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1. INTRODUCTION

Interaction of resonant optical radiation with a gas
and a plasma occurs, for example, during transport of
radiation in lines, formation of the light flux in a laser,
and propagation of a light pulse from an external source
in a resonant amplifying (absorbing) medium. Each of
the areas of research listed is very broad and has its
own interesting applications and theoretical methods for
formulating and analyzing the problems that arise. The
common factor is the fact that all these areas make use
of the same local characteristics of optical transitions
in atomic lines: coefficient of absorption, power ab-
sorbed per unit volume, and so on. The frequency de-
pendence of these characteristics (i.e., line profile) is
usually determined by collisions, the Doppler effect,
and (in laser fields) the radiation intensity.

1. The local characteristics of line profiles were
first studied using the theory of broadening of spectral
lines,1"4 which was mainly developed for plasma diag-
nostics and in connection with the study of radiation
transport. In such problems, the effect of the light
field on the local line shape can be neglected. This
simplification permitted establishing, in a quite de-
tailed manner, the relation between the line profile and
the properties of the medium and the "broadening" par-
ticles, in particular, it permitted observing the fre-
quencies that are emitted (absorbed) during the free
flight time and during a broadening collision.

The development of nonlinear resonance radiation
spectroscopy,5"7 which takes into account the effect of

the electromagnetic (EM) field on the optical properties
of the medium, began with the appearance of lasers. A
theory, based on kinetic equations in which terms de-
scribing the transitions under the action of the EM field
were not assumed to be small compared to terms that
describe relaxation due to collisions, was constructed.
Based on this theory, equations describing the satura-
tion of absorbed power density were obtained and the ef-
fects of induced transitions on the velocity distribution
of emitting (absorbing) particles (hole-burning in the
Doppler profile and so on) were examined.

Nevertheless, the already classical theory of absorp-
tion of powerful resonance radiation is fundamentally
limited by the fact that it does not take into account op-
tical transitions occurring during a collision between an
atom and a broadening particle. This is manifested,
for example, in the fact that even in the weak-field lim-
it the nonlinear theory does not describe the entire line
profile, known from the theory of broadening, and, in
addition, a difference arises in the line wings precisely
at those frequencies that are absorbed during a colli-
sion. It should be noted that this fact was for a long
time neglected, since the profound relation between
nonlinear spectroscopy and the theory of broadening was
not pursued sufficiently completely.

The limitation indicated above is formally a result of
the fact that the relaxation constants, describing colli-
sions in kinetic equations,5"7 are assumed to be inde-
pendent of the frequency and intensity of the EM field.
On the other hand, this dependence can only be obtained

216 Sov. Phys. Usp. 25(4), April 1982 0038-5670/82/040216-15$01.80 © 1982 American Institute of Physics 216



from a detailed examination of the act of light absorp-
tion during a broadening collision.

2. Problems involving absorption of light during a
collision in a strong light field were first studied in the
theory of radiative collisions.8 The effects of optico-
collisional nonlinearity, related to the effect of a strong
field on the dynamics of the optical transition during a
collision, were first9 predicted here. Then, similar
effects were studied for broadening collisions as
well.10'11 The theoretical description of absorption of
resonance radiation turned out to be more complicated
than the theory of radiative collisions. These difficul-
ties are based on the fact that an optical transition in
an atom, in resonance with an EM field, can occur
both during free flight and during a collision. Even in
weak fields, this complicates the analysis of the kinet-
ics of light absorption by the medium, which in general
does not reduce to a simple superposition of light ab-
sorption acts, as is the case in radiative collisions,
where a quantum can be absorbed only while the collid-
ing particles interact. In addition, if the transition is
induced by a strong EM field, then the dynamic and kin-
etic nonlinear effects are mixed in a very complicated
manner.11'12-13

Nevertheless, based on experience with the theory of
broadening and the theory of radiative collisions, the
effects indicated above can be separated and given a
simple physical description. The foundations of the the-
ory which takes into account the influence of both dy-
namic and kinetic nonlinear effects on the line shape
and which is valid over a comparatively wide frequency
range, can already be viewed as formulated. This the-
ory can be called the "nonlinear theory of spectral line
broadening."11 Experiments, in which the predicted op-
ticocollisional nonlinear effects were observed, were
recently reported. Of these, the most interesting, ap-
parently, are the experiments by Szoke's group14'15 and
Bonch-Bruevich's group.16 This review is concerned
with an exposition of the foundations of the nonlinear
theory of broadening and a discussion of the most inter-
esting of the latest experiments.1'

3. The presentation is organized as follows. Section
2 analyzes the absorption of weak radiation based on the
usual approximations of the theory of spectral line
broadening. However, the analysis presented here dif-
fers considerably from the customary form.1"4'19 It is
divided into two stages. First, the dynamics of an op-
tical collision, i.e., a separate act of absorption of a
photon during a broadening collision (subsection a in
Sec. 2), is analyzed and then, based on this analysis,
the transition is made to the kinetic problem, i.e., an
analysis of all photon absorption acts in the medium
(subsection b in Sec. 2). For pair collisions, this
approach is more convenient. It permits using immedi-
ately the fact that for frequency detuning much greater
than the inverse mean free flight time, light dissipation
in the medium can be described as a collection of opti-
cal collisions and this makes it possible to obtain the
basic results comparatively easily. In addition, this

*'A more detailed exposition of these problems is contained in
Refs. 17 and 18.

formulation of the theory can be naturally generalized
(Sec. 4) to the case of a strong EM field.

In Sec: 3, the simplest nonlinear effect of the kin-
etic type, saturation of absorption in a two level sys-
tem, is examined. The analysis does not start from the
equations for the density matrix (as is customary5"7),
but from elementary population balance equations. At
the same time, the spectral function, obtained in the
theory of broadening (the modified Lorentz equation;
Sec. 2), which describes the entire line profile, is
used in expressions for the rates of induced transitions.
This approach, in spite of its simplicity, permits not
only obtaining an expression for the absorbed power,
well known in nonlinear spectroscopy, but also extend-
ing the results somewhat. Namely, the expression ob-
tained here gives, in the limit of weak fields which do
not affect the population, the entire line profile, known
from the theory of broadening.

In Sees. 4 and 5, the theory is extended to strong
fields, which can affect the dynamics of the optical col-
lisions. The dynamic part of the problem is examined
in Sec. 4. The essence of the generalization consists
in the transition to a new basis of wave functions for the
system "atom + EM field," in which the states of the
atom and the field are mixed. The broadening particle
causes transitions between these (new) states and it is
these transitions that correspond to dissipation of light
energy during a collision in a strong EM field. The
equations describing optical collisions in a strong EM
field are obtained (subsection a in Sec. 4) and the de-
pendence of the optical collision frequency on the char-
acteristics of the EM field (frequency and intensity,
subsection b, Sec. 4) is analyzed.

The kinetics of absorption of powerful radiation in a
medium taking into account the effect of the EM field on
the dynamics of optical collisions are examined in
Sec. 5. The nonstationary problem for the case when
inelastic relaxation (i.e., collisional and spontaneous
radiative transitions between atomic states) can be ne-
glected is analyzed first (subsection a). Then, the sta-
tionary problem (the same as in Sec. 3) taking into
account inelastic relaxation (subsection b, Sec. 2) is
analyzed. The expression obtained for the power ab-
sorbed per unit volume can be written in a form that co-
incides with well-known results.5"7 However, the colli-
sion frequency, which describes the so-called phase re-
laxation, entering into this expression is a complicated
function of both the frequency and intensity of the EM
field. The form of this function follows from the analy-
sis in Sec. 4. As the intensity of theEM field in-
creases, the rate of phase relaxation decreases, which
leads to the appearance of opticocollisional nonlinear
effects. For example, in the static wing of the line, the
absorbed power depends nonmonotonically on the EM
field intensity.

The opticocollisional nonlinear effects can be quali-
tatively interpreted as follows. In weak fields, the
probability of an optical transition during a collision is
proportional to the square of the transition matrix ele-
ment, i.e., to the light intensity. When this probability
is referred to the photon flux density, the cross section
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for a phototransition, which does not depend on the EM
field intensity and which is, in particular, a character-
istic of the phase relaxation rate, is obtained. How-
ever, in sufficiently strong fields, the probability of a
transition during a collision cannot be proportional to
the light intensity because it must be less than unity.
Therefore, the cross section for a phototransition and
the rate of elastic relaxation must decrease with in-
creasing intensity. Determination of the characteristic
collision time in general requires a detailed analysis of
the dynamic problem (Sec. 4). Here, we point out
only that the opticocollisional nonlinearity arises with
EM field intensities of 105-106 V/cm, which corre-
sponds to light intensity of 107-109 W/cm2.

Experimental results14'16 are presented briefly in
Sec. 6. Szoke's group," while studying resonance
fluorescense of strontium vapor in strong fields
(3.5-106- 3.5-107 W/cm2), discovered a decrease (by a
factor of 7) in the rate of phase relaxation due to colli-
sions between the strontium and the argon buffer gas.
Bonch-Bruevich's group intentionally observed the de-
crease in the absorbed power with increasing laser ra-
diation intensity, as predicted in Ref. 10. The mea-
surements were performed on fluorescense of thallium
vapor in argon. The opticocollisional nonlinearity was
discovered with light intensities =109 W/cm2.

2. WEAK FIELDS

In this section, we examine a situation in which an
EM field-induced atomic transition is unlikely during a
collision with a broadening particle. In this case, in
analysing the act of absorption or emission of a photon
during the collision, the field may be assumed to be
weak, and this permits finding comparatively simply
the optical characteristics of the medium using pertur-
bation theory.

a) Optical collisions

We shall first examine the dynamical problem: an
isolated collision between an atom A and a broadening
particle B, occurring in a monochromatic EM field
with frequency u>, close to the frequency w0 of the tran-
sition 1- 2 in atom A (Fig. 1). More exactly, we shall
examine the following opticocollisional transition:

A( l ) + B + ha, -+A (2) + B. (2.1)

We shall call a collision during which the transition
(2.1) occurs an optical collision (OC).

Let the Hamiltonian of the composite (compound) sys-
tem (field + colliding particle) have the form

AW-

B-Bi + iiv + VKt +vM(t): (2.2)
where #A is the Hamiltonian of the electron shell of A;
Hg = n(aaJcTu is the Hamiltonian of the free field; <£ and
au are creation and annihilation operators for quanta;
V^g and 7AB are operators describing the interaction of
atom A with the field and with atom B. The relative
motion of A and B is assumed to be classical, so that
the kinetic energy operator is omitted in (2.2), while
the interaction VAS(t) depends explicitly on time.

For now, we will choose the characteristic functions
tpi= |v4(l)^ww) and <p2= |.A(2),nu-l) of the Hamiltonian
H0 = H^ +Hg of the noninteracting atom and field as the
basis wave functions. For simplicity, we shall assume
that the state of the atom is nondegenerate, while the
field is classical nu» 1. In the usual manner (see Ref.
20, p. 173), we obtain equations for the amplitudes at

and a2 of the states <fl and <p2 of the compound system

io, = t/, (() a, -f Vei!"»<a.,, !a's = C/2 (I) a^ + Ve'^'a.,, (2.3)

where Uk(t) = -^(<pk\ VAB \<p,), (fe = l,2) are the shifts in

the atomic terms owing to the A-B interaction; V

= r (<Pi VAg | <p2) = d &0/2K is the matrix element of the

OC transition; d is the dipole moment matrix element;
§?0 is the amplitude of the electric field intensity; Aw

= u> - o)0 is the frequency detuning. The adiabatic ap-
proximation was used in obtaining (2.3), i.e., it was as-
sumed that (<fi | KAB j cp2) = 0.

We shall assume that the field is weak and we shall
use perturbation theory with respect to the transition
matrix element of V. Carrying out the transformation
bk = ekexp(i f!xU,,(t')dt')(k = '\.,2), which moves the level
shifts into the phase factor, and examining for definite-
ness absorption a1(-°°) = l and a2(°°) = 0, we set B^f)3!.
As a result, we have for the transition probability

d(exp{i (Awt —T] (()]}

where

i)(t)= \ At/ (f) dt', At/= 1/8 — V,,

(2.4a)

(2.4b)

is the increase in the phase of the wave function during
a collision.

Equations (2.3) describe the optical transition not only
during a collision, but also before and after the A-B
interaction. In order to separate out the probability of
a transition during a collision, we shall transform
(2.4a) using integration by parts (this was first done by
Spitzer21; compare also Ref. 20, p. 178)

(2.5a)

FIG. 1. Term diagram of atom A (a) and of the compound
system "atom+EM Held" (b).

The first term is proportional to the 6 function of the
frequency detuning A CD. It describes emission during
free flight of infinite duration and vanishes for Aco^O.
(The actual width of this function is discussed in sub-
section b.) The second term in (2.5a) describes light
absorption during the collision. Indeed, it vanishes in
the absence of the interaction A-B [i.e., for &U(t) = 0\.
Therefore, we have for the probability of the OC tran-
sition
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1 [dt-^ ' (t) At']}

Expression (2.5b) is completely analogous to the ex-
pression arising in the theory of radiative collisions in
the weak-field approximation. The difference lies in
the fact that the quantity

(2.6)

appears as the matrix element of the OC transition,
rather than simply V(t) [compare (4.3) in Ref. 8].

We note that expression (2.5b) diverges for A W — 0 as
Aw"2. This is related to the inapplicability of perturba-
tion theory for AW£ V [see (4.1)].

In order to characterize the number of OC transitions
and the energy absorbed in them, it is convenient to
introduce the cross section of an optical collision

C = \ 2.1,0 dp woe (Aw, V, v, p),

with the help of which the number of OC collisions per
unit volume and per unit time is easily determined:

K0c (A<D, V) = koc (Ao>,

where

Aoc (Ao), V) = >oot (Au, V, v ) v ) s = \ dv/ (v)

(2.7b)

(2.7c)

is the OC reaction rate; p is the impact parameter;
/(v) is the distribution function for A and B particles
over the relative velocities v; and, ATB is the concen-
tration of broadening particles.

It is also convenient to use the following quantity to
characterize an OC transition

yoc (A<») --- -5^- A'ot (Aw, T'), (2.8)

which does not depend on the field intens ity and does
not diverge for AW— 0 (except for the case of broaden-
ing of hydrogen lines by charged particles). Its physi-
cal significance will become clear in what follows.
Here, we note only that yoc(Aw) is the inverse time of
so-called phase relaxation and characterizes the line
width. It is sometimes convenient to use also the
"broadening cross section" ajM. = (Aa)2/2V2)o-oc whose
average magnitude is a]3T(^ui)=-)'oc(^.(a)/v1.NB where VT
is the characteristic thermal velocity.

Since a single photon is absorbed as a result of each
OC transition (2.1), we can write for the power ab-
sorbed per unit volume due to OC transitions

Qoc<=fiuKoc (Aw, V) (N,~N,) = 2V*
roc (A(o) (Nt — (2.9)

where A^ and N2 are the populations of states 1 and 2 of
atom A.

The profile of the OC line is determined by the depen-
dence of ffoc, feoc, and yoc on AW. Analysis of this de-
pendence is completely analogous to the corresponding
analysis in Ref. 8 and leads to well-known results,1"4

which are briefly formulated below (for greater detail,
see Ref. 17).

The profile of the OC line is characterized by the im-

pact |AW| « JiB and quasistatic |AW| »SiB regions,
where J2B = p/pB is the Weisskopf frequency and p% is
the Weisskopf radius, defined as the impact parameter
at which the phase shift of the wave function is of the
order of unity:

A£/(pB, v, (2.10a)

In what follows, we shall call collisions that shift the
phase by unity Weisskopf collisions. They have a cross
section aB

a itp| and occur with frequency ~yc

= y0c(A-W=0)=;7rpBy,r.A/B (
see below). For a power-law

interaction, we have from &.U=cn/r" = cn/(p
z + vzti')nl2,

where rit} is the distance between the nuclei of the col-
liding atoms,

r (n/2)

(2.10b)

(2.7a) where T(x) is the gamma function.

In the impact limit (Aw«nB), the integral (2.5b) can
be calculated as follows:

C = S°B' °B=J2jipdp(l-cos j A l / d t ) . (2.11)

For a power-law interaction, aB
airp^, yc

(here, cumbersome factors of the order of unity are
omitted; see Ref. 17).

In the quasistatic region (AW» JiB), in the presence
of a point of intersection of the levels of the compound
system riu (or JAJ, defined by the equality

Af/(rAO)) = Ao, (2.12)

evaluating the integral (2.5b) by the method of steepest
descent gives

u-oc= 2V*

Voc =

OOC=V*^S-

for AaiAC/ > 0,
(2.13)

where F±u= |dA^/dr|rarAw is the difference of the
slopes of levels of the compound system at the point of
intersection. For a power -law interaction,

(2.14)
We note that when levels cross, the quant it ies.yoc, koc

and Koc do not depend on the thermal velocity. It is
natural to refer to this part of the quasistatic region as
the static region.

In the absence of level crossing for Aw»I2B (we shall
call this region the adiabatic region), there is an expo-
nential decrease

c A » Atu

6oce-», 6 -- 7—- (2.15)

Generally speaking, the applicability of perturbation
theory in the adiabatic wing requires further analysis.

b) Optical collisions and absorption of radiation during
free flight

In analyzing a transition during a collision (OC transi-
tion), it was assumed above that the free flight of an

219 Sov. Phys. Usp. 25(4), April 1982 S. I. Yakovlenko 219



atom before and after a collision is infinite. Actually,
as is evident from the preceding analysis, the time of
flight with constant phase is limited by the frequency of
Weisskopf collisions, Le., by the quantity ~y~*. In this
connection, let us substitute into (2.5a) finite limits of
integration t = ±y~J instead of f-±°°. In this case, we
shall equate the first term on the right side (which was
previously neglected for Acu/0) to the second term (de-
scribing the OC collision) for Aw~yc. Therefore, in
order to neglect radiation during free flight, the follow-
ing condition must be satisfied:

(2.16)

tt is in this frequency detuning range that emission or
absorption of light in the gaseous medium can be rep-
resented as a collection of isolated OC transitions,
characterized by the quantities croc, feoc, and yoc: see
(2.7) and (2.8). As is customary in the theory of broad-
ening, we shall call the region of frequencies (2.16) the
single -particle region.3 We note that it would be incor-
rect to assume that the Weisskopf frequency forms the
frequency boundary between the "collisional" and "free-
flight" emission, i.e., to associate only the quasistatic
region ACO» OB with emission during a collision. Actu-
ally, due to the binary nature of collisions,

(2.17)

the "multiparticle" region AW«'XC is much smaller
than the impact region Ao)«S7B, since the inverse time
between collisions is much less than the inverse colli-
sion time,

V ,. X Jlpnl>T7V <^ QR '"" —"~ • / O 1 Q\1 c r PB \"- •*•"/

Thus, the single-particle approximation describes not
only the quasistatic wings, AOJ» QB, but also the tran-
sition between the impact and quasistatic limits Aoi~S2B

and a large part of the impact region yc « Aw^ OB, i.e.,
practically the entire line profile with the exception of
the very narrow (but more intense) multiparticle region

In order to find the line profile, valid also in the mul-
tiparticle region, it is necessary to follow the absorp-
tion of radiation during a time T much longer than the
time between Weisskopf collisions T»-yg. Referring
the transition probability to the observation time, it is
possible to obtain the frequency dependence of the av-
erage transition rate, i.e., the line profile. We shall
carry out this analysis.

The states of atom A, acted upon by impacts of heavy
particles B, are described by the previous-equations
(2.3), where, however, Ut(t) and U2(t) give term shifts
induced not by a single impact, but by all the impacts
(within time T):

#iW = 2X*tf-<0, #•«) = 2 #«»(<-*»), (2.19)
where k is an index that characterizes the parameters
of the fe-th collision. Using the previous reasoning, we
arrive at an equation for the probability of a transition
1-2 within the time interval -T/2 ^t^ T/2. The dif-
ference from Eq. (2.4a) consists only in replacing the
limits of integration ±°° - ± T/2. Dividing the transition
probability by T, we obtain the time-averaged transi-

tion rate under the action of the EM field, which we
shall write in the form

where
T/2

-T/2

(2.20a)

(2.20b)

l t ' (2.20c)

The power absorbed per unit volume is determined
by the expression

(2.21)Q = ha>Km (Aco, V) (N! - Nt).

The problem of the theory of broadening consists of
determining the explicit form of the spectral function
S(AW). Of course, in order to study expression (2.20b),
in addition to analyzing the dynamics of broadening col-
lisions, static hypotheses are also necessary. Omitting
the corresponding static analysis (see Ref. 17), we shall
present the final result. In the binary collision approx-
imation, the line profile is given by the expression

1 Voc (A">

(2.22)

which we shall call, in what follows, the modified Lo-
rentz equation. It was first obtained by V. V.
Yakimets22 using the Green's function method. The im-
portant new ingredient here compared to the Lorentz-
Weisskopf equation (where it was assumed that yoc = yc)
is that the dependence of yoc on AW is taken into ac-
count, so that expression (2.22) describes the entire
line profile, including multiparticle, impact, and
quasistatic regions (Fig. 2). As was later shown by
Kogan and Lisitsa,23 Yakimets' result is contained in
the well-known Anderson equation24 in the binary limit.

The quantity Ac is defined by the expression

.y J2jipdpsin[
0 '-

Ac =NB / (

and Eq. (2.8) is valid for yoc (AW).

(2.23)

All the qualitative results discussed above follow
from Eqs. (2.22). It is evident that the single-particle

FIG. 2. Qualitative shape of the spectral function, defined by
the modified Lorentz equation.
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frequency range Aw»yc (2.16) corresponds to emission
during broadening collisions, so that from (2.22) we
have

= — A(e, . AT cm (AtoS> Vc ) ~-^OC = "53« ?OC-

(2.24)
In the multiparticle region, A<dSyc, light absorption is
already nonlinear with respect to the concentration of
broadening particles NB. We note once again that the
multiparticle region is much smaller than the impact
region (yoc«J2B) due to the binary nature of collisions
(2.18), while the Weisskopf frequency £iB is the charac-
teristic scale of variation of yoc.

3. SATURATION OF ABSORPTION

We shall examine the simplest nonlinear effect in ab-
sorption of resonance radiation, related to the effect of
induced transitions on the kinetics of atomic state pop-
ulations.

We shall limit the analysis to inelastic transitions
only between two atomic states 1 and 2. This approxi-
mation is possible, for example, for excitation of a
resonance transition in metallic vapors, located in an
inert gas. We will also assume for simplicity that lev-
els 1 and 2 are degenerate and that the problem is sta-
tionary dNl/dt = AN2/dt = 0. Then, the populations JVt and
JV2 of atom A can be found from the equalities

(Kt + Kim)fft = (Ki + Kem )ft\, N! + NS = N, (3 Ja)

where Kx and K2 are the rates of inelastic transitions
1 — 2 and 2 — 1 owing to spontaneous emission and elec-
tron impacts; Kem is defined by expression (2.20); and,
N= const is the total concentration of A atoms. From
(3.1), we have

4.N _ &.N

where &N=N(K1 -K^/(K^K^ is the difference of pop-
ulations in the absence of the EM field (which is some-
times referred to as the number of active atoms); ylr

= (Kl+K2)/2 is the average rate of inelastic relaxation of
levels. For the absorbed light power, taking into ac-
count (2,20), we obtain

2nV'S (Am)
, 4-2.iV!S (Aa) (3.2)

where Qaat = /zwylrAJV is the limiting power which the
medium can absorb for given characteristics of inelas-
tic relaxation (Q — (?sat in the saturation regime, i.e.,
with V—0 0) .

When the line is broadened by elastic collisions with
heavy particles, using for the spectral function S(AW)
expression (2.22), we have

(3.3)

This equation generalizes somewhat a well-known re-
sult of nonlinear spectroscopy, first obtained by Kar-
plus and Schwinger.25 Expression (3.3) differs from the
well-known results25'5"7 by the fact that the quantity
yoc(Aw) here, as also in (2.22), is not constant yoc(0)
= yc, but is a function of frequency. Therefore, for
weak fields (V-0), expression (3.3), going over into

(2.22), describes here the entire collisional profile,
and not only the impact region (Aw«nB), as happens
in well known results, which contain only yc.

We note, however, that due to the validity of (3.3) for
the entire range of frequency detuning for weak fields,
it by no means follows that it is everywhere valid for
strong fields as well, when 2V2yoc/ytr~ Aw2. As a
more rigorous analysis shows (Sees. 4 and 5), in
strong fields, it is, generally speaking, necessary to
take into account the effect of the field on the dynamics
of a broadening collision. In this case, the quantity yoc

is a function not only of Aw, but also of the field inten-
sity W0.

The nonlinear dependence of the absorbed power Q on
the intensity /<* %% of the light interacting with the med-
ium stems from the kinetic effect: the equalization of
populations for

Tir
(3.4)

Indeed, as follows from (3.1), N,. -N2~Q for V2» V2
r.

We shall estimate the critical field for Aw«yc:

v 2H ~r
Fsal = -J- V Vc '.Yir • (3.5)

Assuming, for example, that ylr=108 s~l,
*irpBtv3-10"14 cm2, 3-104 cm/s«10"9 cm3 s"1, d"~ 1 a.u.
« 2.5-10'18 (erg.cm)1/2, we have

?Mt as 10-' 1

(the atomic field unit is #lt = 0.5-1010 V/cm). At at-
mospheric pressure, NB

al amagats-3-1019 cm"3, we
have !?Mt~0.5-103 V/cm, which corresponds to light in-
tensity Iati = c&lti/4ir*W3 N/cm2.

We note that the Doppler line profile, obtained using
the Maxwell velocity distribution, cannot be substituted
into Eq. (3.2) due to the effect of induced and inelastic
transitions on the velocity distribution of the emitters.7

Summarizing the analysis of the case of weak fields,
we point out the following two circumstances. First,
finding one of the basic characteristics of the line
shape, the phase relaxation rate yoc, reduces to ana-
lyzing Eqs. (2.3), analogous to the equations of the the-
ory of atomic collisions. Second, the phase relaxation
rate yoc even in the weak field limit is not constant, as
is usually assumed in nonlinear spectroscopy,5"7 but de-
pends on AW. As is evident from (2.8), the phase re-
laxation rate does not depend on the field intensity for
weak fields, when the probability of an OC transition is
proportional to light intensity.

4. OPTICAL COLLISIONS IN A STRONG FIELD

In examining the case of strong fields, when the prob-
ability of an optical transition in an atom over the time
of a broadening collision is not small, it is necessary to
generalize somewhat the approach presented above in
Sees. 2 and 3. The main point of the generalization
is to do away with perturbation theory and, at the same
time, to view the atomic states as being mixed together
with the state of the EM field.
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a) Compound system with strong atom-field coupling

We shall examine an optical collision in the same for-
mulation of the problem as in subsection a of Sec. 2
(see Fig. 1). We are talking about an optical transition
occurring during a collision between atom A and a
heavy particle B. The transition occurs in a monochro-
matic EM field with frequency w, close to the frequency
MO of the transition A(l)-A(2). The optical collision
(OC) is viewed as an isolated event, during which the
atoms interact with one another and with the electro-
magnetic field. Within the scope of the assumptions
made, we can speak about (as in subsection a of Sec. 2)
discrete states of the compound system "A + B +g"'
and, in addition, the transition between these states due
to the A-B interaction is the OC transition. The differ-
ence in the following analysis lies in the choice of states
of the compound system describing the OC transition.

In choosing the states of the compound system, de-
termining dissipation of light energy during a collision,
it is necessary to take into account the important fact
that the states of atom A and field &, generally speak-
ing, are mixed. Indeed, the field is switched on long
before the collision and is not assumed to be weak.
Then, even before the collisions, atom A is not in some
single state 1 or 2, just as the field <g does not contain
a definite number of photons nu or nuti. The stationary
states of the system A + f, taking into account exactly
the interaction of the atom and the field, of course, ex-
ist, but they correspond to different wave functions.
These "other" states correspond to constant energy of the
EM field (in the absence of interaction with atom B).2)

Therefore, transitions precisely between these states
are responsible for absorption of light during the A-B
interaction.

What was said above is easily taken into account by
the formal apparatus of the quantum mechanics of a
two-level system. We shall obtain equations that de-
scribe the OC transition with strong A-8P coupling. We
shall rewrite the previous Hamiltonian (2.2) in the form

Since the amplitude of the field $0 and, corresponding-
ly, the operator VAt are constant, the problem of find-
ing the characteristic functions of the Hamiltonian #Ag>
in the two-level case can be solved exactly (see Ref.
20, p. 171). The characteristic functions of the Hamil-
tonian

are expressed in terms of the wave functions of the
Hamiltonian HA +flf used in subsection 2.1, <p±
= |A(l),ww> and <p2= \A(2),nu -1), not taking into ac-
count the A- & interaction, and in terms of the coeffi-
cients

(4.2b)

FIG. 3. Levels of the compound system "atom A + E M field"
with weak and strong coupling. <p2

 = |A(2), n<1)-l>.

where O = Si1/ &or + 4V* is the hybrid frequency, which is
the difference between terms of the compound system
A + # with strong coupling (Fig. 3). The quantity ft = 2K
for A w = 0 is usually called the Rabi frequency.

We obtain equations for the amplitudes of the states
$! and tp2 from the Schrodinger equation with the Ham-
iltonian (4.1), similar to (2.3):

•v *v «* • •

Here, the matrix elements are expressed in terms of
the functions ^ and $2. We shall express them in terms
of the quant it es introduced previously:

b\Vt

(4.4)

Here and in what follows, in Sec. 5, the quantities
corresponding to states of the compound system (ma-
trix elements, populations, and so on) are indicated by
a tilde, in order to distinguish them from the analogous
quantities for the atom. After the variable substitution
6ft=a(!exp(i /f»£/td<), taking into account the equalities
62-61 = Aw/Si and &!&2= V/Sl, we obtain the system of
equations sought that describes the behavior of the am-
plitudes of the states of the compound system "A + %
+ B" taking into account the strong A - % coupling:

&U (t'

2'lt may be assumed, generally speaking, that oscillations of
the states of the atom A (1), A(2), and the number of photons
nu, nu -1 occur, but the average energy of the atom and of
the field remain unchanged.

(4.5)

The system of equations (4.5) in many ways is ana-
logous to the equations describing the radiative colli-
sion transitions [see Eqs. (4.2) in Ref. 8], as well as
the equations of the theory of atomic collisions in the
semiclassical approximation. In contrast to the theory
of atomic collisions, Eqs. (4.5) include the parameters
not only of particles A and B, but of the EM field as
well. Here, the field dependence differs somewhat
from that occurring in the theory of radiative collision
reactions.

An optical collision is an inelastic transition ^-i/^ in
the compound system, but this transition is caused by
an elastic collision with atom B. The role of the poten-
tial causing the OC transition, as is evident from (4.5),
is played by the quantity

V-Atf^, (4.6)
which for V« Ao> goes over into the effective potential
(2.6) in the case of a weak field, tt is clear from here
that the integration by parts (2.5), separating out the
term responsible for the OC transition, corresponds to
choosing a new basis for the wave functions ^ and i/)2.
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We shall assume that before the collision the com-
pound system is located in one of the states #t or if>2,
for example, in $t. Then, the initial conditions take the
form

"oc

62(-°o) = (4.7)

and for the probability of an OC transition, we have woc
= \b2(°°) |2- The cross section <TOC(AO>, V, v) and the rate
of the OC transition fe(Ao>, V) are introduced based on
previous Eqs. (2.7), where, however, the probability of
a transition is found from the new equations (4.5). It is
useful to introduce the variable line width (inverse
phase relaxation time) yoc from the equation

Voc(A(o, V) = - ), V), (4.8)

generalizing (2.8). In contrast to the usual theory of
broadening, yoc in (4.8) depends, generally speaking,
not only on frequency, but also on the field intensity.

b) Nature of the frequency and field intensity
dependence of OC cross sections

The analysis of the system of equations (4.5), de-
scribing an OC transition in an arbitrary field, is in
many ways analogous to the analysis of equations de-
scribing radiative collisions (see Ref. 8; Sec. 5). In
this case, the methods developed in the theory of atom-
ic collisions are widely used. For this reason, without
dwelling on the details, we note the main points. We
shall present the specific results for the power-law po-
tential A^ = cn/r".

The nature of the solution (4.5) is determined by the
relations between the three quantities: SI, the splitting
between the levels of the compound system; Af/Aw/O,
the shift of the levels of the compound system; and,
Af/V/n, the matrix elements of the transition in the
compound system. The Weisskopf frequency OB = v/pB
at the Weisskopf radius pB plays a fundamental role in
this case (see subsection a, Sec. 2).

Perturbation theory with respect to the matrix ele-
ment Af/F/n leads finally (see Ref. 26 for greater de-
tail) to the results of the usual theory of broadening.
The applicability of perturbation theory is restricted
according to the field intensity by the relations

for A co ^C QB »
\(n-l)/n ^ i _ ^ r~i , rr * ^ ^ ^4.y)4w><V^=(A;;r)(n~l)'n for A»»^B, A£/AIO>O.

We shall estimate the characteristic magnitude of the
Weisskopf field $B =RSlB/d, for which dynamical non-
linear effects are manifested. Setting pg «10"7 cm, d
-la.u., t) = 2-104 cm/s«10"3 a.u. we have: OBa2-10u

*? cm *3-l<r6a.u. V/cm.

The impact region corresponds to rapid passage. In
contrast to the usual theory of broadening, it is deter-
mined by the relation

Q = l/Ao)! + 4V< QB, (4.10)

and, when this relation is satisfied, it is possible to
set Si = 0 in the exponents in (4.5). In this case, (4.5)
reduces to a differential equation with constant coeffi-
cients. As a result, we obtain

oya P / f \
-35- °B, OTB = j 2np dp ( 1 — cos j &U df ) . (¥.117

Therefore, we have the previous expressions for the
quantities yoc in the impact region (4.10).

The quasistatic region corresponds to slow passage,
for which

(4.12)

Here, as in a weak field, two basic cases arise: a)
when the level crossover point rAo) is such that

A£/ (r4M) = Q2/Aco; I A 1 o\V*.J-*'/

b) when there is no crossover point.

Case a) corresponds to the static region. In this re-
gion, it is possible to use the Landau-Zener approxi-
mation (Ref. 20, p. 402). In this situation, it is valid
when the following conditions are satisfied: Af/A(*>/J}
»BB and At/T/n«AtfAw/n, which can be rewritten in
the form

(4.14)

For the OC cross section, in this case,
(4.15)

where ^LS = V vF^^ircP is the critical (for this region
of values of Aw) field, for which nonlinear effects are
manifested [compare (4.9)];

dz e- ) CM> e' 1 — «-( (4 16a)

is the probability for passing through both crossover
points, the symbol {. . .) indicates averaging over angles
Ol and 02 between the dipole moment and the field inten-
sity at the first and second crossover points, respec-
tively. Expression (4.16a) corresponds to a transition
without a change in the magnetic quantum number (AWZ
= 0). For transitions with Am=±l, the cosines in
(4.16a) must be replaced by sines. The limiting expres-
sions for the cross sections have the following form:

-2-jiriMa, o<l,

Am=±l , (4.16b)aoc

Case b) corresponds to the situation, first examined
by Stiickelberg, when

V>Ao,1QB. (4.17)

In this case, we can write for the OC cross section
(4.18)

The regions of applicability of the approximations ex-
amined above are presented in Fig. 4. The analysis is
valid outside a circle with radius ~y~ np\v^NB (i.e., for
ft^rc). which is shaded in Fig. 4 (for more detail, see
below). H, in Fig. 4, we draw the straight line V
will determine the line profile for given field V. Note that
here we have in mind the line profile corresponding to light
absorption only as a result of OC transitions; in order to
obtain the line profile cor responding to the total energy ab-
sorption, generally speaking, it is necessary to take
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V'\Aa\

"adiabatic" AUiu<0 y aUu>
wring c

static
wing

FIG. 4. Complete picture of the physical regions of variation
of OC cross sections.

into account kinetic effects. The main property of the
OC profile is the decrease in the absorption of light in
the presence of nonlinear effects. The enhanced trans-
mission effects, i.e., decrease in absorption due to OC
transitions with increasing field, is explained by the
fact that the matrix element of the transition causes ad-
ditional separation of terms of the compound system
(see Ref. 8 for greater detail).

5. KINETICS OF ABSORPTION OF POWERFUL
RESONANCE RADIATION

In this section, we examine the kinetics of absorption
of resonance radiation, when events of light dissipation
are not correlated with one another. It turns out that
this particular case is most interesting in examining
nonlinear opticocollisional effects. In order to obtain
the power absorbed per unit volume, it is simply nec-
essary to find the light energy dissipated in each event
and to sum these events. The main point in the analy-
sis carried out is that we are examining not the kinetics
of atoms, but the kinetics of the compound (atom-EM
field) system.

a) Absorption of light in the absence of inelastic
transitions

Before going on to more complex aspects of the "non-
linear theory of broadening", we shall illustrate the re-
sults presented above using the example of the simplest
kinetic problem of absorption of light due to OC transi-
tions in the absence of inelastic relaxation.

It is clear at the outset that the transition between
states $! and $2, in general, does not correspond to ab-
sorption of a whole number of photons Aww, just as the
states $! and #2 themselves do not correspond to a def-
inite value of nu. For this reason, we shall first ob-
tain an expression for the energy A£OC, dissipated per
single OC transition. The calculation of the energy dis-
sipated in any transition reduces to finding the average
energy of the field in states of the compound system be-
fore and after the transition. The state of the compound
system is characterized by the wave function

Y(0=5i W*i+"&•(«)*.• (5.1)
Therefore, the quantum-mechanical average of the
field operator is determined by the equation (see, for
example, Ref. 20, p. 60)

where £*= fym \Hr \$J. In what follows, we shall be in-
terested in expression (5.2), averaged over a statistical
ensemble of the compound system with arbitrary initial
phases. After such statistical averaging, the third term
(5.2) will vanish, and this gives

<ff*> = 16, |»**+|£ I2 E*. (5.3)

Indeed, averaging over a statistical ensemble assumes
summation of expressions (5.2) for all atoms and divid-
ing by the total number of atoms. Since the third term
in (5.2) is proportional to e™*, where TJS is the phase of
the total wave function of the fc-th atom, for a random
distribution of phases over atoms, it vanishes.

However, it should be kept in mind that the phases of
atoms (and compound systems) are correlated over
times of the order of the free-flight time (see subsec-
tion b, Sec. 2), which is important for small splitting
of the terms of the compound system. In what follows,
we shall limit the analysis to the region

(5.4)

which is a natural extension of the single-particle re-
gion (2.16). This single-particle condition will then
permit representing the dissipation of light as a collec-
tion of separate events. We note that dynamic nonlinear
effects, as follows from the preceding analysis, are
manifested only for V2nB»yc. Therefore, the single-
particle approximation (5.4) is sufficient to construct a
systematic theory. The average energy of the field in
the states ^ and $2 is given by the expressions

> = Bo [&JBB + b\ (n. — 1)] = h<a(nm— &J),

> = Rco [&*nM + b\ (nu—I)]«. Aeo(nB — fej).

Therefore, the energy dissipated in an OC transition
equals

- £fs = Ef - Ef = fto> (6J - 6J) = ftoA co
(5.5)

In weak fields, K«Ao>, naturally, A.Eoc=7za).

Under the single -particle conditions (5.4), it is possi-
ble to use the concept of the population Nm of the states
ijim of the compound system. Therefore, for the light
power dissipated in a medium due to OC transitions, we
have expression (2.9):

Koc (tf.-J (5.6)

(5.2)
2He

We shall examine the simplest example of the kinetics
of light absorption in a medium. For the populations of
the compound system A + g*, we shall use the balance
equations for the closed two -level model

(5.7)

In order to determine the initial conditions, we shall
examine the problem of mixing of the states of the atom
and of the field. Assume that the field is switched on
suddenly at time / = 0. Assume also that for t<0 all
atoms are in the ground state A(l). For t>0, the wave
function of the compound system has the form (Ref. 20,
p. 172,176)

,e'T*.. (5.8)
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Therefore, the states of the atoms and of the field are
mixed within a time ~£l~1, while the characteristic re-
laxation time of the populations due to OC transitions,
as follows from (5.7), is of the order of K"^,. It follows
from the definition of the quantities yoc and Koc that
Voc >Koc and Voc *Vc are always satisfied. Thus, in
the single-particle approximation, it may be assumed
that the states of the field and of the atom are mixed
before OC relaxation. Then, in solving Eqs. (5.7), it
is necessary to choose the following initial conditions:

i » 2 \ t -v • ^o.y)
Solution of (5.7), when the quantity Koc does not depend
on time, gives

FIG. 5. Energy levels and scheme of inelastic transitions be-
tween the states #lp $2> #1 . $2 determined by Eq. (5.3). The
continuous arrows indicate collislonal transitions; the dashed
arrows indicate radiation damping transitions (see Ref. 12,
18); the wavy arrows indicate spontaneous transitions.

For the absorbed power, we have
(5.10)

(5.11)

The total energy, absorbed by the medium due to OC
transitions over quite a long time interval t»K&s,
equals

(5.12)

In calculating the total energy absorbed by the medium,
in addition to OC transitions, one more dissipation
channel related to initial mixing of the states of the
atom and of the field must be kept in mind. Indeed, be-
fore the interaction is switched on, the energy of the
field equals

(t < 0) > = Sun,,. (5.13)

For t >0, the wave function has the form (5.8), from
where we obtain

{5

The change in the average energy of the field equals

Thus, over a time t~n~i, the energy

*.

(5.15)

(5.16)

is dissipated and, over a time t»K~<jc, the energy
(5.12) is dissipated in OC transitions. The total energy
dissipated simply equals KwN/2. This result corre-
sponds to equalization of the atomic state populations.

!*.> =

ztl,. — bl"P2+

(5.17)

Here, ^= |A(l),nu>, <P2= \A(2),na -1), <?u= \A(l),nu
±1), and <p 3,. | A( 2), nM -1±1) are wave functions, corre-
sponding to the noninteracting states of the atom and
field.

Dissipation of light energy due to elastic collisions is
determined by OC transitions, i.e., transitions between
the states >l>i and ij)2 of the compound system A + & (see
subsection a, Sec. 4). On the other hand, an inelas-
tic transition of the atom A(m)-*A(m') corresponds to a
sudden switching on of the field for atom A, which ap-
pears after the transition in the new state m'. As
shown in subsection a in Sec. 5, this switching on of
the field also leads to dissipation of energy. In addition,
an inelastic transition of the atom A(»z) — A(m') is ac-
companied, generally speaking, by transitions m — rat,
m'± in the compound system A + & between the states &,
i/i2 and !/)lt, ip^- Thus, in order to describe the light en-
ergy due to both elastic and inelastic transitions, it is
necessary to examine all six states s = 1., 2.; 1, 2; 1^2+

= m.,m, mt(m = 1,2) of the compound system, introduced
in Eq. (5.17). However, the population of the states tym

is not distinguishable from the population of the states
$mt in view of the quasiclassical nature of the field (nu

»1). Therefore, in the kinetics, it is not necessary to
take into account all transitions s — s', but only transi-
tions from the two states m = 1, 2 into the remaining
states:

b) Absorption of light taking inelastic relaxation into
account

We shall examine the same situation as in Sec. 3,
but taking into account the dynamical nonlinear effects.
The states of the "atom + field" compound system are
characterized by a set of pairwise resonating levels, of
which we shall need, in what follows, the following six:
m = 1, 2; mt = l±, 2± (Fig. 5). The wave functions ipm and
i/^, describing these states, are represented as a lin-
ear combination of characteristic wave functions cpm

and cpmt of the Hamiltonian Jf.+Hr, similar to (4.2):

In connection with what has been said above, we in-
troduce, following Ref. 12, rectangular (not square)
matrices Esm and Ksm, giving the energy dissipated in
the transition m~ s, and the rate (frequency) of the
transitions m-~s, respectively:

K--

Ki.
K,

12_2

(5.18)

Their specific form is obtained in the Appendix. With
the help of the matrices (5.18), it is simple to write
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both the equation of balance for the populations and the
expression for the light power Q dissipated per unit
volume.

In writing down the equations of balance, it is neces-
sary to take into account the fact that the transition m
— m'± is kinetically equivalent to the transition m — m ' in
view of the indistinguishability of the states m' and m't.
Thus, for the populations Nm of the compound system A
+ g, we have

nt = l, 2,
l. 2

where

Kuan' — Kmm'

(5.19)

(5.20)

summation with respect to ± indicates summation with
respect to mt for fixed m.

The power Q dissipated per unit volume is obtained
after multiplying the frequency of each type of transi-
tion by the magnitude of the light energy dissipated in
this transition and summing over transitions:

'm. (5.21)

Within the scope of the simple kinetics presented
above, the calculation of Q reduces, as in Sec. 3, to
finding the populations Nm from the balance equations
(5.19) and substituting them into (5.21).

For the light power density Q(OC) absorbed due to OC
transitions (5.6) and for the power Q<lr)=SIBfm.S± £«,!,•
Km*m' Nm' dissipated due to inelastic relaxation, calcu-
lations give

(Aco/O') YOC2V'

2V* U-
Yi, + (2V»/A(o») (Y IT : + Yoc)'

(5.22a)

(5.22b)

Here, as in Sec. 3, QM t=Jfwyi rAW indicates the pow-
er absorbed by a two-level system in the saturation re-
gime with given inelastic relaxation, while the quanti-
ties entering into (5.21) are written out in the Appendix.

We shall discuss separately inelastic relaxation due
to spontaneous radiative transitions.27 Spontaneous
transitions form the following three lines: the principal
line at the frequency wgp= o> (i.e., Rayleigh'scatter ing),
to which the transitions 1—1- and 2— 2- contribute, as
well as two lines accompanying it at frequencies u>SI> = u>
+ n (so-called resonance fluorescence) and o>g p=cu-n
(so-called three-photon scattering), formed by transi-
tions 2- 1- and 1- 2-, respectively (see Fig. 5). Mul-
tiplying the spontaneous transition rate A12 by the light
energy, dissipated in the corresponding transition, we
obtain the following expressions for the power of spon-
taneous emission of the triplet components

(5.23)

Rayleigh scattering QR does not depend on collisions.
We note that it is most convenient to make measure-
ments, characterizing the interaction of light with the

medium, according to the emission of the different trip-
let components (5.22).

c) Nonlinear effects

The expression for the total absorbed power (5.21) is
obtained by summing (5.22a) and (5.22b):

n „ 2V>(Yoc+Y.,r)/Yi, (524)

This expression formally coincides with (3.3) to with-
in two unimportant details. First, here, in contrast
to (3.3), yoc +ylr enters instead of yoc, since the in-
elastic relaxation, in deriving (5.24), was not assumed
to be small beforehand compared to elastic relaxation.
Second, the term y2, does not occur in the denominator
(5.24). However, this fact is not important for the sin-
gle-particle region (5.4). Indeed, transforming the de-
nominator (5.24)

(5.25)

we see that it is large compared to y| in the region O
»yc, for which the analysis carried out is valid.

A much more profound difference is the informal dif-
ference between expressions (5.24) and (3.3). The point
is that the quantity yoc, which is a function both of the
frequency detuning Aw and the field V, enters into
(5.24). For this reason, expressions (5.24) and (3.3)
actually coincide only in the impact region O«nB and
for weak fields (see subsection b in Sec. 4, region
of applicability of the usual theory of broadening in Fig.
4). We recall that the well-known Karplus-Schwinger
expression25 is valid, in contrast to (3.3), only in the
impact region n«J2B.

The expression for the total power Q is not the only
interesting expression; the dependence of the quantities
Qtr and Qoc on Aa> and V is also of interest, since they,
just as Q, can be directly measured experimentally.
The expressions being studied can be represented in the
simple form

*-*• (5.26)

by introducing the dimensionless parameter
2V
Affl

Yir,:

Yir +YOC '
(5.27)

By definition, R^l. Therefore, f or 2 V2 » A u2, sat-
uration is observed independently of the characteristics
of the medium with arbitrary ratio of the contributions
of OC transitions and inelastic relaxation; the absorbed
power reaches a maximum value Q= QS!lt and ceases to
depend on the characteristics of the field (we recall
that n »yc +ytr). When the contribution of optical colli-
sions is large, yoc »ylr ("elastic" broadening is large),
R«l and saturation begins much earlier, for 2V2

2. The quantity R behaves as follows. For small
, under the usual gas kinetic conditions R«l,

since yoc ~yc »ylr. As Q increases, the quantity yoc

decreases and, therefore, R increases. The dependen-
ces H(AW, V) and Q(AW, V) can be obtained comparative-
ly simply in each specific case from the results pre-
sented in Sec. 4. Here, we shall study in greater de-
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FIG. 6. The dependence of the absorbed light power Q on the
field V in the static wing of the line. Curve 1 corresponds to
the caseR(F=0)=R1<V^/Aw2 and curve 2 to the case

tail the qualitative form of the dependence of Q on V for
values of AW corresponding to the static wing (see Fig.
4).

As follows from Sec. 4, for V< VCT = dgB/K, the
quantity yoc does not depend on V. Let yoc ̂ y^ for
weak fields. Then, for V« Kcr, AaiVyOC;/ylr> the quan-
tity Q<*y2; for V~ Ao>Vyoc/ylr, saturation appears.
However, when V> Vcr, the quantity yoc drops with in-
creasing V and for this reason saturation disappears.
The absorbed power also begins to decrease; the de-
crease SlOWS down for y0cW~"Xir)

 wnen Q~ Qsat^cr/
Aw2. With further increase in V, Q<* V2 and saturates
for 7~Aw. The case yoc~ylr, i.e., when for weak
fields .ft-1, is interesting. In this case, saturation ap-
pears only for F~Aw(Fig . 6).

Let us summarize the theoretical analysis.

1. Doppler broadening was not discussed, but it is
clear that it can be neglected for fl»yD, where yD is
the Doppler -width. Thus, the nonlinear theory of
broadening, examined here, is limited by the condition

(5.28)

2. An attempt to generalize the well-known result of
Karplus-Schwinger25 to the quasistatic region by aver-
aging with respect to the fixed shifts would be unjusti-
fied. Averaging over fixed shifts (see, for example,
Ref. 25, p. 369) gives results that differ strongly from
(5.27), in the presence of strong fields 7~yc or K~OB.
However, for weak fields, the results of the theory of
inhomogeneous broadening (Ref. 25, p. 369) and (5.24)
coincide. The point is that the criterion (5.31), used in
the present work, is opposite to the assumption that is im-
plicitly contained in the usual approach. Indeed, condi-
tion (5.31) indicates, in particular, that we are neg-
lecting inelastic relaxation during OC. Meanwhile, av-
eraging with respect to fixed shifts would correspond to
the assumption that the atom has time to relax during
the collision process, i.e., the condition inverse to
(5.28) is satisfied. For weak fields, this condition,
however, is not necessary because of a well-known
fact: for the static region, averaging over the impact
parameters of the colliding particles is equivalent to
averaging over the shifts in the levels of the stationary
atoms (compare Ref. 8, p. 266). However, this asser-
tion is valid only for weak fields. If, on the other hand,
the field affects the population kinetics or the OC tran-
sition itself, then the line shape is not determined by
only a shift in the levels.

3. The approach presented above3''11'12 is based on
taking into account systematically the fact that light is
absorbed during transitions precisely between the •
mixed states of the compound system A + '€. This com-
plicates the dynamic part of the problem (calculation of
the cross sections of OC transitions), but then makes
the analysis of the kinetics, in principle, simple and
clear. We recall that the most interesting region
(where it is possible to observe a new type of nonlinear
effect) is analyzed here in contrast to the usual ap-
proach5"7 based on the elementary equations of popula-
tion balance; there are no fundamental difficulties in
making the transition to more complex models as well.

4. Within the scope of the ideas presented above, it
is also possible, in principle, to construct a line-shape
theory for the triplet components m — w^, discussed at
the end of subsection c) in Sec. 5. The significant
complication of the analysis of the line shape of transi-
tions m-'m't in the compound "atom+EM field" system
over the theory of broadening of atomic lines presented
in Sec. 2 is related to the fact that the pairwise res-
onating levels 1, 2 and lt, 2t cannot, generally speaking,
be assumed to be isolated during a broadening collision.
In other words, the adiabatic approximation is not ap-
plicable.

5. Nonlinear effects are manifested most clearly in
the static wing (see Figs. 4 and 6) for

£2- >£ V < Aco.

The width of this region increases as

6. EXPERIMENTS

(5.29)

decreases.

The opticocollisional nonlinear phenomena, described
above, are interesting not only in themselves, but also
as a new physical effect. In the future, specific prac-
tical applications of these phenomena may be discov-
ered. This includes the possibility of studying the char-
acteristics of colliding atoms and the establishment of
pulse propagation in a medium with self-induced trans-
parency. However, before discussing such a possibility
in detail, it is necessary to discover and investigate
these effects experimentally. For now , there are few
reports on experiments relating to the problems ex-
amined above.14"16'30"32 In what follows, we shall briefly
present the results of two of the more interesting
works.14'16

a) Investigation of near-resonance scattering of laser
radiation

The effects relating to scattering of near -resonance
laser radiation accompanying collisional line broaden-
ing were studied by Szoke et al.1* They studied a mix-
ture of strontium vapor and argon buffer gas. The dye
laser was tuned to the resonant transition 5s2 1S0

- 5s5p 1Pl (X0 = 460.73 nm) of the Sr atom (Fig. 7). The
argon pressure was varied in the range J°Ar~ 10-500
Torr and the temperature of the strontium vapor was

3)This approach was later used for examining the absorption
of light in a medium of identical atoms28 and in the case of
multipartiele broadening.29
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FIG. 7. Simplified energy level diagram of strontium (a) and
qualitative form of the terms of the system Sr +Ar (b). The
energy of the laser quantum Ktii Is close to the energy Ku^ of
the transition 5s2 ̂ -SsSp 'P,, *W0 = 21698.482 cm"1 (X0

= 460.73 nm).

about 530 1, which corresponds to a vapor density NSr

~10" cm'3.

Observations were made of the radiation of the triplet
components (5.23), whose intensity was studied as a
function of frequency and the intensity of the laser, as
well as a function of the argon pressure. Investigation
of these dependences for weak fields (I<1 MW/cm2)
permitted comparing the measured data with the results
of the theory of broadening.

As expected from (5.26), Rayleigh scattering varied
as Aof2 (Fig. 8a), while resonance fluorescence, de-
termined by OC transitions, was asymmetrical (Fig.
8b). At the same time, as predicted by theory, for the
transition investigated (see Fig. 7b), the static wing
lies in the long -wavelength region. The dependence of
the broadening cross section abr(Aw)=yoc(Aw)/i>T.NAl.

 on

Ao> was found from the ratio of the resonance fluores-
cence to the Rayleigh scattering (Fig. 8). For the im-
pact region, in particular, it was found that JZB~ 5
cm"1, <7B = 4.4- 10"14 cm2. The results of the measure-
ments agree qualitatively with theoretical analysis33 for
C8(Sr-Ar) = 9.8-l<r31 cm8 1.5- 103 a.u. (see Fig. 8).

An analysis of the dependence of the intensities QB

and QF of the triplet components (5.26) on the intensity
of the laser field I gave the following results. The
Rayleigh scattering QR, as expected, saturated for 4F2

~ Aw2. However, the dependence of the resonance fluor-

escence QF on I did not fall under the scope of the "us-
ual" theory,34 which does not take into account the non-
linear dynamic effects, i.e., the dependence of yoc on
V. Then, Carlsten et «Z.,14 continuing to use the "us-
ual" theory, began to view the yoc as a free (i.e., ad-
justable) parameter. Agreement between the experi-
mental and theoretical data was obtained in the
parameter range AX=±0.17nm (Aw =6 cm"1), /
= (0.1-1)- 3.5-107 W/cm2: for the "red" Side, with CT^
= 3.2-10'14 cm2; for the "blue" side, with a6r= 1.8-10"15

cm2. These values are, respectively, three and eight
times smaller than those obtained in the same experi-
ment14 with weak fields. The dependence of the reso-
nance fluorescence QF on the laser intensity I was also
studied for large detunings (Aw2>4K2), when saturation
did not play an important role and the 7 dependence of
QR was nearly linear. Good agreement between theo-
retical and experimental data was obtained in this case
only for values of CT^ much less than the values that
were obtained in the weak-field limit.

These facts, as well as the fact that the nonlinearity
was observed with fields of the order of the critical
fields (#o~8?B> see subsection b), Sec. 4), provide a
basis for assuming that the V dependence of yoc, re-
lated to dynamic effects, was discovered in the experi-
ments carried out by SzSke's group. Carlsten et al. ,14

although they paid attention to the dependence of the
elementary event on the field intensity predicted in
Refs. 9-11, still did not assume that the nonlinear ef-
fects that they observed could be related to the nonsta-
tionary nature of the problem (for more detail, see Ref.
35). However, in a later analysis,15 Szoke uniquely re-
lates the observed effects to the influence of the field on
the dynamics of the broadening collisions.

b) Observation of nonlinear effects in the line wing

Specific experiments designed to observe nonlinear
effects for large frequency detunings Aw»n B were con-
ducted by A. M. Bonch-Bruevich's group.16 The Tl + Ar
system, whose level diagram is shown in Fig. 9, was
investigated. The transition X3 / 2-B2 was investigated.
The choice of this transition stems from the fact that in
some frequency range (near \0 = 530 nm), these terms

«'

iG 10 Ato.cm
a)

FIG. 8. The dependence on the frequency detuning Aw of Ray-
leigh scattering QB (a) and resonance fluorescence normalized i
to it <?!„. =-yoc/tvArB (b). The triangles and circles Indicate,
respectively, the short-wavelength and long-wavelength parts
of the spectrum. The dashed lines indicate the theoretical re-
sults : a) shows a AuT2 dependence and b) shows the theoreti-
cal results33 (1 indicates the Impact limit, 2 the static region,
3 the adiabatlc region).
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FIG. 10. Oscillograms of the laser pulse (a) and the lumine-
scence pulses for different excitation Intensities / (W/cm2)
= 3-108 (b), 2*109 (c), and 8 • 109 (d).

are practically parallel, while as the difference be-
tween the slopes of the terms .FAw decreases, the re-
gion (5.23) with the strongest manifestation of nonlinear
effects widens. Near the point of contact of the terms
raw, the critical field is estimated by the quantity31-32

VCI =(

In the experiments of Ref. 16 it is the region near the
contact of terms that was studied.4'

The second harmonic radiation of a neodymium laser,
operating in the self-mode-locking regime, served as
a source for exciting the Tl + Ar system investigated.
The laser pulse consisted of 15 to 18 separate spikes
(see Fig. lOa), whose duration was Aiss = (l-1.5)-10"11

s. Special attention was directed toward forming a
sharp (both in time and space) distribution of the laser
field, since various averagings mask the comparatively
slow decrease [oc #~loc 1/VT; see (4.16)].

The argon pressure PAr~ 1 atm was chosen so that the
probability of a broadening collision within the time of
passage of the laser pulse (Af ,as ~10~10 s) was of the or-
der of unity (A£,as yc ~ !)• &1 order to have appreciable
population of the initial atomic 6P3/2 level, the vapor
cell was heated to a temperature of 830-880 °C and, at
the same time, the concentration of atoms was Nef

«10l2cnr3.

The luminescence of thallium atoms in the transitions
7S1/2-6P1/2 (Xsp=377 nm) or 7S1/2-6P3/2 (\sp=535 nm)
was observed. The measurements of the dependence of
the intensity of the integral (over the entire pulse) spon-
taneous emission in atomic lines on the laser radiation
intensity are shown in Fig. 11. The enhanced transmis-
sion effect, as can be seen from Fig. 11, is observed
for iz 109 W/cm2 (Sf0s 106 W/cm).

4'Bonch-Bruevich et al ,16 refer to the opticocollisional non-
linearity that they observed as a "Landau-Zener" nonlinear-
ity. Since here the levels touch but do not cross, this name,
apparently, is not completely satisfactory.

2 lg/(rel. units)

FIG. 11. The dependence of the fluorescence intensity of the
thallium line (Tsj/z-ept/j transition) on the excitation Inten-
sity.

The time-dependence of the luminescence of the atom-
ic lines was also measured (Fig. 10, b-e). At times
corresponding to maximum intensity with /2 109 W/cm2,
luminescence is observed to decrease. This result can
also be viewed as an independent and direct proof of the
observation of the phenomenon of enhanced transmis-
sion of a medium without it being saturated.

Thus, the effects of opticocollisional nonlinearity,
predicted in Refs. 9-11, have been recently confirmed
experimentally. Further development of the theory
along the following lines is of interest. First, it would
be interesting to examine the effect of a strong field on
the line shape of the triplet components (5.23). Second,
the possibility of the formation of powerful light pulses
with steep fronts (high contrast) with the help of the
Landau-Zenner type opticocollisional nonlinearity is
interesting.

I am grateful to V. L Kogan and V. P. Krainov for
valuable discussions and to A. G. Zhidkov for help in
the calculations.

APPENDIX

We shall calculate the matrix elements E;*;Kim. The
energy of the transition is given by the difference be-
tween the average energies of the field, corresponding
to the initial and final states of the compound system
E^ = E^t) -E(J\ After averaging over arbitrary initial
phases of the atoms, the average energy of the states
is given by the expressions (compare subsection a, Sec. 5)

' = >>\ <<Pi ± I % I <Pi ±> + »! (•Pi.* I H f I <P.± >.

where H$ is the free field operator (see subsection a,
Sec. 2), <pm, <pmt are the characteristic functions of
the Hamiltonian HA +Hr, corresponding to different
states of atom A(ra) and of the field nu ± 1, nu -1 ± 1
[see (5.17)].

The matrix Ksm can be obtained from the following
considerations.11 In order to find the transition rates
between the given states of the compound system, it is
simply necessary to multiply the transition rate be-
tween the corresponding states of the atom A by the
probabilities, with which these states enter into the
states of the compound system being examined. The
probability of the presence of an unmixed state is given
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by the square of the expansion coefficient: 6t or 62 [see
(5.17)]. A more careful analysis is carried out in Refs.
12 and 18.

Calculations carried out according to the discussion
above give

1 26? -

0 -£.

-26} -1
_ —1 —26J.

"S*.l 1

#00 -J

Using (5.23), we have the following explicit expres-
sion for the balance equation (5.19):

From here, in the stationary case, <Ufm/dt=*Q, it fol-
lows that

(A.I)
(1/2)

We note that the transitions w-w± in the kinetic ma-
trix mutually cancel (only the transitions m-m't, m'
*m occur). This is related to the indistinguishability of
the states noted above.

Using (A.I), we obtain for the difference of popula-
tions the following:

i-KiJAT

(Au/Q) Ajy
(Kt

where, as before, AJV=M#2i -Ki2)/(K2l+K12) is the dif-
ference of the populations of atomic levels in the ab-
sence of the field, •ylT = (Kzl+K12)/2 is the rate of inleas-
tic relaxation in a two-level system.
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