
tion of the contributions of the different sublattices, and
the cubic term remains in the free energy. The transi-
tion is therefore a first-order transition. The situation
is the same in the case of a tripling of the period, with
8,=(27/3)n (see the following subsection).

¢) Phases with a tripling of the period and incommen-
surable structures. In addition to the relatively simple
“ferro” and “antiferro” types of orbital ordering,
more-complicated structures are also found in systems
with a cooperative Jahn-Teller effect. Aside from the
compound CaCu,TiQ,,, which was mentioned in Section
5, two systems with an orbital ordering of the helico-
idal type have been identified and studied in some de-
tail: CsCuCl; and K,PbCu(NQ,),.

The compound CsCuCl, is apparently the sole insula-
tor in which a strucural transition accompanied by hel-
icoidal displacements of atoms occurs. The Jahn-Tel-
ler ions in this case are at the centers of octahedra
which have a common fact and which form chains along
the z axis (Fig. 18). At T.=423 K in CsCuCl,, a first-
order transition occurs, accompanied by a tripling of
the period; local deformations (stretching) of the octa-
hedra occur upon this transition. All three axes of the
octahedra become the long axes in the crystal in suc-
cession. As a result, helicoidal displacements with a
wave vector g=(0,0,27/3) occur. The transition is ac-
companied by singularities in the electrical conductiv-

8)gee Ref. 60 for a more detailed study of the mathematically
equivalent problem for another physical system: a system
with charge density waves.
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FIG. 18, Orbital ordering in the low-temperature phase of
CsCuCly. A chain of CuC); octahedra having a common face is
shown., The arrows show the axes along which the octahedra
are stretched.

ity, the dielectric function, and several other proper-
ties.!” A low-frequency absorption mode with a fre-
quency w,=17-18 cm™ has been observed in the low-
temperature phase® and interpreted as phase oscilla-
tions of a superstructure.

Anharmonicity apparently plays an important role in
forming the structure observed in CsCuCl;, as in the
compounds discussed in the preceding subsection.!™?
Specifically, terms ~cos36, which give rise to the
skewed sublattices in the systems of the MnF; type,
lead to a tripling of the period in the CsCuCl, crystal
with its quasi-one-dimensional structure. The interac-
tion between the centers along the chain, on the other
hand, is apparently an “antiferro” interaction and would
give rise to an alternation of the distortions in adjacent
octahedra. Since there are two octahedra in the unit
cell in the original, undistorted CsCuCl, lattice (the
CsNiCl, structure), this superstructure (and the inter-
action maximum itself) would correspond to g=0. This
conclusion is supported by results from a study of the
diffuse scattering of neutrons!” at 7>423 K. A maxi-
mum was observed there at g=0. Curiously, the struc-
ture of the low-temperature phase could, in principle,
be changed by applying a uniaxial pressure at certain
angles in the basis plane.®?

There are indications of yet two more phase transi-
tions in CsCuCl, above 423 K (Refs. 64 and 65). At
present, the nature of these transitions is not clear;
they are probably caused by a cooperative Jahn-Teller
effect, and the intermediate phases correspond to either
an incommensurable superstructure or a phase with an
alternation of distortions (¢g=0). Structural transitions
which appear to be analogous to those observed in
CsCuCl,; are also observed in CsCrCl; and RbCrCl,,
which contain the Jahn~Teller ion Cr* (Ref. 63).

An example of a compound with a cooperative Jahn-
Teller effect in which there is an incommensurable
structure is K,PbCu(NQ,); (Refs. 18 and 66). As the
temperature is lowered in this compound two succes-
sive transitions occur, at 7,=230 K and at T,=273 K,
Both are first-order transitions, although the lower-
temperature one is apparently an approximately sec-
ond-order transition. Neutron and x-ray studied have
shown that the intermediate phase has an imcommen-
surable superstructure with a wave vector ¢=(0.416,
0.430,0). The low-temperature phase is commensurs
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FIG. 19. Orbital structure in K,PbCuNO,); (Ref. 18). The
(001) plane is shown. a—Ihcommensurable phase (g =(0.416,
0.430,0)]; b—commensurable phase.

able, with ¢=(0.5,0.5,0.5), and the orbital ordering is
similar to that observed in KCuF,. In the basis plane
there is an alternation of octahedra which are elongated
along the x and y axes (Fig. 19a). In pseudospin terms,
this phase also corresponds to a skewed antiferromag-
netism, with sublattice angles of +21/3; the incommen-
surable phase, on the other hand (Fig. 19b), is de-
scribed as a “fan” structure®: The vector 7 changes
continuously from +27/3 to —2n/3. Actually, the an-
harmonicity should apparently render such a super-
structure inhomogeneous; the commensurable domains
with 8=+27/3 will be separated by comparatively nar-
row “walls” within which the intermediate directions of
T are traversed rapidly.%

In another compound of the same class,
Cs,PbCu(NO,),, we find not two but three successive
transitions,®® at T,=112-114°C, 23-34°C, and between
~2°C and +12°C (these are the hysteresis intervals).
The wave vector of the superstructure takes on the re-
spective values ¢=(0.5,0.5,0),(0.5,0.5,0.25-0.2) and
(0.5,0.5,0.5) as the temperature is lowered; the inter-
mediate phase has a somewhat uncertain superstruc-
ture, which is believed by Mori et al.%® probably to be
incommensurable.

In general, we should say that crystals exhibiting a
cooperative Jahn-Teller effect also exhibit a wide va-
riety of structural phase transitions, including essen-
tially all types of such transitions which are observed
in any insulators.®® These crystals constitute a special
case, on the other hand, in that the elementary nature
of the transition is understood very well; these materi-
als are thus extremely promising for a study of the gen-
eral aspects of structural phase transitions.

7. TEMPERATURE DEPENDENCE OF THE MAGNETIC
PROPERTIES OF JAHN—-TELLER SYSTEMS

a) Change in the orbital strcture and the exchange
interadtion. As was shown in Section 4, the nature of
the exchange interaction in a magnetic material con-
taining Jahn~Teller ions depends strongly on the nature
of the orbital ordering. Correspondingly, a change in
the orbital structure (in particular, upon a change in
the temperature) should also affect the exchange inter-
action (another mechanism for the temperature depen-
dence of the exchange integrals will be discussed in the
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following subsection). The modofication of the ex-
change can be analyzed by working from a Hamiltonian
like that in (17) [in specific systems, the Hamiltonian
is much more complicated, but the structure remains
the same; see (18), for example]. Separating the spin
and orbital degrees of freedom, we can find the spin
exchange by replacing the pseudospin operators in (17)
by their average values (the correlation functions):

Tg = Jy + 4Jy(xi5p). (26)

Just how J; varies with the temperature depends on
the details of the orbital ordering. In general, the only
point that is clear is that the corresponding change is
most pronounced near a structural transition. On the
whole, however, the change is quite slow (the correla-
tion functions for the r variables fall off in proportion
to Typ/T at T>Tyy). We will offer only a qualitative
discussion of the possible nature of the exchange in the
disordered phase.

Even at temperatures above the temperature for co-
operative Jahn-Teller ordering the Jahn-Teller ef-
fect continues to affect the physical properties of the
corresponding materials. Various limiting cases are
possible. One possibility is that the high-temperature
phase contains local distortions near Jahn-Teller cen-
ters, but that these centers are distributed at random
through the crystal (and they fluctuate over time).
Another limiting case is that in which there are no dis-
tortions in the disordered phase. In the first of these
cases the cooperative Jahn-Teller transition is an or-
der-disorder transition, while in the second it is a
displacement transition. From the standpoint of the
static properties, these pictures are essentially the
same; the differences may be seen primarily in the dy-
namic characteristics. In both cases the exchange in-
teraction is determined by the correlation functions
(-r,'r,). If there are no correlations between centers,
the exchange interaction will be antiferromagnetic,
even though the local distortions are conserved. If,
however, the correlations are retained, in particular
if they are of the same nature as in, say, the basis
plane of perovskites of the KCuF, type (Fig. 20), the ex-
change may be ferromagnetic (despite the fact that the
low -temperature phase is antiferromagnetic). Similar
arguments were advanced by Goodenough? in an effort
to explain the ferromagnetic sign of the Curie-Weiss
temperature in the high-temperature susceptibility of
LaMnO, and related compounds. At sufficiently high

FIG. 20. Diagram illustrating the possibility of ferromagnetic
correlations of neighboring centers due to the dynamic Jahn—
Teller effect. Orthogonal orbitals are stabilized during slow
vibrations of the anion between the Jan~Teller centers (cf.
Fig. 11b). Shown here are the filled orbitals for the case in
which the anion is near the Jahn-Teller center at the left. In
the opposite phase of the vibration, the orbitals exchange
places.
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temperatures, however, dynamic correlations of this
sort should disappear, and the exchange should become
antiferromagnetic, according to (17).

b) Suppression of the exchange interaction by the
Jahn-Teller effect. In addition to the changes in the ef-
fective exchange integrals due to the modification of the
orbital structure with changing temperature, there is
yet another mechanism which operates in Jahn-Teller
magnetic materials. It transforms the exchange inter-
action, giving it a temperature dependence which is
usually far more significant than that caused by the
change in the orbital structure. This mechanism, in
contrast with that discussed in subsection a, is related
only weakly to the intercenter correlations and is es-
sentially a single-particle mechanism. It is of the
same nature as the suppression of off-diagonal matrix
elements which is well known in the theory of the Jahn-
Teller effect (Section 3). The interaction of degenerate
electronic states with phonons, particularly with a pho-
non mode which lifts the degeneracy, gives rise toa
temperature-dependent renormalization of the coeffi-
cients in the effective exchange Hamiltonian, i.e., gives
rise to a strong temperature dependence of the ex-
change, which is a distinctive property of Jahn-Teller
ions.

Much experimental information has now been accumu-
lated on the temperature dependence of the exchange
integrals in magnetic materials containing Jahn-Teller
ions, especially Cu® ions (see Ref. 70 and the bibliog-
raphy there). The most remarkable material in this
regard is the Heisenberg ferromagnet K,CuCl,- 2H,0,
in which the Cu® ions form a bcc lattice. According to
ESR data,” "2 the exchange integral for nearest neigh-
bors decreases by a factor of about five as the temper-
ature is raised from 77 to 300 K (Fig. 21). Corre-
sponding results are found from an NMR study.” A
significant temperature dependence of J is also ob-
served (from the exchange narrowing of ESR lines) in
stratified compounds containing ferromagnetic planes
formed by Cu®* ions [for example, K,CuF, (Ref. 74) and
(C H,,.,.NH,),CuCl, (Ref. 75)] and in certain other cop-
per compounds.”® This effect is usually attributed to a
phonon modulation of the exchange interaction,’® which
reduces to an increase in the distance between magnetic
ions because of thermal expansion. This mechanism
actually plays some role in shaping the temperature de-
pendence of the exchange integrals, and it is probably
. a governing factor for compounds which contain ions
having no orbital degeneracy, Mn*, for example. For
Jahn-Teller systems, however, this mechanism is ap-

! ! i
g 00 200 T,K

FIG. 21. Temperature dependence of the exchange integrals in
K,CuCl, * 2H,0 according to ESR data. a—From Ref. 71;
QO-—from Ref. 72.
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parently insufficient. For K,CuCl,- 2H,O, for example,
we have AJ/J=3.5- 10°K™ near room temperature,
while the thermal expansion for this material is’®""
Al/1=8-107° K,

In Jahn-Teller magnetic materials, however, there
is another, distinctive, mechanism, which modifies the
exchange and gives it a temperature dependence.”"®
The simplest way to explain this mechanism is to speak
in pseudospin terms, as we did in Sections 2 and 3. For
simplicity we consider a twofold-degenerate system
which is interacting with a nondegenerate phonon mode
(for the time being we will assume that the phonons are
local): .

Hypy= g gui (5 +bon)e (27)

An interaction of this type is known (see Ref. 1 and
Section 3 of the present paper) to make the new states
mixed electron-phonon states (or pseudospin-—phonon
states), and as a result the off-diagonal matrix ele-
ments of the various operators decrease [see (6)]. In
particular, the operator 7* is a nondiagonal operator;
it acquires an exponential factor 7* - ¢"%s5v/"“7*, where
w is a characteristic phonon frequency. The corre-
sponding suppression factors depend on the tempera-
ture, falling off sharply (as e 517/ @)% for T> w, Re-
calling that the complete exchange Hamiltonian also
contains the operators 7° and 7* in the degenerate case
[see (18)], we clearly see that when we take the inter-
action with the lattice into account the “nondiagonal”
part of this Hamiltonian (the terms containing 7*) will
be modified and will acquire a temperature dependence.
In other words, in the complete Hamiltonian, which
may be written

Hl] = (‘;“I" ZS,S]) (Jo+ Ju"":"":"l" Jz:ﬁ"? + J:ztfﬁ)v (28)

the exchange constants J, and J,, are not renormalized,
while J,, and J,, acquire some small coefficients.

The same result is found’® through a complete analy-
sis of this problem carried out (instead of by working
directly from the pseudospin representation) by using
the initial degenerate model of Hubbard, (16), to which
an appropriate electron—phonon interaction is added.®’
For local phonons we find in this case

Jix = €xp ( —2L2cth ;—?-) Jixr  Jxz = 0XPp ( — 42 cth %)J“,
(29)

in accordance with the discussion above. Here {=g%/
(Fw)?= E;p/Bw. When the phonon dispersion and the
electron-phonon interaction are taken into account,
some complications arise,’® but they do not change the

91n contrast with the nondegenerate Hubbard model, in which
the interaction with phonons affects the exchange substan-
tially only if w>U (Refs. 76—178), there is also an effect at
small values of v in the present case. The reason is that in
the presence of a degeneracy the structural changes of the
phonon subsystem which lead to the appearance of suppression
factors occur not only in the intermediate state {(as in the non-
degenerate case) but also in situations in which the ipitial and
final states of the exchange are themselves different. This
situation is described by the operators 7%, which change the
orbital configuration of the ion.
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overall qualitative picture, and we will not discuss
them here,

In practice there are frequent cases in which degen-
erate electronic states interact with degenerate pho-
nons. The interaction is then of the form in (5), and as
a result we find not only the operators 7* (which are
nondiagonal with respect to the interaction 7%Q,) but also
operators 7* (which are nondiagonal with respect to the
interaction Q,). The corresponding suppression fac-
tors have been calculated numerically (see Ref. 9, for
example). Their qualitative behavior is roughly the
same as in an interaction with a nondegenerate mode,
(29); the only difference is in the numerical coefficient
in the argument of the exponential function. As a re-
sult, the entire part of the interaction in these systems
which depends on the operators r will decrease expo-
nentially.

It can be seen from expressions such as (29) that the
suppression of the exchange will be particularly marked
at TR Awy if Ejp>Rw. Analyzing the structure of the
exchange Hamiltonian in (18), we also note the follow-
ing: In this general form the exchange contains a large
antiferromagnetic part ~¢2/U, which does not depend on
the orbital structure, and terms which contain the op-
erators r; only these terms fall off with the tempera-
ture. It is clear that if the resultant exchange for a
given pair of ions is antiferromagnetic then the change
in this exchange as a function of the temperature will
not be very pronounced—of order of unity (the terms
containing 7 decrease, but the constant part remains
the same). The effect may be much stronger if the or-
bital structure of the ground state is such that, in the
leading order in ¢/U, the terms containing v completely
cancel the constant term in the exchange integral, so
that the resultant exchange becomes a relatively weak
ferromagnetic exchange. This is the situation in
K,CuCl: 2H,0 and K,CuF, and also in the basis plane of
KCuF,. Inthis case the decrease in the terms contain-
ing 7 in the exchange leads to an “unbalance,” and the
ferromagnetic exchange falls off significantly (here we
are essentially seeing the tendency, mentioned above,
toward a restoration of a strong antiferromagnetic ex-
change at high temperatures, when all the orbitals are
filled equiprobably.!®’ In fact, the most noticeable
change in the exchange interaction as a function of the
temperature is usually observed in precisely those
compounds containing Jahn-Teller ions in which the ex-
change is primarily ferromagnetic.

Up to this point we have been discussing the modifi-
cations of the exchange in materials containing e, ions.
In compounds containing t,, ions the situation is similar
in principle, but there are some important distinctions.
I the primary interaction is one of t; electrons with
E, vibrations (the t-E problem; tetragonal and ortho-
rhombic distortions), the diagonal operators [(I%)® - 2/3]

10 herefore, because of this effect, the exchange interaction
may change sign upon a change in the temperature. This
would be a new exchange-inversion mechanism, different
from the ordinary Kittel mechanism,”™ which fnvolves a
thermal expansion (see also Ref. 49).
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and [(I")? ~(1?)?] are not suppressed, while the opera-
tors (I*° +1°1%), (P1* + 1*1%), (1*1* + I1%), which also appear
in the exchange Hamiltonian, decrease. In an interac-
tion with trigonal vibrations we find the opposite situa-
tion. A more important point, however, is that the op-
erator 1 (the orbital angular momentum) itself and,
correspondingly, the spin-orbit interaction are sup-
pressed exponentially in both these cases.® According-
ly, as mentioned in Section 5, the spin—orbit interac-
tion imposes its own type of ordering and opposes the
Jahn-Teller ordering; in turn, the Jahn-Teller effect
weakens the spin—orbit interaction (a similar situation
in rare earth compounds was discussed in Ref. 6). The
joint effects of all these factors have not been studied
in detail; it is clear at a qualitative level that in cases
in which the Jahn-Teller effect is predominant the tem-
perature dependence of the exchange interaction may be
stronger than when the ordering results from the spin-
orbit interaction. Since the exchange in t,, systems,
however, is usually antiferromagnetic (i.e., the orbital
terms cancel the constant antiferromagnetic contribu-
tion to the exchange very rarely), the effect of the tem-
perature in these compounds should be less apparent
than in systems with e, ions.

To conclude this section we should state that it is
really somewhat arbitrary to make a distinction be-
tween these two mechanisms (of subsections a and b)
for the temperature dependence of the exchange inte-
grals in Jahn~Teller systems. As we will see, the vi-
bron (“polaron”) suppression of exchange which we dis-
cussed above, may be ascribed, instead of to the ex-
change integral J~ J(T), to an average of the nondiag-
onal operators 7* [(+™) ~ exp(-£2 cthiw/2T){(+*)]. From
this standpoint, the results of subsection b may also be
treated as an effective attenuation of the orbital corre-
lations (r,7,)= {r ){r,), by analogy with subsection a
(when the phonon dispersion is taken into account, this
distinction is not always appropriate, but the general
approach remains valid). We may say that the mechan-
ism discussed in subsection a actually results from a
change in the orbital ordering in the approximation of
a self-consistent field, while the results of subsection
b reduce to incorporating the effect of fluctuations in
the electron—phonon (or psudospin~phonon) system.

8. EFFECT OF A MAGNETIC FIELD ON JAHN-—
TELLER SYSTEMS '

It has been shown in the preceding sections that the
orbital structure and the magnetic order depend on each
other in magnetic materials which contain ions having
an orbitally degenerate ground state. This interrelation
leads to some quite nontrivial orbital and magnetic
structures (Section 4), which have been observed ex-
perimentally.

The existence of two order parameters—spin and or-
bital —may strongly affect the behavior of the corre-
sponding materials in a magnetic field. If we perturb
the filling of orbitals in some manner (by applying
pressure, for example), we can change the structure of
the spin system. On the other hand, a magnetic field
acting on the spins simultaneocusly affects the orbital
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structure, and the parameters of the spin system also
change. As a result, the dependence of the magnetic
moment on the magnetic field becomes nonlinear even
in the case of an isotropic exchange interaction of the
type 8,5,, and this circumstance distinguishes Jahn-
Teller systems from ordinary Heisenberg magnetic
materials. As the magnetic field is increased, abrupt
transitions may also occur between different types of
magnetic structures and, correspondingly, between dif-
ferent types of orbital structures. This circumstance
actually means that there may be a metamagnetism
(i.e., a highly nonlinear, even abrupt, change in the
magnetic moment as a function of the magnetic field) in
the case of an isotropic exchange interaction.’? Meta-
magnetism is usually thought of as a consequence of a
pronounced anisotropy of the exchange interaction,®52
In the isotropic case, metamagnetic behavior may be
exhibited in systems having an exchange interaction
which includes terms which are biquadratic in the
spin*®*® or in models of a similar nature, such as those
of Ref. 83, for example, where the incorporation of the
spin-lattice interaction in a chain of classical spins
leads to biquadratic terms in the spin Hamiltonian. In
Jahn-Teller magnetic materials, metamagnetism is
possible even with S=1/2, in which case there are no
biquadratic terms or terms of higher order.

The mechanisms for the occurrence of a nonlinearity
and for the metamagnetic behavior in this case can be
understood easily’®® from the simple model discussed
in Section 4, with the Hamiltonian in (17). The com-
plete “orbital” exchange J, is clearly

Je = J, 4 4, (88, (30)

i.e., depends on the spin correlation function. The
magnetic field H changes the spin structure and thereby
affects Jr. For J,>J,>0, for example, the ground
state is antiferromagnetic in terms of the spin, (S,S,)
=-1/4, and we have J, =J, - J,<0; in other words, an
orbitally ferromagnetic state is produced. As the field
is increased, the inclination of the spins causes the
correlation function (S.S,) to increase, and a field is
eventually reached [when (S.S,) > J,/4J,]at which J,
changes sign, i.e., at which the r ordering gives way to
an antiferromagnetic ordering. In turn, the actual spin
exchange is [see (20)]

Jg = Ji + 4Ty {11y,

and a change with the field in the orbital structure
characterized by (r,7,) leads to a dependence of Jg on
the magnetic field, i.e., to a nonlinear dependence of
the magnetization on the field. In the particular case
discussed above, the transition from a “ferro” to an
“antiferro” T ordering leads to a decrease in Jg with
the field (the correlation function (r,7,) becomes nega-
tive), and this effect causes the metamagnetism.

Let us illustrate these arguments for the particular
system® described in Section 4: a perovskite structure
in which ions having a single electron or hole in a two-
fold-degenerate e, level form a simple cubic lattice.
We recall that the ground state of such a system with
H=0 corresponds to a magnetic structure consisting of
ferromagnetic planes perpendicular to one of the axes,
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FIG. 22. Dependence of the exchange Integrals on the magne-
tic field in systems of the perovskite type containing Jahn—
Teller ions.}

say the z axis, coupled in an antiferromagnetic man-
ner. The orbital structure typically has an alternation-
of d 2,2 and d..,2 orbitals (Fig. 13).

When the spin structure is changed by the magnetic
field, the minimum energy naturally corresponds to
some other orbital configuration, but at the same time
the parameters of the effective spin Hamiltonian change,
and the system does not behave in the magnetic field as
it would if it were described by a Heisenberg model
with constant coefficients. The corresponding problem
was studied in Ref. 84 for the case in which the field H
is parallel to the z axis and there is no anisotropy of
the exchange interaction. In the limit H~ 0 the spins
become aligned perpendicular to H, and as the field is
increased they begin to incline progressively more,
forming an angle with H which is determined by the
minimum energy. The effective exchange integrals in-
tegrals in the (x, y) plane and along the z axis change as
shown in Figs. 22a and 22b. Generally speaking, there
may be an abrupt change in the sign of the spin interac-
tion, from ferromagnetic to antiferromagnetic, so that
in a certain field the stratified spin structure trans-
forms into an ordinary two-sublattice antiferromagnet
(in which, of course, the sublattices are skewed be-
cause of the magnetic field).

It is simple to explain the appearance of a two-sublat-
tice antiferromagnetic structure in a qualitative way.
As mentioned earlier, there is an alternation of filled
d,2,2 and d ... orbitals in systems of the KCuF, type at
H=0 (Fig. 13), so that the overlap of filled orbitals is
zero in the (x, y) plane; the only overlap is of filled or-
bitals with empty orbitals, so that we have a ferromag-
netic exchange ~t2J,,/ U? The magnetic field changes
the orbital structure as well as the spin structure; an
overlap between modified filled orbitals appears along
the ¥ and y axes. As a result, the magnetic field causes
an “antiferromagnetic rigidity” along the directions
perpendicular to H. The changes in the orbital struc--
ture and, correspondingly, in the crystalline structure
which are required here are comparatively slight.

With a further increase in the field, the angle between
the sublattices becomes progressively smaller, until
saturation magnetization is reached at a certain field.
Figure 23 shows the behavior of the magnetic moment
of the system as the field is increased; this behavior is
similartothat whichis observedintypical metamagnets.
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FIG. 23. Field dependence of the magnetic moment in perov-
skites containing e, fons. Jp/U =0.1. 1—Stratified spin
structure; 2—two-sublattice antiferromagnet; 3-—ferromagnet.

In the description above we assumed that the g factors
remained constant. I we allow for possible virtual
transitions to higher-lying levels, however, for which
the spin—orbit interaction is important, then the g-fac-
tors turn out to depend on the filling of the orbitals,
even in the case of e, states. Consequently, the g-fac-
tors may also change upon a change in the magnetic
field. The corresponding interaction is described by
terms proportional to S*7*H at the i-th site. Incorp-
orating this interaction does not change the situation
described above in a qualitative way, but it does lead
to some numerical corrections.*

We note, however, that these aspects of the behavior
of a system described by a superexchange Hamiltonian
may occur only at fields H/gug~#*/U. For a transition
temperature 7,~100 X (T, ~£*/U), the typical field val-
ues are ~10° Oe (p,=0.67-10™ deg/Qe); in other words,
for ordinary transition metal compounds the fields re-
quired are not feasible experimentally. There is the
hope that with 7#0 (in particular, with 7~ T,) the nec-
essary fields will be considerably weaker, while the
situation will not be fundamentally different. At realis-
tic field values it might be possible to observe effects
due to the nonlinear dependence of the magnetic mo-
ment on the field. Incidentally, if the superexchange
occurs through two or more intermediate ions, instead
of through a single such ion, the characteristic critical
temperatures and, correspondingly, the fields will be
much lower. This is apparently the case for the garnet
Ca,MnGe,Q,,, with Mn** ions at octahedral interstitial
positions forming a bee lattice. This material shows
indications of a cooperative Jahn-Teller transition at
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FIG. 24. Metamagnetic behavior of the garnet CazMn,GegOyy
containing the Jahn—Teller fon Mn®* (Ref. 87). These are the
magnetization isotherms for the case in which the field is di-
rected along the [111] axis. Ty=13.85 K.
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FIG, 25, Phase diagram of the two-spin Heisenberg model in
(17) for various values of the parameter o =J3/J; (Ref. 88).
Jy=0,t =T/22dy, h=H/2{Z zJ,, and z is the number of nearest
neighbors., a—0<a@<1/12;b~1/3<a<1,c—a>1, The
first-order transitions are indicated by solid lines and second-
order transitions by dashed lines. x —Tricritical points.
I—Phase which is ferromagnetic with respect to r and anti-
ferromagnetic with respect to S; [I—phase which ig antiferro~
magnetic with respect to both 7 and S; III~—phase which is
paramagnetic with respect to 7 and antiferromagnetic with
respect to S; IV—phase which is paramagnetic with respect to
both 7 and §; V—phase which is antiferromagnetic with respect
to 7 and paramagnetic with respect to S.

~400 K (Ref. 85). Neutron-diffraction measurements®
have shown that its magnetic structure is extremely un-
usual, a structure not ordinarily found in garnets; this
structure is evidently also a consequence of cooperative
Jahn-Teller ordering. A study of this compound in a
magnetic field has revealed a metamagnetic behavior®
(Fig. 24). The magnetic anisotropy of Ca,Mn,Ge,O,, is
slight and could hardly explain the unusual observed
behavior; the metamagnetism of this compound may
possibly be caused by the mechanism discussed above.

The unusual behavior of Jahn-Teller magnetic ma-
terials in an external field can also have a strong ef -
fect on the thermodynamic properties of the corre-
sponding materials, particularly as represented on a
phase diagram. A detailed analysis of the model in (17)
has shown® that lines of first-order and second-order
phase transitions, tricritical points, points at which
several phases coexist, etc., are observed on a tem-
perature vs magnetic field phase diagram (Fig. 25).
The first-order transition in the field at low tempera-
tures is the metamagnetic transition discussed above;
interestingly, the transitions remain first-order tran-
sitions even above the triple point on the diagram.
Some general theoretical models of this sort will be
discussed further in Section 10.

Up to this point we have been discussing the effect of
a magnetic field on Jahn-Teller magnetic materials.
There are also other ways to perturb the orbital and
spin structures of these materials. For example, the
imposition of a uniaxial pressure P gives rise to terms
of the type A7°P in the Hamiltonian; in other words, a
uniaxial pressure affects the r system in much the
same way that a magnetic field affects the spin system.

A change in the orbital structure caused by a uniaxial
compression could in principle lead to a modification
of the spin ordering, but in materials exhibiting a sym-
metric cubic phase (spinels and perovskites) the pri-
mary effect is simply a reorientation of the distortion
axis (a particular type of domain becomes preferen-
tial), while the nature of the orbital and magnetic or-
dering remains the same. The situation may not be this
trivial in crystals exhibiting a lower initial symmetry
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(see Ref, 62 and subsection 6c).

The Jahn~Teller magnetic materials discussed above
had a “frozen” orbital angular momentum (e, ions). In
the case of t,, ions, on the other hand, the indirect ef-
fect discussed above is accompanied by a direct effect
of the magnetic field on the orbital angular momentum
1, i.e., on the orbital structure. A linear relationship
between ! and the field H also occurs by virtue of the
spin-orbit interaction. Correspondingly, with a spin-
orbit ordering mechanism (Section 5) the orientation of
the spins by the magnetic field involves some orienta-
tion of the resulting lattice distortions; i.e., the sam-
ple is again transformed into a single-domain sample in
the simplest cases. Actually, the corresponding phe-
nomena are closely related to the problem of the mag-
netic anisotropy in compounds with t,, ions, which was
discussed in Section 5.

On the other hand, when the ordering in a system with

t,, ions goes by the Jahn-Teller mechanism, and the

_ground state is an orbital singlet with a frozen angular
momentum, the situation is slightly more complicated.
The most important difference is that the magnetic
field, by changing the spin structure, can shift the
“balance” between the Jahn-Teller and spin-orbit en-
ergies. In spinels with a Yafet-Kittel triangular spin
ordering, for example, a tetragonal distortion accom-
panied by the filling of states with angular momenta !
=+] is unfavorable; in NiCr,Q,, for example, the or-
dering results from the Jahn-Teller effect (C/a=1, I*
=0). The magnetic field, by lining up the spins in a
parallel arrangement, can in principle produce a fav-
orable structure with I*=+1 (spin-orbit ordering; c¢/a
<1). This is apparently the nature of the additional
temperature -induced transition to a phase with ¢/a<1
in Fe,.,Cr Ni,0, (Ref. 2). It would be interesting to see
how a magnetic field affects this transition.

9. METHODS FOR STUDYING ORBITAL ORDERING

The effect of orbital ordering on the magnetic prop-
erties is the basic subject of this review. In the pres-
ent section we will consider some other, “nonmagnetic”
manifestations of the cooperative Jahn-Teller effect
which are widely studied experimentally and which
serve as a basis for determining the orbital structure
of the ordered phase. These questions are already the
subject of an extensive literature (see the reviews in
Refs. 1, 8, and 69), and we will discuss them only
briefly here. To make the discussion more concrete
we will illustrate the various methods primarily for a
single case: the nontrivial orbital structure of K,CuF,
(Section 4).

We begin by noting that the symmetry and distortion
of the low-temperature phase of a crystal can be stud-
ied by direct methods (x-ray and neutron methods).
These results yield the orbital filling directly. For e,
ions, for example, the deformation of the octahedron
near the Jahn-Teller ion determines the angle @ in the
(@, @) plane or in the (7*, 7*) plane'®:

tg0m-2 = VEU—9 (31)

Qp 2m—l—s '

where I, m, ands are respectively the long, intermediate,
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and short axes of the octahedron. Equation (31) then
gives the ground-state wave function |¢)=cos8/2|d,2)
+sin6/2|d,z2.,2) [we recall that for the Cu® ion, whith
has a hole instead of an electron in the e, level, the an-
gles @ in the (Q,, Q,) plane must be replaced by 7 - 6].
Analysis of the experimental data shows that for typical
e, ions the octahedra are usually not flattened but in-
stead stretched; this is always the case for the Cu®
ion, and the situation is apparently the same in com-
pounds containing Mn®** and Cr?*, although in these lat-
ter cases the deformation may incorporate a substantial
orthorhombic component, described by @,. In Ref. 90
it is asserted that Mn** ions in orthoferrites and in
manganates of the LaMnO, type are characterized by a
d,2>.,2 wave function, but those results are very dubious,
apparently a consequence of errors in the theoretical
interpretation of the experiment. In Mn* compounds
the angle 8 actually lies in the range 7/2< 0< 21/3 (8
=271/3 in spinels and 6=97° in MnF,). For Cu® the an-
gle 6 (in the 7 plane) is usually near 7/3; i.e., in prac-
tice the hole fills a d,2 .2 orbital. :

The nature of the orbital filling can also be seen in
many other properties of a crystal. It strongly affects
the ESR and NMR spectra, particularly the NMR of dia-
magnetic anions (because of the covalent admixture of
cation wave functions). Manifestations of the Jahn-Tel-
ler effect in ESR are well known.®> An example of the
use of the NMR method to analyze the orbital structure
of K,CuF, is described in Ref. 36.

Optical spectroscopy is a powerful tool for studying
term splitting and structural transitions.!®® This is
primarily direct ligand spectroscopy, which yields the
positions of the electronic energy levels and their
changes during transitions; this type of spectroscopy is
widely used to study Jahn-Teller compounds.!*®? Light
scattering yields some important information about
structural transitions. Since both electronic and lattice
characteristics change in the course of the cooperative
Jahn-Teller effect, the transition can be seen in both
electron Raman scattering and scattering by phonons.
Analysis of the corresponding data also yields the type
of orbital ordering; an example of this appraoch is Ref.
94, where Raman scattering in K,CuF confirmed a
structure which had been inferred indirectly. Orbital
ordering is also manifested in the optical properties;
in particular, it gives rise to a dichroism (see Ref. 37
for a corresponding study of K,CuF,),

Finally, some important information can be obtained
by studying phonon characteristics, especially through
ultrasonic measurements. This method is particularly
effective when a structural phase transition actually oc-
curs in a system, but it also yields some information
in the ordered phase itself. Which particular modulus
softens near a transition is determined by the original
degeneracy and by the type of deformation during the
transition. For a deformation with E, symmetry, for
example, the elastic modulus C,, - C,, softens, while
the C,, modulus softens in a T, deformation.®® The
temperature dependence of the corresponding modulus
is given by the following expression®®®® (if the macro-
scopic deformation can be used as an order parameter,
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FIG, 26. Softening of the elastic modull accompanying a
Jahn—Teller structural transition in NiCr,O, (Ref. 111). T,—
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i.e., for ferroelastic transitions —and most of the coop-
erative Jahn-Teller transitions fall in this category):

c()=c, It @ecd, (32)

where C, is the initial elastic modulus, T, is the tem-
perature of the transition caused by any mechanism
other than an interaction with a uniform deformation, g
is the constant of the interaction with a uniform defor-
mation of the corresponding symmetry, and a=a’(T
-T,) is the coefficient of the quadratic term in the Lan-
dau expansion of the free energy.

Interestingly, by using (32) we can determine from
the corresponding experimental data the relative role
played in the transition by the interaction with a uniform
deformation [see (8)] and the relative roles played by
all other interactions (including the Jahn-Teller inter-
action with short-wave phonons, the direct quadrupole
interaction, and the exchange interaction). An analysis
of this type for the Jahn-Teller transition in NiCr,0,,
for example, has shown®®!!! that the interaction with a
uniform deformation plays a leading role in this com-
pound (Fig. 26). So far we have no corresponding data
for perovskites, in which we could expect stronger
interactions of a different type.

10. SOME OTHER THEORETICAL QUESTIONS

In addition to the specific questions discussed above,
several related theoretical problems arise in research
on the cooperative Jahn—-Teller effect and on the mag-
netic properties of materials having an orbital degen-
eracy. These problems are also of interest in their
own right, and we will discuss a few of them briefly
here.

Several problems arise in the analysis of a purely
Jahn-Teller system. In our discussion of the structu-
ral transitions which result from the cooperative Jahn-
Teller effect we actually used an approximation corre-
sponding to the approximation of a self-consistent field.
There was almost no mention of fluctuation effects, in
particular, above the transition. It is clear, however,
that even an isolated Jahn—Teller center in such a sys-
tem has an important and distinctive property: With a
sufficiently strong interaction, the wave functions of
this center are vibron wave functions, and local distor-
tions near the Jahn-Teller centers may have to be con-
sidered in the high-temperature symmetric phase. The
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transition will be of the nature of an order—disorder
transition; if these local effects are ignored, on the
other hand, the transition is more nearly a displace-
ment transition. In practice, the distortions at 7> T
are dynamic; i.e., the actual situation lies somewhere
between these two limiting cases. Only a few pa-
pers®'?::%:97 haye been devoted to a theoretical analysis
of the role played by vibron effects in the cooperative
Jahn-Teller effect, and this question also requires fur-
ther experimental study.

In materials exhibiting a cooperative Jahn-Teller ef-
fect the situation is more complicated than for other
structural transitions in cases in which the degenerate
electron mode interacts with a degenerate phonon mode.
For example, the interaction in the case of twofold de-
generacy is frequently of the form in (4) or (7); i.e., it
depends simultaneously on the operators 7* and 7. In
such cases the phonon coordinates do not separate upon
a canonical transformation corresponding to a displace-
ment transformation for the phonon operators, because
the operators 7* and 7* do not commute; the result is a
very complicated dynamic situation (there is an analo-
gous situation in the case of a pseudodegeneracy, which
is quite common in rare earth compounds':?), The
analysis of this case and of its consequences has been
the subject of many papers (see Refs. 98 and 101, for
example).

At this point we leave the purely Jahn-Teller situa-
tion to consider some problems and results for situa-
tions in which there are interacting spin and orbital
subsystems. As was mentioned earlier, the degenerate
Hubbard model (Section 4) is the mathematical model
for this case, In addition to the results which were dis-
cussed above and which already have some specific ap-
plications, there are some other results available for
this model.

The properties of the exchange interaction which are
characteristic of orbital degeneracy have been studied
on the basis of symmetry considerations in a series of
papers.®®''% In particular, the possible appearance of
a phase with a “frozen” (or greatly reduced) spin has
been studied, and the possibility of piezomagnetism has
been pointed out.

The properties of the degenerate Hubbard model were
studied in Refs., 103105 for an arbitrary (in particular,
fractional) number of electrons at a center. This case
may be pertinent to Jahn-Teller systems with impuri-
ties and also to materials in which there is an appreci-
able overlap of the d levels of adjacent centers (the ex-
amples usually cited are the systems Fe,_Co,S,,
Co,NiS,, and CoS,..Se,; Refs. 105,106). It turns out
that in this case the orbital and magnetic structures
change as the bands are filled'®®; in particular, it is
possible to derive an exact result’” which is analogous
to Nagaoka’s result'®® for the nondegenerate case. Ac-
cording to Ref. 108, the ground state of a degenerate
system having only a single extra electron (above n=1)
turns out to be ferromagnetic in terms of spins and or-
bitals. The thermodynamics at high temperatures has
also been studied for the degenerate Hubbard model.'®
Essentially all the results derived for the nondegener-
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ate Hubbard model can be generalized to the degenerate
case (although this has not yet been done systematical-
ly). It should be noted, however, that essentially all
the work which has been carried out in this direction
has dealt with the very simple symmetric version of the
model, in which the transition matrix elements ¢, are
identical for all ion pairs i, j and in which ¢, =¢,,. As
we saw above, however, the corresponding anisotropy
in a real situation is extremely pronounced, so that the
results of these studies are hardly directly applicable
to specific systems.

Orbital degeneracy plays an important role in cases
other than that of highly localized electrons, as in mag-
netic insulators. This degeneracy may also be impor-
tant in the intermediate range of the parameters ¢~ U;
it may be manifested in a Mott insulator—metal transi-
tion. There has been essentially no study along this
line; the only really detailed discussion of this ques-
tion has been in the papers in Ref. 110. Specific calcu-
lations were carried out there for the properties of
V.0, in both the insulator and metal phases. It was
shown, in particular, that below the insulator-metal
transition in V, O, there is, in addition to a magnetic
ordering, an “antiferro” orbital ordering. Only if this
orbital ordering is taken into account can the structure
of the low-temperature phase be described correctly.
It is clear from this result and also from general con-
siderations that in real materials (in particular, in
transition metal compounds which undergo insulator—
metal transitions) the degeneracy of electronic levels
should play an important role. These questions clearly
deserve further study (all that we have so far are the
qualitative and semiphenomenological discussions in
Refs, 112 and 113).

It is not, however, only in the case n#1 or ¢~ U that
theoretical problems arise for such systems. Even in
the simplest case of strong coupling and a single elec-
tron per center the situation is far from completely
clear. As was shown in Section 8, the problem reduces
to a “two-spin” problem in this case, in which there
are spins S and T at each site which have a bilinear and
quaternary interaction and, frequently, a peculiar an-
isotropy. Correspondingly, models of the types which
are widely used for purely theoretical purposes in the
phase-transition problem naturally arise here. For ex-
ample, the two-spin model with the Hamiltonian

H=‘E’, (JiSuS;+ o7ty + T35S mT) (33)

becomes the same as the Ashkin-Teller model'** when
the variables S and 7 are the Ising variables. Several
interesting results have now been established for the
Ashkin-Teller model (see Ref. 115, for example). I,
on the other hand, one or both of the variables S and 7
are Heisenberg variables, the situation is even more
complicated. An analysis has been carried out for this
case''®™7 in the approximation of a selfconsistent field
and in the constant-coupling approximation. The phase
diagram for this model for the case of a magnetic field
H2,,S% was studied in Ref. 88 (see Section 8 of the pres-
ent review). It is also a simple matter to derive an
exact solution for the two-spin Ising model in a magnet-
ic field in the one-dimensional case!'®!'? and also for
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the model in (33) for the case of a one-dimensional
chain of classical spins S and 7 (Ref, 118). The one-
dimensianal Heisenberg model of the type in (33) has
also been solved exactly for the symmetric interac-
tion,'2

A distinctive feature of all these two-spin models is
the presence of three order parameters: S, 7, and 7
=S7, with the kinematic coupling Stn=const. In the Is-
ing version these three parameters are all equivalent,
and there is the corresponding possibility of a strong
degeneracy. For Heisenberg spins, in contrast, the
parameter 17 is not equivalent to S and 7, so that this
case has some distinctive features, 118

Yet another curious spin model which arises in a nat-
ural way in a study of Jahn-Teller magnetic materials
is the model incorporating the anisotropy of the ex-
change for different pairs of ions. As was shown in
Section 4, the T exchange is different for pairs lying
along the x, y, and z axes. In the simplest case, the
situation can be described by a Hamiltonian of the type
H=J( g v+ 2 w4 X ), (34)
., 1)y iy
where (, j),,,,, denotes the i, j pairs which are arranged
along the x, y, and z axes, respectively. Although the
interaction within each pair is a sort of Ising interac-
tion, the overall symmetry is considerably more com-
plicated. The “cubic” model'? in (34) has much in com-
mon with the real dipole-dipole interaction, and its
properties, even its ground-state structure, are not
yet clear. Pairs arranged along the z axis, for exam-
ple, would like to align their spins along z ({+)#0),
while pairs arranged along the x axis would like to ro-
tate their spins around the axis.'?* This situation can
be described by the classical model of a lattice of mag-
netic needles (“compasses”). In contrast with a one-
dimensional system, the properties of two-dimensional
and three-dimensional systems are not understood even
qualitatively. In a one-dimensional chain of this type,

a situation of this sort is understandable: All the
needles line up heat to tail and become ordered along
the direction of the chain. For a square two-dimen-
sional lattice, on the other hand, the nature of the or-
dering (i.e., the direction of the arrows) is not clear
even in the classical case. We might note in this con-
nection that the Bogolyubov inequality has been used to
prove a theorem'® that ordering is not possible in the
three-dimensional case for a system with a purely di-
pole —dipole interaction. In the one-dimensional case,
on the other hand, this is not proved. The situation
here is opposite that in the usual spin models,'?* where
there is no ordering in the one-dimensional case.

Finally, the model describing the orbital ordering
which allows for an anisotropy with respect to the angle
6 in the (7%, 7°) plane has some distinctive properties.
The Hamiltonian for this model can be written in the
form

H= 2 Jy (G + 0 + Henisw  Honin —2 $cos 30,. (35)

¥

-

With g=0, this becomes the model of plane rotors (the
XY or, here, the XZ model, but an interaction of the
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Heisenberg type can also be treated), and at large val-
ues of g this model becomes the Potts model with three
states per site.'® The model in (35) may be thought of
as a quantum generalization of the Potts model.

All these models, which are of theoretical interest in
their own right, arise naturally in the theory of Jahn-
Teller magnetic materials. The actual properties of
these materials will exhibit the various characteristic
features of each of these models in some form or other.

11. CONCLUSION

We have seen that the orbital degeneracy which is
common in magnetic insulators has extremely impor-
tant effects on the entire range of properties, including
magnetic properties, of these materials. This is the
justification for singling out magnetic materials con-
taining Jahn-Teller ions as a special class. A study of
these materials is of much interest in itself, because
of the rich variety of properties. The situation com-
bines effects stemming from structural changes (with
all the distinctive features characteristic of structural
phase transitions) and nontrivial magnetic properties.
We have seen that the analysis of the distinctive mag-
netic properties of Jahn-Teller compounds and the ap-
plication of the corresponding models permit a slightly
new approach to, and a better understanding of, such
“classical” magnetic phenomena as magnetic anisotropy
and magnetostriction.

A quite attractive aspect of the study of Jahn-Tel-
ler magnetic materials, especially those containing
transition metals, is that graphic qualitative concepts —
regarding the nature of the orbital wave functions, the
corresponding electrostatic interaction, and overlap—
work very well here. These materials are apparently
unique in the sense that with knowledge of nothing more
than the chemical composition of the compound (the na-
ture of the transition ions in it) it is usually possible to
predict the presence and nature of a lowering of the
symmetry and the associated features in the magnetic
behavior.

The topics discussed in this review do not exhaust the
manifestations of the Jahn-Teller effect in transition
metal compounds. In essentially all systems which
contain Jahn-Teller ions {or in which such ions ap-
pear) these ions have many physical consequences.

The Jahn-Teller effect influences both the conductivi-
ties of the corresponding materials (see Ref. 126, for
example) and resonance phenomena. Specifically, the
interaction with the lattice, which is strong for Jahn-
Teller ions, is apparently responsible for that firming
up of domain walls which leads to the photomagnetic ef-
fect'¥ in chromium chalcogenide spinels. We could
cite many other examples.

Orbital degeneracy undoubtedly affects the properties
of metallic systems also; in addition to the papers
which we cited in Section 10, we might also mention the
ideas of Thalmeier and Falicon'?® regarding a possible
role of orbital degeneracy in transition metals. In this
connection we note that the splitting of the threefold-
degenerate t,, states lies at the basis of the theory pro-
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posed by Labbé and Fiedel'* for structural transitions
in compounds of the V;Si and Nb,Sn type. In general,
the Jahn-Teller band effect and the associated struc-
tural transitions in metals and alloys now constitute a
rather large independent field of research.'*

Returning to the Jahn-Teller magnetic insulators, we
might say that we now have a rather clear picture of
their static properties (their orbital and crystalline
structures, the type of magnetic ordering, the particu-
lar features of magnetic anisotropy and magnetostric-
tion, and the response to an external magnetic field).
The primary need at this point would seem to be a study
of the dynamic characteristics (by means of neutron
scattering, the scattering of light, ultrasonic measure-
ments, etc.). Studies of this type may reveal some in-
teresting new effects in this unusual class of com-
pounds.
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